aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/hyperscan/src/fdr/teddy_compile.cpp
blob: 103220aba01024b3ed12d8370131feea886dc871 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
/*
 * Copyright (c) 2015-2020, Intel Corporation
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of Intel Corporation nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/** 
 * \file 
 * \brief FDR literal matcher: Teddy build code. 
 */ 
 
#include "teddy_compile.h" 
 
#include "fdr.h"
#include "fdr_internal.h"
#include "fdr_compile_internal.h"
#include "fdr_confirm.h"
#include "fdr_engine_description.h"
#include "teddy_internal.h" 
#include "teddy_engine_description.h" 
#include "grey.h" 
#include "ue2common.h"
#include "hwlm/hwlm_build.h" 
#include "util/alloc.h"
#include "util/compare.h"
#include "util/container.h" 
#include "util/make_unique.h" 
#include "util/noncopyable.h" 
#include "util/popcount.h"
#include "util/small_vector.h" 
#include "util/target_info.h"
#include "util/verify_types.h"

#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>

using namespace std;

namespace ue2 {

namespace {

//#define TEDDY_DEBUG

/** \brief Max number of Teddy masks we use. */ 
static constexpr size_t MAX_NUM_MASKS = 4; 
 
class TeddyCompiler : noncopyable { 
    const TeddyEngineDescription &eng;
    const Grey &grey; 
    const vector<hwlmLiteral> &lits;
    map<BucketIndex, std::vector<LiteralIndex>> bucketToLits; 
    bool make_small;

public:
    TeddyCompiler(const vector<hwlmLiteral> &lits_in,
                  map<BucketIndex, std::vector<LiteralIndex>> bucketToLits_in, 
                  const TeddyEngineDescription &eng_in, bool make_small_in, 
                  const Grey &grey_in) 
        : eng(eng_in), grey(grey_in), lits(lits_in), 
          bucketToLits(move(bucketToLits_in)), make_small(make_small_in) {} 

    bytecode_ptr<FDR> build(); 
};

class TeddySet {
    /** 
     * \brief Estimate of the max number of literals in a set, used to 
     * minimise allocations. 
     */ 
    static constexpr size_t LITS_PER_SET = 20; 
 
    /** \brief Number of masks. */ 
    u32 len;
 
    /** 
     * \brief A series of bitfields over 16 predicates that represent the 
     * shufti nibble set. 
     * 
     * So for num_masks = 4 we will represent our strings by 8 u16s in the 
     * vector that indicate what a shufti bucket would have to look like. 
     */ 
    small_vector<u16, MAX_NUM_MASKS * 2> nibbleSets; 
 
    /** 
     * \brief Sorted, unique set of literals. We maintain our own set in a 
     * sorted vector to minimise allocations. 
     */ 
    small_vector<u32, LITS_PER_SET> litIds; 
 
public:
    explicit TeddySet(u32 len_in) : len(len_in), nibbleSets(len_in * 2, 0) {} 
    size_t litCount() const { return litIds.size(); }
    const small_vector<u32, LITS_PER_SET> &getLits() const { return litIds; } 

    bool operator<(const TeddySet &s) const { 
        return litIds < s.litIds;
    }

#ifdef TEDDY_DEBUG
    void dump() const {
        printf("TS: ");
        for (u32 i = 0; i < nibbleSets.size(); i++) {
            printf("%04x ", (u32)nibbleSets[i]);
        }
        printf("\nnlits: %zu\nLit ids: ", litCount());
        printf("Prob: %llu\n", probability());
        for (const auto &id : litIds) { 
            printf("%u ", id); 
        }
        printf("\n");
        printf("Flood prone : %s\n", isRunProne() ? "yes" : "no"); 
    }
#endif

    bool identicalTail(const TeddySet &ts) const { 
        return nibbleSets == ts.nibbleSets;
    }

    void addLiteral(u32 lit_id, const hwlmLiteral &lit) { 
        const string &s = lit.s; 
        for (u32 i = 0; i < len; i++) {
            if (i < s.size()) {
                u8 c = s[s.size() - i - 1];
                u8 c_hi = (c >> 4) & 0xf;
                u8 c_lo = c & 0xf;
                nibbleSets[i * 2] = 1 << c_lo; 
                if (lit.nocase && ourisalpha(c)) { 
                    nibbleSets[i * 2 + 1] = 
                        (1 << (c_hi & 0xd)) | (1 << (c_hi | 0x2)); 
                } else {
                    nibbleSets[i * 2 + 1] = 1 << c_hi; 
                }
            } else {
                nibbleSets[i * 2] = nibbleSets[i * 2 + 1] = 0xffff; 
            }
        }
        litIds.push_back(lit_id); 
        sort_and_unique(litIds); 
    }

    // return a value p from 0 .. MAXINT64 that gives p/MAXINT64
    // likelihood of this TeddySet firing a first-stage accept
    // if it was given a bucket of its own and random data were
    // to be passed in
    u64a probability() const {
        u64a val = 1;
        for (size_t i = 0; i < nibbleSets.size(); i++) {
            val *= popcount32((u32)nibbleSets[i]);
        }
        return val;
    }

    // return a score based around the chance of this hitting times
    // a small fixed cost + the cost of traversing some sort of followup
    // (assumption is that the followup is linear)
    u64a heuristic() const {
        return probability() * (2 + litCount()); 
    }

    bool isRunProne() const {
        u16 lo_and = 0xffff;
        u16 hi_and = 0xffff;
        for (u32 i = 0; i < len; i++) {
            lo_and &= nibbleSets[i * 2]; 
            hi_and &= nibbleSets[i * 2 + 1]; 
        }
        // we're not flood-prone if there's no way to get
        // through with a flood
        if (!lo_and || !hi_and) {
            return false;
        }
        return true;
    }
 
    friend TeddySet merge(const TeddySet &a, const TeddySet &b) { 
        assert(a.nibbleSets.size() == b.nibbleSets.size()); 
 
        TeddySet m(a); 
 
        for (size_t i = 0; i < m.nibbleSets.size(); i++) { 
            m.nibbleSets[i] |= b.nibbleSets[i]; 
        } 
 
        m.litIds.insert(m.litIds.end(), b.litIds.begin(), b.litIds.end()); 
        sort_and_unique(m.litIds); 
 
        return m; 
    } 
};

static 
bool pack(const vector<hwlmLiteral> &lits, 
          const TeddyEngineDescription &eng, 
          map<BucketIndex, std::vector<LiteralIndex>> &bucketToLits) { 
    set<TeddySet> sts;

    for (u32 i = 0; i < lits.size(); i++) {
        TeddySet ts(eng.numMasks); 
        ts.addLiteral(i, lits[i]); 
        sts.insert(ts);
    }

    while (1) {
#ifdef TEDDY_DEBUG
        printf("Size %zu\n", sts.size());
        for (const TeddySet &ts : sts) { 
            printf("\n"); 
            ts.dump(); 
        }
        printf("\n===============================================\n");
#endif

        auto m1 = sts.end(), m2 = sts.end(); 
        u64a best = 0xffffffffffffffffULL;

        for (auto i1 = sts.begin(), e1 = sts.end(); i1 != e1; ++i1) { 
            const TeddySet &s1 = *i1;
            for (auto i2 = next(i1), e2 = sts.end(); i2 != e2; ++i2) { 
                const TeddySet &s2 = *i2;

                // be more conservative if we don't absolutely need to
                // keep packing
                if ((sts.size() <= eng.getNumBuckets()) &&
                    !s1.identicalTail(s2)) {
                    continue;
                }

                TeddySet tmpSet = merge(s1, s2); 
                u64a newScore = tmpSet.heuristic();
                u64a oldScore = s1.heuristic() + s2.heuristic();
                if (newScore < oldScore) {
                    m1 = i1;
                    m2 = i2;
                    break;
                } else {
                    u64a score = newScore - oldScore;
                    bool oldRunProne = s1.isRunProne() && s2.isRunProne();
                    bool newRunProne = tmpSet.isRunProne();
                    if (newRunProne && !oldRunProne) {
                        continue;
                    }
                    if (score < best) {
                        best = score;
                        m1 = i1;
                        m2 = i2;
                    }
                }
            }
        }
        // if we didn't find a merge candidate, bail out
        if ((m1 == sts.end()) || (m2 == sts.end())) {
            break;
        }

        // do the merge
        TeddySet nts = merge(*m1, *m2); 
#ifdef TEDDY_DEBUG
        printf("Merging\n");
        printf("m1 = \n");
        m1->dump();
        printf("m2 = \n");
        m2->dump();
        printf("nts = \n");
        nts.dump();
        printf("\n===============================================\n");
#endif
        sts.erase(m1);
        sts.erase(m2);
        sts.insert(nts);
    }

    if (sts.size() > eng.getNumBuckets()) {
        return false;
    }

    u32 bucket_id = 0; 
    for (const TeddySet &ts : sts) { 
        const auto &ts_lits = ts.getLits(); 
        auto &bucket_lits = bucketToLits[bucket_id]; 
        bucket_lits.insert(end(bucket_lits), begin(ts_lits), end(ts_lits)); 
        bucket_id++; 
    }
    return true;
}

// this entry has all-zero mask to skip reinforcement 
#define NO_REINFORCEMENT N_CHARS 

// this means every entry in reinforcement table 
#define ALL_CHAR_SET N_CHARS 

// each item's reinforcement mask has REINFORCED_MSK_LEN bytes 
#define REINFORCED_MSK_LEN 8 

// reinforcement table size for each 8 buckets set 
#define RTABLE_SIZE ((N_CHARS + 1) * REINFORCED_MSK_LEN) 

static 
void initReinforcedTable(u8 *rmsk) { 
    u64a *mask = (u64a *)rmsk; 
    fill_n(mask, N_CHARS, 0x00ffffffffffffffULL); 
} 

static 
void fillReinforcedMskZero(u8 *rmsk) { 
    u8 *mc = rmsk + NO_REINFORCEMENT * REINFORCED_MSK_LEN; 
    fill_n(mc, REINFORCED_MSK_LEN, 0x00); 
} 

static 
void fillReinforcedMsk(u8 *rmsk, u16 c, u32 j, u8 bmsk) { 
    assert(j > 0); 
    if (c == ALL_CHAR_SET) { 
        for (size_t i = 0; i < N_CHARS; i++) { 
            u8 *mc = rmsk + i * REINFORCED_MSK_LEN; 
            mc[j - 1] &= ~bmsk; 
        } 
    } else {
        u8 *mc = rmsk + c * REINFORCED_MSK_LEN; 
        mc[j - 1] &= ~bmsk; 
    }
} 

static 
void fillDupNibbleMasks(const map<BucketIndex,
                                  vector<LiteralIndex>> &bucketToLits,
                        const vector<hwlmLiteral> &lits,
                        u32 numMasks, size_t maskLen,
                        u8 *baseMsk) {
    u32 maskWidth = 2;
    memset(baseMsk, 0xff, maskLen);

    for (const auto &b2l : bucketToLits) {
        const u32 &bucket_id = b2l.first;
        const vector<LiteralIndex> &ids = b2l.second;
        const u8 bmsk = 1U << (bucket_id % 8);

        for (const LiteralIndex &lit_id : ids) {
            const hwlmLiteral &l = lits[lit_id];
            DEBUG_PRINTF("putting lit %u into bucket %u\n", lit_id, bucket_id);
            const u32 sz = verify_u32(l.s.size());

            // fill in masks
            for (u32 j = 0; j < numMasks; j++) {
                const u32 msk_id_lo = j * 2 * maskWidth + (bucket_id / 8);
                const u32 msk_id_hi = (j * 2 + 1) * maskWidth + (bucket_id / 8);
                const u32 lo_base0 = msk_id_lo * 32;
                const u32 lo_base1 = msk_id_lo * 32 + 16;
                const u32 hi_base0 = msk_id_hi * 32;
                const u32 hi_base1 = msk_id_hi * 32 + 16;

                // if we don't have a char at this position, fill in i
                // locations in these masks with '1'
                if (j >= sz) {
                    for (u32 n = 0; n < 16; n++) {
                        baseMsk[lo_base0 + n] &= ~bmsk;
                        baseMsk[lo_base1 + n] &= ~bmsk;
                        baseMsk[hi_base0 + n] &= ~bmsk;
                        baseMsk[hi_base1 + n] &= ~bmsk;
                    }
                } else {
                    u8 c = l.s[sz - 1 - j];
                    // if we do have a char at this position
                    const u32 hiShift = 4;
                    u32 n_hi = (c >> hiShift) & 0xf;
                    u32 n_lo = c & 0xf;

                    if (j < l.msk.size() && l.msk[l.msk.size() - 1 - j]) {
                        u8 m = l.msk[l.msk.size() - 1 - j];
                        u8 m_hi = (m >> hiShift) & 0xf;
                        u8 m_lo = m & 0xf;
                        u8 cmp = l.cmp[l.msk.size() - 1 - j];
                        u8 cmp_lo = cmp & 0xf;
                        u8 cmp_hi = (cmp >> hiShift) & 0xf;

                        for (u8 cm = 0; cm < 0x10; cm++) {
                            if ((cm & m_lo) == (cmp_lo & m_lo)) {
                                baseMsk[lo_base0 + cm] &= ~bmsk;
                                baseMsk[lo_base1 + cm] &= ~bmsk;
                            }
                            if ((cm & m_hi) == (cmp_hi & m_hi)) {
                                baseMsk[hi_base0 + cm] &= ~bmsk;
                                baseMsk[hi_base1 + cm] &= ~bmsk;
                            }
                        }
                    } else {
                        if (l.nocase && ourisalpha(c)) {
                            u32 cmHalfClear = (0xdf >> hiShift) & 0xf;
                            u32 cmHalfSet = (0x20 >> hiShift) & 0xf;
                            baseMsk[hi_base0 + (n_hi & cmHalfClear)] &= ~bmsk;
                            baseMsk[hi_base1 + (n_hi & cmHalfClear)] &= ~bmsk;
                            baseMsk[hi_base0 + (n_hi | cmHalfSet)] &= ~bmsk;
                            baseMsk[hi_base1 + (n_hi | cmHalfSet)] &= ~bmsk;
                        } else {
                            baseMsk[hi_base0 + n_hi] &= ~bmsk;
                            baseMsk[hi_base1 + n_hi] &= ~bmsk;
                        }
                        baseMsk[lo_base0 + n_lo] &= ~bmsk;
                        baseMsk[lo_base1 + n_lo] &= ~bmsk;
                    }
                }
            }
        }
    }
}

static
void fillNibbleMasks(const map<BucketIndex, 
                               vector<LiteralIndex>> &bucketToLits, 
                     const vector<hwlmLiteral> &lits, 
                     u32 numMasks, u32 maskWidth, size_t maskLen, 
                     u8 *baseMsk) { 
    memset(baseMsk, 0xff, maskLen); 

    for (const auto &b2l : bucketToLits) { 
        const u32 &bucket_id = b2l.first; 
        const vector<LiteralIndex> &ids = b2l.second; 
        const u8 bmsk = 1U << (bucket_id % 8);

        for (const LiteralIndex &lit_id : ids) { 
            const hwlmLiteral &l = lits[lit_id]; 
            DEBUG_PRINTF("putting lit %u into bucket %u\n", lit_id, bucket_id);
            const u32 sz = verify_u32(l.s.size());

            // fill in masks
            for (u32 j = 0; j < numMasks; j++) { 
                const u32 msk_id_lo = j * 2 * maskWidth + (bucket_id / 8); 
                const u32 msk_id_hi = (j * 2 + 1) * maskWidth + (bucket_id / 8); 
                const u32 lo_base = msk_id_lo * 16; 
                const u32 hi_base = msk_id_hi * 16; 

                // if we don't have a char at this position, fill in i
                // locations in these masks with '1'
                if (j >= sz) {
                    for (u32 n = 0; n < 16; n++) {
                        baseMsk[lo_base + n] &= ~bmsk; 
                        baseMsk[hi_base + n] &= ~bmsk; 
                    }
                } else {
                    u8 c = l.s[sz - 1 - j];
                    // if we do have a char at this position
                    const u32 hiShift = 4;
                    u32 n_hi = (c >> hiShift) & 0xf;
                    u32 n_lo = c & 0xf;

                    if (j < l.msk.size() && l.msk[l.msk.size() - 1 - j]) {
                        u8 m = l.msk[l.msk.size() - 1 - j];
                        u8 m_hi = (m >> hiShift) & 0xf;
                        u8 m_lo = m & 0xf;
                        u8 cmp = l.cmp[l.msk.size() - 1 - j];
                        u8 cmp_lo = cmp & 0xf;
                        u8 cmp_hi = (cmp >> hiShift) & 0xf;

                        for (u8 cm = 0; cm < 0x10; cm++) {
                            if ((cm & m_lo) == (cmp_lo & m_lo)) {
                                baseMsk[lo_base + cm] &= ~bmsk; 
                            }
                            if ((cm & m_hi) == (cmp_hi & m_hi)) {
                                baseMsk[hi_base + cm] &= ~bmsk; 
                            }
                        }
                    } else { 
                        if (l.nocase && ourisalpha(c)) {
                            u32 cmHalfClear = (0xdf >> hiShift) & 0xf;
                            u32 cmHalfSet = (0x20 >> hiShift) & 0xf; 
                            baseMsk[hi_base + (n_hi & cmHalfClear)] &= ~bmsk; 
                            baseMsk[hi_base + (n_hi | cmHalfSet)] &= ~bmsk; 
                        } else {
                            baseMsk[hi_base + n_hi] &= ~bmsk; 
                        }
                        baseMsk[lo_base + n_lo] &= ~bmsk; 
                    }
                }
            }
        }
    }
} 

static 
void fillReinforcedTable(const map<BucketIndex, 
                                   vector<LiteralIndex>> &bucketToLits, 
                         const vector<hwlmLiteral> &lits, 
                         u8 *rtable_base, const u32 num_tables) { 
    vector<u8 *> tables; 
    for (u32 i = 0; i < num_tables; i++) { 
        tables.push_back(rtable_base + i * RTABLE_SIZE); 
    } 

    for (auto t : tables) { 
        initReinforcedTable(t); 
    } 
 
    for (const auto &b2l : bucketToLits) { 
        const u32 &bucket_id = b2l.first; 
        const vector<LiteralIndex> &ids = b2l.second; 
        u8 *rmsk = tables[bucket_id / 8]; 
        const u8 bmsk = 1U << (bucket_id % 8); 
 
        for (const LiteralIndex &lit_id : ids) { 
            const hwlmLiteral &l = lits[lit_id]; 
            DEBUG_PRINTF("putting lit %u into bucket %u\n", lit_id, bucket_id); 
            const u32 sz = verify_u32(l.s.size()); 
 
            // fill in reinforced masks 
            for (u32 j = 1; j < REINFORCED_MSK_LEN; j++) { 
                if (sz - 1 < j) { 
                    fillReinforcedMsk(rmsk, ALL_CHAR_SET, j, bmsk); 
                } else { 
                    u8 c = l.s[sz - 1 - j]; 
                    if (l.nocase && ourisalpha(c)) { 
                        u8 c_up = c & 0xdf; 
                        fillReinforcedMsk(rmsk, c_up, j, bmsk); 
                        u8 c_lo = c | 0x20; 
                        fillReinforcedMsk(rmsk, c_lo, j, bmsk); 
                    } else { 
                        fillReinforcedMsk(rmsk, c, j, bmsk); 
                    } 
                } 
            }
        }
    } 
 
    for (auto t : tables) { 
        fillReinforcedMskZero(t); 
    } 
} 
 
bytecode_ptr<FDR> TeddyCompiler::build() { 
    u32 maskWidth = eng.getNumBuckets() / 8; 
 
    size_t headerSize = sizeof(Teddy); 
    size_t maskLen = eng.numMasks * 16 * 2 * maskWidth; 
    size_t reinforcedDupMaskLen = RTABLE_SIZE * maskWidth;
    if (maskWidth == 2) { // dup nibble mask table in Fat Teddy
        reinforcedDupMaskLen = maskLen * 2;
    }
 
    auto floodTable = setupFDRFloodControl(lits, eng, grey); 
    auto confirmTable = setupFullConfs(lits, eng, bucketToLits, make_small); 
 
    // Note: we place each major structure here on a cacheline boundary. 
    size_t size = ROUNDUP_CL(headerSize) + ROUNDUP_CL(maskLen) + 
                  ROUNDUP_CL(reinforcedDupMaskLen) +
                  ROUNDUP_CL(confirmTable.size()) + floodTable.size(); 
 
    auto fdr = make_zeroed_bytecode_ptr<FDR>(size, 64); 
    assert(fdr); // otherwise would have thrown std::bad_alloc 
    Teddy *teddy = (Teddy *)fdr.get(); // ugly 
    u8 *teddy_base = (u8 *)teddy; 
 
    // Write header. 
    teddy->size = size; 
    teddy->engineID = eng.getID(); 
    teddy->maxStringLen = verify_u32(maxLen(lits)); 
    teddy->numStrings = verify_u32(lits.size()); 
 
    // Write confirm structures. 
    u8 *ptr = teddy_base + ROUNDUP_CL(headerSize) + ROUNDUP_CL(maskLen) + 
              ROUNDUP_CL(reinforcedDupMaskLen);
    assert(ISALIGNED_CL(ptr)); 
    teddy->confOffset = verify_u32(ptr - teddy_base); 
    memcpy(ptr, confirmTable.get(), confirmTable.size()); 
    ptr += ROUNDUP_CL(confirmTable.size()); 
 
    // Write flood control structures. 
    assert(ISALIGNED_CL(ptr)); 
    teddy->floodOffset = verify_u32(ptr - teddy_base); 
    memcpy(ptr, floodTable.get(), floodTable.size()); 
    ptr += floodTable.size(); 
 
    // Write teddy masks. 
    u8 *baseMsk = teddy_base + ROUNDUP_CL(headerSize); 
    fillNibbleMasks(bucketToLits, lits, eng.numMasks, maskWidth, maskLen, 
                    baseMsk); 
 
    if (maskWidth == 1) { // reinforcement table in Teddy
        // Write reinforcement masks.
        u8 *reinforcedMsk = baseMsk + ROUNDUP_CL(maskLen);
        fillReinforcedTable(bucketToLits, lits, reinforcedMsk, maskWidth);
    } else { // dup nibble mask table in Fat Teddy
        assert(maskWidth == 2);
        u8 *dupMsk = baseMsk + ROUNDUP_CL(maskLen);
        fillDupNibbleMasks(bucketToLits, lits, eng.numMasks,
			   reinforcedDupMaskLen, dupMsk);
    }
 
    return fdr; 
} 
 
 
static 
bool assignStringsToBuckets( 
                const vector<hwlmLiteral> &lits, 
                TeddyEngineDescription &eng, 
                map<BucketIndex, vector<LiteralIndex>> &bucketToLits) { 
    assert(eng.numMasks <= MAX_NUM_MASKS); 
    if (lits.size() > eng.getNumBuckets() * TEDDY_BUCKET_LOAD) { 
        DEBUG_PRINTF("too many literals: %zu\n", lits.size()); 
        return false; 
    } 
 
#ifdef TEDDY_DEBUG 
    for (size_t i = 0; i < lits.size(); i++) { 
        printf("lit %zu (len = %zu, %s) is ", i, lits[i].s.size(), 
               lits[i].nocase ? "caseless" : "caseful"); 
        for (size_t j = 0; j < lits[i].s.size(); j++) { 
            printf("%02x", ((u32)lits[i].s[j])&0xff); 
        } 
        printf("\n");
    }
#endif

    if (!pack(lits, eng, bucketToLits)) { 
        DEBUG_PRINTF("more lits (%zu) than buckets (%u), can't pack.\n", 
                     lits.size(), eng.getNumBuckets()); 
        return false; 
    } 
    return true; 
}

} // namespace

bytecode_ptr<FDR> teddyBuildTable(const HWLMProto &proto, const Grey &grey) { 
    TeddyCompiler tc(proto.lits, proto.bucketToLits, *(proto.teddyEng), 
                     proto.make_small, grey); 
    return tc.build(); 
} 
 
 
unique_ptr<HWLMProto> teddyBuildProtoHinted( 
                        u8 engType, const vector<hwlmLiteral> &lits, 
                        bool make_small, u32 hint, const target_t &target) { 
    unique_ptr<TeddyEngineDescription> des;
    if (hint == HINT_INVALID) {
        des = chooseTeddyEngine(target, lits);
    } else {
        des = getTeddyDescription(hint);
    }
    if (!des) {
        return nullptr;
    }
 
    map<BucketIndex, std::vector<LiteralIndex>> bucketToLits; 
    if (!assignStringsToBuckets(lits, *des, bucketToLits)) { 
        return nullptr; 
    } 
 
    return ue2::make_unique<HWLMProto>(engType, move(des), lits, 
                                       bucketToLits, make_small); 
}

} // namespace ue2