aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/double-conversion/fixed-dtoa.cc
blob: eb5b27d777a8e062739c50cc2f8502394117893a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
// Copyright 2010 the V8 project authors. All rights reserved. 
// Redistribution and use in source and binary forms, with or without 
// modification, are permitted provided that the following conditions are 
// met: 
// 
//     * Redistributions of source code must retain the above copyright 
//       notice, this list of conditions and the following disclaimer. 
//     * Redistributions in binary form must reproduce the above 
//       copyright notice, this list of conditions and the following 
//       disclaimer in the documentation and/or other materials provided 
//       with the distribution. 
//     * Neither the name of Google Inc. nor the names of its 
//       contributors may be used to endorse or promote products derived 
//       from this software without specific prior written permission. 
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 
#include <cmath>
 
#include "fixed-dtoa.h" 
#include "ieee.h" 
 
namespace double_conversion { 
 
// Represents a 128bit type. This class should be replaced by a native type on 
// platforms that support 128bit integers. 
class UInt128 { 
 public: 
  UInt128() : high_bits_(0), low_bits_(0) { } 
  UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { } 
 
  void Multiply(uint32_t multiplicand) { 
    uint64_t accumulator; 
 
    accumulator = (low_bits_ & kMask32) * multiplicand; 
    uint32_t part = static_cast<uint32_t>(accumulator & kMask32); 
    accumulator >>= 32; 
    accumulator = accumulator + (low_bits_ >> 32) * multiplicand; 
    low_bits_ = (accumulator << 32) + part; 
    accumulator >>= 32; 
    accumulator = accumulator + (high_bits_ & kMask32) * multiplicand; 
    part = static_cast<uint32_t>(accumulator & kMask32); 
    accumulator >>= 32; 
    accumulator = accumulator + (high_bits_ >> 32) * multiplicand; 
    high_bits_ = (accumulator << 32) + part; 
    ASSERT((accumulator >> 32) == 0); 
  } 
 
  void Shift(int shift_amount) { 
    ASSERT(-64 <= shift_amount && shift_amount <= 64); 
    if (shift_amount == 0) { 
      return; 
    } else if (shift_amount == -64) { 
      high_bits_ = low_bits_; 
      low_bits_ = 0; 
    } else if (shift_amount == 64) { 
      low_bits_ = high_bits_; 
      high_bits_ = 0; 
    } else if (shift_amount <= 0) { 
      high_bits_ <<= -shift_amount; 
      high_bits_ += low_bits_ >> (64 + shift_amount); 
      low_bits_ <<= -shift_amount; 
    } else { 
      low_bits_ >>= shift_amount; 
      low_bits_ += high_bits_ << (64 - shift_amount); 
      high_bits_ >>= shift_amount; 
    } 
  } 
 
  // Modifies *this to *this MOD (2^power). 
  // Returns *this DIV (2^power). 
  int DivModPowerOf2(int power) { 
    if (power >= 64) { 
      int result = static_cast<int>(high_bits_ >> (power - 64)); 
      high_bits_ -= static_cast<uint64_t>(result) << (power - 64); 
      return result; 
    } else { 
      uint64_t part_low = low_bits_ >> power; 
      uint64_t part_high = high_bits_ << (64 - power); 
      int result = static_cast<int>(part_low + part_high); 
      high_bits_ = 0; 
      low_bits_ -= part_low << power; 
      return result; 
    } 
  } 
 
  bool IsZero() const { 
    return high_bits_ == 0 && low_bits_ == 0; 
  } 
 
  int BitAt(int position) const { 
    if (position >= 64) { 
      return static_cast<int>(high_bits_ >> (position - 64)) & 1; 
    } else { 
      return static_cast<int>(low_bits_ >> position) & 1; 
    } 
  } 
 
 private: 
  static const uint64_t kMask32 = 0xFFFFFFFF; 
  // Value == (high_bits_ << 64) + low_bits_ 
  uint64_t high_bits_; 
  uint64_t low_bits_; 
}; 
 
 
static const int kDoubleSignificandSize = 53;  // Includes the hidden bit. 
 
 
static void FillDigits32FixedLength(uint32_t number, int requested_length, 
                                    Vector<char> buffer, int* length) { 
  for (int i = requested_length - 1; i >= 0; --i) { 
    buffer[(*length) + i] = '0' + number % 10; 
    number /= 10; 
  } 
  *length += requested_length; 
} 
 
 
static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) { 
  int number_length = 0; 
  // We fill the digits in reverse order and exchange them afterwards. 
  while (number != 0) { 
    int digit = number % 10; 
    number /= 10; 
    buffer[(*length) + number_length] = static_cast<char>('0' + digit); 
    number_length++; 
  } 
  // Exchange the digits. 
  int i = *length; 
  int j = *length + number_length - 1; 
  while (i < j) { 
    char tmp = buffer[i]; 
    buffer[i] = buffer[j]; 
    buffer[j] = tmp; 
    i++; 
    j--; 
  } 
  *length += number_length; 
} 
 
 
static void FillDigits64FixedLength(uint64_t number, 
                                    Vector<char> buffer, int* length) { 
  const uint32_t kTen7 = 10000000; 
  // For efficiency cut the number into 3 uint32_t parts, and print those. 
  uint32_t part2 = static_cast<uint32_t>(number % kTen7); 
  number /= kTen7; 
  uint32_t part1 = static_cast<uint32_t>(number % kTen7); 
  uint32_t part0 = static_cast<uint32_t>(number / kTen7); 
 
  FillDigits32FixedLength(part0, 3, buffer, length); 
  FillDigits32FixedLength(part1, 7, buffer, length); 
  FillDigits32FixedLength(part2, 7, buffer, length); 
} 
 
 
static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) { 
  const uint32_t kTen7 = 10000000; 
  // For efficiency cut the number into 3 uint32_t parts, and print those. 
  uint32_t part2 = static_cast<uint32_t>(number % kTen7); 
  number /= kTen7; 
  uint32_t part1 = static_cast<uint32_t>(number % kTen7); 
  uint32_t part0 = static_cast<uint32_t>(number / kTen7); 
 
  if (part0 != 0) { 
    FillDigits32(part0, buffer, length); 
    FillDigits32FixedLength(part1, 7, buffer, length); 
    FillDigits32FixedLength(part2, 7, buffer, length); 
  } else if (part1 != 0) { 
    FillDigits32(part1, buffer, length); 
    FillDigits32FixedLength(part2, 7, buffer, length); 
  } else { 
    FillDigits32(part2, buffer, length); 
  } 
} 
 
 
static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) { 
  // An empty buffer represents 0. 
  if (*length == 0) { 
    buffer[0] = '1'; 
    *decimal_point = 1; 
    *length = 1; 
    return; 
  } 
  // Round the last digit until we either have a digit that was not '9' or until 
  // we reached the first digit. 
  buffer[(*length) - 1]++; 
  for (int i = (*length) - 1; i > 0; --i) { 
    if (buffer[i] != '0' + 10) { 
      return; 
    } 
    buffer[i] = '0'; 
    buffer[i - 1]++; 
  } 
  // If the first digit is now '0' + 10, we would need to set it to '0' and add 
  // a '1' in front. However we reach the first digit only if all following 
  // digits had been '9' before rounding up. Now all trailing digits are '0' and 
  // we simply switch the first digit to '1' and update the decimal-point 
  // (indicating that the point is now one digit to the right). 
  if (buffer[0] == '0' + 10) { 
    buffer[0] = '1'; 
    (*decimal_point)++; 
  } 
} 
 
 
// The given fractionals number represents a fixed-point number with binary 
// point at bit (-exponent). 
// Preconditions: 
//   -128 <= exponent <= 0. 
//   0 <= fractionals * 2^exponent < 1 
//   The buffer holds the result. 
// The function will round its result. During the rounding-process digits not 
// generated by this function might be updated, and the decimal-point variable 
// might be updated. If this function generates the digits 99 and the buffer 
// already contained "199" (thus yielding a buffer of "19999") then a 
// rounding-up will change the contents of the buffer to "20000". 
static void FillFractionals(uint64_t fractionals, int exponent, 
                            int fractional_count, Vector<char> buffer, 
                            int* length, int* decimal_point) { 
  ASSERT(-128 <= exponent && exponent <= 0); 
  // 'fractionals' is a fixed-point number, with binary point at bit 
  // (-exponent). Inside the function the non-converted remainder of fractionals 
  // is a fixed-point number, with binary point at bit 'point'. 
  if (-exponent <= 64) { 
    // One 64 bit number is sufficient. 
    ASSERT(fractionals >> 56 == 0); 
    int point = -exponent; 
    for (int i = 0; i < fractional_count; ++i) { 
      if (fractionals == 0) break; 
      // Instead of multiplying by 10 we multiply by 5 and adjust the point 
      // location. This way the fractionals variable will not overflow. 
      // Invariant at the beginning of the loop: fractionals < 2^point. 
      // Initially we have: point <= 64 and fractionals < 2^56 
      // After each iteration the point is decremented by one. 
      // Note that 5^3 = 125 < 128 = 2^7. 
      // Therefore three iterations of this loop will not overflow fractionals 
      // (even without the subtraction at the end of the loop body). At this 
      // time point will satisfy point <= 61 and therefore fractionals < 2^point 
      // and any further multiplication of fractionals by 5 will not overflow. 
      fractionals *= 5; 
      point--; 
      int digit = static_cast<int>(fractionals >> point); 
      ASSERT(digit <= 9); 
      buffer[*length] = static_cast<char>('0' + digit); 
      (*length)++; 
      fractionals -= static_cast<uint64_t>(digit) << point; 
    } 
    // If the first bit after the point is set we have to round up. 
    ASSERT(fractionals == 0 || point - 1 >= 0); 
    if ((fractionals != 0) && ((fractionals >> (point - 1)) & 1) == 1) { 
      RoundUp(buffer, length, decimal_point); 
    } 
  } else {  // We need 128 bits. 
    ASSERT(64 < -exponent && -exponent <= 128); 
    UInt128 fractionals128 = UInt128(fractionals, 0); 
    fractionals128.Shift(-exponent - 64); 
    int point = 128; 
    for (int i = 0; i < fractional_count; ++i) { 
      if (fractionals128.IsZero()) break; 
      // As before: instead of multiplying by 10 we multiply by 5 and adjust the 
      // point location. 
      // This multiplication will not overflow for the same reasons as before. 
      fractionals128.Multiply(5); 
      point--; 
      int digit = fractionals128.DivModPowerOf2(point); 
      ASSERT(digit <= 9); 
      buffer[*length] = static_cast<char>('0' + digit); 
      (*length)++; 
    } 
    if (fractionals128.BitAt(point - 1) == 1) { 
      RoundUp(buffer, length, decimal_point); 
    } 
  } 
} 
 
 
// Removes leading and trailing zeros. 
// If leading zeros are removed then the decimal point position is adjusted. 
static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) { 
  while (*length > 0 && buffer[(*length) - 1] == '0') { 
    (*length)--; 
  } 
  int first_non_zero = 0; 
  while (first_non_zero < *length && buffer[first_non_zero] == '0') { 
    first_non_zero++; 
  } 
  if (first_non_zero != 0) { 
    for (int i = first_non_zero; i < *length; ++i) { 
      buffer[i - first_non_zero] = buffer[i]; 
    } 
    *length -= first_non_zero; 
    *decimal_point -= first_non_zero; 
  } 
} 
 
 
bool FastFixedDtoa(double v, 
                   int fractional_count, 
                   Vector<char> buffer, 
                   int* length, 
                   int* decimal_point) { 
  const uint32_t kMaxUInt32 = 0xFFFFFFFF; 
  uint64_t significand = Double(v).Significand(); 
  int exponent = Double(v).Exponent(); 
  // v = significand * 2^exponent (with significand a 53bit integer). 
  // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we 
  // don't know how to compute the representation. 2^73 ~= 9.5*10^21. 
  // If necessary this limit could probably be increased, but we don't need 
  // more. 
  if (exponent > 20) return false; 
  if (fractional_count > 20) return false; 
  *length = 0; 
  // At most kDoubleSignificandSize bits of the significand are non-zero. 
  // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero 
  // bits:  0..11*..0xxx..53*..xx 
  if (exponent + kDoubleSignificandSize > 64) { 
    // The exponent must be > 11. 
    // 
    // We know that v = significand * 2^exponent. 
    // And the exponent > 11. 
    // We simplify the task by dividing v by 10^17. 
    // The quotient delivers the first digits, and the remainder fits into a 64 
    // bit number. 
    // Dividing by 10^17 is equivalent to dividing by 5^17*2^17. 
    const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5);  // 5^17 
    uint64_t divisor = kFive17; 
    int divisor_power = 17; 
    uint64_t dividend = significand; 
    uint32_t quotient; 
    uint64_t remainder; 
    // Let v = f * 2^e with f == significand and e == exponent. 
    // Then need q (quotient) and r (remainder) as follows: 
    //   v            = q * 10^17       + r 
    //   f * 2^e      = q * 10^17       + r 
    //   f * 2^e      = q * 5^17 * 2^17 + r 
    // If e > 17 then 
    //   f * 2^(e-17) = q * 5^17        + r/2^17 
    // else 
    //   f  = q * 5^17 * 2^(17-e) + r/2^e 
    if (exponent > divisor_power) { 
      // We only allow exponents of up to 20 and therefore (17 - e) <= 3 
      dividend <<= exponent - divisor_power; 
      quotient = static_cast<uint32_t>(dividend / divisor); 
      remainder = (dividend % divisor) << divisor_power; 
    } else { 
      divisor <<= divisor_power - exponent; 
      quotient = static_cast<uint32_t>(dividend / divisor); 
      remainder = (dividend % divisor) << exponent; 
    } 
    FillDigits32(quotient, buffer, length); 
    FillDigits64FixedLength(remainder, buffer, length); 
    *decimal_point = *length; 
  } else if (exponent >= 0) { 
    // 0 <= exponent <= 11 
    significand <<= exponent; 
    FillDigits64(significand, buffer, length); 
    *decimal_point = *length; 
  } else if (exponent > -kDoubleSignificandSize) { 
    // We have to cut the number. 
    uint64_t integrals = significand >> -exponent; 
    uint64_t fractionals = significand - (integrals << -exponent); 
    if (integrals > kMaxUInt32) { 
      FillDigits64(integrals, buffer, length); 
    } else { 
      FillDigits32(static_cast<uint32_t>(integrals), buffer, length); 
    } 
    *decimal_point = *length; 
    FillFractionals(fractionals, exponent, fractional_count, 
                    buffer, length, decimal_point); 
  } else if (exponent < -128) { 
    // This configuration (with at most 20 digits) means that all digits must be 
    // 0. 
    ASSERT(fractional_count <= 20); 
    buffer[0] = '\0'; 
    *length = 0; 
    *decimal_point = -fractional_count; 
  } else { 
    *decimal_point = 0; 
    FillFractionals(significand, exponent, fractional_count, 
                    buffer, length, decimal_point); 
  } 
  TrimZeros(buffer, length, decimal_point); 
  buffer[*length] = '\0'; 
  if ((*length) == 0) { 
    // The string is empty and the decimal_point thus has no importance. Mimick 
    // Gay's dtoa and and set it to -fractional_count. 
    *decimal_point = -fractional_count; 
  } 
  return true; 
} 
 
}  // namespace double_conversion