1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#include "../assembly.h"
// du_int __umoddi3(du_int a, du_int b);
// result = remainder of a / b.
// both inputs and the output are 64-bit unsigned integers.
// This will do whatever the underlying hardware is set to do on division by zero.
// No other exceptions are generated, as the divide cannot overflow.
//
// This is targeted at 32-bit x86 *only*, as this can be done directly in hardware
// on x86_64. The performance goal is ~40 cycles per divide, which is faster than
// currently possible via simulation of integer divides on the x87 unit.
//
// Stephen Canon, December 2008
#ifdef __i386__
.text
.balign 4
DEFINE_COMPILERRT_FUNCTION(__umoddi3)
pushl %ebx
movl 20(%esp), %ebx // Find the index i of the leading bit in b.
bsrl %ebx, %ecx // If the high word of b is zero, jump to
jz 9f // the code to handle that special case [9].
// High word of b is known to be non-zero on this branch
movl 16(%esp), %eax // Construct bhi, containing bits [1+i:32+i] of b
shrl %cl, %eax // Practically, this means that bhi is given by:
shrl %eax //
notl %ecx // bhi = (high word of b) << (31 - i) |
shll %cl, %ebx // (low word of b) >> (1 + i)
orl %eax, %ebx //
movl 12(%esp), %edx // Load the high and low words of a, and jump
movl 8(%esp), %eax // to [2] if the high word is larger than bhi
cmpl %ebx, %edx // to avoid overflowing the upcoming divide.
jae 2f
// High word of a is greater than or equal to (b >> (1 + i)) on this branch
divl %ebx // eax <-- qs, edx <-- r such that ahi:alo = bs*qs + r
pushl %edi
notl %ecx
shrl %eax
shrl %cl, %eax // q = qs >> (1 + i)
movl %eax, %edi
mull 20(%esp) // q*blo
movl 12(%esp), %ebx
movl 16(%esp), %ecx // ECX:EBX = a
subl %eax, %ebx
sbbl %edx, %ecx // ECX:EBX = a - q*blo
movl 24(%esp), %eax
imull %edi, %eax // q*bhi
subl %eax, %ecx // ECX:EBX = a - q*b
jnc 1f // if positive, this is the result.
addl 20(%esp), %ebx // otherwise
adcl 24(%esp), %ecx // ECX:EBX = a - (q-1)*b = result
1: movl %ebx, %eax
movl %ecx, %edx
popl %edi
popl %ebx
retl
2: // High word of a is greater than or equal to (b >> (1 + i)) on this branch
subl %ebx, %edx // subtract bhi from ahi so that divide will not
divl %ebx // overflow, and find q and r such that
//
// ahi:alo = (1:q)*bhi + r
//
// Note that q is a number in (31-i).(1+i)
// fix point.
pushl %edi
notl %ecx
shrl %eax
orl $0x80000000, %eax
shrl %cl, %eax // q = (1:qs) >> (1 + i)
movl %eax, %edi
mull 20(%esp) // q*blo
movl 12(%esp), %ebx
movl 16(%esp), %ecx // ECX:EBX = a
subl %eax, %ebx
sbbl %edx, %ecx // ECX:EBX = a - q*blo
movl 24(%esp), %eax
imull %edi, %eax // q*bhi
subl %eax, %ecx // ECX:EBX = a - q*b
jnc 3f // if positive, this is the result.
addl 20(%esp), %ebx // otherwise
adcl 24(%esp), %ecx // ECX:EBX = a - (q-1)*b = result
3: movl %ebx, %eax
movl %ecx, %edx
popl %edi
popl %ebx
retl
9: // High word of b is zero on this branch
movl 12(%esp), %eax // Find qhi and rhi such that
movl 16(%esp), %ecx //
xorl %edx, %edx // ahi = qhi*b + rhi with 0 ≤ rhi < b
divl %ecx //
movl %eax, %ebx //
movl 8(%esp), %eax // Find rlo such that
divl %ecx //
movl %edx, %eax // rhi:alo = qlo*b + rlo with 0 ≤ rlo < b
popl %ebx //
xorl %edx, %edx // and return 0:rlo
retl //
END_COMPILERRT_FUNCTION(__umoddi3)
#endif // __i386__
NO_EXEC_STACK_DIRECTIVE
|