summaryrefslogtreecommitdiffstats
path: root/contrib/libs/cxxsupp/builtins/floatdidf.c
blob: 00aa9138adce7c0b3e4acf32d5fd70fcc3e45cbb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
/*===-- floatdidf.c - Implement __floatdidf -------------------------------=== 
 * 
 *                     The LLVM Compiler Infrastructure 
 * 
 * This file is dual licensed under the MIT and the University of Illinois Open 
 * Source Licenses. See LICENSE.TXT for details. 
 * 
 *===----------------------------------------------------------------------=== 
 * 
 * This file implements __floatdidf for the compiler_rt library. 
 * 
 *===----------------------------------------------------------------------=== 
 */ 
 
#include "int_lib.h" 
 
/* Returns: convert a to a double, rounding toward even. */ 
 
/* Assumption: double is a IEEE 64 bit floating point type  
 *             di_int is a 64 bit integral type 
 */ 
 
/* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm */ 
 
ARM_EABI_FNALIAS(l2d, floatdidf) 
 
#ifndef __SOFT_FP__ 
/* Support for systems that have hardware floating-point; we'll set the inexact flag 
 * as a side-effect of this computation. 
 */ 
 
COMPILER_RT_ABI double 
__floatdidf(di_int a) 
{ 
	static const double twop52 = 4503599627370496.0; // 0x1.0p52 
	static const double twop32 = 4294967296.0; // 0x1.0p32 
	 
	union { int64_t x; double d; } low = { .d = twop52 }; 
	 
	const double high = (int32_t)(a >> 32) * twop32; 
	low.x |= a & INT64_C(0x00000000ffffffff); 
	 
	const double result = (high - twop52) + low.d; 
	return result; 
} 
 
#else 
/* Support for systems that don't have hardware floating-point; there are no flags to 
 * set, and we don't want to code-gen to an unknown soft-float implementation. 
 */ 
 
COMPILER_RT_ABI double 
__floatdidf(di_int a) 
{ 
    if (a == 0) 
        return 0.0; 
    const unsigned N = sizeof(di_int) * CHAR_BIT; 
    const di_int s = a >> (N-1); 
    a = (a ^ s) - s; 
    int sd = N - __builtin_clzll(a);  /* number of significant digits */ 
    int e = sd - 1;             /* exponent */ 
    if (sd > DBL_MANT_DIG) 
    { 
        /*  start:  0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx 
         *  finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR 
         *                                                12345678901234567890123456 
         *  1 = msb 1 bit 
         *  P = bit DBL_MANT_DIG-1 bits to the right of 1 
         * Q = bit DBL_MANT_DIG bits to the right of 1 
         *  R = "or" of all bits to the right of Q 
        */ 
        switch (sd) 
        { 
        case DBL_MANT_DIG + 1: 
            a <<= 1; 
            break; 
        case DBL_MANT_DIG + 2: 
            break; 
        default: 
            a = ((du_int)a >> (sd - (DBL_MANT_DIG+2))) | 
                ((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG+2) - sd))) != 0); 
        }; 
        /* finish: */ 
        a |= (a & 4) != 0;  /* Or P into R */ 
        ++a;  /* round - this step may add a significant bit */ 
        a >>= 2;  /* dump Q and R */ 
        /* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */ 
        if (a & ((du_int)1 << DBL_MANT_DIG)) 
        { 
            a >>= 1; 
            ++e; 
        } 
        /* a is now rounded to DBL_MANT_DIG bits */ 
    } 
    else 
    { 
        a <<= (DBL_MANT_DIG - sd); 
        /* a is now rounded to DBL_MANT_DIG bits */ 
    } 
    double_bits fb; 
    fb.u.high = ((su_int)s & 0x80000000) |        /* sign */ 
                ((e + 1023) << 20)      |        /* exponent */ 
                ((su_int)(a >> 32) & 0x000FFFFF); /* mantissa-high */ 
    fb.u.low = (su_int)a;                         /* mantissa-low */ 
    return fb.f; 
} 
#endif