aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang18-rt/lib/gwp_asan/guarded_pool_allocator.cpp
blob: 9017ab7cf7ac052bb638c0b1f5de3d409bfa30d0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
//===-- guarded_pool_allocator.cpp ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "gwp_asan/guarded_pool_allocator.h"

#include "gwp_asan/crash_handler.h"
#include "gwp_asan/options.h"
#include "gwp_asan/utilities.h"

#include <assert.h>
#include <stddef.h>

using AllocationMetadata = gwp_asan::AllocationMetadata;
using Error = gwp_asan::Error;

namespace gwp_asan {
namespace {
// Forward declare the pointer to the singleton version of this class.
// Instantiated during initialisation, this allows the signal handler
// to find this class in order to deduce the root cause of failures. Must not be
// referenced by users outside this translation unit, in order to avoid
// init-order-fiasco.
GuardedPoolAllocator *SingletonPtr = nullptr;

size_t roundUpTo(size_t Size, size_t Boundary) {
  return (Size + Boundary - 1) & ~(Boundary - 1);
}

uintptr_t getPageAddr(uintptr_t Ptr, uintptr_t PageSize) {
  return Ptr & ~(PageSize - 1);
}

bool isPowerOfTwo(uintptr_t X) { return (X & (X - 1)) == 0; }
} // anonymous namespace

// Gets the singleton implementation of this class. Thread-compatible until
// init() is called, thread-safe afterwards.
GuardedPoolAllocator *GuardedPoolAllocator::getSingleton() {
  return SingletonPtr;
}

void GuardedPoolAllocator::init(const options::Options &Opts) {
  // Note: We return from the constructor here if GWP-ASan is not available.
  // This will stop heap-allocation of class members, as well as mmap() of the
  // guarded slots.
  if (!Opts.Enabled || Opts.SampleRate == 0 ||
      Opts.MaxSimultaneousAllocations == 0)
    return;

  Check(Opts.SampleRate >= 0, "GWP-ASan Error: SampleRate is < 0.");
  Check(Opts.SampleRate < (1 << 30), "GWP-ASan Error: SampleRate is >= 2^30.");
  Check(Opts.MaxSimultaneousAllocations >= 0,
        "GWP-ASan Error: MaxSimultaneousAllocations is < 0.");

  SingletonPtr = this;
  Backtrace = Opts.Backtrace;

  State.VersionMagic = {{AllocatorVersionMagic::kAllocatorVersionMagic[0],
                         AllocatorVersionMagic::kAllocatorVersionMagic[1],
                         AllocatorVersionMagic::kAllocatorVersionMagic[2],
                         AllocatorVersionMagic::kAllocatorVersionMagic[3]},
                        AllocatorVersionMagic::kAllocatorVersion,
                        0};

  State.MaxSimultaneousAllocations = Opts.MaxSimultaneousAllocations;

  const size_t PageSize = getPlatformPageSize();
  // getPageAddr() and roundUpTo() assume the page size to be a power of 2.
  assert((PageSize & (PageSize - 1)) == 0);
  State.PageSize = PageSize;

  // Number of pages required =
  //  + MaxSimultaneousAllocations * maximumAllocationSize (N pages per slot)
  //  + MaxSimultaneousAllocations (one guard on the left side of each slot)
  //  + 1 (an extra guard page at the end of the pool, on the right side)
  //  + 1 (an extra page that's used for reporting internally-detected crashes,
  //       like double free and invalid free, to the signal handler; see
  //       raiseInternallyDetectedError() for more info)
  size_t PoolBytesRequired =
      PageSize * (2 + State.MaxSimultaneousAllocations) +
      State.MaxSimultaneousAllocations * State.maximumAllocationSize();
  assert(PoolBytesRequired % PageSize == 0);
  void *GuardedPoolMemory = reserveGuardedPool(PoolBytesRequired);

  size_t BytesRequired =
      roundUpTo(State.MaxSimultaneousAllocations * sizeof(*Metadata), PageSize);
  Metadata = reinterpret_cast<AllocationMetadata *>(
      map(BytesRequired, kGwpAsanMetadataName));

  // Allocate memory and set up the free pages queue.
  BytesRequired = roundUpTo(
      State.MaxSimultaneousAllocations * sizeof(*FreeSlots), PageSize);
  FreeSlots =
      reinterpret_cast<size_t *>(map(BytesRequired, kGwpAsanFreeSlotsName));

  // Multiply the sample rate by 2 to give a good, fast approximation for (1 /
  // SampleRate) chance of sampling.
  if (Opts.SampleRate != 1)
    AdjustedSampleRatePlusOne = static_cast<uint32_t>(Opts.SampleRate) * 2 + 1;
  else
    AdjustedSampleRatePlusOne = 2;

  initPRNG();
  getThreadLocals()->NextSampleCounter =
      ((getRandomUnsigned32() % (AdjustedSampleRatePlusOne - 1)) + 1) &
      ThreadLocalPackedVariables::NextSampleCounterMask;

  State.GuardedPagePool = reinterpret_cast<uintptr_t>(GuardedPoolMemory);
  State.GuardedPagePoolEnd =
      reinterpret_cast<uintptr_t>(GuardedPoolMemory) + PoolBytesRequired;

  if (Opts.InstallForkHandlers)
    installAtFork();
}

void GuardedPoolAllocator::disable() {
  PoolMutex.lock();
  BacktraceMutex.lock();
}

void GuardedPoolAllocator::enable() {
  PoolMutex.unlock();
  BacktraceMutex.unlock();
}

void GuardedPoolAllocator::iterate(void *Base, size_t Size, iterate_callback Cb,
                                   void *Arg) {
  uintptr_t Start = reinterpret_cast<uintptr_t>(Base);
  for (size_t i = 0; i < State.MaxSimultaneousAllocations; ++i) {
    const AllocationMetadata &Meta = Metadata[i];
    if (Meta.Addr && !Meta.IsDeallocated && Meta.Addr >= Start &&
        Meta.Addr < Start + Size)
      Cb(Meta.Addr, Meta.RequestedSize, Arg);
  }
}

void GuardedPoolAllocator::uninitTestOnly() {
  if (State.GuardedPagePool) {
    unreserveGuardedPool();
    State.GuardedPagePool = 0;
    State.GuardedPagePoolEnd = 0;
  }
  if (Metadata) {
    unmap(Metadata,
          roundUpTo(State.MaxSimultaneousAllocations * sizeof(*Metadata),
                    State.PageSize));
    Metadata = nullptr;
  }
  if (FreeSlots) {
    unmap(FreeSlots,
          roundUpTo(State.MaxSimultaneousAllocations * sizeof(*FreeSlots),
                    State.PageSize));
    FreeSlots = nullptr;
  }
  *getThreadLocals() = ThreadLocalPackedVariables();
}

// Note, minimum backing allocation size in GWP-ASan is always one page, and
// each slot could potentially be multiple pages (but always in
// page-increments). Thus, for anything that requires less than page size
// alignment, we don't need to allocate extra padding to ensure the alignment
// can be met.
size_t GuardedPoolAllocator::getRequiredBackingSize(size_t Size,
                                                    size_t Alignment,
                                                    size_t PageSize) {
  assert(isPowerOfTwo(Alignment) && "Alignment must be a power of two!");
  assert(Alignment != 0 && "Alignment should be non-zero");
  assert(Size != 0 && "Size should be non-zero");

  if (Alignment <= PageSize)
    return Size;

  return Size + Alignment - PageSize;
}

uintptr_t GuardedPoolAllocator::alignUp(uintptr_t Ptr, size_t Alignment) {
  assert(isPowerOfTwo(Alignment) && "Alignment must be a power of two!");
  assert(Alignment != 0 && "Alignment should be non-zero");
  if ((Ptr & (Alignment - 1)) == 0)
    return Ptr;

  Ptr += Alignment - (Ptr & (Alignment - 1));
  return Ptr;
}

uintptr_t GuardedPoolAllocator::alignDown(uintptr_t Ptr, size_t Alignment) {
  assert(isPowerOfTwo(Alignment) && "Alignment must be a power of two!");
  assert(Alignment != 0 && "Alignment should be non-zero");
  if ((Ptr & (Alignment - 1)) == 0)
    return Ptr;

  Ptr -= Ptr & (Alignment - 1);
  return Ptr;
}

void *GuardedPoolAllocator::allocate(size_t Size, size_t Alignment) {
  // GuardedPagePoolEnd == 0 when GWP-ASan is disabled. If we are disabled, fall
  // back to the supporting allocator.
  if (State.GuardedPagePoolEnd == 0) {
    getThreadLocals()->NextSampleCounter =
        (AdjustedSampleRatePlusOne - 1) &
        ThreadLocalPackedVariables::NextSampleCounterMask;
    return nullptr;
  }

  if (Size == 0)
    Size = 1;
  if (Alignment == 0)
    Alignment = alignof(max_align_t);

  if (!isPowerOfTwo(Alignment) || Alignment > State.maximumAllocationSize() ||
      Size > State.maximumAllocationSize())
    return nullptr;

  size_t BackingSize = getRequiredBackingSize(Size, Alignment, State.PageSize);
  if (BackingSize > State.maximumAllocationSize())
    return nullptr;

  // Protect against recursivity.
  if (getThreadLocals()->RecursiveGuard)
    return nullptr;
  ScopedRecursiveGuard SRG;

  size_t Index;
  {
    ScopedLock L(PoolMutex);
    Index = reserveSlot();
  }

  if (Index == kInvalidSlotID)
    return nullptr;

  uintptr_t SlotStart = State.slotToAddr(Index);
  AllocationMetadata *Meta = addrToMetadata(SlotStart);
  uintptr_t SlotEnd = State.slotToAddr(Index) + State.maximumAllocationSize();
  uintptr_t UserPtr;
  // Randomly choose whether to left-align or right-align the allocation, and
  // then apply the necessary adjustments to get an aligned pointer.
  if (getRandomUnsigned32() % 2 == 0)
    UserPtr = alignUp(SlotStart, Alignment);
  else
    UserPtr = alignDown(SlotEnd - Size, Alignment);

  assert(UserPtr >= SlotStart);
  assert(UserPtr + Size <= SlotEnd);

  // If a slot is multiple pages in size, and the allocation takes up a single
  // page, we can improve overflow detection by leaving the unused pages as
  // unmapped.
  const size_t PageSize = State.PageSize;
  allocateInGuardedPool(
      reinterpret_cast<void *>(getPageAddr(UserPtr, PageSize)),
      roundUpTo(Size, PageSize));

  Meta->RecordAllocation(UserPtr, Size);
  {
    ScopedLock UL(BacktraceMutex);
    Meta->AllocationTrace.RecordBacktrace(Backtrace);
  }

  return reinterpret_cast<void *>(UserPtr);
}

void GuardedPoolAllocator::raiseInternallyDetectedError(uintptr_t Address,
                                                        Error E) {
  // Disable the allocator before setting the internal failure state. In
  // non-recoverable mode, the allocator will be permanently disabled, and so
  // things will be accessed without locks.
  disable();

  // Races between internally- and externally-raised faults can happen. Right
  // now, in this thread we've locked the allocator in order to raise an
  // internally-detected fault, and another thread could SIGSEGV to raise an
  // externally-detected fault. What will happen is that the other thread will
  // wait in the signal handler, as we hold the allocator's locks from the
  // disable() above. We'll trigger the signal handler by touching the
  // internal-signal-raising address below, and the signal handler from our
  // thread will get to run first as we will continue to hold the allocator
  // locks until the enable() at the end of this function. Be careful though, if
  // this thread receives another SIGSEGV after the disable() above, but before
  // touching the internal-signal-raising address below, then this thread will
  // get an "externally-raised" SIGSEGV while *also* holding the allocator
  // locks, which means this thread's signal handler will deadlock. This could
  // be resolved with a re-entrant lock, but asking platforms to implement this
  // seems unnecessary given the only way to get a SIGSEGV in this critical
  // section is either a memory safety bug in the couple lines of code below (be
  // careful!), or someone outside uses `kill(this_thread, SIGSEGV)`, which
  // really shouldn't happen.

  State.FailureType = E;
  State.FailureAddress = Address;

  // Raise a SEGV by touching a specific address that identifies to the crash
  // handler that this is an internally-raised fault. Changing this address?
  // Don't forget to update __gwp_asan_get_internal_crash_address.
  volatile char *p =
      reinterpret_cast<char *>(State.internallyDetectedErrorFaultAddress());
  *p = 0;

  // This should never be reached in non-recoverable mode. Ensure that the
  // signal handler called handleRecoverablePostCrashReport(), which was
  // responsible for re-setting these fields.
  assert(State.FailureType == Error::UNKNOWN);
  assert(State.FailureAddress == 0u);

  // In recoverable mode, the signal handler (after dumping the crash) marked
  // the page containing the InternalFaultSegvAddress as read/writeable, to
  // allow the second touch to succeed after returning from the signal handler.
  // Now, we need to mark the page as non-read/write-able again, so future
  // internal faults can be raised.
  deallocateInGuardedPool(
      reinterpret_cast<void *>(getPageAddr(
          State.internallyDetectedErrorFaultAddress(), State.PageSize)),
      State.PageSize);

  // And now we're done with patching ourselves back up, enable the allocator.
  enable();
}

void GuardedPoolAllocator::deallocate(void *Ptr) {
  assert(pointerIsMine(Ptr) && "Pointer is not mine!");
  uintptr_t UPtr = reinterpret_cast<uintptr_t>(Ptr);
  size_t Slot = State.getNearestSlot(UPtr);
  uintptr_t SlotStart = State.slotToAddr(Slot);
  AllocationMetadata *Meta = addrToMetadata(UPtr);

  // If this allocation is responsible for crash, never recycle it. Turn the
  // deallocate() call into a no-op.
  if (Meta->HasCrashed)
    return;

  if (Meta->Addr != UPtr) {
    raiseInternallyDetectedError(UPtr, Error::INVALID_FREE);
    return;
  }
  if (Meta->IsDeallocated) {
    raiseInternallyDetectedError(UPtr, Error::DOUBLE_FREE);
    return;
  }

  // Intentionally scope the mutex here, so that other threads can access the
  // pool during the expensive markInaccessible() call.
  {
    ScopedLock L(PoolMutex);

    // Ensure that the deallocation is recorded before marking the page as
    // inaccessible. Otherwise, a racy use-after-free will have inconsistent
    // metadata.
    Meta->RecordDeallocation();

    // Ensure that the unwinder is not called if the recursive flag is set,
    // otherwise non-reentrant unwinders may deadlock.
    if (!getThreadLocals()->RecursiveGuard) {
      ScopedRecursiveGuard SRG;
      ScopedLock UL(BacktraceMutex);
      Meta->DeallocationTrace.RecordBacktrace(Backtrace);
    }
  }

  deallocateInGuardedPool(reinterpret_cast<void *>(SlotStart),
                          State.maximumAllocationSize());

  // And finally, lock again to release the slot back into the pool.
  ScopedLock L(PoolMutex);
  freeSlot(Slot);
}

// Thread-compatible, protected by PoolMutex.
static bool PreviousRecursiveGuard;

void GuardedPoolAllocator::preCrashReport(void *Ptr) {
  assert(pointerIsMine(Ptr) && "Pointer is not mine!");
  uintptr_t InternalCrashAddr = __gwp_asan_get_internal_crash_address(
      &State, reinterpret_cast<uintptr_t>(Ptr));
  if (!InternalCrashAddr)
    disable();

  // If something in the signal handler calls malloc() while dumping the
  // GWP-ASan report (e.g. backtrace_symbols()), make sure that GWP-ASan doesn't
  // service that allocation. `PreviousRecursiveGuard` is protected by the
  // allocator locks taken in disable(), either explicitly above for
  // externally-raised errors, or implicitly in raiseInternallyDetectedError()
  // for internally-detected errors.
  PreviousRecursiveGuard = getThreadLocals()->RecursiveGuard;
  getThreadLocals()->RecursiveGuard = true;
}

void GuardedPoolAllocator::postCrashReportRecoverableOnly(void *SignalPtr) {
  uintptr_t SignalUPtr = reinterpret_cast<uintptr_t>(SignalPtr);
  uintptr_t InternalCrashAddr =
      __gwp_asan_get_internal_crash_address(&State, SignalUPtr);
  uintptr_t ErrorUptr = InternalCrashAddr ?: SignalUPtr;

  AllocationMetadata *Metadata = addrToMetadata(ErrorUptr);
  Metadata->HasCrashed = true;

  allocateInGuardedPool(
      reinterpret_cast<void *>(getPageAddr(SignalUPtr, State.PageSize)),
      State.PageSize);

  // Clear the internal state in order to not confuse the crash handler if a
  // use-after-free or buffer-overflow comes from a different allocation in the
  // future.
  if (InternalCrashAddr) {
    State.FailureType = Error::UNKNOWN;
    State.FailureAddress = 0;
  }

  size_t Slot = State.getNearestSlot(ErrorUptr);
  // If the slot is available, remove it permanently.
  for (size_t i = 0; i < FreeSlotsLength; ++i) {
    if (FreeSlots[i] == Slot) {
      FreeSlots[i] = FreeSlots[FreeSlotsLength - 1];
      FreeSlotsLength -= 1;
      break;
    }
  }

  getThreadLocals()->RecursiveGuard = PreviousRecursiveGuard;
  if (!InternalCrashAddr)
    enable();
}

size_t GuardedPoolAllocator::getSize(const void *Ptr) {
  assert(pointerIsMine(Ptr));
  ScopedLock L(PoolMutex);
  AllocationMetadata *Meta = addrToMetadata(reinterpret_cast<uintptr_t>(Ptr));
  assert(Meta->Addr == reinterpret_cast<uintptr_t>(Ptr));
  return Meta->RequestedSize;
}

AllocationMetadata *GuardedPoolAllocator::addrToMetadata(uintptr_t Ptr) const {
  return &Metadata[State.getNearestSlot(Ptr)];
}

size_t GuardedPoolAllocator::reserveSlot() {
  // Avoid potential reuse of a slot before we have made at least a single
  // allocation in each slot. Helps with our use-after-free detection.
  if (NumSampledAllocations < State.MaxSimultaneousAllocations)
    return NumSampledAllocations++;

  if (FreeSlotsLength == 0)
    return kInvalidSlotID;

  size_t ReservedIndex = getRandomUnsigned32() % FreeSlotsLength;
  size_t SlotIndex = FreeSlots[ReservedIndex];
  FreeSlots[ReservedIndex] = FreeSlots[--FreeSlotsLength];
  return SlotIndex;
}

void GuardedPoolAllocator::freeSlot(size_t SlotIndex) {
  assert(FreeSlotsLength < State.MaxSimultaneousAllocations);
  FreeSlots[FreeSlotsLength++] = SlotIndex;
}

uint32_t GuardedPoolAllocator::getRandomUnsigned32() {
  uint32_t RandomState = getThreadLocals()->RandomState;
  RandomState ^= RandomState << 13;
  RandomState ^= RandomState >> 17;
  RandomState ^= RandomState << 5;
  getThreadLocals()->RandomState = RandomState;
  return RandomState;
}
} // namespace gwp_asan