#include "systime.h" #include <util/system/yassert.h> #include <util/system/defaults.h> #ifdef _win_ namespace { // Number of 100 nanosecond units from 1/1/1601 to 1/1/1970 constexpr ui64 NUMBER_OF_100_NANO_BETWEEN_1601_1970 = ULL(116444736000000000); constexpr ui64 NUMBER_OF_100_NANO_IN_SECOND = ULL(10000000); union TFTUnion { ui64 FTScalar; FILETIME FTStruct; }; } // namespace void FileTimeToTimeval(const FILETIME* ft, timeval* tv) { Y_ASSERT(ft); Y_ASSERT(tv); TFTUnion ntTime; ntTime.FTStruct = *ft; ntTime.FTScalar -= NUMBER_OF_100_NANO_BETWEEN_1601_1970; tv->tv_sec = static_cast<long>(ntTime.FTScalar / NUMBER_OF_100_NANO_IN_SECOND); tv->tv_usec = static_cast<long>( (ntTime.FTScalar % NUMBER_OF_100_NANO_IN_SECOND) / LL(10)); } void FileTimeToTimespec(const FILETIME& ft, struct timespec* ts) { Y_ASSERT(ts); TFTUnion ntTime; ntTime.FTStruct = ft; ntTime.FTScalar -= NUMBER_OF_100_NANO_BETWEEN_1601_1970; ts->tv_sec = static_cast<time_t>(ntTime.FTScalar / NUMBER_OF_100_NANO_IN_SECOND); ts->tv_nsec = static_cast<long>( (ntTime.FTScalar % NUMBER_OF_100_NANO_IN_SECOND) * LL(100)); } int gettimeofday(timeval* tp, void*) { FILETIME ft; GetSystemTimeAsFileTime(&ft); FileTimeToTimeval(&ft, tp); return 0; } tm* localtime_r(const time_t* clock, tm* result) { tzset(); tm* res = localtime(clock); if (res) { memcpy(result, res, sizeof(tm)); return result; } return 0; } tm* gmtime_r(const time_t* clock, tm* result) { return gmtime_s(result, clock) == 0 ? result : 0; } char* ctime_r(const time_t* clock, char* buf) { char* res = ctime(clock); if (res) { memcpy(buf, res, 26); return buf; } return 0; } #endif /* _win_ */ namespace { constexpr int STRUCT_TM_BASE_YEAR = 1900; constexpr int UNIX_TIME_BASE_YEAR = 1970; constexpr long SECONDS_PER_DAY = (24L * 60L * 60L); constexpr bool IsLeapYear(int year) { if (year % 4 != 0) { return false; } if (year % 100 != 0) { return true; } return year % 400 == 0; } constexpr ui16 YEAR_PER_YEAR = 365; constexpr ui16 YEAR_PER_LEAP_YEAR = 366; constexpr ui16 YearSize(int year) { return IsLeapYear(year) ? YEAR_PER_LEAP_YEAR : YEAR_PER_YEAR; } constexpr ui64 FOUR_CENTURIES = (400 * 365 + 100 - 3); constexpr ui16 MONTH_TO_DAYS[12] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}; constexpr ui16 MONTH_TO_DAYS_LEAP[12] = { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}; template <ui8 DaysInFeb> constexpr int DayOfYearToMonth(ui64& day) { Y_ASSERT(day >= 0); Y_ASSERT(day < 366); constexpr ui8 JanDays = 31; constexpr ui8 FebDays = JanDays + DaysInFeb; constexpr ui8 MarDays = FebDays + 31; constexpr ui8 AprDays = MarDays + 30; constexpr ui8 MayDays = AprDays + 31; constexpr ui8 JunDays = MayDays + 30; constexpr ui8 JulDays = JunDays + 31; constexpr ui16 AugDays = JulDays + 31; constexpr ui16 SepDays = AugDays + 30; constexpr ui16 OctDays = SepDays + 31; constexpr ui16 NovDays = OctDays + 30; // hard-coded binary search // this approach is faster that lookup in array using std::lower_bound() // GmTimeR takes ~40 cycles vs ~60 cycles using std::lower_bound version if (day < JunDays) { if (day < MarDays) { if (day < JanDays) { return 0; } else if (day < FebDays) { day -= JanDays; return 1; } else { day -= FebDays; return 2; } } else { if (day < AprDays) { day -= MarDays; return 3; } else if (day < MayDays) { day -= AprDays; return 4; } else { day -= MayDays; return 5; } } } else { if (day < SepDays) { if (day < JulDays) { day -= JunDays; return 6; } else if (day < AugDays) { day -= JulDays; return 7; } else { day -= AugDays; return 8; } } else { if (day < OctDays) { day -= SepDays; return 9; } else if (day < NovDays) { day -= OctDays; return 10; } else { day -= NovDays; return 11; } } } } class TDayNoToYearLookupTable { private: static constexpr int TableSize = 128; // lookup table for years in [1970, 1970 + 128 = 2098] range ui16 DaysSinceEpoch[TableSize] = {}; public: constexpr TDayNoToYearLookupTable() { DaysSinceEpoch[0] = YearSize(UNIX_TIME_BASE_YEAR); for (int year = UNIX_TIME_BASE_YEAR + 1; year < UNIX_TIME_BASE_YEAR + TableSize; ++year) { DaysSinceEpoch[year - UNIX_TIME_BASE_YEAR] = DaysSinceEpoch[year - UNIX_TIME_BASE_YEAR - 1] + YearSize(year); } } // lookup year by days since epoch, decrement day counter to the corresponding amount of days. // The method returns the last year in the table, if year is too big int GetYear(ui64& days) const { size_t year = std::upper_bound(DaysSinceEpoch, Y_ARRAY_END(DaysSinceEpoch), days) - Y_ARRAY_BEGIN(DaysSinceEpoch); if (year > 0) { days -= DaysSinceEpoch[year - 1]; } return year + UNIX_TIME_BASE_YEAR; } }; constexpr TDayNoToYearLookupTable DAYS_TO_YEAR_LOOKUP; } //! Inverse of gmtime: converts struct tm to time_t, assuming the data //! in tm is UTC rather than local timezone. This implementation //! returns the number of seconds since 1970-01-01, converted to time_t. //! @note this code adopted from //! http://osdir.com/ml/web.wget.patches/2005-07/msg00010.html //! Subject: A more robust timegm - msg#00010 time_t TimeGM(const struct tm* t) { // Only handles years after 1970 if (Y_UNLIKELY(t->tm_year < 70)) { return (time_t)-1; } int days = 365 * (t->tm_year - 70); // Take into account the leap days between 1970 and YEAR-1 days += (t->tm_year - 1 - 68) / 4 - ((t->tm_year - 1) / 100) + ((t->tm_year - 1 + 300) / 400); if (Y_UNLIKELY(t->tm_mon < 0 || t->tm_mon >= 12)) { return (time_t)-1; } if (IsLeapYear(1900 + t->tm_year)) { days += MONTH_TO_DAYS_LEAP[t->tm_mon]; } else { days += MONTH_TO_DAYS[t->tm_mon]; } days += t->tm_mday - 1; unsigned long secs = days * 86400ul + t->tm_hour * 3600 + t->tm_min * 60 + t->tm_sec; return (time_t)secs; } struct tm* GmTimeR(const time_t* timer, struct tm* tmbuf) { i64 time = static_cast<i64>(*timer); ui64 dayclock, dayno; int year = UNIX_TIME_BASE_YEAR; if (Y_UNLIKELY(time < 0)) { ui64 shift = (ui64)(-time - 1) / (FOUR_CENTURIES * SECONDS_PER_DAY) + 1; time += shift * (FOUR_CENTURIES * SECONDS_PER_DAY); year -= shift * 400; } dayclock = (ui64)time % SECONDS_PER_DAY; dayno = (ui64)time / SECONDS_PER_DAY; if (Y_UNLIKELY(dayno >= FOUR_CENTURIES)) { year += 400 * (dayno / FOUR_CENTURIES); dayno = dayno % FOUR_CENTURIES; } tmbuf->tm_sec = dayclock % 60; tmbuf->tm_min = (dayclock % 3600) / 60; tmbuf->tm_hour = dayclock / 3600; tmbuf->tm_wday = (dayno + 4) % 7; // Day 0 was a thursday if (Y_LIKELY(year == UNIX_TIME_BASE_YEAR)) { year = DAYS_TO_YEAR_LOOKUP.GetYear(dayno); } for (;;) { const ui16 yearSize = YearSize(year); if (dayno < yearSize) { break; } dayno -= yearSize; ++year; } tmbuf->tm_year = year - STRUCT_TM_BASE_YEAR; tmbuf->tm_yday = dayno; tmbuf->tm_mon = IsLeapYear(year) ? DayOfYearToMonth<29>(dayno) : DayOfYearToMonth<28>(dayno); tmbuf->tm_mday = dayno + 1; tmbuf->tm_isdst = 0; #ifndef _win_ tmbuf->tm_gmtoff = 0; tmbuf->tm_zone = (char*)"UTC"; #endif return tmbuf; } TString CTimeR(const time_t* timer) { char sTime[32]; sTime[0] = 0; ctime_r(timer, &sTime[0]); return sTime; }