#include "consistent_hashing.h" #include <library/cpp/pop_count/popcount.h> #include <util/generic/bitops.h> /* * (all numbers are written in big-endian manner: the least significant digit on the right) * (only bit representations are used - no hex or octal, leading zeroes are ommited) * * Consistent hashing scheme: * * (sizeof(TValue) * 8, y] (y, 0] * a = * ablock * b = * cblock * * (sizeof(TValue) * 8, k] (k, 0] * c = * cblock * * d = * * * k - is determined by 2^(k-1) < n <= 2^k inequality * z - is number of ones in cblock * y - number of digits after first one in cblock * * The cblock determines logic of using a- and b- blocks: * * bits of cblock | result of a function * 0 : 0 * 1 : 1 (optimization, the next case includes this one) * 1?..? : 1ablock (z is even) or 1bblock (z is odd) if possible (<n) * * If last case is not possible (>=n), than smooth moving from n=2^(k-1) to n=2^k is applied. * Using "*" bits of a-,b-,c-,d- blocks ui64 value is combined, modulo of which determines * if the value should be greather than 2^(k-1) or ConsistentHashing(x, 2^(k-1)) should be used. * The last case is optimized according to previous checks. */ namespace { ui64 PowerOf2(size_t k) { return (ui64)0x1 << k; } template <class TValue> TValue SelectAOrBBlock(TValue a, TValue b, TValue cBlock) { size_t z = PopCount<unsigned long long>(cBlock); bool useABlock = z % 2 == 0; return useABlock ? a : b; } // Gets the exact result for n = k2 = 2 ^ k template <class TValue> size_t ConsistentHashingForPowersOf2(TValue a, TValue b, TValue c, ui64 k2) { TValue cBlock = c & (k2 - 1); // (k, 0] bits of c // Zero and one cases if (cBlock < 2) { // First two cases of result function table: 0 if cblock is 0, 1 if cblock is 1. return cBlock; } size_t y = GetValueBitCount<unsigned long long>(cBlock) - 1; // cblock = 0..01?..? (y = number of digits after 1), y > 0 ui64 y2 = PowerOf2(y); // y2 = 2^y TValue abBlock = SelectAOrBBlock(a, b, cBlock) & (y2 - 1); return y2 + abBlock; } template <class TValue> ui64 GetAsteriskBits(TValue a, TValue b, TValue c, TValue d, size_t k) { size_t shift = sizeof(TValue) * 8 - k; ui64 res = (d << shift) | (c >> k); ++shift; res <<= shift; res |= b >> (k - 1); res <<= shift; res |= a >> (k - 1); return res; } template <class TValue> size_t ConsistentHashingImpl(TValue a, TValue b, TValue c, TValue d, size_t n) { Y_ABORT_UNLESS(n > 0, "Can't map consistently to a zero values."); // Uninteresting case if (n == 1) { return 0; } size_t k = GetValueBitCount(n - 1); // 2^(k-1) < n <= 2^k, k >= 1 ui64 k2 = PowerOf2(k); // k2 = 2^k size_t largeValue; { // Bit determined variant. Large scheme. largeValue = ConsistentHashingForPowersOf2(a, b, c, k2); if (largeValue < n) { return largeValue; } } // Since largeValue is not assigned yet // Smooth moving from one bit scheme to another ui64 k21 = PowerOf2(k - 1); { size_t s = GetAsteriskBits(a, b, c, d, k) % (largeValue * (largeValue + 1)); size_t largeValue2 = s / k2 + k21; if (largeValue2 < n) { return largeValue2; } } // Bit determined variant. Short scheme. return ConsistentHashingForPowersOf2(a, b, c, k21); // Do not apply checks. It is always less than k21 = 2^(k-1) } } size_t ConsistentHashing(ui64 x, size_t n) { ui32 lo = Lo32(x); ui32 hi = Hi32(x); return ConsistentHashingImpl<ui16>(Lo16(lo), Hi16(lo), Lo16(hi), Hi16(hi), n); } size_t ConsistentHashing(ui64 lo, ui64 hi, size_t n) { return ConsistentHashingImpl<ui32>(Lo32(lo), Hi32(lo), Lo32(hi), Hi32(hi), n); }