#include "mplutils.h" #include "_image_resample.h" #include "numpy_cpp.h" #include "py_converters.h" /********************************************************************** * Free functions * */ const char* image_resample__doc__ = "resample(input_array, output_array, transform, interpolation=NEAREST, resample=False, alpha=1.0, norm=False, radius=1.0)\n" "--\n\n" "Resample input_array, blending it in-place into output_array, using an\n" "affine transformation.\n\n" "Parameters\n" "----------\n" "input_array : 2-d or 3-d NumPy array of float, double or `numpy.uint8`\n" " If 2-d, the image is grayscale. If 3-d, the image must be of size\n" " 4 in the last dimension and represents RGBA data.\n\n" "output_array : 2-d or 3-d NumPy array of float, double or `numpy.uint8`\n" " The dtype and number of dimensions must match `input_array`.\n\n" "transform : matplotlib.transforms.Transform instance\n" " The transformation from the input array to the output array.\n\n" "interpolation : int, default: NEAREST\n" " The interpolation method. Must be one of the following constants\n" " defined in this module:\n\n" " NEAREST, BILINEAR, BICUBIC, SPLINE16, SPLINE36,\n" " HANNING, HAMMING, HERMITE, KAISER, QUADRIC, CATROM, GAUSSIAN,\n" " BESSEL, MITCHELL, SINC, LANCZOS, BLACKMAN\n\n" "resample : bool, optional\n" " When `True`, use a full resampling method. When `False`, only\n" " resample when the output image is larger than the input image.\n\n" "alpha : float, default: 1\n" " The transparency level, from 0 (transparent) to 1 (opaque).\n\n" "norm : bool, default: False\n" " Whether to norm the interpolation function.\n\n" "radius: float, default: 1\n" " The radius of the kernel, if method is SINC, LANCZOS or BLACKMAN.\n"; static PyArrayObject * _get_transform_mesh(PyObject *py_affine, npy_intp *dims) { /* TODO: Could we get away with float, rather than double, arrays here? */ /* Given a non-affine transform object, create a mesh that maps every pixel in the output image to the input image. This is used as a lookup table during the actual resampling. */ PyObject *py_inverse = NULL; npy_intp out_dims[3]; out_dims[0] = dims[0] * dims[1]; out_dims[1] = 2; py_inverse = PyObject_CallMethod(py_affine, "inverted", NULL); if (py_inverse == NULL) { return NULL; } numpy::array_view<double, 2> input_mesh(out_dims); double *p = (double *)input_mesh.data(); for (npy_intp y = 0; y < dims[0]; ++y) { for (npy_intp x = 0; x < dims[1]; ++x) { *p++ = (double)x; *p++ = (double)y; } } PyObject *output_mesh = PyObject_CallMethod( py_inverse, "transform", "O", input_mesh.pyobj_steal()); Py_DECREF(py_inverse); if (output_mesh == NULL) { return NULL; } PyArrayObject *output_mesh_array = (PyArrayObject *)PyArray_ContiguousFromAny( output_mesh, NPY_DOUBLE, 2, 2); Py_DECREF(output_mesh); if (output_mesh_array == NULL) { return NULL; } return output_mesh_array; } static PyObject * image_resample(PyObject *self, PyObject* args, PyObject *kwargs) { PyObject *py_input = NULL; PyObject *py_output = NULL; PyObject *py_transform = NULL; resample_params_t params; PyArrayObject *input = NULL; PyArrayObject *output = NULL; PyArrayObject *transform_mesh = NULL; int ndim; int type; params.interpolation = NEAREST; params.transform_mesh = NULL; params.resample = false; params.norm = false; params.radius = 1.0; params.alpha = 1.0; const char *kwlist[] = { "input_array", "output_array", "transform", "interpolation", "resample", "alpha", "norm", "radius", NULL }; if (!PyArg_ParseTupleAndKeywords( args, kwargs, "OOO|iO&dO&d:resample", (char **)kwlist, &py_input, &py_output, &py_transform, ¶ms.interpolation, &convert_bool, ¶ms.resample, ¶ms.alpha, &convert_bool, ¶ms.norm, ¶ms.radius)) { return NULL; } if (params.interpolation < 0 || params.interpolation >= _n_interpolation) { PyErr_Format(PyExc_ValueError, "Invalid interpolation value %d", params.interpolation); goto error; } input = (PyArrayObject *)PyArray_FromAny( py_input, NULL, 2, 3, NPY_ARRAY_C_CONTIGUOUS, NULL); if (!input) { goto error; } ndim = PyArray_NDIM(input); type = PyArray_TYPE(input); if (!PyArray_Check(py_output)) { PyErr_SetString(PyExc_ValueError, "Output array must be a NumPy array"); goto error; } output = (PyArrayObject *)py_output; if (PyArray_NDIM(output) != ndim) { PyErr_Format( PyExc_ValueError, "Input (%dD) and output (%dD) have different dimensionalities.", ndim, PyArray_NDIM(output)); goto error; } // PyArray_FromAny above checks that input is 2D or 3D. if (ndim == 3 && (PyArray_DIM(input, 2) != 4 || PyArray_DIM(output, 2) != 4)) { PyErr_Format( PyExc_ValueError, "If 3D, input and output arrays must be RGBA with shape (M, N, 4); " "got trailing dimensions of %" NPY_INTP_FMT " and %" NPY_INTP_FMT " respectively", PyArray_DIM(input, 2), PyArray_DIM(output, 2)); goto error; } if (PyArray_TYPE(output) != type) { PyErr_SetString(PyExc_ValueError, "Mismatched types"); goto error; } if (!PyArray_IS_C_CONTIGUOUS(output)) { PyErr_SetString(PyExc_ValueError, "Output array must be C-contiguous"); goto error; } if (py_transform == NULL || py_transform == Py_None) { params.is_affine = true; } else { PyObject *py_is_affine; int py_is_affine2; py_is_affine = PyObject_GetAttrString(py_transform, "is_affine"); if (!py_is_affine) { goto error; } py_is_affine2 = PyObject_IsTrue(py_is_affine); Py_DECREF(py_is_affine); if (py_is_affine2 == -1) { goto error; } else if (py_is_affine2) { if (!convert_trans_affine(py_transform, ¶ms.affine)) { goto error; } params.is_affine = true; } else { transform_mesh = _get_transform_mesh( py_transform, PyArray_DIMS(output)); if (!transform_mesh) { goto error; } params.transform_mesh = (double *)PyArray_DATA(transform_mesh); params.is_affine = false; } } if (auto resampler = (ndim == 2) ? ( (type == NPY_UINT8) ? resample<agg::gray8> : (type == NPY_INT8) ? resample<agg::gray8> : (type == NPY_UINT16) ? resample<agg::gray16> : (type == NPY_INT16) ? resample<agg::gray16> : (type == NPY_FLOAT32) ? resample<agg::gray32> : (type == NPY_FLOAT64) ? resample<agg::gray64> : nullptr) : ( // ndim == 3 (type == NPY_UINT8) ? resample<agg::rgba8> : (type == NPY_INT8) ? resample<agg::rgba8> : (type == NPY_UINT16) ? resample<agg::rgba16> : (type == NPY_INT16) ? resample<agg::rgba16> : (type == NPY_FLOAT32) ? resample<agg::rgba32> : (type == NPY_FLOAT64) ? resample<agg::rgba64> : nullptr)) { Py_BEGIN_ALLOW_THREADS resampler( PyArray_DATA(input), PyArray_DIM(input, 1), PyArray_DIM(input, 0), PyArray_DATA(output), PyArray_DIM(output, 1), PyArray_DIM(output, 0), params); Py_END_ALLOW_THREADS } else { PyErr_SetString( PyExc_ValueError, "arrays must be of dtype byte, short, float32 or float64"); goto error; } Py_DECREF(input); Py_XDECREF(transform_mesh); Py_RETURN_NONE; error: Py_XDECREF(input); Py_XDECREF(transform_mesh); return NULL; } static PyMethodDef module_functions[] = { {"resample", (PyCFunction)image_resample, METH_VARARGS|METH_KEYWORDS, image_resample__doc__}, {NULL} }; static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "_image", NULL, 0, module_functions, }; PyMODINIT_FUNC PyInit__image(void) { PyObject *m; import_array(); m = PyModule_Create(&moduledef); if (m == NULL) { return NULL; } if (PyModule_AddIntConstant(m, "NEAREST", NEAREST) || PyModule_AddIntConstant(m, "BILINEAR", BILINEAR) || PyModule_AddIntConstant(m, "BICUBIC", BICUBIC) || PyModule_AddIntConstant(m, "SPLINE16", SPLINE16) || PyModule_AddIntConstant(m, "SPLINE36", SPLINE36) || PyModule_AddIntConstant(m, "HANNING", HANNING) || PyModule_AddIntConstant(m, "HAMMING", HAMMING) || PyModule_AddIntConstant(m, "HERMITE", HERMITE) || PyModule_AddIntConstant(m, "KAISER", KAISER) || PyModule_AddIntConstant(m, "QUADRIC", QUADRIC) || PyModule_AddIntConstant(m, "CATROM", CATROM) || PyModule_AddIntConstant(m, "GAUSSIAN", GAUSSIAN) || PyModule_AddIntConstant(m, "BESSEL", BESSEL) || PyModule_AddIntConstant(m, "MITCHELL", MITCHELL) || PyModule_AddIntConstant(m, "SINC", SINC) || PyModule_AddIntConstant(m, "LANCZOS", LANCZOS) || PyModule_AddIntConstant(m, "BLACKMAN", BLACKMAN) || PyModule_AddIntConstant(m, "_n_interpolation", _n_interpolation)) { Py_DECREF(m); return NULL; } return m; }