// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. #include "google/protobuf/compiler/cpp/helpers.h" #include <algorithm> #include <cstdint> #include <functional> #include <limits> #include <memory> #include <queue> #include <string> #include <utility> #include <vector> #include "google/protobuf/stubs/common.h" #include "google/protobuf/compiler/scc.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/dynamic_message.h" #include "y_absl/container/flat_hash_map.h" #include "y_absl/container/flat_hash_set.h" #include "y_absl/log/absl_check.h" #include "y_absl/log/absl_log.h" #include "y_absl/strings/ascii.h" #include "y_absl/strings/escaping.h" #include "y_absl/strings/str_cat.h" #include "y_absl/strings/str_replace.h" #include "y_absl/strings/string_view.h" #include "y_absl/strings/strip.h" #include "y_absl/strings/substitute.h" #include "y_absl/synchronization/mutex.h" #include "google/protobuf/compiler/cpp/names.h" #include "google/protobuf/compiler/cpp/options.h" #include "google/protobuf/descriptor.pb.h" #include "google/protobuf/io/printer.h" #include "google/protobuf/io/strtod.h" #include "google/protobuf/wire_format.h" #include "google/protobuf/wire_format_lite.h" // Must be last. #include "google/protobuf/port_def.inc" namespace google { namespace protobuf { namespace compiler { namespace cpp { namespace { static const char kAnyMessageName[] = "Any"; static const char kAnyProtoFile[] = "google/protobuf/any.proto"; TProtoStringType DotsToColons(y_absl::string_view name) { return y_absl::StrReplaceAll(name, {{".", "::"}}); } static const char* const kKeywordList[] = { // "NULL", "alignas", "alignof", "and", "and_eq", "asm", "auto", "bitand", "bitor", "bool", "break", "case", "catch", "char", "class", "compl", "concept", "const", "const_cast", "consteval", "constexpr", "constinit", "continue", "decltype", "default", "delete", "do", "double", "dynamic_cast", "else", "enum", "explicit", "export", "extern", "false", "float", "for", "friend", "goto", "if", "inline", "int", "long", "mutable", "namespace", "new", "noexcept", "not", "not_eq", "nullptr", "operator", "or", "or_eq", "private", "protected", "public", "register", "reinterpret_cast", "requires", "return", "short", "signed", "sizeof", "static", "static_assert", "static_cast", "struct", "switch", "template", "this", "thread_local", "throw", "true", "try", "typedef", "typeid", "typename", "union", "unsigned", "using", "virtual", "void", "volatile", "wchar_t", "while", "xor", "xor_eq", "char8_t", "char16_t", "char32_t", "concept", "consteval", "constinit", "co_await", "co_return", "co_yield", "requires", }; const y_absl::flat_hash_set<y_absl::string_view>& Keywords() { static const auto* keywords = [] { auto* keywords = new y_absl::flat_hash_set<y_absl::string_view>(); for (const auto keyword : kKeywordList) { keywords->emplace(keyword); } return keywords; }(); return *keywords; } TProtoStringType IntTypeName(const Options& options, y_absl::string_view type) { return y_absl::StrCat("::NProtoBuf::", type); } } // namespace bool IsLazy(const FieldDescriptor* field, const Options& options, MessageSCCAnalyzer* scc_analyzer) { return IsLazilyVerifiedLazy(field, options) || IsEagerlyVerifiedLazy(field, options, scc_analyzer); } // Returns true if "field" is a message field that is backed by LazyField per // profile (go/pdlazy). inline bool IsEagerlyVerifiedLazyByProfile(const FieldDescriptor* field, const Options& options, MessageSCCAnalyzer* scc_analyzer) { return false; } bool IsEagerlyVerifiedLazy(const FieldDescriptor* field, const Options& options, MessageSCCAnalyzer* scc_analyzer) { return false; } bool IsLazilyVerifiedLazy(const FieldDescriptor* field, const Options& options) { return false; } y_absl::flat_hash_map<y_absl::string_view, TProtoStringType> MessageVars( const Descriptor* desc) { y_absl::string_view prefix = IsMapEntryMessage(desc) ? "" : "_impl_."; return { {"any_metadata", y_absl::StrCat(prefix, "_any_metadata_")}, {"cached_size", y_absl::StrCat(prefix, "_cached_size_")}, {"extensions", y_absl::StrCat(prefix, "_extensions_")}, {"has_bits", y_absl::StrCat(prefix, "_has_bits_")}, {"inlined_string_donated_array", y_absl::StrCat(prefix, "_inlined_string_donated_")}, {"oneof_case", y_absl::StrCat(prefix, "_oneof_case_")}, {"tracker", "Impl_::_tracker_"}, {"weak_field_map", y_absl::StrCat(prefix, "_weak_field_map_")}, {"split", y_absl::StrCat(prefix, "_split_")}, {"cached_split_ptr", "cached_split_ptr"}, }; } void SetCommonMessageDataVariables( const Descriptor* descriptor, y_absl::flat_hash_map<y_absl::string_view, TProtoStringType>* variables) { for (auto& pair : MessageVars(descriptor)) { variables->emplace(pair); } } y_absl::flat_hash_map<y_absl::string_view, TProtoStringType> UnknownFieldsVars( const Descriptor* desc, const Options& opts) { TProtoStringType proto_ns = ProtobufNamespace(opts); TProtoStringType unknown_fields_type; TProtoStringType default_instance; if (UseUnknownFieldSet(desc->file(), opts)) { unknown_fields_type = y_absl::StrCat("::", proto_ns, "::UnknownFieldSet"); default_instance = y_absl::StrCat(unknown_fields_type, "::default_instance"); } else { unknown_fields_type = PrimitiveTypeName(opts, FieldDescriptor::CPPTYPE_STRING); default_instance = y_absl::StrCat("::", proto_ns, "::internal::GetEmptyString"); } return { {"unknown_fields", y_absl::Substitute("_internal_metadata_.unknown_fields<$0>($1)", unknown_fields_type, default_instance)}, {"unknown_fields_type", unknown_fields_type}, {"have_unknown_fields", "_internal_metadata_.have_unknown_fields()"}, {"mutable_unknown_fields", y_absl::Substitute("_internal_metadata_.mutable_unknown_fields<$0>()", unknown_fields_type)}, }; } void SetUnknownFieldsVariable( const Descriptor* descriptor, const Options& options, y_absl::flat_hash_map<y_absl::string_view, TProtoStringType>* variables) { for (auto& pair : UnknownFieldsVars(descriptor, options)) { variables->emplace(pair); } } TProtoStringType UnderscoresToCamelCase(y_absl::string_view input, bool cap_next_letter) { TProtoStringType result; // Note: I distrust ctype.h due to locales. for (int i = 0; i < input.size(); i++) { if ('a' <= input[i] && input[i] <= 'z') { if (cap_next_letter) { result += input[i] + ('A' - 'a'); } else { result += input[i]; } cap_next_letter = false; } else if ('A' <= input[i] && input[i] <= 'Z') { // Capital letters are left as-is. result += input[i]; cap_next_letter = false; } else if ('0' <= input[i] && input[i] <= '9') { result += input[i]; cap_next_letter = true; } else { cap_next_letter = true; } } return result; } const char kThickSeparator[] = "// ===================================================================\n"; const char kThinSeparator[] = "// -------------------------------------------------------------------\n"; bool CanInitializeByZeroing(const FieldDescriptor* field, const Options& options, MessageSCCAnalyzer* scc_analyzer) { if (field->is_repeated() || field->is_extension()) return false; switch (field->cpp_type()) { case FieldDescriptor::CPPTYPE_ENUM: return field->default_value_enum()->number() == 0; case FieldDescriptor::CPPTYPE_INT32: return field->default_value_int32() == 0; case FieldDescriptor::CPPTYPE_INT64: return field->default_value_int64() == 0; case FieldDescriptor::CPPTYPE_UINT32: return field->default_value_uint32() == 0; case FieldDescriptor::CPPTYPE_UINT64: return field->default_value_uint64() == 0; case FieldDescriptor::CPPTYPE_FLOAT: return field->default_value_float() == 0; case FieldDescriptor::CPPTYPE_DOUBLE: return field->default_value_double() == 0; case FieldDescriptor::CPPTYPE_BOOL: return field->default_value_bool() == false; case FieldDescriptor::CPPTYPE_MESSAGE: // Non-repeated, non-lazy message fields are raw pointers initialized to // null. return !IsLazy(field, options, scc_analyzer); default: return false; } } bool CanClearByZeroing(const FieldDescriptor* field) { if (field->is_repeated() || field->is_extension()) return false; switch (field->cpp_type()) { case FieldDescriptor::CPPTYPE_ENUM: return field->default_value_enum()->number() == 0; case FieldDescriptor::CPPTYPE_INT32: return field->default_value_int32() == 0; case FieldDescriptor::CPPTYPE_INT64: return field->default_value_int64() == 0; case FieldDescriptor::CPPTYPE_UINT32: return field->default_value_uint32() == 0; case FieldDescriptor::CPPTYPE_UINT64: return field->default_value_uint64() == 0; case FieldDescriptor::CPPTYPE_FLOAT: return field->default_value_float() == 0; case FieldDescriptor::CPPTYPE_DOUBLE: return field->default_value_double() == 0; case FieldDescriptor::CPPTYPE_BOOL: return field->default_value_bool() == false; default: return false; } } // Determines if swap can be implemented via memcpy. bool HasTrivialSwap(const FieldDescriptor* field, const Options& options, MessageSCCAnalyzer* scc_analyzer) { if (field->is_repeated() || field->is_extension()) return false; switch (field->cpp_type()) { case FieldDescriptor::CPPTYPE_ENUM: case FieldDescriptor::CPPTYPE_INT32: case FieldDescriptor::CPPTYPE_INT64: case FieldDescriptor::CPPTYPE_UINT32: case FieldDescriptor::CPPTYPE_UINT64: case FieldDescriptor::CPPTYPE_FLOAT: case FieldDescriptor::CPPTYPE_DOUBLE: case FieldDescriptor::CPPTYPE_BOOL: return true; case FieldDescriptor::CPPTYPE_MESSAGE: // Non-repeated, non-lazy message fields are simply raw pointers, so we // can swap them with memcpy. return !IsLazy(field, options, scc_analyzer); default: return false; } } TProtoStringType ClassName(const Descriptor* descriptor) { const Descriptor* parent = descriptor->containing_type(); TProtoStringType res; if (parent) y_absl::StrAppend(&res, ClassName(parent), "_"); y_absl::StrAppend(&res, descriptor->name()); if (IsMapEntryMessage(descriptor)) y_absl::StrAppend(&res, "_DoNotUse"); return ResolveKeyword(res); } TProtoStringType ClassName(const EnumDescriptor* enum_descriptor) { if (enum_descriptor->containing_type() == nullptr) { return ResolveKeyword(enum_descriptor->name()); } else { return y_absl::StrCat(ClassName(enum_descriptor->containing_type()), "_", enum_descriptor->name()); } } TProtoStringType QualifiedClassName(const Descriptor* d, const Options& options) { return QualifiedFileLevelSymbol(d->file(), ClassName(d), options); } TProtoStringType QualifiedClassName(const EnumDescriptor* d, const Options& options) { return QualifiedFileLevelSymbol(d->file(), ClassName(d), options); } TProtoStringType QualifiedClassName(const Descriptor* d) { return QualifiedClassName(d, Options()); } TProtoStringType QualifiedClassName(const EnumDescriptor* d) { return QualifiedClassName(d, Options()); } TProtoStringType ExtensionName(const FieldDescriptor* d) { if (const Descriptor* scope = d->extension_scope()) return y_absl::StrCat(ClassName(scope), "::", ResolveKeyword(d->name())); return ResolveKeyword(d->name()); } TProtoStringType QualifiedExtensionName(const FieldDescriptor* d, const Options& options) { Y_ABSL_DCHECK(d->is_extension()); return QualifiedFileLevelSymbol(d->file(), ExtensionName(d), options); } TProtoStringType QualifiedExtensionName(const FieldDescriptor* d) { return QualifiedExtensionName(d, Options()); } TProtoStringType Namespace(y_absl::string_view package) { if (package.empty()) return ""; return y_absl::StrCat("::", DotsToColons(package)); } TProtoStringType Namespace(const FileDescriptor* d) { return Namespace(d, {}); } TProtoStringType Namespace(const FileDescriptor* d, const Options& options) { TProtoStringType ns = Namespace(d->package()); if (IsWellKnownMessage(d) && options.opensource_runtime) { // Written with string concatenation to prevent rewriting of // ::google::protobuf. constexpr y_absl::string_view prefix = "::google::" // prevent clang-format reflowing "protobuf"; y_absl::string_view new_ns(ns); y_absl::ConsumePrefix(&new_ns, prefix); return y_absl::StrCat("::PROTOBUF_NAMESPACE_ID", new_ns); } return ns; } TProtoStringType Namespace(const Descriptor* d) { return Namespace(d, {}); } TProtoStringType Namespace(const Descriptor* d, const Options& options) { return Namespace(d->file(), options); } TProtoStringType Namespace(const FieldDescriptor* d) { return Namespace(d, {}); } TProtoStringType Namespace(const FieldDescriptor* d, const Options& options) { return Namespace(d->file(), options); } TProtoStringType Namespace(const EnumDescriptor* d) { return Namespace(d, {}); } TProtoStringType Namespace(const EnumDescriptor* d, const Options& options) { return Namespace(d->file(), options); } TProtoStringType DefaultInstanceType(const Descriptor* descriptor, const Options& /*options*/, bool split) { return ClassName(descriptor) + (split ? "__Impl_Split" : "") + "DefaultTypeInternal"; } TProtoStringType DefaultInstanceName(const Descriptor* descriptor, const Options& /*options*/, bool split) { return y_absl::StrCat("_", ClassName(descriptor, false), (split ? "__Impl_Split" : ""), "_default_instance_"); } TProtoStringType DefaultInstancePtr(const Descriptor* descriptor, const Options& options, bool split) { return y_absl::StrCat(DefaultInstanceName(descriptor, options, split), "ptr_"); } TProtoStringType QualifiedDefaultInstanceName(const Descriptor* descriptor, const Options& options, bool split) { return QualifiedFileLevelSymbol( descriptor->file(), DefaultInstanceName(descriptor, options, split), options); } TProtoStringType QualifiedDefaultInstancePtr(const Descriptor* descriptor, const Options& options, bool split) { return y_absl::StrCat(QualifiedDefaultInstanceName(descriptor, options, split), "ptr_"); } TProtoStringType DescriptorTableName(const FileDescriptor* file, const Options& options) { return UniqueName("descriptor_table", file, options); } TProtoStringType FileDllExport(const FileDescriptor* file, const Options& options) { return UniqueName("PROTOBUF_INTERNAL_EXPORT", file, options); } TProtoStringType SuperClassName(const Descriptor* descriptor, const Options& options) { if (!HasDescriptorMethods(descriptor->file(), options)) { return y_absl::StrCat("::", ProtobufNamespace(options), "::MessageLite"); } auto simple_base = SimpleBaseClass(descriptor, options); if (simple_base.empty()) { return y_absl::StrCat("::", ProtobufNamespace(options), "::Message"); } return y_absl::StrCat("::", ProtobufNamespace(options), "::internal::", simple_base); } TProtoStringType ResolveKeyword(y_absl::string_view name) { if (Keywords().count(name) > 0) { return y_absl::StrCat(name, "_"); } return TProtoStringType(name); } TProtoStringType FieldName(const FieldDescriptor* field) { TProtoStringType result = field->name(); y_absl::AsciiStrToLower(&result); if (Keywords().count(result) > 0) { result.append("_"); } return result; } TProtoStringType FieldMemberName(const FieldDescriptor* field, bool split) { y_absl::string_view prefix = IsMapEntryMessage(field->containing_type()) ? "" : "_impl_."; y_absl::string_view split_prefix = split ? "_split_->" : ""; if (field->real_containing_oneof() == nullptr) { return y_absl::StrCat(prefix, split_prefix, FieldName(field), "_"); } // Oneof fields are never split. Y_ABSL_CHECK(!split); return y_absl::StrCat(prefix, field->containing_oneof()->name(), "_.", FieldName(field), "_"); } TProtoStringType OneofCaseConstantName(const FieldDescriptor* field) { Y_ABSL_DCHECK(field->containing_oneof()); TProtoStringType field_name = UnderscoresToCamelCase(field->name(), true); return y_absl::StrCat("k", field_name); } TProtoStringType QualifiedOneofCaseConstantName(const FieldDescriptor* field) { Y_ABSL_DCHECK(field->containing_oneof()); const TProtoStringType qualification = QualifiedClassName(field->containing_type()); return y_absl::StrCat(qualification, "::", OneofCaseConstantName(field)); } TProtoStringType EnumValueName(const EnumValueDescriptor* enum_value) { TProtoStringType result = enum_value->name(); if (Keywords().count(result) > 0) { result.append("_"); } return result; } int EstimateAlignmentSize(const FieldDescriptor* field) { if (field == nullptr) return 0; if (field->is_repeated()) return 8; switch (field->cpp_type()) { case FieldDescriptor::CPPTYPE_BOOL: return 1; case FieldDescriptor::CPPTYPE_INT32: case FieldDescriptor::CPPTYPE_UINT32: case FieldDescriptor::CPPTYPE_ENUM: case FieldDescriptor::CPPTYPE_FLOAT: return 4; case FieldDescriptor::CPPTYPE_INT64: case FieldDescriptor::CPPTYPE_UINT64: case FieldDescriptor::CPPTYPE_DOUBLE: case FieldDescriptor::CPPTYPE_STRING: case FieldDescriptor::CPPTYPE_MESSAGE: return 8; } Y_ABSL_LOG(FATAL) << "Can't get here."; return -1; // Make compiler happy. } TProtoStringType FieldConstantName(const FieldDescriptor* field) { TProtoStringType field_name = UnderscoresToCamelCase(field->name(), true); TProtoStringType result = y_absl::StrCat("k", field_name, "FieldNumber"); if (!field->is_extension() && field->containing_type()->FindFieldByCamelcaseName( field->camelcase_name()) != field) { // This field's camelcase name is not unique. As a hack, add the field // number to the constant name. This makes the constant rather useless, // but what can we do? y_absl::StrAppend(&result, "_", field->number()); } return result; } TProtoStringType FieldMessageTypeName(const FieldDescriptor* field, const Options& options) { // Note: The Google-internal version of Protocol Buffers uses this function // as a hook point for hacks to support legacy code. return QualifiedClassName(field->message_type(), options); } TProtoStringType StripProto(y_absl::string_view filename) { /* * TODO(github/georgthegreat) remove this proxy method * once Google's internal codebase will become ready */ return compiler::StripProto(filename); } const char* PrimitiveTypeName(FieldDescriptor::CppType type) { switch (type) { case FieldDescriptor::CPPTYPE_INT32: return "::arc_i32"; case FieldDescriptor::CPPTYPE_INT64: return "::arc_i64"; case FieldDescriptor::CPPTYPE_UINT32: return "::arc_ui32"; case FieldDescriptor::CPPTYPE_UINT64: return "::arc_ui64"; case FieldDescriptor::CPPTYPE_DOUBLE: return "double"; case FieldDescriptor::CPPTYPE_FLOAT: return "float"; case FieldDescriptor::CPPTYPE_BOOL: return "bool"; case FieldDescriptor::CPPTYPE_ENUM: return "int"; case FieldDescriptor::CPPTYPE_STRING: return "TProtoStringType"; case FieldDescriptor::CPPTYPE_MESSAGE: return nullptr; // No default because we want the compiler to complain if any new // CppTypes are added. } Y_ABSL_LOG(FATAL) << "Can't get here."; return nullptr; } TProtoStringType PrimitiveTypeName(const Options& options, FieldDescriptor::CppType type) { switch (type) { case FieldDescriptor::CPPTYPE_INT32: return IntTypeName(options, "int32"); case FieldDescriptor::CPPTYPE_INT64: return IntTypeName(options, "int64"); case FieldDescriptor::CPPTYPE_UINT32: return IntTypeName(options, "uint32"); case FieldDescriptor::CPPTYPE_UINT64: return IntTypeName(options, "uint64"); case FieldDescriptor::CPPTYPE_DOUBLE: return "double"; case FieldDescriptor::CPPTYPE_FLOAT: return "float"; case FieldDescriptor::CPPTYPE_BOOL: return "bool"; case FieldDescriptor::CPPTYPE_ENUM: return "int"; case FieldDescriptor::CPPTYPE_STRING: return "TProtoStringType"; case FieldDescriptor::CPPTYPE_MESSAGE: return ""; // No default because we want the compiler to complain if any new // CppTypes are added. } Y_ABSL_LOG(FATAL) << "Can't get here."; return ""; } const char* DeclaredTypeMethodName(FieldDescriptor::Type type) { switch (type) { case FieldDescriptor::TYPE_INT32: return "Int32"; case FieldDescriptor::TYPE_INT64: return "Int64"; case FieldDescriptor::TYPE_UINT32: return "UInt32"; case FieldDescriptor::TYPE_UINT64: return "UInt64"; case FieldDescriptor::TYPE_SINT32: return "SInt32"; case FieldDescriptor::TYPE_SINT64: return "SInt64"; case FieldDescriptor::TYPE_FIXED32: return "Fixed32"; case FieldDescriptor::TYPE_FIXED64: return "Fixed64"; case FieldDescriptor::TYPE_SFIXED32: return "SFixed32"; case FieldDescriptor::TYPE_SFIXED64: return "SFixed64"; case FieldDescriptor::TYPE_FLOAT: return "Float"; case FieldDescriptor::TYPE_DOUBLE: return "Double"; case FieldDescriptor::TYPE_BOOL: return "Bool"; case FieldDescriptor::TYPE_ENUM: return "Enum"; case FieldDescriptor::TYPE_STRING: return "String"; case FieldDescriptor::TYPE_BYTES: return "Bytes"; case FieldDescriptor::TYPE_GROUP: return "Group"; case FieldDescriptor::TYPE_MESSAGE: return "Message"; // No default because we want the compiler to complain if any new // types are added. } Y_ABSL_LOG(FATAL) << "Can't get here."; return ""; } TProtoStringType Int32ToString(int number) { if (number == std::numeric_limits<arc_i32>::min()) { // This needs to be special-cased, see explanation here: // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=52661 return y_absl::StrCat(number + 1, " - 1"); } else { return y_absl::StrCat(number); } } static TProtoStringType Int64ToString(arc_i64 number) { if (number == std::numeric_limits<arc_i64>::min()) { // This needs to be special-cased, see explanation here: // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=52661 return y_absl::StrCat("::arc_i64{", number + 1, "} - 1"); } return y_absl::StrCat("::arc_i64{", number, "}"); } static TProtoStringType UInt64ToString(arc_ui64 number) { return y_absl::StrCat("::arc_ui64{", number, "u}"); } TProtoStringType DefaultValue(const FieldDescriptor* field) { return DefaultValue(Options(), field); } TProtoStringType DefaultValue(const Options& options, const FieldDescriptor* field) { switch (field->cpp_type()) { case FieldDescriptor::CPPTYPE_INT32: return Int32ToString(field->default_value_int32()); case FieldDescriptor::CPPTYPE_UINT32: return y_absl::StrCat(field->default_value_uint32(), "u"); case FieldDescriptor::CPPTYPE_INT64: return Int64ToString(field->default_value_int64()); case FieldDescriptor::CPPTYPE_UINT64: return UInt64ToString(field->default_value_uint64()); case FieldDescriptor::CPPTYPE_DOUBLE: { double value = field->default_value_double(); if (value == std::numeric_limits<double>::infinity()) { return "std::numeric_limits<double>::infinity()"; } else if (value == -std::numeric_limits<double>::infinity()) { return "-std::numeric_limits<double>::infinity()"; } else if (value != value) { return "std::numeric_limits<double>::quiet_NaN()"; } else { return io::SimpleDtoa(value); } } case FieldDescriptor::CPPTYPE_FLOAT: { float value = field->default_value_float(); if (value == std::numeric_limits<float>::infinity()) { return "std::numeric_limits<float>::infinity()"; } else if (value == -std::numeric_limits<float>::infinity()) { return "-std::numeric_limits<float>::infinity()"; } else if (value != value) { return "std::numeric_limits<float>::quiet_NaN()"; } else { TProtoStringType float_value = io::SimpleFtoa(value); // If floating point value contains a period (.) or an exponent // (either E or e), then append suffix 'f' to make it a float // literal. if (float_value.find_first_of(".eE") != TProtoStringType::npos) { float_value.push_back('f'); } return float_value; } } case FieldDescriptor::CPPTYPE_BOOL: return field->default_value_bool() ? "true" : "false"; case FieldDescriptor::CPPTYPE_ENUM: // Lazy: Generate a static_cast because we don't have a helper function // that constructs the full name of an enum value. return y_absl::Substitute( "static_cast< $0 >($1)", ClassName(field->enum_type(), true), Int32ToString(field->default_value_enum()->number())); case FieldDescriptor::CPPTYPE_STRING: return y_absl::StrCat( "\"", EscapeTrigraphs(y_absl::CEscape(field->default_value_string())), "\""); case FieldDescriptor::CPPTYPE_MESSAGE: return y_absl::StrCat("*", FieldMessageTypeName(field, options), "::internal_default_instance()"); } // Can't actually get here; make compiler happy. (We could add a default // case above but then we wouldn't get the nice compiler warning when a // new type is added.) Y_ABSL_LOG(FATAL) << "Can't get here."; return ""; } // Convert a file name into a valid identifier. TProtoStringType FilenameIdentifier(y_absl::string_view filename) { TProtoStringType result; for (int i = 0; i < filename.size(); i++) { if (y_absl::ascii_isalnum(filename[i])) { result.push_back(filename[i]); } else { // Not alphanumeric. To avoid any possibility of name conflicts we // use the hex code for the character. y_absl::StrAppend(&result, "_", y_absl::Hex(static_cast<uint8_t>(filename[i]))); } } return result; } TProtoStringType UniqueName(y_absl::string_view name, y_absl::string_view filename, const Options& options) { return y_absl::StrCat(name, "_", FilenameIdentifier(filename)); } // Return the qualified C++ name for a file level symbol. TProtoStringType QualifiedFileLevelSymbol(const FileDescriptor* file, y_absl::string_view name, const Options& options) { if (file->package().empty()) { return y_absl::StrCat("::", name); } return y_absl::StrCat(Namespace(file, options), "::", name); } // Escape C++ trigraphs by escaping question marks to \? TProtoStringType EscapeTrigraphs(y_absl::string_view to_escape) { return y_absl::StrReplaceAll(to_escape, {{"?", "\\?"}}); } // Escaped function name to eliminate naming conflict. TProtoStringType SafeFunctionName(const Descriptor* descriptor, const FieldDescriptor* field, y_absl::string_view prefix) { // Do not use FieldName() since it will escape keywords. TProtoStringType name = field->name(); y_absl::AsciiStrToLower(&name); TProtoStringType function_name = y_absl::StrCat(prefix, name); if (descriptor->FindFieldByName(function_name)) { // Single underscore will also make it conflicting with the private data // member. We use double underscore to escape function names. function_name.append("__"); } else if (Keywords().count(name) > 0) { // If the field name is a keyword, we append the underscore back to keep it // consistent with other function names. function_name.append("_"); } return function_name; } bool IsProfileDriven(const Options& options) { return options.access_info_map != nullptr; } bool IsStringInlined(const FieldDescriptor* descriptor, const Options& options) { (void)descriptor; (void)options; return false; } static bool HasLazyFields(const Descriptor* descriptor, const Options& options, MessageSCCAnalyzer* scc_analyzer) { for (int field_idx = 0; field_idx < descriptor->field_count(); field_idx++) { if (IsLazy(descriptor->field(field_idx), options, scc_analyzer)) { return true; } } for (int idx = 0; idx < descriptor->extension_count(); idx++) { if (IsLazy(descriptor->extension(idx), options, scc_analyzer)) { return true; } } for (int idx = 0; idx < descriptor->nested_type_count(); idx++) { if (HasLazyFields(descriptor->nested_type(idx), options, scc_analyzer)) { return true; } } return false; } // Does the given FileDescriptor use lazy fields? bool HasLazyFields(const FileDescriptor* file, const Options& options, MessageSCCAnalyzer* scc_analyzer) { for (int i = 0; i < file->message_type_count(); i++) { const Descriptor* descriptor(file->message_type(i)); if (HasLazyFields(descriptor, options, scc_analyzer)) { return true; } } for (int field_idx = 0; field_idx < file->extension_count(); field_idx++) { if (IsLazy(file->extension(field_idx), options, scc_analyzer)) { return true; } } return false; } bool ShouldSplit(const Descriptor*, const Options&) { return false; } bool ShouldSplit(const FieldDescriptor*, const Options&) { return false; } bool ShouldForceAllocationOnConstruction(const Descriptor* desc, const Options& options) { (void)desc; (void)options; return false; } static bool HasRepeatedFields(const Descriptor* descriptor) { for (int i = 0; i < descriptor->field_count(); ++i) { if (descriptor->field(i)->label() == FieldDescriptor::LABEL_REPEATED) { return true; } } for (int i = 0; i < descriptor->nested_type_count(); ++i) { if (HasRepeatedFields(descriptor->nested_type(i))) return true; } return false; } bool HasRepeatedFields(const FileDescriptor* file) { for (int i = 0; i < file->message_type_count(); ++i) { if (HasRepeatedFields(file->message_type(i))) return true; } return false; } static bool IsStringPieceField(const FieldDescriptor* field, const Options& options) { return field->cpp_type() == FieldDescriptor::CPPTYPE_STRING && EffectiveStringCType(field, options) == FieldOptions::STRING_PIECE; } static bool HasStringPieceFields(const Descriptor* descriptor, const Options& options) { for (int i = 0; i < descriptor->field_count(); ++i) { if (IsStringPieceField(descriptor->field(i), options)) return true; } for (int i = 0; i < descriptor->nested_type_count(); ++i) { if (HasStringPieceFields(descriptor->nested_type(i), options)) return true; } return false; } bool HasStringPieceFields(const FileDescriptor* file, const Options& options) { for (int i = 0; i < file->message_type_count(); ++i) { if (HasStringPieceFields(file->message_type(i), options)) return true; } return false; } static bool IsCordField(const FieldDescriptor* field, const Options& options) { return field->cpp_type() == FieldDescriptor::CPPTYPE_STRING && EffectiveStringCType(field, options) == FieldOptions::CORD; } static bool HasCordFields(const Descriptor* descriptor, const Options& options) { for (int i = 0; i < descriptor->field_count(); ++i) { if (IsCordField(descriptor->field(i), options)) return true; } for (int i = 0; i < descriptor->nested_type_count(); ++i) { if (HasCordFields(descriptor->nested_type(i), options)) return true; } return false; } bool HasCordFields(const FileDescriptor* file, const Options& options) { for (int i = 0; i < file->message_type_count(); ++i) { if (HasCordFields(file->message_type(i), options)) return true; } return false; } static bool HasExtensionsOrExtendableMessage(const Descriptor* descriptor) { if (descriptor->extension_range_count() > 0) return true; if (descriptor->extension_count() > 0) return true; for (int i = 0; i < descriptor->nested_type_count(); ++i) { if (HasExtensionsOrExtendableMessage(descriptor->nested_type(i))) { return true; } } return false; } bool HasExtensionsOrExtendableMessage(const FileDescriptor* file) { if (file->extension_count() > 0) return true; for (int i = 0; i < file->message_type_count(); ++i) { if (HasExtensionsOrExtendableMessage(file->message_type(i))) return true; } return false; } static bool HasMapFields(const Descriptor* descriptor) { for (int i = 0; i < descriptor->field_count(); ++i) { if (descriptor->field(i)->is_map()) { return true; } } for (int i = 0; i < descriptor->nested_type_count(); ++i) { if (HasMapFields(descriptor->nested_type(i))) return true; } return false; } bool HasMapFields(const FileDescriptor* file) { for (int i = 0; i < file->message_type_count(); ++i) { if (HasMapFields(file->message_type(i))) return true; } return false; } static bool HasEnumDefinitions(const Descriptor* message_type) { if (message_type->enum_type_count() > 0) return true; for (int i = 0; i < message_type->nested_type_count(); ++i) { if (HasEnumDefinitions(message_type->nested_type(i))) return true; } return false; } bool HasEnumDefinitions(const FileDescriptor* file) { if (file->enum_type_count() > 0) return true; for (int i = 0; i < file->message_type_count(); ++i) { if (HasEnumDefinitions(file->message_type(i))) return true; } return false; } bool ShouldVerify(const Descriptor* descriptor, const Options& options, MessageSCCAnalyzer* scc_analyzer) { (void)descriptor; (void)options; (void)scc_analyzer; return false; } bool ShouldVerify(const FileDescriptor* file, const Options& options, MessageSCCAnalyzer* scc_analyzer) { (void)file; (void)options; (void)scc_analyzer; return false; } bool IsUtf8String(const FieldDescriptor* field) { return IsProto3(field->file()) && field->type() == FieldDescriptor::TYPE_STRING; } VerifySimpleType ShouldVerifySimple(const Descriptor* descriptor) { (void)descriptor; return VerifySimpleType::kCustom; } bool IsStringOrMessage(const FieldDescriptor* field) { switch (field->cpp_type()) { case FieldDescriptor::CPPTYPE_INT32: case FieldDescriptor::CPPTYPE_INT64: case FieldDescriptor::CPPTYPE_UINT32: case FieldDescriptor::CPPTYPE_UINT64: case FieldDescriptor::CPPTYPE_DOUBLE: case FieldDescriptor::CPPTYPE_FLOAT: case FieldDescriptor::CPPTYPE_BOOL: case FieldDescriptor::CPPTYPE_ENUM: return false; case FieldDescriptor::CPPTYPE_STRING: case FieldDescriptor::CPPTYPE_MESSAGE: return true; } Y_ABSL_LOG(FATAL) << "Can't get here."; return false; } FieldOptions::CType EffectiveStringCType(const FieldDescriptor* field, const Options& options) { Y_ABSL_DCHECK(field->cpp_type() == FieldDescriptor::CPPTYPE_STRING); if (options.opensource_runtime) { // Open-source protobuf release only supports STRING ctype. return FieldOptions::STRING; } else { // Google-internal supports all ctypes. return field->options().ctype(); } } bool IsAnyMessage(const FileDescriptor* descriptor, const Options& options) { return descriptor->name() == kAnyProtoFile; } bool IsAnyMessage(const Descriptor* descriptor, const Options& options) { return descriptor->name() == kAnyMessageName && IsAnyMessage(descriptor->file(), options); } bool IsWellKnownMessage(const FileDescriptor* file) { static const auto* well_known_files = new y_absl::flat_hash_set<TProtoStringType>{ "google/protobuf/any.proto", "google/protobuf/api.proto", "google/protobuf/compiler/plugin.proto", "google/protobuf/descriptor.proto", "google/protobuf/duration.proto", "google/protobuf/empty.proto", "google/protobuf/field_mask.proto", "google/protobuf/source_context.proto", "google/protobuf/struct.proto", "google/protobuf/timestamp.proto", "google/protobuf/type.proto", "google/protobuf/wrappers.proto", }; return well_known_files->find(file->name()) != well_known_files->end(); } void NamespaceOpener::ChangeTo(y_absl::string_view name) { std::vector<TProtoStringType> new_stack = y_absl::StrSplit(name, "::", y_absl::SkipEmpty()); size_t len = std::min(name_stack_.size(), new_stack.size()); size_t common_idx = 0; while (common_idx < len) { if (name_stack_[common_idx] != new_stack[common_idx]) { break; } ++common_idx; } for (size_t i = name_stack_.size(); i > common_idx; i--) { const auto& ns = name_stack_[i - 1]; if (ns == "PROTOBUF_NAMESPACE_ID") { p_->Emit(R"cc( PROTOBUF_NAMESPACE_CLOSE )cc"); } else { p_->Emit({{"ns", ns}}, R"( } // namespace $ns$ )"); } } for (size_t i = common_idx; i < new_stack.size(); ++i) { const auto& ns = new_stack[i]; if (ns == "PROTOBUF_NAMESPACE_ID") { p_->Emit(R"cc( PROTOBUF_NAMESPACE_OPEN )cc"); } else { p_->Emit({{"ns", ns}}, R"( namespace $ns$ { )"); } } name_stack_ = std::move(new_stack); } static void GenerateUtf8CheckCode(io::Printer* p, const FieldDescriptor* field, const Options& options, bool for_parse, y_absl::string_view params, y_absl::string_view strict_function, y_absl::string_view verify_function) { if (field->type() != FieldDescriptor::TYPE_STRING) return; auto v = p->WithVars({ {"params", params}, {"Strict", strict_function}, {"Verify", verify_function}, }); bool is_lite = GetOptimizeFor(field->file(), options) == FileOptions::LITE_RUNTIME; switch (internal::cpp::GetUtf8CheckMode(field, is_lite)) { case internal::cpp::Utf8CheckMode::kStrict: if (for_parse) { p->Emit(R"cc( DO_($pbi$::WireFormatLite::$Strict$( $params$ $pbi$::WireFormatLite::PARSE, "$pkg.Msg.field$")); )cc"); } else { p->Emit(R"cc( $pbi$::WireFormatLite::$Strict$( $params$ $pbi$::WireFormatLite::SERIALIZE, "$pkg.Msg.field$"); )cc"); } break; case internal::cpp::Utf8CheckMode::kVerify: if (for_parse) { p->Emit(R"cc( $pbi$::WireFormat::$Verify$($params$ $pbi$::WireFormat::PARSE, "$pkg.Msg.field$"); )cc"); } else { p->Emit(R"cc( $pbi$::WireFormat::$Verify$($params$ $pbi$::WireFormat::SERIALIZE, "$pkg.Msg.field$"); )cc"); } break; case internal::cpp::Utf8CheckMode::kNone: break; } } void GenerateUtf8CheckCodeForString(const FieldDescriptor* field, const Options& options, bool for_parse, y_absl::string_view parameters, const Formatter& format) { GenerateUtf8CheckCode(format.printer(), field, options, for_parse, parameters, "VerifyUtf8String", "VerifyUTF8StringNamedField"); } void GenerateUtf8CheckCodeForCord(const FieldDescriptor* field, const Options& options, bool for_parse, y_absl::string_view parameters, const Formatter& format) { GenerateUtf8CheckCode(format.printer(), field, options, for_parse, parameters, "VerifyUtf8Cord", "VerifyUTF8CordNamedField"); } void GenerateUtf8CheckCodeForString(io::Printer* p, const FieldDescriptor* field, const Options& options, bool for_parse, y_absl::string_view parameters) { GenerateUtf8CheckCode(p, field, options, for_parse, parameters, "VerifyUtf8String", "VerifyUTF8StringNamedField"); } void GenerateUtf8CheckCodeForCord(io::Printer* p, const FieldDescriptor* field, const Options& options, bool for_parse, y_absl::string_view parameters) { GenerateUtf8CheckCode(p, field, options, for_parse, parameters, "VerifyUtf8Cord", "VerifyUTF8CordNamedField"); } void FlattenMessagesInFile(const FileDescriptor* file, std::vector<const Descriptor*>* result) { for (int i = 0; i < file->message_type_count(); i++) { ForEachMessage(file->message_type(i), [&](const Descriptor* descriptor) { result->push_back(descriptor); }); } } bool HasWeakFields(const Descriptor* descriptor, const Options& options) { for (int i = 0; i < descriptor->field_count(); i++) { if (IsWeak(descriptor->field(i), options)) return true; } return false; } bool HasWeakFields(const FileDescriptor* file, const Options& options) { for (int i = 0; i < file->message_type_count(); ++i) { if (HasWeakFields(file->message_type(i), options)) return true; } return false; } bool UsingImplicitWeakFields(const FileDescriptor* file, const Options& options) { return options.lite_implicit_weak_fields && GetOptimizeFor(file, options) == FileOptions::LITE_RUNTIME; } bool IsImplicitWeakField(const FieldDescriptor* field, const Options& options, MessageSCCAnalyzer* scc_analyzer) { return UsingImplicitWeakFields(field->file(), options) && field->type() == FieldDescriptor::TYPE_MESSAGE && !field->is_required() && !field->is_map() && !field->is_extension() && !IsWellKnownMessage(field->message_type()->file()) && field->message_type()->file()->name() != "net/proto2/proto/descriptor.proto" && // We do not support implicit weak fields between messages in the same // strongly-connected component. scc_analyzer->GetSCC(field->containing_type()) != scc_analyzer->GetSCC(field->message_type()); } MessageAnalysis MessageSCCAnalyzer::GetSCCAnalysis(const SCC* scc) { auto it = analysis_cache_.find(scc); if (it != analysis_cache_.end()) return it->second; MessageAnalysis result; if (UsingImplicitWeakFields(scc->GetFile(), options_)) { result.contains_weak = true; } for (int i = 0; i < scc->descriptors.size(); i++) { const Descriptor* descriptor = scc->descriptors[i]; if (descriptor->extension_range_count() > 0) { result.contains_extension = true; } for (int j = 0; j < descriptor->field_count(); j++) { const FieldDescriptor* field = descriptor->field(j); if (field->is_required()) { result.contains_required = true; } if (field->options().weak()) { result.contains_weak = true; } switch (field->type()) { case FieldDescriptor::TYPE_STRING: case FieldDescriptor::TYPE_BYTES: { if (field->options().ctype() == FieldOptions::CORD) { result.contains_cord = true; } break; } case FieldDescriptor::TYPE_GROUP: case FieldDescriptor::TYPE_MESSAGE: { const SCC* child = analyzer_.GetSCC(field->message_type()); if (child != scc) { MessageAnalysis analysis = GetSCCAnalysis(child); result.contains_cord |= analysis.contains_cord; result.contains_extension |= analysis.contains_extension; if (!ShouldIgnoreRequiredFieldCheck(field, options_)) { result.contains_required |= analysis.contains_required; } result.contains_weak |= analysis.contains_weak; } else { // This field points back into the same SCC hence the messages // in the SCC are recursive. Note if SCC contains more than two // nodes it has to be recursive, however this test also works for // a single node that is recursive. result.is_recursive = true; } break; } default: break; } } } // We deliberately only insert the result here. After we contracted the SCC // in the graph, the graph should be a DAG. Hence we shouldn't need to mark // nodes visited as we can never return to them. By inserting them here // we will go in an infinite loop if the SCC is not correct. return analysis_cache_[scc] = std::move(result); } void ListAllFields(const Descriptor* d, std::vector<const FieldDescriptor*>* fields) { // Collect sub messages for (int i = 0; i < d->nested_type_count(); i++) { ListAllFields(d->nested_type(i), fields); } // Collect message level extensions. for (int i = 0; i < d->extension_count(); i++) { fields->push_back(d->extension(i)); } // Add types of fields necessary for (int i = 0; i < d->field_count(); i++) { fields->push_back(d->field(i)); } } void ListAllFields(const FileDescriptor* d, std::vector<const FieldDescriptor*>* fields) { // Collect file level message. for (int i = 0; i < d->message_type_count(); i++) { ListAllFields(d->message_type(i), fields); } // Collect message level extensions. for (int i = 0; i < d->extension_count(); i++) { fields->push_back(d->extension(i)); } } void ListAllTypesForServices(const FileDescriptor* fd, std::vector<const Descriptor*>* types) { for (int i = 0; i < fd->service_count(); i++) { const ServiceDescriptor* sd = fd->service(i); for (int j = 0; j < sd->method_count(); j++) { const MethodDescriptor* method = sd->method(j); types->push_back(method->input_type()); types->push_back(method->output_type()); } } } bool GetBootstrapBasename(const Options& options, y_absl::string_view basename, TProtoStringType* bootstrap_basename) { if (options.opensource_runtime) { return false; } static const auto* bootstrap_mapping = // TODO(b/242858704) Replace these with string_view once we remove // StringPiece. new y_absl::flat_hash_map<y_absl::string_view, TProtoStringType>{ {"net/proto2/proto/descriptor", "third_party/protobuf/descriptor"}, {"net/proto2/compiler/proto/plugin", "net/proto2/compiler/proto/plugin"}, {"net/proto2/compiler/proto/profile", "net/proto2/compiler/proto/profile_bootstrap"}, }; auto iter = bootstrap_mapping->find(basename); if (iter == bootstrap_mapping->end()) { *bootstrap_basename = TProtoStringType(basename); return false; } else { *bootstrap_basename = iter->second; return true; } } bool IsBootstrapProto(const Options& options, const FileDescriptor* file) { TProtoStringType my_name = StripProto(file->name()); return GetBootstrapBasename(options, my_name, &my_name); } bool MaybeBootstrap(const Options& options, GeneratorContext* generator_context, bool bootstrap_flag, TProtoStringType* basename) { TProtoStringType bootstrap_basename; if (!GetBootstrapBasename(options, *basename, &bootstrap_basename)) { return false; } if (bootstrap_flag) { // Adjust basename, but don't abort code generation. *basename = bootstrap_basename; return false; } auto pb_h = y_absl::WrapUnique( generator_context->Open(y_absl::StrCat(*basename, ".pb.h"))); io::Printer p(pb_h.get()); p.Emit( { {"fwd_to", bootstrap_basename}, {"file", FilenameIdentifier(*basename)}, {"fwd_to_suffix", options.opensource_runtime ? "pb" : "proto"}, {"swig_evil", [&] { if (options.opensource_runtime) { return; } p.Emit(R"( #ifdef SWIG %include "$fwd_to$.pb.h" #endif // SWIG )"); }}, }, R"( #ifndef PROTOBUF_INCLUDED_$file$_FORWARD_PB_H #define PROTOBUF_INCLUDED_$file$_FORWARD_PB_H #include "$fwd_to$.$fwd_to_suffix$.h" // IWYU pragma: export #endif // PROTOBUF_INCLUDED_$file$_FORWARD_PB_H $swig_evil$; )"); auto proto_h = y_absl::WrapUnique( generator_context->Open(y_absl::StrCat(*basename, ".proto.h"))); io::Printer(proto_h.get()) .Emit( { {"fwd_to", bootstrap_basename}, {"file", FilenameIdentifier(*basename)}, }, R"( #ifndef PROTOBUF_INCLUDED_$file$_FORWARD_PROTO_H #define PROTOBUF_INCLUDED_$file$_FORWARD_PROTO_H #include "$fwd_to$.proto.h" // IWYU pragma: export #endif // PROTOBUF_INCLUDED_$file$_FORWARD_PROTO_H )"); auto pb_cc = y_absl::WrapUnique( generator_context->Open(y_absl::StrCat(*basename, ".pb.cc"))); io::Printer(pb_cc.get()).PrintRaw("\n"); (void)y_absl::WrapUnique( generator_context->Open(y_absl::StrCat(*basename, ".pb.h.meta"))); (void)y_absl::WrapUnique( generator_context->Open(y_absl::StrCat(*basename, ".proto.h.meta"))); // Abort code generation. return true; } static bool HasExtensionFromFile(const Message& msg, const FileDescriptor* file, const Options& options, bool* has_opt_codesize_extension) { std::vector<const FieldDescriptor*> fields; auto reflection = msg.GetReflection(); reflection->ListFields(msg, &fields); for (auto field : fields) { const auto* field_msg = field->message_type(); if (field_msg == nullptr) { // It so happens that enums Is_Valid are still generated so enums work. // Only messages have potential problems. continue; } // If this option has an extension set AND that extension is defined in the // same file we have bootstrap problem. if (field->is_extension()) { const auto* msg_extension_file = field->message_type()->file(); if (msg_extension_file == file) return true; if (has_opt_codesize_extension && GetOptimizeFor(msg_extension_file, options) == FileOptions::CODE_SIZE) { *has_opt_codesize_extension = true; } } // Recurse in this field to see if there is a problem in there if (field->is_repeated()) { for (int i = 0; i < reflection->FieldSize(msg, field); i++) { if (HasExtensionFromFile(reflection->GetRepeatedMessage(msg, field, i), file, options, has_opt_codesize_extension)) { return true; } } } else { if (HasExtensionFromFile(reflection->GetMessage(msg, field), file, options, has_opt_codesize_extension)) { return true; } } } return false; } static bool HasBootstrapProblem(const FileDescriptor* file, const Options& options, bool* has_opt_codesize_extension) { struct BoostrapGlobals { y_absl::Mutex mutex; y_absl::flat_hash_set<const FileDescriptor*> cached Y_ABSL_GUARDED_BY(mutex); y_absl::flat_hash_set<const FileDescriptor*> non_cached Y_ABSL_GUARDED_BY(mutex); }; static auto& bootstrap_cache = *new BoostrapGlobals(); y_absl::MutexLock lock(&bootstrap_cache.mutex); if (bootstrap_cache.cached.contains(file)) return true; if (bootstrap_cache.non_cached.contains(file)) return false; // In order to build the data structures for the reflective parse, it needs // to parse the serialized descriptor describing all the messages defined in // this file. Obviously this presents a bootstrap problem for descriptor // messages. if (file->name() == "net/proto2/proto/descriptor.proto" || file->name() == "google/protobuf/descriptor.proto") { return true; } // Unfortunately we're not done yet. The descriptor option messages allow // for extensions. So we need to be able to parse these extensions in order // to parse the file descriptor for a file that has custom options. This is a // problem when these custom options extensions are defined in the same file. FileDescriptorProto linkedin_fd_proto; const DescriptorPool* pool = file->pool(); const Descriptor* fd_proto_descriptor = pool->FindMessageTypeByName(linkedin_fd_proto.GetTypeName()); // Not all pools have descriptor.proto in them. In these cases there for sure // are no custom options. if (fd_proto_descriptor == nullptr) return false; // It's easier to inspect file as a proto, because we can use reflection on // the proto to iterate over all content. file->CopyTo(&linkedin_fd_proto); // linkedin_fd_proto is a generated proto linked in the proto compiler. As // such it doesn't know the extensions that are potentially present in the // descriptor pool constructed from the protos that are being compiled. These // custom options are therefore in the unknown fields. // By building the corresponding FileDescriptorProto in the pool constructed // by the protos that are being compiled, ie. file's pool, the unknown fields // are converted to extensions. DynamicMessageFactory factory(pool); Message* fd_proto = factory.GetPrototype(fd_proto_descriptor)->New(); fd_proto->ParseFromString(linkedin_fd_proto.SerializeAsString()); bool res = HasExtensionFromFile(*fd_proto, file, options, has_opt_codesize_extension); if (res) { bootstrap_cache.cached.insert(file); } else { bootstrap_cache.non_cached.insert(file); } delete fd_proto; return res; } FileOptions_OptimizeMode GetOptimizeFor(const FileDescriptor* file, const Options& options, bool* has_opt_codesize_extension) { if (has_opt_codesize_extension) *has_opt_codesize_extension = false; switch (options.enforce_mode) { case EnforceOptimizeMode::kSpeed: return FileOptions::SPEED; case EnforceOptimizeMode::kLiteRuntime: return FileOptions::LITE_RUNTIME; case EnforceOptimizeMode::kCodeSize: if (file->options().optimize_for() == FileOptions::LITE_RUNTIME) { return FileOptions::LITE_RUNTIME; } if (HasBootstrapProblem(file, options, has_opt_codesize_extension)) { return FileOptions::SPEED; } return FileOptions::CODE_SIZE; case EnforceOptimizeMode::kNoEnforcement: if (file->options().optimize_for() == FileOptions::CODE_SIZE) { if (HasBootstrapProblem(file, options, has_opt_codesize_extension)) { Y_ABSL_LOG(WARNING) << "Proto states optimize_for = CODE_SIZE, but we " "cannot honor that because it contains custom option " "extensions defined in the same proto."; return FileOptions::SPEED; } } return file->options().optimize_for(); } Y_ABSL_LOG(FATAL) << "Unknown optimization enforcement requested."; // The phony return below serves to silence a warning from GCC 8. return FileOptions::SPEED; } bool HasMessageFieldOrExtension(const Descriptor* desc) { if (desc->extension_range_count() > 0) return true; for (const auto* f : FieldRange(desc)) { if (f->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) return true; } return false; } std::vector<io::Printer::Sub> AnnotatedAccessors( const FieldDescriptor* field, y_absl::Span<const y_absl::string_view> prefixes, y_absl::optional<google::protobuf::io::AnnotationCollector::Semantic> semantic) { auto field_name = FieldName(field); std::vector<io::Printer::Sub> vars; for (auto prefix : prefixes) { vars.push_back(io::Printer::Sub(y_absl::StrCat(prefix, "name"), y_absl::StrCat(prefix, field_name)) .AnnotatedAs({field, semantic})); } return vars; } } // namespace cpp } // namespace compiler } // namespace protobuf } // namespace google