/* ---------------------------------------------------------------------------- Copyright (c) 2018-2021, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #include "mimalloc.h" #include "mimalloc-internal.h" #include "mimalloc-atomic.h" #include <string.h> // memset, strlen #include <stdlib.h> // malloc, exit #define MI_IN_ALLOC_C #include "alloc-override.c" #undef MI_IN_ALLOC_C // ------------------------------------------------------ // Allocation // ------------------------------------------------------ // Fast allocation in a page: just pop from the free list. // Fall back to generic allocation only if the list is empty. extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept { mi_assert_internal(page->xblock_size==0||mi_page_block_size(page) >= size); mi_block_t* const block = page->free; if (mi_unlikely(block == NULL)) { return _mi_malloc_generic(heap, size); } mi_assert_internal(block != NULL && _mi_ptr_page(block) == page); // pop from the free list page->used++; page->free = mi_block_next(page, block); mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page); #if (MI_DEBUG>0) if (!page->is_zero) { memset(block, MI_DEBUG_UNINIT, size); } #elif (MI_SECURE!=0) block->next = 0; // don't leak internal data #endif #if (MI_STAT>0) const size_t bsize = mi_page_usable_block_size(page); if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { mi_heap_stat_increase(heap, normal, bsize); mi_heap_stat_counter_increase(heap, normal_count, 1); #if (MI_STAT>1) const size_t bin = _mi_bin(bsize); mi_heap_stat_increase(heap, normal_bins[bin], 1); #endif } #endif #if (MI_PADDING > 0) && defined(MI_ENCODE_FREELIST) mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + mi_page_usable_block_size(page)); ptrdiff_t delta = ((uint8_t*)padding - (uint8_t*)block - (size - MI_PADDING_SIZE)); mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta)); padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys)); padding->delta = (uint32_t)(delta); uint8_t* fill = (uint8_t*)padding - delta; const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; } #endif return block; } // allocate a small block extern inline mi_decl_restrict void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept { mi_assert(heap!=NULL); mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local mi_assert(size <= MI_SMALL_SIZE_MAX); #if (MI_PADDING) if (size == 0) { size = sizeof(void*); } #endif mi_page_t* page = _mi_heap_get_free_small_page(heap,size + MI_PADDING_SIZE); void* p = _mi_page_malloc(heap, page, size + MI_PADDING_SIZE); mi_assert_internal(p==NULL || mi_usable_size(p) >= size); #if MI_STAT>1 if (p != NULL) { if (!mi_heap_is_initialized(heap)) { heap = mi_get_default_heap(); } mi_heap_stat_increase(heap, malloc, mi_usable_size(p)); } #endif return p; } extern inline mi_decl_restrict void* mi_malloc_small(size_t size) mi_attr_noexcept { return mi_heap_malloc_small(mi_get_default_heap(), size); } // The main allocation function extern inline mi_decl_restrict void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept { if (mi_likely(size <= MI_SMALL_SIZE_MAX)) { return mi_heap_malloc_small(heap, size); } else { mi_assert(heap!=NULL); mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local void* const p = _mi_malloc_generic(heap, size + MI_PADDING_SIZE); // note: size can overflow but it is detected in malloc_generic mi_assert_internal(p == NULL || mi_usable_size(p) >= size); #if MI_STAT>1 if (p != NULL) { if (!mi_heap_is_initialized(heap)) { heap = mi_get_default_heap(); } mi_heap_stat_increase(heap, malloc, mi_usable_size(p)); } #endif return p; } } extern inline mi_decl_restrict void* mi_malloc(size_t size) mi_attr_noexcept { return mi_heap_malloc(mi_get_default_heap(), size); } void _mi_block_zero_init(const mi_page_t* page, void* p, size_t size) { // note: we need to initialize the whole usable block size to zero, not just the requested size, // or the recalloc/rezalloc functions cannot safely expand in place (see issue #63) UNUSED(size); mi_assert_internal(p != NULL); mi_assert_internal(mi_usable_size(p) >= size); // size can be zero mi_assert_internal(_mi_ptr_page(p)==page); if (page->is_zero && size > sizeof(mi_block_t)) { // already zero initialized memory ((mi_block_t*)p)->next = 0; // clear the free list pointer mi_assert_expensive(mi_mem_is_zero(p, mi_usable_size(p))); } else { // otherwise memset memset(p, 0, mi_usable_size(p)); } } // zero initialized small block mi_decl_restrict void* mi_zalloc_small(size_t size) mi_attr_noexcept { void* p = mi_malloc_small(size); if (p != NULL) { _mi_block_zero_init(_mi_ptr_page(p), p, size); // todo: can we avoid getting the page again? } return p; } void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) { void* p = mi_heap_malloc(heap,size); if (zero && p != NULL) { _mi_block_zero_init(_mi_ptr_page(p),p,size); // todo: can we avoid getting the page again? } return p; } extern inline mi_decl_restrict void* mi_heap_zalloc(mi_heap_t* heap, size_t size) mi_attr_noexcept { return _mi_heap_malloc_zero(heap, size, true); } mi_decl_restrict void* mi_zalloc(size_t size) mi_attr_noexcept { return mi_heap_zalloc(mi_get_default_heap(),size); } // ------------------------------------------------------ // Check for double free in secure and debug mode // This is somewhat expensive so only enabled for secure mode 4 // ------------------------------------------------------ #if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0)) // linear check if the free list contains a specific element static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) { while (list != NULL) { if (elem==list) return true; list = mi_block_next(page, list); } return false; } static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) { // The decoded value is in the same page (or NULL). // Walk the free lists to verify positively if it is already freed if (mi_list_contains(page, page->free, block) || mi_list_contains(page, page->local_free, block) || mi_list_contains(page, mi_page_thread_free(page), block)) { _mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page)); return true; } return false; } static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) { mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer? (n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL? { // Suspicous: decoded value a in block is in the same page (or NULL) -- maybe a double free? // (continue in separate function to improve code generation) return mi_check_is_double_freex(page, block); } return false; } #else static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) { UNUSED(page); UNUSED(block); return false; } #endif // --------------------------------------------------------------------------- // Check for heap block overflow by setting up padding at the end of the block // --------------------------------------------------------------------------- #if (MI_PADDING>0) && defined(MI_ENCODE_FREELIST) static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) { *bsize = mi_page_usable_block_size(page); const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize); *delta = padding->delta; return ((uint32_t)mi_ptr_encode(page,block,page->keys) == padding->canary && *delta <= *bsize); } // Return the exact usable size of a block. static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) { size_t bsize; size_t delta; bool ok = mi_page_decode_padding(page, block, &delta, &bsize); mi_assert_internal(ok); mi_assert_internal(delta <= bsize); return (ok ? bsize - delta : 0); } static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) { size_t bsize; size_t delta; bool ok = mi_page_decode_padding(page, block, &delta, &bsize); *size = *wrong = bsize; if (!ok) return false; mi_assert_internal(bsize >= delta); *size = bsize - delta; uint8_t* fill = (uint8_t*)block + bsize - delta; const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes for (size_t i = 0; i < maxpad; i++) { if (fill[i] != MI_DEBUG_PADDING) { *wrong = bsize - delta + i; return false; } } return true; } static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) { size_t size; size_t wrong; if (!mi_verify_padding(page,block,&size,&wrong)) { _mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong ); } } // When a non-thread-local block is freed, it becomes part of the thread delayed free // list that is freed later by the owning heap. If the exact usable size is too small to // contain the pointer for the delayed list, then shrink the padding (by decreasing delta) // so it will later not trigger an overflow error in `mi_free_block`. static void mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) { size_t bsize; size_t delta; bool ok = mi_page_decode_padding(page, block, &delta, &bsize); mi_assert_internal(ok); if (!ok || (bsize - delta) >= min_size) return; // usually already enough space mi_assert_internal(bsize >= min_size); if (bsize < min_size) return; // should never happen size_t new_delta = (bsize - min_size); mi_assert_internal(new_delta < bsize); mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize); padding->delta = (uint32_t)new_delta; } #else static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) { UNUSED(page); UNUSED(block); } static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) { UNUSED(block); return mi_page_usable_block_size(page); } static void mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) { UNUSED(page); UNUSED(block); UNUSED(min_size); } #endif // only maintain stats for smaller objects if requested #if (MI_STAT>0) static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) { #if (MI_STAT < 2) UNUSED(block); #endif mi_heap_t* const heap = mi_heap_get_default(); const size_t bsize = mi_page_usable_block_size(page); #if (MI_STAT>1) const size_t usize = mi_page_usable_size_of(page, block); mi_heap_stat_decrease(heap, malloc, usize); #endif if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { mi_heap_stat_decrease(heap, normal, bsize); #if (MI_STAT > 1) mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1); #endif } } #else static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) { UNUSED(page); UNUSED(block); } #endif #if (MI_STAT>0) // maintain stats for huge objects static void mi_stat_huge_free(const mi_page_t* page) { mi_heap_t* const heap = mi_heap_get_default(); const size_t bsize = mi_page_block_size(page); // to match stats in `page.c:mi_page_huge_alloc` if (bsize <= MI_HUGE_OBJ_SIZE_MAX) { mi_heap_stat_decrease(heap, huge, bsize); } else { mi_heap_stat_decrease(heap, giant, bsize); } } #else static void mi_stat_huge_free(const mi_page_t* page) { UNUSED(page); } #endif // ------------------------------------------------------ // Free // ------------------------------------------------------ // multi-threaded free static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* block) { // The padding check may access the non-thread-owned page for the key values. // that is safe as these are constant and the page won't be freed (as the block is not freed yet). mi_check_padding(page, block); mi_padding_shrink(page, block, sizeof(mi_block_t)); // for small size, ensure we can fit the delayed thread pointers without triggering overflow detection #if (MI_DEBUG!=0) memset(block, MI_DEBUG_FREED, mi_usable_size(block)); #endif // huge page segments are always abandoned and can be freed immediately mi_segment_t* const segment = _mi_page_segment(page); if (segment->page_kind==MI_PAGE_HUGE) { mi_stat_huge_free(page); _mi_segment_huge_page_free(segment, page, block); return; } // Try to put the block on either the page-local thread free list, or the heap delayed free list. mi_thread_free_t tfreex; bool use_delayed; mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free); do { use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE); if (mi_unlikely(use_delayed)) { // unlikely: this only happens on the first concurrent free in a page that is in the full list tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING); } else { // usual: directly add to page thread_free list mi_block_set_next(page, block, mi_tf_block(tfree)); tfreex = mi_tf_set_block(tfree,block); } } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex)); if (mi_unlikely(use_delayed)) { // racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`) mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page); mi_assert_internal(heap != NULL); if (heap != NULL) { // add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity) mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free); do { mi_block_set_nextx(heap,block,dfree, heap->keys); } while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block)); } // and reset the MI_DELAYED_FREEING flag tfree = mi_atomic_load_relaxed(&page->xthread_free); do { tfreex = tfree; mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING); tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE); } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex)); } } // regular free static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block) { // and push it on the free list if (mi_likely(local)) { // owning thread can free a block directly if (mi_unlikely(mi_check_is_double_free(page, block))) return; mi_check_padding(page, block); #if (MI_DEBUG!=0) memset(block, MI_DEBUG_FREED, mi_page_block_size(page)); #endif mi_block_set_next(page, block, page->local_free); page->local_free = block; page->used--; if (mi_unlikely(mi_page_all_free(page))) { _mi_page_retire(page); } else if (mi_unlikely(mi_page_is_in_full(page))) { _mi_page_unfull(page); } } else { _mi_free_block_mt(page,block); } } // Adjust a block that was allocated aligned, to the actual start of the block in the page. mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) { mi_assert_internal(page!=NULL && p!=NULL); const size_t diff = (uint8_t*)p - _mi_page_start(segment, page, NULL); const size_t adjust = (diff % mi_page_block_size(page)); return (mi_block_t*)((uintptr_t)p - adjust); } static void mi_decl_noinline mi_free_generic(const mi_segment_t* segment, bool local, void* p) { mi_page_t* const page = _mi_segment_page_of(segment, p); mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(segment, page, p) : (mi_block_t*)p); mi_stat_free(page, block); _mi_free_block(page, local, block); } // Get the segment data belonging to a pointer // This is just a single `and` in assembly but does further checks in debug mode // (and secure mode) if this was a valid pointer. static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg) { UNUSED(msg); #if (MI_DEBUG>0) if (mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0)) { _mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p); return NULL; } #endif mi_segment_t* const segment = _mi_ptr_segment(p); if (mi_unlikely(segment == NULL)) return NULL; // checks also for (p==NULL) #if (MI_DEBUG>0) if (mi_unlikely(!mi_is_in_heap_region(p))) { _mi_warning_message("%s: pointer might not point to a valid heap region: %p\n" "(this may still be a valid very large allocation (over 64MiB))\n", msg, p); if (mi_likely(_mi_ptr_cookie(segment) == segment->cookie)) { _mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p); } } #endif #if (MI_DEBUG>0 || MI_SECURE>=4) if (mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie)) { _mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", p); } #endif return segment; } // Free a block void mi_free(void* p) mi_attr_noexcept { const mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free"); if (mi_unlikely(segment == NULL)) return; const uintptr_t tid = _mi_thread_id(); mi_page_t* const page = _mi_segment_page_of(segment, p); mi_block_t* const block = (mi_block_t*)p; if (mi_likely(tid == segment->thread_id && page->flags.full_aligned == 0)) { // the thread id matches and it is not a full page, nor has aligned blocks // local, and not full or aligned if (mi_unlikely(mi_check_is_double_free(page,block))) return; mi_check_padding(page, block); mi_stat_free(page, block); #if (MI_DEBUG!=0) memset(block, MI_DEBUG_FREED, mi_page_block_size(page)); #endif mi_block_set_next(page, block, page->local_free); page->local_free = block; if (mi_unlikely(--page->used == 0)) { // using this expression generates better code than: page->used--; if (mi_page_all_free(page)) _mi_page_retire(page); } } else { // non-local, aligned blocks, or a full page; use the more generic path // note: recalc page in generic to improve code generation mi_free_generic(segment, tid == segment->thread_id, p); } } bool _mi_free_delayed_block(mi_block_t* block) { // get segment and page const mi_segment_t* const segment = _mi_ptr_segment(block); mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie); mi_assert_internal(_mi_thread_id() == segment->thread_id); mi_page_t* const page = _mi_segment_page_of(segment, block); // Clear the no-delayed flag so delayed freeing is used again for this page. // This must be done before collecting the free lists on this page -- otherwise // some blocks may end up in the page `thread_free` list with no blocks in the // heap `thread_delayed_free` list which may cause the page to be never freed! // (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`) _mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */); // collect all other non-local frees to ensure up-to-date `used` count _mi_page_free_collect(page, false); // and free the block (possibly freeing the page as well since used is updated) _mi_free_block(page, true, block); return true; } // Bytes available in a block static size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept { const mi_segment_t* const segment = mi_checked_ptr_segment(p,msg); if (segment==NULL) return 0; const mi_page_t* const page = _mi_segment_page_of(segment, p); const mi_block_t* block = (const mi_block_t*)p; if (mi_unlikely(mi_page_has_aligned(page))) { block = _mi_page_ptr_unalign(segment, page, p); size_t size = mi_page_usable_size_of(page, block); ptrdiff_t const adjust = (uint8_t*)p - (uint8_t*)block; mi_assert_internal(adjust >= 0 && (size_t)adjust <= size); return (size - adjust); } else { return mi_page_usable_size_of(page, block); } } size_t mi_usable_size(const void* p) mi_attr_noexcept { return _mi_usable_size(p, "mi_usable_size"); } // ------------------------------------------------------ // ensure explicit external inline definitions are emitted! // ------------------------------------------------------ #ifdef __cplusplus void* _mi_externs[] = { (void*)&_mi_page_malloc, (void*)&mi_malloc, (void*)&mi_malloc_small, (void*)&mi_zalloc_small, (void*)&mi_heap_malloc, (void*)&mi_heap_zalloc, (void*)&mi_heap_malloc_small }; #endif // ------------------------------------------------------ // Allocation extensions // ------------------------------------------------------ void mi_free_size(void* p, size_t size) mi_attr_noexcept { UNUSED_RELEASE(size); mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size")); mi_free(p); } void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept { UNUSED_RELEASE(alignment); mi_assert(((uintptr_t)p % alignment) == 0); mi_free_size(p,size); } void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept { UNUSED_RELEASE(alignment); mi_assert(((uintptr_t)p % alignment) == 0); mi_free(p); } extern inline mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(count,size,&total)) return NULL; return mi_heap_zalloc(heap,total); } mi_decl_restrict void* mi_calloc(size_t count, size_t size) mi_attr_noexcept { return mi_heap_calloc(mi_get_default_heap(),count,size); } // Uninitialized `calloc` extern mi_decl_restrict void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(count, size, &total)) return NULL; return mi_heap_malloc(heap, total); } mi_decl_restrict void* mi_mallocn(size_t count, size_t size) mi_attr_noexcept { return mi_heap_mallocn(mi_get_default_heap(),count,size); } // Expand in place or fail void* mi_expand(void* p, size_t newsize) mi_attr_noexcept { if (p == NULL) return NULL; size_t size = _mi_usable_size(p,"mi_expand"); if (newsize > size) return NULL; return p; // it fits } void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) { if (p == NULL) return _mi_heap_malloc_zero(heap,newsize,zero); size_t size = _mi_usable_size(p,"mi_realloc"); if (newsize <= size && newsize >= (size / 2)) { return p; // reallocation still fits and not more than 50% waste } void* newp = mi_heap_malloc(heap,newsize); if (mi_likely(newp != NULL)) { if (zero && newsize > size) { // also set last word in the previous allocation to zero to ensure any padding is zero-initialized size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0); memset((uint8_t*)newp + start, 0, newsize - start); } _mi_memcpy_aligned(newp, p, (newsize > size ? size : newsize)); mi_free(p); // only free if successful } return newp; } void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept { return _mi_heap_realloc_zero(heap, p, newsize, false); } void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(count, size, &total)) return NULL; return mi_heap_realloc(heap, p, total); } // Reallocate but free `p` on errors void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept { void* newp = mi_heap_realloc(heap, p, newsize); if (newp==NULL && p!=NULL) mi_free(p); return newp; } void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept { return _mi_heap_realloc_zero(heap, p, newsize, true); } void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept { size_t total; if (mi_count_size_overflow(count, size, &total)) return NULL; return mi_heap_rezalloc(heap, p, total); } void* mi_realloc(void* p, size_t newsize) mi_attr_noexcept { return mi_heap_realloc(mi_get_default_heap(),p,newsize); } void* mi_reallocn(void* p, size_t count, size_t size) mi_attr_noexcept { return mi_heap_reallocn(mi_get_default_heap(),p,count,size); } // Reallocate but free `p` on errors void* mi_reallocf(void* p, size_t newsize) mi_attr_noexcept { return mi_heap_reallocf(mi_get_default_heap(),p,newsize); } void* mi_rezalloc(void* p, size_t newsize) mi_attr_noexcept { return mi_heap_rezalloc(mi_get_default_heap(), p, newsize); } void* mi_recalloc(void* p, size_t count, size_t size) mi_attr_noexcept { return mi_heap_recalloc(mi_get_default_heap(), p, count, size); } // ------------------------------------------------------ // strdup, strndup, and realpath // ------------------------------------------------------ // `strdup` using mi_malloc mi_decl_restrict char* mi_heap_strdup(mi_heap_t* heap, const char* s) mi_attr_noexcept { if (s == NULL) return NULL; size_t n = strlen(s); char* t = (char*)mi_heap_malloc(heap,n+1); if (t != NULL) _mi_memcpy(t, s, n + 1); return t; } mi_decl_restrict char* mi_strdup(const char* s) mi_attr_noexcept { return mi_heap_strdup(mi_get_default_heap(), s); } // `strndup` using mi_malloc mi_decl_restrict char* mi_heap_strndup(mi_heap_t* heap, const char* s, size_t n) mi_attr_noexcept { if (s == NULL) return NULL; const char* end = (const char*)memchr(s, 0, n); // find end of string in the first `n` characters (returns NULL if not found) const size_t m = (end != NULL ? (size_t)(end - s) : n); // `m` is the minimum of `n` or the end-of-string mi_assert_internal(m <= n); char* t = (char*)mi_heap_malloc(heap, m+1); if (t == NULL) return NULL; _mi_memcpy(t, s, m); t[m] = 0; return t; } mi_decl_restrict char* mi_strndup(const char* s, size_t n) mi_attr_noexcept { return mi_heap_strndup(mi_get_default_heap(),s,n); } #ifndef __wasi__ // `realpath` using mi_malloc #ifdef _WIN32 #ifndef PATH_MAX #define PATH_MAX MAX_PATH #endif #include <windows.h> mi_decl_restrict char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept { // todo: use GetFullPathNameW to allow longer file names char buf[PATH_MAX]; DWORD res = GetFullPathNameA(fname, PATH_MAX, (resolved_name == NULL ? buf : resolved_name), NULL); if (res == 0) { errno = GetLastError(); return NULL; } else if (res > PATH_MAX) { errno = EINVAL; return NULL; } else if (resolved_name != NULL) { return resolved_name; } else { return mi_heap_strndup(heap, buf, PATH_MAX); } } #else #include <unistd.h> // pathconf static size_t mi_path_max() { static size_t path_max = 0; if (path_max <= 0) { long m = pathconf("/",_PC_PATH_MAX); if (m <= 0) path_max = 4096; // guess else if (m < 256) path_max = 256; // at least 256 else path_max = m; } return path_max; } char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept { if (resolved_name != NULL) { return realpath(fname,resolved_name); } else { size_t n = mi_path_max(); char* buf = (char*)mi_malloc(n+1); if (buf==NULL) return NULL; char* rname = realpath(fname,buf); char* result = mi_heap_strndup(heap,rname,n); // ok if `rname==NULL` mi_free(buf); return result; } } #endif mi_decl_restrict char* mi_realpath(const char* fname, char* resolved_name) mi_attr_noexcept { return mi_heap_realpath(mi_get_default_heap(),fname,resolved_name); } #endif /*------------------------------------------------------- C++ new and new_aligned The standard requires calling into `get_new_handler` and throwing the bad_alloc exception on failure. If we compile with a C++ compiler we can implement this precisely. If we use a C compiler we cannot throw a `bad_alloc` exception but we call `exit` instead (i.e. not returning). -------------------------------------------------------*/ #ifdef __cplusplus #include <new> static bool mi_try_new_handler(bool nothrow) { #if defined(_MSC_VER) || (__cplusplus >= 201103L) std::new_handler h = std::get_new_handler(); #else std::new_handler h = std::set_new_handler(); std::set_new_handler(h); #endif if (h==NULL) { if (!nothrow) throw std::bad_alloc(); return false; } else { h(); return true; } } #else typedef void (*std_new_handler_t)(); #if (defined(__GNUC__) || defined(__clang__)) std_new_handler_t __attribute((weak)) _ZSt15get_new_handlerv() { return NULL; } static std_new_handler_t mi_get_new_handler() { return _ZSt15get_new_handlerv(); } #else // note: on windows we could dynamically link to `?get_new_handler@std@@YAP6AXXZXZ`. static std_new_handler_t mi_get_new_handler() { return NULL; } #endif static bool mi_try_new_handler(bool nothrow) { std_new_handler_t h = mi_get_new_handler(); if (h==NULL) { if (!nothrow) exit(ENOMEM); // cannot throw in plain C, use exit as we are out of memory anyway. return false; } else { h(); return true; } } #endif static mi_decl_noinline void* mi_try_new(size_t size, bool nothrow ) { void* p = NULL; while(p == NULL && mi_try_new_handler(nothrow)) { p = mi_malloc(size); } return p; } mi_decl_restrict void* mi_new(size_t size) { void* p = mi_malloc(size); if (mi_unlikely(p == NULL)) return mi_try_new(size,false); return p; } mi_decl_restrict void* mi_new_nothrow(size_t size) mi_attr_noexcept { void* p = mi_malloc(size); if (mi_unlikely(p == NULL)) return mi_try_new(size, true); return p; } mi_decl_restrict void* mi_new_aligned(size_t size, size_t alignment) { void* p; do { p = mi_malloc_aligned(size, alignment); } while(p == NULL && mi_try_new_handler(false)); return p; } mi_decl_restrict void* mi_new_aligned_nothrow(size_t size, size_t alignment) mi_attr_noexcept { void* p; do { p = mi_malloc_aligned(size, alignment); } while(p == NULL && mi_try_new_handler(true)); return p; } mi_decl_restrict void* mi_new_n(size_t count, size_t size) { size_t total; if (mi_unlikely(mi_count_size_overflow(count, size, &total))) { mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc return NULL; } else { return mi_new(total); } } void* mi_new_realloc(void* p, size_t newsize) { void* q; do { q = mi_realloc(p, newsize); } while (q == NULL && mi_try_new_handler(false)); return q; } void* mi_new_reallocn(void* p, size_t newcount, size_t size) { size_t total; if (mi_unlikely(mi_count_size_overflow(newcount, size, &total))) { mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc return NULL; } else { return mi_new_realloc(p, total); } }