//===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // This file contains classes used to discover if for a particular value // there from sue to definition that crosses a suspend block. // // Using the information discovered we form a Coroutine Frame structure to // contain those values. All uses of those values are replaced with appropriate // GEP + load from the coroutine frame. At the point of the definition we spill // the value into the coroutine frame. //===----------------------------------------------------------------------===// #include "CoroInternal.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallString.h" #include "llvm/Analysis/PtrUseVisitor.h" #include "llvm/Analysis/StackLifetime.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/CFG.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/OptimizedStructLayout.h" #include "llvm/Support/circular_raw_ostream.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include <algorithm> #include <optional> using namespace llvm; // The "coro-suspend-crossing" flag is very noisy. There is another debug type, // "coro-frame", which results in leaner debug spew. #define DEBUG_TYPE "coro-suspend-crossing" enum { SmallVectorThreshold = 32 }; // Provides two way mapping between the blocks and numbers. namespace { class BlockToIndexMapping { SmallVector<BasicBlock *, SmallVectorThreshold> V; public: size_t size() const { return V.size(); } BlockToIndexMapping(Function &F) { for (BasicBlock &BB : F) V.push_back(&BB); llvm::sort(V); } size_t blockToIndex(BasicBlock *BB) const { auto *I = llvm::lower_bound(V, BB); assert(I != V.end() && *I == BB && "BasicBlockNumberng: Unknown block"); return I - V.begin(); } BasicBlock *indexToBlock(unsigned Index) const { return V[Index]; } }; } // end anonymous namespace // The SuspendCrossingInfo maintains data that allows to answer a question // whether given two BasicBlocks A and B there is a path from A to B that // passes through a suspend point. // // For every basic block 'i' it maintains a BlockData that consists of: // Consumes: a bit vector which contains a set of indices of blocks that can // reach block 'i'. A block can trivially reach itself. // Kills: a bit vector which contains a set of indices of blocks that can // reach block 'i' but there is a path crossing a suspend point // not repeating 'i' (path to 'i' without cycles containing 'i'). // Suspend: a boolean indicating whether block 'i' contains a suspend point. // End: a boolean indicating whether block 'i' contains a coro.end intrinsic. // KillLoop: There is a path from 'i' to 'i' not otherwise repeating 'i' that // crosses a suspend point. // namespace { struct SuspendCrossingInfo { BlockToIndexMapping Mapping; struct BlockData { BitVector Consumes; BitVector Kills; bool Suspend = false; bool End = false; bool KillLoop = false; }; SmallVector<BlockData, SmallVectorThreshold> Block; iterator_range<succ_iterator> successors(BlockData const &BD) const { BasicBlock *BB = Mapping.indexToBlock(&BD - &Block[0]); return llvm::successors(BB); } BlockData &getBlockData(BasicBlock *BB) { return Block[Mapping.blockToIndex(BB)]; } void dump() const; void dump(StringRef Label, BitVector const &BV) const; SuspendCrossingInfo(Function &F, coro::Shape &Shape); /// Returns true if there is a path from \p From to \p To crossing a suspend /// point without crossing \p From a 2nd time. bool hasPathCrossingSuspendPoint(BasicBlock *From, BasicBlock *To) const { size_t const FromIndex = Mapping.blockToIndex(From); size_t const ToIndex = Mapping.blockToIndex(To); bool const Result = Block[ToIndex].Kills[FromIndex]; LLVM_DEBUG(dbgs() << From->getName() << " => " << To->getName() << " answer is " << Result << "\n"); return Result; } /// Returns true if there is a path from \p From to \p To crossing a suspend /// point without crossing \p From a 2nd time. If \p From is the same as \p To /// this will also check if there is a looping path crossing a suspend point. bool hasPathOrLoopCrossingSuspendPoint(BasicBlock *From, BasicBlock *To) const { size_t const FromIndex = Mapping.blockToIndex(From); size_t const ToIndex = Mapping.blockToIndex(To); bool Result = Block[ToIndex].Kills[FromIndex] || (From == To && Block[ToIndex].KillLoop); LLVM_DEBUG(dbgs() << From->getName() << " => " << To->getName() << " answer is " << Result << " (path or loop)\n"); return Result; } bool isDefinitionAcrossSuspend(BasicBlock *DefBB, User *U) const { auto *I = cast<Instruction>(U); // We rewrote PHINodes, so that only the ones with exactly one incoming // value need to be analyzed. if (auto *PN = dyn_cast<PHINode>(I)) if (PN->getNumIncomingValues() > 1) return false; BasicBlock *UseBB = I->getParent(); // As a special case, treat uses by an llvm.coro.suspend.retcon or an // llvm.coro.suspend.async as if they were uses in the suspend's single // predecessor: the uses conceptually occur before the suspend. if (isa<CoroSuspendRetconInst>(I) || isa<CoroSuspendAsyncInst>(I)) { UseBB = UseBB->getSinglePredecessor(); assert(UseBB && "should have split coro.suspend into its own block"); } return hasPathCrossingSuspendPoint(DefBB, UseBB); } bool isDefinitionAcrossSuspend(Argument &A, User *U) const { return isDefinitionAcrossSuspend(&A.getParent()->getEntryBlock(), U); } bool isDefinitionAcrossSuspend(Instruction &I, User *U) const { auto *DefBB = I.getParent(); // As a special case, treat values produced by an llvm.coro.suspend.* // as if they were defined in the single successor: the uses // conceptually occur after the suspend. if (isa<AnyCoroSuspendInst>(I)) { DefBB = DefBB->getSingleSuccessor(); assert(DefBB && "should have split coro.suspend into its own block"); } return isDefinitionAcrossSuspend(DefBB, U); } bool isDefinitionAcrossSuspend(Value &V, User *U) const { if (auto *Arg = dyn_cast<Argument>(&V)) return isDefinitionAcrossSuspend(*Arg, U); if (auto *Inst = dyn_cast<Instruction>(&V)) return isDefinitionAcrossSuspend(*Inst, U); llvm_unreachable( "Coroutine could only collect Argument and Instruction now."); } }; } // end anonymous namespace #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void SuspendCrossingInfo::dump(StringRef Label, BitVector const &BV) const { dbgs() << Label << ":"; for (size_t I = 0, N = BV.size(); I < N; ++I) if (BV[I]) dbgs() << " " << Mapping.indexToBlock(I)->getName(); dbgs() << "\n"; } LLVM_DUMP_METHOD void SuspendCrossingInfo::dump() const { for (size_t I = 0, N = Block.size(); I < N; ++I) { BasicBlock *const B = Mapping.indexToBlock(I); dbgs() << B->getName() << ":\n"; dump(" Consumes", Block[I].Consumes); dump(" Kills", Block[I].Kills); } dbgs() << "\n"; } #endif SuspendCrossingInfo::SuspendCrossingInfo(Function &F, coro::Shape &Shape) : Mapping(F) { const size_t N = Mapping.size(); Block.resize(N); // Initialize every block so that it consumes itself for (size_t I = 0; I < N; ++I) { auto &B = Block[I]; B.Consumes.resize(N); B.Kills.resize(N); B.Consumes.set(I); } // Mark all CoroEnd Blocks. We do not propagate Kills beyond coro.ends as // the code beyond coro.end is reachable during initial invocation of the // coroutine. for (auto *CE : Shape.CoroEnds) getBlockData(CE->getParent()).End = true; // Mark all suspend blocks and indicate that they kill everything they // consume. Note, that crossing coro.save also requires a spill, as any code // between coro.save and coro.suspend may resume the coroutine and all of the // state needs to be saved by that time. auto markSuspendBlock = [&](IntrinsicInst *BarrierInst) { BasicBlock *SuspendBlock = BarrierInst->getParent(); auto &B = getBlockData(SuspendBlock); B.Suspend = true; B.Kills |= B.Consumes; }; for (auto *CSI : Shape.CoroSuspends) { markSuspendBlock(CSI); if (auto *Save = CSI->getCoroSave()) markSuspendBlock(Save); } // Iterate propagating consumes and kills until they stop changing. int Iteration = 0; (void)Iteration; bool Changed; do { LLVM_DEBUG(dbgs() << "iteration " << ++Iteration); LLVM_DEBUG(dbgs() << "==============\n"); Changed = false; for (size_t I = 0; I < N; ++I) { auto &B = Block[I]; for (BasicBlock *SI : successors(B)) { auto SuccNo = Mapping.blockToIndex(SI); // Saved Consumes and Kills bitsets so that it is easy to see // if anything changed after propagation. auto &S = Block[SuccNo]; auto SavedConsumes = S.Consumes; auto SavedKills = S.Kills; // Propagate Kills and Consumes from block B into its successor S. S.Consumes |= B.Consumes; S.Kills |= B.Kills; // If block B is a suspend block, it should propagate kills into the // its successor for every block B consumes. if (B.Suspend) { S.Kills |= B.Consumes; } if (S.Suspend) { // If block S is a suspend block, it should kill all of the blocks it // consumes. S.Kills |= S.Consumes; } else if (S.End) { // If block S is an end block, it should not propagate kills as the // blocks following coro.end() are reached during initial invocation // of the coroutine while all the data are still available on the // stack or in the registers. S.Kills.reset(); } else { // This is reached when S block it not Suspend nor coro.end and it // need to make sure that it is not in the kill set. S.KillLoop |= S.Kills[SuccNo]; S.Kills.reset(SuccNo); } // See if anything changed. Changed |= (S.Kills != SavedKills) || (S.Consumes != SavedConsumes); if (S.Kills != SavedKills) { LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI->getName() << "\n"); LLVM_DEBUG(dump("S.Kills", S.Kills)); LLVM_DEBUG(dump("SavedKills", SavedKills)); } if (S.Consumes != SavedConsumes) { LLVM_DEBUG(dbgs() << "\nblock " << I << " follower " << SI << "\n"); LLVM_DEBUG(dump("S.Consume", S.Consumes)); LLVM_DEBUG(dump("SavedCons", SavedConsumes)); } } } } while (Changed); LLVM_DEBUG(dump()); } #undef DEBUG_TYPE // "coro-suspend-crossing" #define DEBUG_TYPE "coro-frame" namespace { class FrameTypeBuilder; // Mapping from the to-be-spilled value to all the users that need reload. using SpillInfo = SmallMapVector<Value *, SmallVector<Instruction *, 2>, 8>; struct AllocaInfo { AllocaInst *Alloca; DenseMap<Instruction *, std::optional<APInt>> Aliases; bool MayWriteBeforeCoroBegin; AllocaInfo(AllocaInst *Alloca, DenseMap<Instruction *, std::optional<APInt>> Aliases, bool MayWriteBeforeCoroBegin) : Alloca(Alloca), Aliases(std::move(Aliases)), MayWriteBeforeCoroBegin(MayWriteBeforeCoroBegin) {} }; struct FrameDataInfo { // All the values (that are not allocas) that needs to be spilled to the // frame. SpillInfo Spills; // Allocas contains all values defined as allocas that need to live in the // frame. SmallVector<AllocaInfo, 8> Allocas; SmallVector<Value *, 8> getAllDefs() const { SmallVector<Value *, 8> Defs; for (const auto &P : Spills) Defs.push_back(P.first); for (const auto &A : Allocas) Defs.push_back(A.Alloca); return Defs; } uint32_t getFieldIndex(Value *V) const { auto Itr = FieldIndexMap.find(V); assert(Itr != FieldIndexMap.end() && "Value does not have a frame field index"); return Itr->second; } void setFieldIndex(Value *V, uint32_t Index) { assert((LayoutIndexUpdateStarted || FieldIndexMap.count(V) == 0) && "Cannot set the index for the same field twice."); FieldIndexMap[V] = Index; } Align getAlign(Value *V) const { auto Iter = FieldAlignMap.find(V); assert(Iter != FieldAlignMap.end()); return Iter->second; } void setAlign(Value *V, Align AL) { assert(FieldAlignMap.count(V) == 0); FieldAlignMap.insert({V, AL}); } uint64_t getDynamicAlign(Value *V) const { auto Iter = FieldDynamicAlignMap.find(V); assert(Iter != FieldDynamicAlignMap.end()); return Iter->second; } void setDynamicAlign(Value *V, uint64_t Align) { assert(FieldDynamicAlignMap.count(V) == 0); FieldDynamicAlignMap.insert({V, Align}); } uint64_t getOffset(Value *V) const { auto Iter = FieldOffsetMap.find(V); assert(Iter != FieldOffsetMap.end()); return Iter->second; } void setOffset(Value *V, uint64_t Offset) { assert(FieldOffsetMap.count(V) == 0); FieldOffsetMap.insert({V, Offset}); } // Remap the index of every field in the frame, using the final layout index. void updateLayoutIndex(FrameTypeBuilder &B); private: // LayoutIndexUpdateStarted is used to avoid updating the index of any field // twice by mistake. bool LayoutIndexUpdateStarted = false; // Map from values to their slot indexes on the frame. They will be first set // with their original insertion field index. After the frame is built, their // indexes will be updated into the final layout index. DenseMap<Value *, uint32_t> FieldIndexMap; // Map from values to their alignment on the frame. They would be set after // the frame is built. DenseMap<Value *, Align> FieldAlignMap; DenseMap<Value *, uint64_t> FieldDynamicAlignMap; // Map from values to their offset on the frame. They would be set after // the frame is built. DenseMap<Value *, uint64_t> FieldOffsetMap; }; } // namespace #ifndef NDEBUG static void dumpSpills(StringRef Title, const SpillInfo &Spills) { dbgs() << "------------- " << Title << "--------------\n"; for (const auto &E : Spills) { E.first->dump(); dbgs() << " user: "; for (auto *I : E.second) I->dump(); } } static void dumpAllocas(const SmallVectorImpl<AllocaInfo> &Allocas) { dbgs() << "------------- Allocas --------------\n"; for (const auto &A : Allocas) { A.Alloca->dump(); } } #endif namespace { using FieldIDType = size_t; // We cannot rely solely on natural alignment of a type when building a // coroutine frame and if the alignment specified on the Alloca instruction // differs from the natural alignment of the alloca type we will need to insert // padding. class FrameTypeBuilder { private: struct Field { uint64_t Size; uint64_t Offset; Type *Ty; FieldIDType LayoutFieldIndex; Align Alignment; Align TyAlignment; uint64_t DynamicAlignBuffer; }; const DataLayout &DL; LLVMContext &Context; uint64_t StructSize = 0; Align StructAlign; bool IsFinished = false; std::optional<Align> MaxFrameAlignment; SmallVector<Field, 8> Fields; DenseMap<Value*, unsigned> FieldIndexByKey; public: FrameTypeBuilder(LLVMContext &Context, const DataLayout &DL, std::optional<Align> MaxFrameAlignment) : DL(DL), Context(Context), MaxFrameAlignment(MaxFrameAlignment) {} /// Add a field to this structure for the storage of an `alloca` /// instruction. [[nodiscard]] FieldIDType addFieldForAlloca(AllocaInst *AI, bool IsHeader = false) { Type *Ty = AI->getAllocatedType(); // Make an array type if this is a static array allocation. if (AI->isArrayAllocation()) { if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) Ty = ArrayType::get(Ty, CI->getValue().getZExtValue()); else report_fatal_error("Coroutines cannot handle non static allocas yet"); } return addField(Ty, AI->getAlign(), IsHeader); } /// We want to put the allocas whose lifetime-ranges are not overlapped /// into one slot of coroutine frame. /// Consider the example at:https://bugs.llvm.org/show_bug.cgi?id=45566 /// /// cppcoro::task<void> alternative_paths(bool cond) { /// if (cond) { /// big_structure a; /// process(a); /// co_await something(); /// } else { /// big_structure b; /// process2(b); /// co_await something(); /// } /// } /// /// We want to put variable a and variable b in the same slot to /// reduce the size of coroutine frame. /// /// This function use StackLifetime algorithm to partition the AllocaInsts in /// Spills to non-overlapped sets in order to put Alloca in the same /// non-overlapped set into the same slot in the Coroutine Frame. Then add /// field for the allocas in the same non-overlapped set by using the largest /// type as the field type. /// /// Side Effects: Because We sort the allocas, the order of allocas in the /// frame may be different with the order in the source code. void addFieldForAllocas(const Function &F, FrameDataInfo &FrameData, coro::Shape &Shape); /// Add a field to this structure. [[nodiscard]] FieldIDType addField(Type *Ty, MaybeAlign MaybeFieldAlignment, bool IsHeader = false, bool IsSpillOfValue = false) { assert(!IsFinished && "adding fields to a finished builder"); assert(Ty && "must provide a type for a field"); // The field size is always the alloc size of the type. uint64_t FieldSize = DL.getTypeAllocSize(Ty); // For an alloca with size=0, we don't need to add a field and they // can just point to any index in the frame. Use index 0. if (FieldSize == 0) { return 0; } // The field alignment might not be the type alignment, but we need // to remember the type alignment anyway to build the type. // If we are spilling values we don't need to worry about ABI alignment // concerns. Align ABIAlign = DL.getABITypeAlign(Ty); Align TyAlignment = ABIAlign; if (IsSpillOfValue && MaxFrameAlignment && *MaxFrameAlignment < ABIAlign) TyAlignment = *MaxFrameAlignment; Align FieldAlignment = MaybeFieldAlignment.value_or(TyAlignment); // The field alignment could be bigger than the max frame case, in that case // we request additional storage to be able to dynamically align the // pointer. uint64_t DynamicAlignBuffer = 0; if (MaxFrameAlignment && (FieldAlignment > *MaxFrameAlignment)) { DynamicAlignBuffer = offsetToAlignment(MaxFrameAlignment->value(), FieldAlignment); FieldAlignment = *MaxFrameAlignment; FieldSize = FieldSize + DynamicAlignBuffer; } // Lay out header fields immediately. uint64_t Offset; if (IsHeader) { Offset = alignTo(StructSize, FieldAlignment); StructSize = Offset + FieldSize; // Everything else has a flexible offset. } else { Offset = OptimizedStructLayoutField::FlexibleOffset; } Fields.push_back({FieldSize, Offset, Ty, 0, FieldAlignment, TyAlignment, DynamicAlignBuffer}); return Fields.size() - 1; } /// Finish the layout and set the body on the given type. void finish(StructType *Ty); uint64_t getStructSize() const { assert(IsFinished && "not yet finished!"); return StructSize; } Align getStructAlign() const { assert(IsFinished && "not yet finished!"); return StructAlign; } FieldIDType getLayoutFieldIndex(FieldIDType Id) const { assert(IsFinished && "not yet finished!"); return Fields[Id].LayoutFieldIndex; } Field getLayoutField(FieldIDType Id) const { assert(IsFinished && "not yet finished!"); return Fields[Id]; } }; } // namespace void FrameDataInfo::updateLayoutIndex(FrameTypeBuilder &B) { auto Updater = [&](Value *I) { auto Field = B.getLayoutField(getFieldIndex(I)); setFieldIndex(I, Field.LayoutFieldIndex); setAlign(I, Field.Alignment); uint64_t dynamicAlign = Field.DynamicAlignBuffer ? Field.DynamicAlignBuffer + Field.Alignment.value() : 0; setDynamicAlign(I, dynamicAlign); setOffset(I, Field.Offset); }; LayoutIndexUpdateStarted = true; for (auto &S : Spills) Updater(S.first); for (const auto &A : Allocas) Updater(A.Alloca); LayoutIndexUpdateStarted = false; } void FrameTypeBuilder::addFieldForAllocas(const Function &F, FrameDataInfo &FrameData, coro::Shape &Shape) { using AllocaSetType = SmallVector<AllocaInst *, 4>; SmallVector<AllocaSetType, 4> NonOverlapedAllocas; // We need to add field for allocas at the end of this function. auto AddFieldForAllocasAtExit = make_scope_exit([&]() { for (auto AllocaList : NonOverlapedAllocas) { auto *LargestAI = *AllocaList.begin(); FieldIDType Id = addFieldForAlloca(LargestAI); for (auto *Alloca : AllocaList) FrameData.setFieldIndex(Alloca, Id); } }); if (!Shape.OptimizeFrame) { for (const auto &A : FrameData.Allocas) { AllocaInst *Alloca = A.Alloca; NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca)); } return; } // Because there are pathes from the lifetime.start to coro.end // for each alloca, the liferanges for every alloca is overlaped // in the blocks who contain coro.end and the successor blocks. // So we choose to skip there blocks when we calculates the liferange // for each alloca. It should be reasonable since there shouldn't be uses // in these blocks and the coroutine frame shouldn't be used outside the // coroutine body. // // Note that the user of coro.suspend may not be SwitchInst. However, this // case seems too complex to handle. And it is harmless to skip these // patterns since it just prevend putting the allocas to live in the same // slot. DenseMap<SwitchInst *, BasicBlock *> DefaultSuspendDest; for (auto *CoroSuspendInst : Shape.CoroSuspends) { for (auto *U : CoroSuspendInst->users()) { if (auto *ConstSWI = dyn_cast<SwitchInst>(U)) { auto *SWI = const_cast<SwitchInst *>(ConstSWI); DefaultSuspendDest[SWI] = SWI->getDefaultDest(); SWI->setDefaultDest(SWI->getSuccessor(1)); } } } auto ExtractAllocas = [&]() { AllocaSetType Allocas; Allocas.reserve(FrameData.Allocas.size()); for (const auto &A : FrameData.Allocas) Allocas.push_back(A.Alloca); return Allocas; }; StackLifetime StackLifetimeAnalyzer(F, ExtractAllocas(), StackLifetime::LivenessType::May); StackLifetimeAnalyzer.run(); auto IsAllocaInferenre = [&](const AllocaInst *AI1, const AllocaInst *AI2) { return StackLifetimeAnalyzer.getLiveRange(AI1).overlaps( StackLifetimeAnalyzer.getLiveRange(AI2)); }; auto GetAllocaSize = [&](const AllocaInfo &A) { std::optional<TypeSize> RetSize = A.Alloca->getAllocationSize(DL); assert(RetSize && "Variable Length Arrays (VLA) are not supported.\n"); assert(!RetSize->isScalable() && "Scalable vectors are not yet supported"); return RetSize->getFixedValue(); }; // Put larger allocas in the front. So the larger allocas have higher // priority to merge, which can save more space potentially. Also each // AllocaSet would be ordered. So we can get the largest Alloca in one // AllocaSet easily. sort(FrameData.Allocas, [&](const auto &Iter1, const auto &Iter2) { return GetAllocaSize(Iter1) > GetAllocaSize(Iter2); }); for (const auto &A : FrameData.Allocas) { AllocaInst *Alloca = A.Alloca; bool Merged = false; // Try to find if the Alloca is not inferenced with any existing // NonOverlappedAllocaSet. If it is true, insert the alloca to that // NonOverlappedAllocaSet. for (auto &AllocaSet : NonOverlapedAllocas) { assert(!AllocaSet.empty() && "Processing Alloca Set is not empty.\n"); bool NoInference = none_of(AllocaSet, [&](auto Iter) { return IsAllocaInferenre(Alloca, Iter); }); // If the alignment of A is multiple of the alignment of B, the address // of A should satisfy the requirement for aligning for B. // // There may be other more fine-grained strategies to handle the alignment // infomation during the merging process. But it seems hard to handle // these strategies and benefit little. bool Alignable = [&]() -> bool { auto *LargestAlloca = *AllocaSet.begin(); return LargestAlloca->getAlign().value() % Alloca->getAlign().value() == 0; }(); bool CouldMerge = NoInference && Alignable; if (!CouldMerge) continue; AllocaSet.push_back(Alloca); Merged = true; break; } if (!Merged) { NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca)); } } // Recover the default target destination for each Switch statement // reserved. for (auto SwitchAndDefaultDest : DefaultSuspendDest) { SwitchInst *SWI = SwitchAndDefaultDest.first; BasicBlock *DestBB = SwitchAndDefaultDest.second; SWI->setDefaultDest(DestBB); } // This Debug Info could tell us which allocas are merged into one slot. LLVM_DEBUG(for (auto &AllocaSet : NonOverlapedAllocas) { if (AllocaSet.size() > 1) { dbgs() << "In Function:" << F.getName() << "\n"; dbgs() << "Find Union Set " << "\n"; dbgs() << "\tAllocas are \n"; for (auto Alloca : AllocaSet) dbgs() << "\t\t" << *Alloca << "\n"; } }); } void FrameTypeBuilder::finish(StructType *Ty) { assert(!IsFinished && "already finished!"); // Prepare the optimal-layout field array. // The Id in the layout field is a pointer to our Field for it. SmallVector<OptimizedStructLayoutField, 8> LayoutFields; LayoutFields.reserve(Fields.size()); for (auto &Field : Fields) { LayoutFields.emplace_back(&Field, Field.Size, Field.Alignment, Field.Offset); } // Perform layout. auto SizeAndAlign = performOptimizedStructLayout(LayoutFields); StructSize = SizeAndAlign.first; StructAlign = SizeAndAlign.second; auto getField = [](const OptimizedStructLayoutField &LayoutField) -> Field & { return *static_cast<Field *>(const_cast<void*>(LayoutField.Id)); }; // We need to produce a packed struct type if there's a field whose // assigned offset isn't a multiple of its natural type alignment. bool Packed = [&] { for (auto &LayoutField : LayoutFields) { auto &F = getField(LayoutField); if (!isAligned(F.TyAlignment, LayoutField.Offset)) return true; } return false; }(); // Build the struct body. SmallVector<Type*, 16> FieldTypes; FieldTypes.reserve(LayoutFields.size() * 3 / 2); uint64_t LastOffset = 0; for (auto &LayoutField : LayoutFields) { auto &F = getField(LayoutField); auto Offset = LayoutField.Offset; // Add a padding field if there's a padding gap and we're either // building a packed struct or the padding gap is more than we'd // get from aligning to the field type's natural alignment. assert(Offset >= LastOffset); if (Offset != LastOffset) { if (Packed || alignTo(LastOffset, F.TyAlignment) != Offset) FieldTypes.push_back(ArrayType::get(Type::getInt8Ty(Context), Offset - LastOffset)); } F.Offset = Offset; F.LayoutFieldIndex = FieldTypes.size(); FieldTypes.push_back(F.Ty); if (F.DynamicAlignBuffer) { FieldTypes.push_back( ArrayType::get(Type::getInt8Ty(Context), F.DynamicAlignBuffer)); } LastOffset = Offset + F.Size; } Ty->setBody(FieldTypes, Packed); #ifndef NDEBUG // Check that the IR layout matches the offsets we expect. auto Layout = DL.getStructLayout(Ty); for (auto &F : Fields) { assert(Ty->getElementType(F.LayoutFieldIndex) == F.Ty); assert(Layout->getElementOffset(F.LayoutFieldIndex) == F.Offset); } #endif IsFinished = true; } static void cacheDIVar(FrameDataInfo &FrameData, DenseMap<Value *, DILocalVariable *> &DIVarCache) { for (auto *V : FrameData.getAllDefs()) { if (DIVarCache.find(V) != DIVarCache.end()) continue; auto DDIs = FindDbgDeclareUses(V); auto *I = llvm::find_if(DDIs, [](DbgDeclareInst *DDI) { return DDI->getExpression()->getNumElements() == 0; }); if (I != DDIs.end()) DIVarCache.insert({V, (*I)->getVariable()}); } } /// Create name for Type. It uses MDString to store new created string to /// avoid memory leak. static StringRef solveTypeName(Type *Ty) { if (Ty->isIntegerTy()) { // The longest name in common may be '__int_128', which has 9 bits. SmallString<16> Buffer; raw_svector_ostream OS(Buffer); OS << "__int_" << cast<IntegerType>(Ty)->getBitWidth(); auto *MDName = MDString::get(Ty->getContext(), OS.str()); return MDName->getString(); } if (Ty->isFloatingPointTy()) { if (Ty->isFloatTy()) return "__float_"; if (Ty->isDoubleTy()) return "__double_"; return "__floating_type_"; } if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { if (PtrTy->isOpaque()) return "PointerType"; Type *PointeeTy = PtrTy->getNonOpaquePointerElementType(); auto Name = solveTypeName(PointeeTy); if (Name == "UnknownType") return "PointerType"; SmallString<16> Buffer; Twine(Name + "_Ptr").toStringRef(Buffer); auto *MDName = MDString::get(Ty->getContext(), Buffer.str()); return MDName->getString(); } if (Ty->isStructTy()) { if (!cast<StructType>(Ty)->hasName()) return "__LiteralStructType_"; auto Name = Ty->getStructName(); SmallString<16> Buffer(Name); for (auto &Iter : Buffer) if (Iter == '.' || Iter == ':') Iter = '_'; auto *MDName = MDString::get(Ty->getContext(), Buffer.str()); return MDName->getString(); } return "UnknownType"; } static DIType *solveDIType(DIBuilder &Builder, Type *Ty, const DataLayout &Layout, DIScope *Scope, unsigned LineNum, DenseMap<Type *, DIType *> &DITypeCache) { if (DIType *DT = DITypeCache.lookup(Ty)) return DT; StringRef Name = solveTypeName(Ty); DIType *RetType = nullptr; if (Ty->isIntegerTy()) { auto BitWidth = cast<IntegerType>(Ty)->getBitWidth(); RetType = Builder.createBasicType(Name, BitWidth, dwarf::DW_ATE_signed, llvm::DINode::FlagArtificial); } else if (Ty->isFloatingPointTy()) { RetType = Builder.createBasicType(Name, Layout.getTypeSizeInBits(Ty), dwarf::DW_ATE_float, llvm::DINode::FlagArtificial); } else if (Ty->isPointerTy()) { // Construct PointerType points to null (aka void *) instead of exploring // pointee type to avoid infinite search problem. For example, we would be // in trouble if we traverse recursively: // // struct Node { // Node* ptr; // }; RetType = Builder.createPointerType(nullptr, Layout.getTypeSizeInBits(Ty), Layout.getABITypeAlign(Ty).value() * CHAR_BIT, /*DWARFAddressSpace=*/std::nullopt, Name); } else if (Ty->isStructTy()) { auto *DIStruct = Builder.createStructType( Scope, Name, Scope->getFile(), LineNum, Layout.getTypeSizeInBits(Ty), Layout.getPrefTypeAlign(Ty).value() * CHAR_BIT, llvm::DINode::FlagArtificial, nullptr, llvm::DINodeArray()); auto *StructTy = cast<StructType>(Ty); SmallVector<Metadata *, 16> Elements; for (unsigned I = 0; I < StructTy->getNumElements(); I++) { DIType *DITy = solveDIType(Builder, StructTy->getElementType(I), Layout, Scope, LineNum, DITypeCache); assert(DITy); Elements.push_back(Builder.createMemberType( Scope, DITy->getName(), Scope->getFile(), LineNum, DITy->getSizeInBits(), DITy->getAlignInBits(), Layout.getStructLayout(StructTy)->getElementOffsetInBits(I), llvm::DINode::FlagArtificial, DITy)); } Builder.replaceArrays(DIStruct, Builder.getOrCreateArray(Elements)); RetType = DIStruct; } else { LLVM_DEBUG(dbgs() << "Unresolved Type: " << *Ty << "\n"); TypeSize Size = Layout.getTypeSizeInBits(Ty); auto *CharSizeType = Builder.createBasicType( Name, 8, dwarf::DW_ATE_unsigned_char, llvm::DINode::FlagArtificial); if (Size <= 8) RetType = CharSizeType; else { if (Size % 8 != 0) Size = TypeSize::Fixed(Size + 8 - (Size % 8)); RetType = Builder.createArrayType( Size, Layout.getPrefTypeAlign(Ty).value(), CharSizeType, Builder.getOrCreateArray(Builder.getOrCreateSubrange(0, Size / 8))); } } DITypeCache.insert({Ty, RetType}); return RetType; } /// Build artificial debug info for C++ coroutine frames to allow users to /// inspect the contents of the frame directly /// /// Create Debug information for coroutine frame with debug name "__coro_frame". /// The debug information for the fields of coroutine frame is constructed from /// the following way: /// 1. For all the value in the Frame, we search the use of dbg.declare to find /// the corresponding debug variables for the value. If we can find the /// debug variable, we can get full and accurate debug information. /// 2. If we can't get debug information in step 1 and 2, we could only try to /// build the DIType by Type. We did this in solveDIType. We only handle /// integer, float, double, integer type and struct type for now. static void buildFrameDebugInfo(Function &F, coro::Shape &Shape, FrameDataInfo &FrameData) { DISubprogram *DIS = F.getSubprogram(); // If there is no DISubprogram for F, it implies the Function are not compiled // with debug info. So we also don't need to generate debug info for the frame // neither. if (!DIS || !DIS->getUnit() || !dwarf::isCPlusPlus( (dwarf::SourceLanguage)DIS->getUnit()->getSourceLanguage())) return; assert(Shape.ABI == coro::ABI::Switch && "We could only build debug infomation for C++ coroutine now.\n"); DIBuilder DBuilder(*F.getParent(), /*AllowUnresolved*/ false); AllocaInst *PromiseAlloca = Shape.getPromiseAlloca(); assert(PromiseAlloca && "Coroutine with switch ABI should own Promise alloca"); TinyPtrVector<DbgDeclareInst *> DIs = FindDbgDeclareUses(PromiseAlloca); if (DIs.empty()) return; DbgDeclareInst *PromiseDDI = DIs.front(); DILocalVariable *PromiseDIVariable = PromiseDDI->getVariable(); DILocalScope *PromiseDIScope = PromiseDIVariable->getScope(); DIFile *DFile = PromiseDIScope->getFile(); DILocation *DILoc = PromiseDDI->getDebugLoc().get(); unsigned LineNum = PromiseDIVariable->getLine(); DICompositeType *FrameDITy = DBuilder.createStructType( DIS->getUnit(), Twine(F.getName() + ".coro_frame_ty").str(), DFile, LineNum, Shape.FrameSize * 8, Shape.FrameAlign.value() * 8, llvm::DINode::FlagArtificial, nullptr, llvm::DINodeArray()); StructType *FrameTy = Shape.FrameTy; SmallVector<Metadata *, 16> Elements; DataLayout Layout = F.getParent()->getDataLayout(); DenseMap<Value *, DILocalVariable *> DIVarCache; cacheDIVar(FrameData, DIVarCache); unsigned ResumeIndex = coro::Shape::SwitchFieldIndex::Resume; unsigned DestroyIndex = coro::Shape::SwitchFieldIndex::Destroy; unsigned IndexIndex = Shape.SwitchLowering.IndexField; DenseMap<unsigned, StringRef> NameCache; NameCache.insert({ResumeIndex, "__resume_fn"}); NameCache.insert({DestroyIndex, "__destroy_fn"}); NameCache.insert({IndexIndex, "__coro_index"}); Type *ResumeFnTy = FrameTy->getElementType(ResumeIndex), *DestroyFnTy = FrameTy->getElementType(DestroyIndex), *IndexTy = FrameTy->getElementType(IndexIndex); DenseMap<unsigned, DIType *> TyCache; TyCache.insert( {ResumeIndex, DBuilder.createPointerType( nullptr, Layout.getTypeSizeInBits(ResumeFnTy))}); TyCache.insert( {DestroyIndex, DBuilder.createPointerType( nullptr, Layout.getTypeSizeInBits(DestroyFnTy))}); /// FIXME: If we fill the field `SizeInBits` with the actual size of /// __coro_index in bits, then __coro_index wouldn't show in the debugger. TyCache.insert({IndexIndex, DBuilder.createBasicType( "__coro_index", (Layout.getTypeSizeInBits(IndexTy) < 8) ? 8 : Layout.getTypeSizeInBits(IndexTy), dwarf::DW_ATE_unsigned_char)}); for (auto *V : FrameData.getAllDefs()) { if (DIVarCache.find(V) == DIVarCache.end()) continue; auto Index = FrameData.getFieldIndex(V); NameCache.insert({Index, DIVarCache[V]->getName()}); TyCache.insert({Index, DIVarCache[V]->getType()}); } // Cache from index to (Align, Offset Pair) DenseMap<unsigned, std::pair<unsigned, unsigned>> OffsetCache; // The Align and Offset of Resume function and Destroy function are fixed. OffsetCache.insert({ResumeIndex, {8, 0}}); OffsetCache.insert({DestroyIndex, {8, 8}}); OffsetCache.insert( {IndexIndex, {Shape.SwitchLowering.IndexAlign, Shape.SwitchLowering.IndexOffset}}); for (auto *V : FrameData.getAllDefs()) { auto Index = FrameData.getFieldIndex(V); OffsetCache.insert( {Index, {FrameData.getAlign(V).value(), FrameData.getOffset(V)}}); } DenseMap<Type *, DIType *> DITypeCache; // This counter is used to avoid same type names. e.g., there would be // many i32 and i64 types in one coroutine. And we would use i32_0 and // i32_1 to avoid the same type. Since it makes no sense the name of the // fields confilicts with each other. unsigned UnknownTypeNum = 0; for (unsigned Index = 0; Index < FrameTy->getNumElements(); Index++) { if (OffsetCache.find(Index) == OffsetCache.end()) continue; std::string Name; uint64_t SizeInBits; uint32_t AlignInBits; uint64_t OffsetInBits; DIType *DITy = nullptr; Type *Ty = FrameTy->getElementType(Index); assert(Ty->isSized() && "We can't handle type which is not sized.\n"); SizeInBits = Layout.getTypeSizeInBits(Ty).getFixedValue(); AlignInBits = OffsetCache[Index].first * 8; OffsetInBits = OffsetCache[Index].second * 8; if (NameCache.find(Index) != NameCache.end()) { Name = NameCache[Index].str(); DITy = TyCache[Index]; } else { DITy = solveDIType(DBuilder, Ty, Layout, FrameDITy, LineNum, DITypeCache); assert(DITy && "SolveDIType shouldn't return nullptr.\n"); Name = DITy->getName().str(); Name += "_" + std::to_string(UnknownTypeNum); UnknownTypeNum++; } Elements.push_back(DBuilder.createMemberType( FrameDITy, Name, DFile, LineNum, SizeInBits, AlignInBits, OffsetInBits, llvm::DINode::FlagArtificial, DITy)); } DBuilder.replaceArrays(FrameDITy, DBuilder.getOrCreateArray(Elements)); auto *FrameDIVar = DBuilder.createAutoVariable(PromiseDIScope, "__coro_frame", DFile, LineNum, FrameDITy, true, DINode::FlagArtificial); assert(FrameDIVar->isValidLocationForIntrinsic(PromiseDDI->getDebugLoc())); // Subprogram would have ContainedNodes field which records the debug // variables it contained. So we need to add __coro_frame to the // ContainedNodes of it. // // If we don't add __coro_frame to the RetainedNodes, user may get // `no symbol __coro_frame in context` rather than `__coro_frame` // is optimized out, which is more precise. if (auto *SubProgram = dyn_cast<DISubprogram>(PromiseDIScope)) { auto RetainedNodes = SubProgram->getRetainedNodes(); SmallVector<Metadata *, 32> RetainedNodesVec(RetainedNodes.begin(), RetainedNodes.end()); RetainedNodesVec.push_back(FrameDIVar); SubProgram->replaceOperandWith( 7, (MDTuple::get(F.getContext(), RetainedNodesVec))); } DBuilder.insertDeclare(Shape.FramePtr, FrameDIVar, DBuilder.createExpression(), DILoc, Shape.getInsertPtAfterFramePtr()); } // Build a struct that will keep state for an active coroutine. // struct f.frame { // ResumeFnTy ResumeFnAddr; // ResumeFnTy DestroyFnAddr; // int ResumeIndex; // ... promise (if present) ... // ... spills ... // }; static StructType *buildFrameType(Function &F, coro::Shape &Shape, FrameDataInfo &FrameData) { LLVMContext &C = F.getContext(); const DataLayout &DL = F.getParent()->getDataLayout(); StructType *FrameTy = [&] { SmallString<32> Name(F.getName()); Name.append(".Frame"); return StructType::create(C, Name); }(); // We will use this value to cap the alignment of spilled values. std::optional<Align> MaxFrameAlignment; if (Shape.ABI == coro::ABI::Async) MaxFrameAlignment = Shape.AsyncLowering.getContextAlignment(); FrameTypeBuilder B(C, DL, MaxFrameAlignment); AllocaInst *PromiseAlloca = Shape.getPromiseAlloca(); std::optional<FieldIDType> SwitchIndexFieldId; if (Shape.ABI == coro::ABI::Switch) { auto *FramePtrTy = FrameTy->getPointerTo(); auto *FnTy = FunctionType::get(Type::getVoidTy(C), FramePtrTy, /*IsVarArg=*/false); auto *FnPtrTy = FnTy->getPointerTo(); // Add header fields for the resume and destroy functions. // We can rely on these being perfectly packed. (void)B.addField(FnPtrTy, std::nullopt, /*header*/ true); (void)B.addField(FnPtrTy, std::nullopt, /*header*/ true); // PromiseAlloca field needs to be explicitly added here because it's // a header field with a fixed offset based on its alignment. Hence it // needs special handling and cannot be added to FrameData.Allocas. if (PromiseAlloca) FrameData.setFieldIndex( PromiseAlloca, B.addFieldForAlloca(PromiseAlloca, /*header*/ true)); // Add a field to store the suspend index. This doesn't need to // be in the header. unsigned IndexBits = std::max(1U, Log2_64_Ceil(Shape.CoroSuspends.size())); Type *IndexType = Type::getIntNTy(C, IndexBits); SwitchIndexFieldId = B.addField(IndexType, std::nullopt); } else { assert(PromiseAlloca == nullptr && "lowering doesn't support promises"); } // Because multiple allocas may own the same field slot, // we add allocas to field here. B.addFieldForAllocas(F, FrameData, Shape); // Add PromiseAlloca to Allocas list so that // 1. updateLayoutIndex could update its index after // `performOptimizedStructLayout` // 2. it is processed in insertSpills. if (Shape.ABI == coro::ABI::Switch && PromiseAlloca) // We assume that the promise alloca won't be modified before // CoroBegin and no alias will be create before CoroBegin. FrameData.Allocas.emplace_back( PromiseAlloca, DenseMap<Instruction *, std::optional<APInt>>{}, false); // Create an entry for every spilled value. for (auto &S : FrameData.Spills) { Type *FieldType = S.first->getType(); // For byval arguments, we need to store the pointed value in the frame, // instead of the pointer itself. if (const Argument *A = dyn_cast<Argument>(S.first)) if (A->hasByValAttr()) FieldType = A->getParamByValType(); FieldIDType Id = B.addField(FieldType, std::nullopt, false /*header*/, true /*IsSpillOfValue*/); FrameData.setFieldIndex(S.first, Id); } B.finish(FrameTy); FrameData.updateLayoutIndex(B); Shape.FrameAlign = B.getStructAlign(); Shape.FrameSize = B.getStructSize(); switch (Shape.ABI) { case coro::ABI::Switch: { // In the switch ABI, remember the switch-index field. auto IndexField = B.getLayoutField(*SwitchIndexFieldId); Shape.SwitchLowering.IndexField = IndexField.LayoutFieldIndex; Shape.SwitchLowering.IndexAlign = IndexField.Alignment.value(); Shape.SwitchLowering.IndexOffset = IndexField.Offset; // Also round the frame size up to a multiple of its alignment, as is // generally expected in C/C++. Shape.FrameSize = alignTo(Shape.FrameSize, Shape.FrameAlign); break; } // In the retcon ABI, remember whether the frame is inline in the storage. case coro::ABI::Retcon: case coro::ABI::RetconOnce: { auto Id = Shape.getRetconCoroId(); Shape.RetconLowering.IsFrameInlineInStorage = (B.getStructSize() <= Id->getStorageSize() && B.getStructAlign() <= Id->getStorageAlignment()); break; } case coro::ABI::Async: { Shape.AsyncLowering.FrameOffset = alignTo(Shape.AsyncLowering.ContextHeaderSize, Shape.FrameAlign); // Also make the final context size a multiple of the context alignment to // make allocation easier for allocators. Shape.AsyncLowering.ContextSize = alignTo(Shape.AsyncLowering.FrameOffset + Shape.FrameSize, Shape.AsyncLowering.getContextAlignment()); if (Shape.AsyncLowering.getContextAlignment() < Shape.FrameAlign) { report_fatal_error( "The alignment requirment of frame variables cannot be higher than " "the alignment of the async function context"); } break; } } return FrameTy; } // We use a pointer use visitor to track how an alloca is being used. // The goal is to be able to answer the following three questions: // 1. Should this alloca be allocated on the frame instead. // 2. Could the content of the alloca be modified prior to CoroBegn, which would // require copying the data from alloca to the frame after CoroBegin. // 3. Is there any alias created for this alloca prior to CoroBegin, but used // after CoroBegin. In that case, we will need to recreate the alias after // CoroBegin based off the frame. To answer question 1, we track two things: // a. List of all BasicBlocks that use this alloca or any of the aliases of // the alloca. In the end, we check if there exists any two basic blocks that // cross suspension points. If so, this alloca must be put on the frame. b. // Whether the alloca or any alias of the alloca is escaped at some point, // either by storing the address somewhere, or the address is used in a // function call that might capture. If it's ever escaped, this alloca must be // put on the frame conservatively. // To answer quetion 2, we track through the variable MayWriteBeforeCoroBegin. // Whenever a potential write happens, either through a store instruction, a // function call or any of the memory intrinsics, we check whether this // instruction is prior to CoroBegin. To answer question 3, we track the offsets // of all aliases created for the alloca prior to CoroBegin but used after // CoroBegin. llvm::Optional is used to be able to represent the case when the // offset is unknown (e.g. when you have a PHINode that takes in different // offset values). We cannot handle unknown offsets and will assert. This is the // potential issue left out. An ideal solution would likely require a // significant redesign. namespace { struct AllocaUseVisitor : PtrUseVisitor<AllocaUseVisitor> { using Base = PtrUseVisitor<AllocaUseVisitor>; AllocaUseVisitor(const DataLayout &DL, const DominatorTree &DT, const CoroBeginInst &CB, const SuspendCrossingInfo &Checker, bool ShouldUseLifetimeStartInfo) : PtrUseVisitor(DL), DT(DT), CoroBegin(CB), Checker(Checker), ShouldUseLifetimeStartInfo(ShouldUseLifetimeStartInfo) {} void visit(Instruction &I) { Users.insert(&I); Base::visit(I); // If the pointer is escaped prior to CoroBegin, we have to assume it would // be written into before CoroBegin as well. if (PI.isEscaped() && !DT.dominates(&CoroBegin, PI.getEscapingInst())) { MayWriteBeforeCoroBegin = true; } } // We need to provide this overload as PtrUseVisitor uses a pointer based // visiting function. void visit(Instruction *I) { return visit(*I); } void visitPHINode(PHINode &I) { enqueueUsers(I); handleAlias(I); } void visitSelectInst(SelectInst &I) { enqueueUsers(I); handleAlias(I); } void visitStoreInst(StoreInst &SI) { // Regardless whether the alias of the alloca is the value operand or the // pointer operand, we need to assume the alloca is been written. handleMayWrite(SI); if (SI.getValueOperand() != U->get()) return; // We are storing the pointer into a memory location, potentially escaping. // As an optimization, we try to detect simple cases where it doesn't // actually escape, for example: // %ptr = alloca .. // %addr = alloca .. // store %ptr, %addr // %x = load %addr // .. // If %addr is only used by loading from it, we could simply treat %x as // another alias of %ptr, and not considering %ptr being escaped. auto IsSimpleStoreThenLoad = [&]() { auto *AI = dyn_cast<AllocaInst>(SI.getPointerOperand()); // If the memory location we are storing to is not an alloca, it // could be an alias of some other memory locations, which is difficult // to analyze. if (!AI) return false; // StoreAliases contains aliases of the memory location stored into. SmallVector<Instruction *, 4> StoreAliases = {AI}; while (!StoreAliases.empty()) { Instruction *I = StoreAliases.pop_back_val(); for (User *U : I->users()) { // If we are loading from the memory location, we are creating an // alias of the original pointer. if (auto *LI = dyn_cast<LoadInst>(U)) { enqueueUsers(*LI); handleAlias(*LI); continue; } // If we are overriding the memory location, the pointer certainly // won't escape. if (auto *S = dyn_cast<StoreInst>(U)) if (S->getPointerOperand() == I) continue; if (auto *II = dyn_cast<IntrinsicInst>(U)) if (II->isLifetimeStartOrEnd()) continue; // BitCastInst creats aliases of the memory location being stored // into. if (auto *BI = dyn_cast<BitCastInst>(U)) { StoreAliases.push_back(BI); continue; } return false; } } return true; }; if (!IsSimpleStoreThenLoad()) PI.setEscaped(&SI); } // All mem intrinsics modify the data. void visitMemIntrinsic(MemIntrinsic &MI) { handleMayWrite(MI); } void visitBitCastInst(BitCastInst &BC) { Base::visitBitCastInst(BC); handleAlias(BC); } void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { Base::visitAddrSpaceCastInst(ASC); handleAlias(ASC); } void visitGetElementPtrInst(GetElementPtrInst &GEPI) { // The base visitor will adjust Offset accordingly. Base::visitGetElementPtrInst(GEPI); handleAlias(GEPI); } void visitIntrinsicInst(IntrinsicInst &II) { // When we found the lifetime markers refers to a // subrange of the original alloca, ignore the lifetime // markers to avoid misleading the analysis. if (II.getIntrinsicID() != Intrinsic::lifetime_start || !IsOffsetKnown || !Offset.isZero()) return Base::visitIntrinsicInst(II); LifetimeStarts.insert(&II); } void visitCallBase(CallBase &CB) { for (unsigned Op = 0, OpCount = CB.arg_size(); Op < OpCount; ++Op) if (U->get() == CB.getArgOperand(Op) && !CB.doesNotCapture(Op)) PI.setEscaped(&CB); handleMayWrite(CB); } bool getShouldLiveOnFrame() const { if (!ShouldLiveOnFrame) ShouldLiveOnFrame = computeShouldLiveOnFrame(); return *ShouldLiveOnFrame; } bool getMayWriteBeforeCoroBegin() const { return MayWriteBeforeCoroBegin; } DenseMap<Instruction *, std::optional<APInt>> getAliasesCopy() const { assert(getShouldLiveOnFrame() && "This method should only be called if the " "alloca needs to live on the frame."); for (const auto &P : AliasOffetMap) if (!P.second) report_fatal_error("Unable to handle an alias with unknown offset " "created before CoroBegin."); return AliasOffetMap; } private: const DominatorTree &DT; const CoroBeginInst &CoroBegin; const SuspendCrossingInfo &Checker; // All alias to the original AllocaInst, created before CoroBegin and used // after CoroBegin. Each entry contains the instruction and the offset in the // original Alloca. They need to be recreated after CoroBegin off the frame. DenseMap<Instruction *, std::optional<APInt>> AliasOffetMap{}; SmallPtrSet<Instruction *, 4> Users{}; SmallPtrSet<IntrinsicInst *, 2> LifetimeStarts{}; bool MayWriteBeforeCoroBegin{false}; bool ShouldUseLifetimeStartInfo{true}; mutable std::optional<bool> ShouldLiveOnFrame{}; bool computeShouldLiveOnFrame() const { // If lifetime information is available, we check it first since it's // more precise. We look at every pair of lifetime.start intrinsic and // every basic block that uses the pointer to see if they cross suspension // points. The uses cover both direct uses as well as indirect uses. if (ShouldUseLifetimeStartInfo && !LifetimeStarts.empty()) { for (auto *I : Users) for (auto *S : LifetimeStarts) if (Checker.isDefinitionAcrossSuspend(*S, I)) return true; // Addresses are guaranteed to be identical after every lifetime.start so // we cannot use the local stack if the address escaped and there is a // suspend point between lifetime markers. This should also cover the // case of a single lifetime.start intrinsic in a loop with suspend point. if (PI.isEscaped()) { for (auto *A : LifetimeStarts) { for (auto *B : LifetimeStarts) { if (Checker.hasPathOrLoopCrossingSuspendPoint(A->getParent(), B->getParent())) return true; } } } return false; } // FIXME: Ideally the isEscaped check should come at the beginning. // However there are a few loose ends that need to be fixed first before // we can do that. We need to make sure we are not over-conservative, so // that the data accessed in-between await_suspend and symmetric transfer // is always put on the stack, and also data accessed after coro.end is // always put on the stack (esp the return object). To fix that, we need // to: // 1) Potentially treat sret as nocapture in calls // 2) Special handle the return object and put it on the stack // 3) Utilize lifetime.end intrinsic if (PI.isEscaped()) return true; for (auto *U1 : Users) for (auto *U2 : Users) if (Checker.isDefinitionAcrossSuspend(*U1, U2)) return true; return false; } void handleMayWrite(const Instruction &I) { if (!DT.dominates(&CoroBegin, &I)) MayWriteBeforeCoroBegin = true; } bool usedAfterCoroBegin(Instruction &I) { for (auto &U : I.uses()) if (DT.dominates(&CoroBegin, U)) return true; return false; } void handleAlias(Instruction &I) { // We track all aliases created prior to CoroBegin but used after. // These aliases may need to be recreated after CoroBegin if the alloca // need to live on the frame. if (DT.dominates(&CoroBegin, &I) || !usedAfterCoroBegin(I)) return; if (!IsOffsetKnown) { AliasOffetMap[&I].reset(); } else { auto Itr = AliasOffetMap.find(&I); if (Itr == AliasOffetMap.end()) { AliasOffetMap[&I] = Offset; } else if (Itr->second && *Itr->second != Offset) { // If we have seen two different possible values for this alias, we set // it to empty. AliasOffetMap[&I].reset(); } } } }; } // namespace // We need to make room to insert a spill after initial PHIs, but before // catchswitch instruction. Placing it before violates the requirement that // catchswitch, like all other EHPads must be the first nonPHI in a block. // // Split away catchswitch into a separate block and insert in its place: // // cleanuppad <InsertPt> cleanupret. // // cleanupret instruction will act as an insert point for the spill. static Instruction *splitBeforeCatchSwitch(CatchSwitchInst *CatchSwitch) { BasicBlock *CurrentBlock = CatchSwitch->getParent(); BasicBlock *NewBlock = CurrentBlock->splitBasicBlock(CatchSwitch); CurrentBlock->getTerminator()->eraseFromParent(); auto *CleanupPad = CleanupPadInst::Create(CatchSwitch->getParentPad(), {}, "", CurrentBlock); auto *CleanupRet = CleanupReturnInst::Create(CleanupPad, NewBlock, CurrentBlock); return CleanupRet; } static void createFramePtr(coro::Shape &Shape) { auto *CB = Shape.CoroBegin; IRBuilder<> Builder(CB->getNextNode()); StructType *FrameTy = Shape.FrameTy; PointerType *FramePtrTy = FrameTy->getPointerTo(); Shape.FramePtr = cast<Instruction>(Builder.CreateBitCast(CB, FramePtrTy, "FramePtr")); } // Replace all alloca and SSA values that are accessed across suspend points // with GetElementPointer from coroutine frame + loads and stores. Create an // AllocaSpillBB that will become the new entry block for the resume parts of // the coroutine: // // %hdl = coro.begin(...) // whatever // // becomes: // // %hdl = coro.begin(...) // %FramePtr = bitcast i8* hdl to %f.frame* // br label %AllocaSpillBB // // AllocaSpillBB: // ; geps corresponding to allocas that were moved to coroutine frame // br label PostSpill // // PostSpill: // whatever // // static void insertSpills(const FrameDataInfo &FrameData, coro::Shape &Shape) { auto *CB = Shape.CoroBegin; LLVMContext &C = CB->getContext(); IRBuilder<> Builder(C); StructType *FrameTy = Shape.FrameTy; Value *FramePtr = Shape.FramePtr; DominatorTree DT(*CB->getFunction()); SmallDenseMap<llvm::Value *, llvm::AllocaInst *, 4> DbgPtrAllocaCache; // Create a GEP with the given index into the coroutine frame for the original // value Orig. Appends an extra 0 index for array-allocas, preserving the // original type. auto GetFramePointer = [&](Value *Orig) -> Value * { FieldIDType Index = FrameData.getFieldIndex(Orig); SmallVector<Value *, 3> Indices = { ConstantInt::get(Type::getInt32Ty(C), 0), ConstantInt::get(Type::getInt32Ty(C), Index), }; if (auto *AI = dyn_cast<AllocaInst>(Orig)) { if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { auto Count = CI->getValue().getZExtValue(); if (Count > 1) { Indices.push_back(ConstantInt::get(Type::getInt32Ty(C), 0)); } } else { report_fatal_error("Coroutines cannot handle non static allocas yet"); } } auto GEP = cast<GetElementPtrInst>( Builder.CreateInBoundsGEP(FrameTy, FramePtr, Indices)); if (auto *AI = dyn_cast<AllocaInst>(Orig)) { if (FrameData.getDynamicAlign(Orig) != 0) { assert(FrameData.getDynamicAlign(Orig) == AI->getAlign().value()); auto *M = AI->getModule(); auto *IntPtrTy = M->getDataLayout().getIntPtrType(AI->getType()); auto *PtrValue = Builder.CreatePtrToInt(GEP, IntPtrTy); auto *AlignMask = ConstantInt::get(IntPtrTy, AI->getAlign().value() - 1); PtrValue = Builder.CreateAdd(PtrValue, AlignMask); PtrValue = Builder.CreateAnd(PtrValue, Builder.CreateNot(AlignMask)); return Builder.CreateIntToPtr(PtrValue, AI->getType()); } // If the type of GEP is not equal to the type of AllocaInst, it implies // that the AllocaInst may be reused in the Frame slot of other // AllocaInst. So We cast GEP to the AllocaInst here to re-use // the Frame storage. // // Note: If we change the strategy dealing with alignment, we need to refine // this casting. if (GEP->getType() != Orig->getType()) return Builder.CreateBitCast(GEP, Orig->getType(), Orig->getName() + Twine(".cast")); } return GEP; }; for (auto const &E : FrameData.Spills) { Value *Def = E.first; auto SpillAlignment = Align(FrameData.getAlign(Def)); // Create a store instruction storing the value into the // coroutine frame. Instruction *InsertPt = nullptr; Type *ByValTy = nullptr; if (auto *Arg = dyn_cast<Argument>(Def)) { // For arguments, we will place the store instruction right after // the coroutine frame pointer instruction, i.e. bitcast of // coro.begin from i8* to %f.frame*. InsertPt = Shape.getInsertPtAfterFramePtr(); // If we're spilling an Argument, make sure we clear 'nocapture' // from the coroutine function. Arg->getParent()->removeParamAttr(Arg->getArgNo(), Attribute::NoCapture); if (Arg->hasByValAttr()) ByValTy = Arg->getParamByValType(); } else if (auto *CSI = dyn_cast<AnyCoroSuspendInst>(Def)) { // Don't spill immediately after a suspend; splitting assumes // that the suspend will be followed by a branch. InsertPt = CSI->getParent()->getSingleSuccessor()->getFirstNonPHI(); } else { auto *I = cast<Instruction>(Def); if (!DT.dominates(CB, I)) { // If it is not dominated by CoroBegin, then spill should be // inserted immediately after CoroFrame is computed. InsertPt = Shape.getInsertPtAfterFramePtr(); } else if (auto *II = dyn_cast<InvokeInst>(I)) { // If we are spilling the result of the invoke instruction, split // the normal edge and insert the spill in the new block. auto *NewBB = SplitEdge(II->getParent(), II->getNormalDest()); InsertPt = NewBB->getTerminator(); } else if (isa<PHINode>(I)) { // Skip the PHINodes and EH pads instructions. BasicBlock *DefBlock = I->getParent(); if (auto *CSI = dyn_cast<CatchSwitchInst>(DefBlock->getTerminator())) InsertPt = splitBeforeCatchSwitch(CSI); else InsertPt = &*DefBlock->getFirstInsertionPt(); } else { assert(!I->isTerminator() && "unexpected terminator"); // For all other values, the spill is placed immediately after // the definition. InsertPt = I->getNextNode(); } } auto Index = FrameData.getFieldIndex(Def); Builder.SetInsertPoint(InsertPt); auto *G = Builder.CreateConstInBoundsGEP2_32( FrameTy, FramePtr, 0, Index, Def->getName() + Twine(".spill.addr")); if (ByValTy) { // For byval arguments, we need to store the pointed value in the frame, // instead of the pointer itself. auto *Value = Builder.CreateLoad(ByValTy, Def); Builder.CreateAlignedStore(Value, G, SpillAlignment); } else { Builder.CreateAlignedStore(Def, G, SpillAlignment); } BasicBlock *CurrentBlock = nullptr; Value *CurrentReload = nullptr; for (auto *U : E.second) { // If we have not seen the use block, create a load instruction to reload // the spilled value from the coroutine frame. Populates the Value pointer // reference provided with the frame GEP. if (CurrentBlock != U->getParent()) { CurrentBlock = U->getParent(); Builder.SetInsertPoint(&*CurrentBlock->getFirstInsertionPt()); auto *GEP = GetFramePointer(E.first); GEP->setName(E.first->getName() + Twine(".reload.addr")); if (ByValTy) CurrentReload = GEP; else CurrentReload = Builder.CreateAlignedLoad( FrameTy->getElementType(FrameData.getFieldIndex(E.first)), GEP, SpillAlignment, E.first->getName() + Twine(".reload")); TinyPtrVector<DbgDeclareInst *> DIs = FindDbgDeclareUses(Def); for (DbgDeclareInst *DDI : DIs) { bool AllowUnresolved = false; // This dbg.declare is preserved for all coro-split function // fragments. It will be unreachable in the main function, and // processed by coro::salvageDebugInfo() by CoroCloner. DIBuilder(*CurrentBlock->getParent()->getParent(), AllowUnresolved) .insertDeclare(CurrentReload, DDI->getVariable(), DDI->getExpression(), DDI->getDebugLoc(), &*Builder.GetInsertPoint()); // This dbg.declare is for the main function entry point. It // will be deleted in all coro-split functions. coro::salvageDebugInfo(DbgPtrAllocaCache, DDI, Shape.OptimizeFrame); } } // Salvage debug info on any dbg.addr that we see. We do not insert them // into each block where we have a use though. if (auto *DI = dyn_cast<DbgAddrIntrinsic>(U)) { coro::salvageDebugInfo(DbgPtrAllocaCache, DI, Shape.OptimizeFrame); } // If we have a single edge PHINode, remove it and replace it with a // reload from the coroutine frame. (We already took care of multi edge // PHINodes by rewriting them in the rewritePHIs function). if (auto *PN = dyn_cast<PHINode>(U)) { assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming " "values in the PHINode"); PN->replaceAllUsesWith(CurrentReload); PN->eraseFromParent(); continue; } // Replace all uses of CurrentValue in the current instruction with // reload. U->replaceUsesOfWith(Def, CurrentReload); } } BasicBlock *FramePtrBB = Shape.getInsertPtAfterFramePtr()->getParent(); auto SpillBlock = FramePtrBB->splitBasicBlock( Shape.getInsertPtAfterFramePtr(), "AllocaSpillBB"); SpillBlock->splitBasicBlock(&SpillBlock->front(), "PostSpill"); Shape.AllocaSpillBlock = SpillBlock; // retcon and retcon.once lowering assumes all uses have been sunk. if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce || Shape.ABI == coro::ABI::Async) { // If we found any allocas, replace all of their remaining uses with Geps. Builder.SetInsertPoint(&SpillBlock->front()); for (const auto &P : FrameData.Allocas) { AllocaInst *Alloca = P.Alloca; auto *G = GetFramePointer(Alloca); // We are not using ReplaceInstWithInst(P.first, cast<Instruction>(G)) // here, as we are changing location of the instruction. G->takeName(Alloca); Alloca->replaceAllUsesWith(G); Alloca->eraseFromParent(); } return; } // If we found any alloca, replace all of their remaining uses with GEP // instructions. To remain debugbility, we replace the uses of allocas for // dbg.declares and dbg.values with the reload from the frame. // Note: We cannot replace the alloca with GEP instructions indiscriminately, // as some of the uses may not be dominated by CoroBegin. Builder.SetInsertPoint(&Shape.AllocaSpillBlock->front()); SmallVector<Instruction *, 4> UsersToUpdate; for (const auto &A : FrameData.Allocas) { AllocaInst *Alloca = A.Alloca; UsersToUpdate.clear(); for (User *U : Alloca->users()) { auto *I = cast<Instruction>(U); if (DT.dominates(CB, I)) UsersToUpdate.push_back(I); } if (UsersToUpdate.empty()) continue; auto *G = GetFramePointer(Alloca); G->setName(Alloca->getName() + Twine(".reload.addr")); SmallVector<DbgVariableIntrinsic *, 4> DIs; findDbgUsers(DIs, Alloca); for (auto *DVI : DIs) DVI->replaceUsesOfWith(Alloca, G); for (Instruction *I : UsersToUpdate) { // It is meaningless to remain the lifetime intrinsics refer for the // member of coroutine frames and the meaningless lifetime intrinsics // are possible to block further optimizations. if (I->isLifetimeStartOrEnd()) continue; I->replaceUsesOfWith(Alloca, G); } } Builder.SetInsertPoint(Shape.getInsertPtAfterFramePtr()); for (const auto &A : FrameData.Allocas) { AllocaInst *Alloca = A.Alloca; if (A.MayWriteBeforeCoroBegin) { // isEscaped really means potentially modified before CoroBegin. if (Alloca->isArrayAllocation()) report_fatal_error( "Coroutines cannot handle copying of array allocas yet"); auto *G = GetFramePointer(Alloca); auto *Value = Builder.CreateLoad(Alloca->getAllocatedType(), Alloca); Builder.CreateStore(Value, G); } // For each alias to Alloca created before CoroBegin but used after // CoroBegin, we recreate them after CoroBegin by appplying the offset // to the pointer in the frame. for (const auto &Alias : A.Aliases) { auto *FramePtr = GetFramePointer(Alloca); auto *FramePtrRaw = Builder.CreateBitCast(FramePtr, Type::getInt8PtrTy(C)); auto &Value = *Alias.second; auto ITy = IntegerType::get(C, Value.getBitWidth()); auto *AliasPtr = Builder.CreateGEP(Type::getInt8Ty(C), FramePtrRaw, ConstantInt::get(ITy, Value)); auto *AliasPtrTyped = Builder.CreateBitCast(AliasPtr, Alias.first->getType()); Alias.first->replaceUsesWithIf( AliasPtrTyped, [&](Use &U) { return DT.dominates(CB, U); }); } } // PromiseAlloca is not collected in FrameData.Allocas. So we don't handle // the case that the PromiseAlloca may have writes before CoroBegin in the // above codes. And it may be problematic in edge cases. See // https://github.com/llvm/llvm-project/issues/57861 for an example. if (Shape.ABI == coro::ABI::Switch && Shape.SwitchLowering.PromiseAlloca) { AllocaInst *PA = Shape.SwitchLowering.PromiseAlloca; // If there is memory accessing to promise alloca before CoroBegin; bool HasAccessingPromiseBeforeCB = llvm::any_of(PA->uses(), [&](Use &U) { auto *Inst = dyn_cast<Instruction>(U.getUser()); if (!Inst || DT.dominates(CB, Inst)) return false; if (auto *CI = dyn_cast<CallInst>(Inst)) { // It is fine if the call wouldn't write to the Promise. // This is possible for @llvm.coro.id intrinsics, which // would take the promise as the second argument as a // marker. if (CI->onlyReadsMemory() || CI->onlyReadsMemory(CI->getArgOperandNo(&U))) return false; return true; } return isa<StoreInst>(Inst) || // It may take too much time to track the uses. // Be conservative about the case the use may escape. isa<GetElementPtrInst>(Inst) || // There would always be a bitcast for the promise alloca // before we enabled Opaque pointers. And now given // opaque pointers are enabled by default. This should be // fine. isa<BitCastInst>(Inst); }); if (HasAccessingPromiseBeforeCB) { Builder.SetInsertPoint(Shape.getInsertPtAfterFramePtr()); auto *G = GetFramePointer(PA); auto *Value = Builder.CreateLoad(PA->getAllocatedType(), PA); Builder.CreateStore(Value, G); } } } // Moves the values in the PHIs in SuccBB that correspong to PredBB into a new // PHI in InsertedBB. static void movePHIValuesToInsertedBlock(BasicBlock *SuccBB, BasicBlock *InsertedBB, BasicBlock *PredBB, PHINode *UntilPHI = nullptr) { auto *PN = cast<PHINode>(&SuccBB->front()); do { int Index = PN->getBasicBlockIndex(InsertedBB); Value *V = PN->getIncomingValue(Index); PHINode *InputV = PHINode::Create( V->getType(), 1, V->getName() + Twine(".") + SuccBB->getName(), &InsertedBB->front()); InputV->addIncoming(V, PredBB); PN->setIncomingValue(Index, InputV); PN = dyn_cast<PHINode>(PN->getNextNode()); } while (PN != UntilPHI); } // Rewrites the PHI Nodes in a cleanuppad. static void rewritePHIsForCleanupPad(BasicBlock *CleanupPadBB, CleanupPadInst *CleanupPad) { // For every incoming edge to a CleanupPad we will create a new block holding // all incoming values in single-value PHI nodes. We will then create another // block to act as a dispather (as all unwind edges for related EH blocks // must be the same). // // cleanuppad: // %2 = phi i32[%0, %catchswitch], [%1, %catch.1] // %3 = cleanuppad within none [] // // It will create: // // cleanuppad.corodispatch // %2 = phi i8[0, %catchswitch], [1, %catch.1] // %3 = cleanuppad within none [] // switch i8 % 2, label %unreachable // [i8 0, label %cleanuppad.from.catchswitch // i8 1, label %cleanuppad.from.catch.1] // cleanuppad.from.catchswitch: // %4 = phi i32 [%0, %catchswitch] // br %label cleanuppad // cleanuppad.from.catch.1: // %6 = phi i32 [%1, %catch.1] // br %label cleanuppad // cleanuppad: // %8 = phi i32 [%4, %cleanuppad.from.catchswitch], // [%6, %cleanuppad.from.catch.1] // Unreachable BB, in case switching on an invalid value in the dispatcher. auto *UnreachBB = BasicBlock::Create( CleanupPadBB->getContext(), "unreachable", CleanupPadBB->getParent()); IRBuilder<> Builder(UnreachBB); Builder.CreateUnreachable(); // Create a new cleanuppad which will be the dispatcher. auto *NewCleanupPadBB = BasicBlock::Create(CleanupPadBB->getContext(), CleanupPadBB->getName() + Twine(".corodispatch"), CleanupPadBB->getParent(), CleanupPadBB); Builder.SetInsertPoint(NewCleanupPadBB); auto *SwitchType = Builder.getInt8Ty(); auto *SetDispatchValuePN = Builder.CreatePHI(SwitchType, pred_size(CleanupPadBB)); CleanupPad->removeFromParent(); CleanupPad->insertAfter(SetDispatchValuePN); auto *SwitchOnDispatch = Builder.CreateSwitch(SetDispatchValuePN, UnreachBB, pred_size(CleanupPadBB)); int SwitchIndex = 0; SmallVector<BasicBlock *, 8> Preds(predecessors(CleanupPadBB)); for (BasicBlock *Pred : Preds) { // Create a new cleanuppad and move the PHI values to there. auto *CaseBB = BasicBlock::Create(CleanupPadBB->getContext(), CleanupPadBB->getName() + Twine(".from.") + Pred->getName(), CleanupPadBB->getParent(), CleanupPadBB); updatePhiNodes(CleanupPadBB, Pred, CaseBB); CaseBB->setName(CleanupPadBB->getName() + Twine(".from.") + Pred->getName()); Builder.SetInsertPoint(CaseBB); Builder.CreateBr(CleanupPadBB); movePHIValuesToInsertedBlock(CleanupPadBB, CaseBB, NewCleanupPadBB); // Update this Pred to the new unwind point. setUnwindEdgeTo(Pred->getTerminator(), NewCleanupPadBB); // Setup the switch in the dispatcher. auto *SwitchConstant = ConstantInt::get(SwitchType, SwitchIndex); SetDispatchValuePN->addIncoming(SwitchConstant, Pred); SwitchOnDispatch->addCase(SwitchConstant, CaseBB); SwitchIndex++; } } static void cleanupSinglePredPHIs(Function &F) { SmallVector<PHINode *, 32> Worklist; for (auto &BB : F) { for (auto &Phi : BB.phis()) { if (Phi.getNumIncomingValues() == 1) { Worklist.push_back(&Phi); } else break; } } while (!Worklist.empty()) { auto *Phi = Worklist.pop_back_val(); auto *OriginalValue = Phi->getIncomingValue(0); Phi->replaceAllUsesWith(OriginalValue); } } static void rewritePHIs(BasicBlock &BB) { // For every incoming edge we will create a block holding all // incoming values in a single PHI nodes. // // loop: // %n.val = phi i32[%n, %entry], [%inc, %loop] // // It will create: // // loop.from.entry: // %n.loop.pre = phi i32 [%n, %entry] // br %label loop // loop.from.loop: // %inc.loop.pre = phi i32 [%inc, %loop] // br %label loop // // After this rewrite, further analysis will ignore any phi nodes with more // than one incoming edge. // TODO: Simplify PHINodes in the basic block to remove duplicate // predecessors. // Special case for CleanupPad: all EH blocks must have the same unwind edge // so we need to create an additional "dispatcher" block. if (auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(BB.getFirstNonPHI())) { SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); for (BasicBlock *Pred : Preds) { if (CatchSwitchInst *CS = dyn_cast<CatchSwitchInst>(Pred->getTerminator())) { // CleanupPad with a CatchSwitch predecessor: therefore this is an // unwind destination that needs to be handle specially. assert(CS->getUnwindDest() == &BB); (void)CS; rewritePHIsForCleanupPad(&BB, CleanupPad); return; } } } LandingPadInst *LandingPad = nullptr; PHINode *ReplPHI = nullptr; if ((LandingPad = dyn_cast_or_null<LandingPadInst>(BB.getFirstNonPHI()))) { // ehAwareSplitEdge will clone the LandingPad in all the edge blocks. // We replace the original landing pad with a PHINode that will collect the // results from all of them. ReplPHI = PHINode::Create(LandingPad->getType(), 1, "", LandingPad); ReplPHI->takeName(LandingPad); LandingPad->replaceAllUsesWith(ReplPHI); // We will erase the original landing pad at the end of this function after // ehAwareSplitEdge cloned it in the transition blocks. } SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); for (BasicBlock *Pred : Preds) { auto *IncomingBB = ehAwareSplitEdge(Pred, &BB, LandingPad, ReplPHI); IncomingBB->setName(BB.getName() + Twine(".from.") + Pred->getName()); // Stop the moving of values at ReplPHI, as this is either null or the PHI // that replaced the landing pad. movePHIValuesToInsertedBlock(&BB, IncomingBB, Pred, ReplPHI); } if (LandingPad) { // Calls to ehAwareSplitEdge function cloned the original lading pad. // No longer need it. LandingPad->eraseFromParent(); } } static void rewritePHIs(Function &F) { SmallVector<BasicBlock *, 8> WorkList; for (BasicBlock &BB : F) if (auto *PN = dyn_cast<PHINode>(&BB.front())) if (PN->getNumIncomingValues() > 1) WorkList.push_back(&BB); for (BasicBlock *BB : WorkList) rewritePHIs(*BB); } // Check for instructions that we can recreate on resume as opposed to spill // the result into a coroutine frame. static bool materializable(Instruction &V) { return isa<CastInst>(&V) || isa<GetElementPtrInst>(&V) || isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<SelectInst>(&V); } // Check for structural coroutine intrinsics that should not be spilled into // the coroutine frame. static bool isCoroutineStructureIntrinsic(Instruction &I) { return isa<CoroIdInst>(&I) || isa<CoroSaveInst>(&I) || isa<CoroSuspendInst>(&I); } // For every use of the value that is across suspend point, recreate that value // after a suspend point. static void rewriteMaterializableInstructions(IRBuilder<> &IRB, const SpillInfo &Spills) { for (const auto &E : Spills) { Value *Def = E.first; BasicBlock *CurrentBlock = nullptr; Instruction *CurrentMaterialization = nullptr; for (Instruction *U : E.second) { // If we have not seen this block, materialize the value. if (CurrentBlock != U->getParent()) { bool IsInCoroSuspendBlock = isa<AnyCoroSuspendInst>(U); CurrentBlock = U->getParent(); auto *InsertBlock = IsInCoroSuspendBlock ? CurrentBlock->getSinglePredecessor() : CurrentBlock; CurrentMaterialization = cast<Instruction>(Def)->clone(); CurrentMaterialization->setName(Def->getName()); CurrentMaterialization->insertBefore( IsInCoroSuspendBlock ? InsertBlock->getTerminator() : &*InsertBlock->getFirstInsertionPt()); } if (auto *PN = dyn_cast<PHINode>(U)) { assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming " "values in the PHINode"); PN->replaceAllUsesWith(CurrentMaterialization); PN->eraseFromParent(); continue; } // Replace all uses of Def in the current instruction with the // CurrentMaterialization for the block. U->replaceUsesOfWith(Def, CurrentMaterialization); } } } // Splits the block at a particular instruction unless it is the first // instruction in the block with a single predecessor. static BasicBlock *splitBlockIfNotFirst(Instruction *I, const Twine &Name) { auto *BB = I->getParent(); if (&BB->front() == I) { if (BB->getSinglePredecessor()) { BB->setName(Name); return BB; } } return BB->splitBasicBlock(I, Name); } // Split above and below a particular instruction so that it // will be all alone by itself in a block. static void splitAround(Instruction *I, const Twine &Name) { splitBlockIfNotFirst(I, Name); splitBlockIfNotFirst(I->getNextNode(), "After" + Name); } static bool isSuspendBlock(BasicBlock *BB) { return isa<AnyCoroSuspendInst>(BB->front()); } typedef SmallPtrSet<BasicBlock*, 8> VisitedBlocksSet; /// Does control flow starting at the given block ever reach a suspend /// instruction before reaching a block in VisitedOrFreeBBs? static bool isSuspendReachableFrom(BasicBlock *From, VisitedBlocksSet &VisitedOrFreeBBs) { // Eagerly try to add this block to the visited set. If it's already // there, stop recursing; this path doesn't reach a suspend before // either looping or reaching a freeing block. if (!VisitedOrFreeBBs.insert(From).second) return false; // We assume that we'll already have split suspends into their own blocks. if (isSuspendBlock(From)) return true; // Recurse on the successors. for (auto *Succ : successors(From)) { if (isSuspendReachableFrom(Succ, VisitedOrFreeBBs)) return true; } return false; } /// Is the given alloca "local", i.e. bounded in lifetime to not cross a /// suspend point? static bool isLocalAlloca(CoroAllocaAllocInst *AI) { // Seed the visited set with all the basic blocks containing a free // so that we won't pass them up. VisitedBlocksSet VisitedOrFreeBBs; for (auto *User : AI->users()) { if (auto FI = dyn_cast<CoroAllocaFreeInst>(User)) VisitedOrFreeBBs.insert(FI->getParent()); } return !isSuspendReachableFrom(AI->getParent(), VisitedOrFreeBBs); } /// After we split the coroutine, will the given basic block be along /// an obvious exit path for the resumption function? static bool willLeaveFunctionImmediatelyAfter(BasicBlock *BB, unsigned depth = 3) { // If we've bottomed out our depth count, stop searching and assume // that the path might loop back. if (depth == 0) return false; // If this is a suspend block, we're about to exit the resumption function. if (isSuspendBlock(BB)) return true; // Recurse into the successors. for (auto *Succ : successors(BB)) { if (!willLeaveFunctionImmediatelyAfter(Succ, depth - 1)) return false; } // If none of the successors leads back in a loop, we're on an exit/abort. return true; } static bool localAllocaNeedsStackSave(CoroAllocaAllocInst *AI) { // Look for a free that isn't sufficiently obviously followed by // either a suspend or a termination, i.e. something that will leave // the coro resumption frame. for (auto *U : AI->users()) { auto FI = dyn_cast<CoroAllocaFreeInst>(U); if (!FI) continue; if (!willLeaveFunctionImmediatelyAfter(FI->getParent())) return true; } // If we never found one, we don't need a stack save. return false; } /// Turn each of the given local allocas into a normal (dynamic) alloca /// instruction. static void lowerLocalAllocas(ArrayRef<CoroAllocaAllocInst*> LocalAllocas, SmallVectorImpl<Instruction*> &DeadInsts) { for (auto *AI : LocalAllocas) { auto M = AI->getModule(); IRBuilder<> Builder(AI); // Save the stack depth. Try to avoid doing this if the stackrestore // is going to immediately precede a return or something. Value *StackSave = nullptr; if (localAllocaNeedsStackSave(AI)) StackSave = Builder.CreateCall( Intrinsic::getDeclaration(M, Intrinsic::stacksave)); // Allocate memory. auto Alloca = Builder.CreateAlloca(Builder.getInt8Ty(), AI->getSize()); Alloca->setAlignment(AI->getAlignment()); for (auto *U : AI->users()) { // Replace gets with the allocation. if (isa<CoroAllocaGetInst>(U)) { U->replaceAllUsesWith(Alloca); // Replace frees with stackrestores. This is safe because // alloca.alloc is required to obey a stack discipline, although we // don't enforce that structurally. } else { auto FI = cast<CoroAllocaFreeInst>(U); if (StackSave) { Builder.SetInsertPoint(FI); Builder.CreateCall( Intrinsic::getDeclaration(M, Intrinsic::stackrestore), StackSave); } } DeadInsts.push_back(cast<Instruction>(U)); } DeadInsts.push_back(AI); } } /// Turn the given coro.alloca.alloc call into a dynamic allocation. /// This happens during the all-instructions iteration, so it must not /// delete the call. static Instruction *lowerNonLocalAlloca(CoroAllocaAllocInst *AI, coro::Shape &Shape, SmallVectorImpl<Instruction*> &DeadInsts) { IRBuilder<> Builder(AI); auto Alloc = Shape.emitAlloc(Builder, AI->getSize(), nullptr); for (User *U : AI->users()) { if (isa<CoroAllocaGetInst>(U)) { U->replaceAllUsesWith(Alloc); } else { auto FI = cast<CoroAllocaFreeInst>(U); Builder.SetInsertPoint(FI); Shape.emitDealloc(Builder, Alloc, nullptr); } DeadInsts.push_back(cast<Instruction>(U)); } // Push this on last so that it gets deleted after all the others. DeadInsts.push_back(AI); // Return the new allocation value so that we can check for needed spills. return cast<Instruction>(Alloc); } /// Get the current swifterror value. static Value *emitGetSwiftErrorValue(IRBuilder<> &Builder, Type *ValueTy, coro::Shape &Shape) { // Make a fake function pointer as a sort of intrinsic. auto FnTy = FunctionType::get(ValueTy, {}, false); auto Fn = ConstantPointerNull::get(FnTy->getPointerTo()); auto Call = Builder.CreateCall(FnTy, Fn, {}); Shape.SwiftErrorOps.push_back(Call); return Call; } /// Set the given value as the current swifterror value. /// /// Returns a slot that can be used as a swifterror slot. static Value *emitSetSwiftErrorValue(IRBuilder<> &Builder, Value *V, coro::Shape &Shape) { // Make a fake function pointer as a sort of intrinsic. auto FnTy = FunctionType::get(V->getType()->getPointerTo(), {V->getType()}, false); auto Fn = ConstantPointerNull::get(FnTy->getPointerTo()); auto Call = Builder.CreateCall(FnTy, Fn, { V }); Shape.SwiftErrorOps.push_back(Call); return Call; } /// Set the swifterror value from the given alloca before a call, /// then put in back in the alloca afterwards. /// /// Returns an address that will stand in for the swifterror slot /// until splitting. static Value *emitSetAndGetSwiftErrorValueAround(Instruction *Call, AllocaInst *Alloca, coro::Shape &Shape) { auto ValueTy = Alloca->getAllocatedType(); IRBuilder<> Builder(Call); // Load the current value from the alloca and set it as the // swifterror value. auto ValueBeforeCall = Builder.CreateLoad(ValueTy, Alloca); auto Addr = emitSetSwiftErrorValue(Builder, ValueBeforeCall, Shape); // Move to after the call. Since swifterror only has a guaranteed // value on normal exits, we can ignore implicit and explicit unwind // edges. if (isa<CallInst>(Call)) { Builder.SetInsertPoint(Call->getNextNode()); } else { auto Invoke = cast<InvokeInst>(Call); Builder.SetInsertPoint(Invoke->getNormalDest()->getFirstNonPHIOrDbg()); } // Get the current swifterror value and store it to the alloca. auto ValueAfterCall = emitGetSwiftErrorValue(Builder, ValueTy, Shape); Builder.CreateStore(ValueAfterCall, Alloca); return Addr; } /// Eliminate a formerly-swifterror alloca by inserting the get/set /// intrinsics and attempting to MemToReg the alloca away. static void eliminateSwiftErrorAlloca(Function &F, AllocaInst *Alloca, coro::Shape &Shape) { for (Use &Use : llvm::make_early_inc_range(Alloca->uses())) { // swifterror values can only be used in very specific ways. // We take advantage of that here. auto User = Use.getUser(); if (isa<LoadInst>(User) || isa<StoreInst>(User)) continue; assert(isa<CallInst>(User) || isa<InvokeInst>(User)); auto Call = cast<Instruction>(User); auto Addr = emitSetAndGetSwiftErrorValueAround(Call, Alloca, Shape); // Use the returned slot address as the call argument. Use.set(Addr); } // All the uses should be loads and stores now. assert(isAllocaPromotable(Alloca)); } /// "Eliminate" a swifterror argument by reducing it to the alloca case /// and then loading and storing in the prologue and epilog. /// /// The argument keeps the swifterror flag. static void eliminateSwiftErrorArgument(Function &F, Argument &Arg, coro::Shape &Shape, SmallVectorImpl<AllocaInst*> &AllocasToPromote) { IRBuilder<> Builder(F.getEntryBlock().getFirstNonPHIOrDbg()); auto ArgTy = cast<PointerType>(Arg.getType()); // swifterror arguments are required to have pointer-to-pointer type, // so create a pointer-typed alloca with opaque pointers. auto ValueTy = ArgTy->isOpaque() ? PointerType::getUnqual(F.getContext()) : ArgTy->getNonOpaquePointerElementType(); // Reduce to the alloca case: // Create an alloca and replace all uses of the arg with it. auto Alloca = Builder.CreateAlloca(ValueTy, ArgTy->getAddressSpace()); Arg.replaceAllUsesWith(Alloca); // Set an initial value in the alloca. swifterror is always null on entry. auto InitialValue = Constant::getNullValue(ValueTy); Builder.CreateStore(InitialValue, Alloca); // Find all the suspends in the function and save and restore around them. for (auto *Suspend : Shape.CoroSuspends) { (void) emitSetAndGetSwiftErrorValueAround(Suspend, Alloca, Shape); } // Find all the coro.ends in the function and restore the error value. for (auto *End : Shape.CoroEnds) { Builder.SetInsertPoint(End); auto FinalValue = Builder.CreateLoad(ValueTy, Alloca); (void) emitSetSwiftErrorValue(Builder, FinalValue, Shape); } // Now we can use the alloca logic. AllocasToPromote.push_back(Alloca); eliminateSwiftErrorAlloca(F, Alloca, Shape); } /// Eliminate all problematic uses of swifterror arguments and allocas /// from the function. We'll fix them up later when splitting the function. static void eliminateSwiftError(Function &F, coro::Shape &Shape) { SmallVector<AllocaInst*, 4> AllocasToPromote; // Look for a swifterror argument. for (auto &Arg : F.args()) { if (!Arg.hasSwiftErrorAttr()) continue; eliminateSwiftErrorArgument(F, Arg, Shape, AllocasToPromote); break; } // Look for swifterror allocas. for (auto &Inst : F.getEntryBlock()) { auto Alloca = dyn_cast<AllocaInst>(&Inst); if (!Alloca || !Alloca->isSwiftError()) continue; // Clear the swifterror flag. Alloca->setSwiftError(false); AllocasToPromote.push_back(Alloca); eliminateSwiftErrorAlloca(F, Alloca, Shape); } // If we have any allocas to promote, compute a dominator tree and // promote them en masse. if (!AllocasToPromote.empty()) { DominatorTree DT(F); PromoteMemToReg(AllocasToPromote, DT); } } /// retcon and retcon.once conventions assume that all spill uses can be sunk /// after the coro.begin intrinsic. static void sinkSpillUsesAfterCoroBegin(Function &F, const FrameDataInfo &FrameData, CoroBeginInst *CoroBegin) { DominatorTree Dom(F); SmallSetVector<Instruction *, 32> ToMove; SmallVector<Instruction *, 32> Worklist; // Collect all users that precede coro.begin. for (auto *Def : FrameData.getAllDefs()) { for (User *U : Def->users()) { auto Inst = cast<Instruction>(U); if (Inst->getParent() != CoroBegin->getParent() || Dom.dominates(CoroBegin, Inst)) continue; if (ToMove.insert(Inst)) Worklist.push_back(Inst); } } // Recursively collect users before coro.begin. while (!Worklist.empty()) { auto *Def = Worklist.pop_back_val(); for (User *U : Def->users()) { auto Inst = cast<Instruction>(U); if (Dom.dominates(CoroBegin, Inst)) continue; if (ToMove.insert(Inst)) Worklist.push_back(Inst); } } // Sort by dominance. SmallVector<Instruction *, 64> InsertionList(ToMove.begin(), ToMove.end()); llvm::sort(InsertionList, [&Dom](Instruction *A, Instruction *B) -> bool { // If a dominates b it should preceed (<) b. return Dom.dominates(A, B); }); Instruction *InsertPt = CoroBegin->getNextNode(); for (Instruction *Inst : InsertionList) Inst->moveBefore(InsertPt); } /// For each local variable that all of its user are only used inside one of /// suspended region, we sink their lifetime.start markers to the place where /// after the suspend block. Doing so minimizes the lifetime of each variable, /// hence minimizing the amount of data we end up putting on the frame. static void sinkLifetimeStartMarkers(Function &F, coro::Shape &Shape, SuspendCrossingInfo &Checker) { DominatorTree DT(F); // Collect all possible basic blocks which may dominate all uses of allocas. SmallPtrSet<BasicBlock *, 4> DomSet; DomSet.insert(&F.getEntryBlock()); for (auto *CSI : Shape.CoroSuspends) { BasicBlock *SuspendBlock = CSI->getParent(); assert(isSuspendBlock(SuspendBlock) && SuspendBlock->getSingleSuccessor() && "should have split coro.suspend into its own block"); DomSet.insert(SuspendBlock->getSingleSuccessor()); } for (Instruction &I : instructions(F)) { AllocaInst* AI = dyn_cast<AllocaInst>(&I); if (!AI) continue; for (BasicBlock *DomBB : DomSet) { bool Valid = true; SmallVector<Instruction *, 1> Lifetimes; auto isLifetimeStart = [](Instruction* I) { if (auto* II = dyn_cast<IntrinsicInst>(I)) return II->getIntrinsicID() == Intrinsic::lifetime_start; return false; }; auto collectLifetimeStart = [&](Instruction *U, AllocaInst *AI) { if (isLifetimeStart(U)) { Lifetimes.push_back(U); return true; } if (!U->hasOneUse() || U->stripPointerCasts() != AI) return false; if (isLifetimeStart(U->user_back())) { Lifetimes.push_back(U->user_back()); return true; } return false; }; for (User *U : AI->users()) { Instruction *UI = cast<Instruction>(U); // For all users except lifetime.start markers, if they are all // dominated by one of the basic blocks and do not cross // suspend points as well, then there is no need to spill the // instruction. if (!DT.dominates(DomBB, UI->getParent()) || Checker.isDefinitionAcrossSuspend(DomBB, UI)) { // Skip lifetime.start, GEP and bitcast used by lifetime.start // markers. if (collectLifetimeStart(UI, AI)) continue; Valid = false; break; } } // Sink lifetime.start markers to dominate block when they are // only used outside the region. if (Valid && Lifetimes.size() != 0) { // May be AI itself, when the type of AI is i8* auto *NewBitCast = [&](AllocaInst *AI) -> Value* { if (isa<AllocaInst>(Lifetimes[0]->getOperand(1))) return AI; auto *Int8PtrTy = Type::getInt8PtrTy(F.getContext()); return CastInst::Create(Instruction::BitCast, AI, Int8PtrTy, "", DomBB->getTerminator()); }(AI); auto *NewLifetime = Lifetimes[0]->clone(); NewLifetime->replaceUsesOfWith(NewLifetime->getOperand(1), NewBitCast); NewLifetime->insertBefore(DomBB->getTerminator()); // All the outsided lifetime.start markers are no longer necessary. for (Instruction *S : Lifetimes) S->eraseFromParent(); break; } } } } static void collectFrameAlloca(AllocaInst *AI, coro::Shape &Shape, const SuspendCrossingInfo &Checker, SmallVectorImpl<AllocaInfo> &Allocas, const DominatorTree &DT) { if (Shape.CoroSuspends.empty()) return; // The PromiseAlloca will be specially handled since it needs to be in a // fixed position in the frame. if (AI == Shape.SwitchLowering.PromiseAlloca) return; // The code that uses lifetime.start intrinsic does not work for functions // with loops without exit. Disable it on ABIs we know to generate such // code. bool ShouldUseLifetimeStartInfo = (Shape.ABI != coro::ABI::Async && Shape.ABI != coro::ABI::Retcon && Shape.ABI != coro::ABI::RetconOnce); AllocaUseVisitor Visitor{AI->getModule()->getDataLayout(), DT, *Shape.CoroBegin, Checker, ShouldUseLifetimeStartInfo}; Visitor.visitPtr(*AI); if (!Visitor.getShouldLiveOnFrame()) return; Allocas.emplace_back(AI, Visitor.getAliasesCopy(), Visitor.getMayWriteBeforeCoroBegin()); } void coro::salvageDebugInfo( SmallDenseMap<llvm::Value *, llvm::AllocaInst *, 4> &DbgPtrAllocaCache, DbgVariableIntrinsic *DVI, bool OptimizeFrame) { Function *F = DVI->getFunction(); IRBuilder<> Builder(F->getContext()); auto InsertPt = F->getEntryBlock().getFirstInsertionPt(); while (isa<IntrinsicInst>(InsertPt)) ++InsertPt; Builder.SetInsertPoint(&F->getEntryBlock(), InsertPt); DIExpression *Expr = DVI->getExpression(); // Follow the pointer arithmetic all the way to the incoming // function argument and convert into a DIExpression. bool SkipOutermostLoad = !isa<DbgValueInst>(DVI); Value *Storage = DVI->getVariableLocationOp(0); Value *OriginalStorage = Storage; while (auto *Inst = dyn_cast_or_null<Instruction>(Storage)) { if (auto *LdInst = dyn_cast<LoadInst>(Inst)) { Storage = LdInst->getOperand(0); // FIXME: This is a heuristic that works around the fact that // LLVM IR debug intrinsics cannot yet distinguish between // memory and value locations: Because a dbg.declare(alloca) is // implicitly a memory location no DW_OP_deref operation for the // last direct load from an alloca is necessary. This condition // effectively drops the *last* DW_OP_deref in the expression. if (!SkipOutermostLoad) Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); } else if (auto *StInst = dyn_cast<StoreInst>(Inst)) { Storage = StInst->getOperand(0); } else { SmallVector<uint64_t, 16> Ops; SmallVector<Value *, 0> AdditionalValues; Value *Op = llvm::salvageDebugInfoImpl( *Inst, Expr ? Expr->getNumLocationOperands() : 0, Ops, AdditionalValues); if (!Op || !AdditionalValues.empty()) { // If salvaging failed or salvaging produced more than one location // operand, give up. break; } Storage = Op; Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, /*StackValue*/ false); } SkipOutermostLoad = false; } if (!Storage) return; // Store a pointer to the coroutine frame object in an alloca so it // is available throughout the function when producing unoptimized // code. Extending the lifetime this way is correct because the // variable has been declared by a dbg.declare intrinsic. // // Avoid to create the alloca would be eliminated by optimization // passes and the corresponding dbg.declares would be invalid. if (!OptimizeFrame) if (auto *Arg = dyn_cast<llvm::Argument>(Storage)) { auto &Cached = DbgPtrAllocaCache[Storage]; if (!Cached) { Cached = Builder.CreateAlloca(Storage->getType(), 0, nullptr, Arg->getName() + ".debug"); Builder.CreateStore(Storage, Cached); } Storage = Cached; // FIXME: LLVM lacks nuanced semantics to differentiate between // memory and direct locations at the IR level. The backend will // turn a dbg.declare(alloca, ..., DIExpression()) into a memory // location. Thus, if there are deref and offset operations in the // expression, we need to add a DW_OP_deref at the *start* of the // expression to first load the contents of the alloca before // adjusting it with the expression. Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); } DVI->replaceVariableLocationOp(OriginalStorage, Storage); DVI->setExpression(Expr); // We only hoist dbg.declare today since it doesn't make sense to hoist // dbg.value or dbg.addr since they do not have the same function wide // guarantees that dbg.declare does. if (!isa<DbgValueInst>(DVI) && !isa<DbgAddrIntrinsic>(DVI)) { Instruction *InsertPt = nullptr; if (auto *I = dyn_cast<Instruction>(Storage)) InsertPt = I->getInsertionPointAfterDef(); else if (isa<Argument>(Storage)) InsertPt = &*F->getEntryBlock().begin(); if (InsertPt) DVI->moveBefore(InsertPt); } } void coro::buildCoroutineFrame(Function &F, Shape &Shape) { // Don't eliminate swifterror in async functions that won't be split. if (Shape.ABI != coro::ABI::Async || !Shape.CoroSuspends.empty()) eliminateSwiftError(F, Shape); if (Shape.ABI == coro::ABI::Switch && Shape.SwitchLowering.PromiseAlloca) { Shape.getSwitchCoroId()->clearPromise(); } // Make sure that all coro.save, coro.suspend and the fallthrough coro.end // intrinsics are in their own blocks to simplify the logic of building up // SuspendCrossing data. for (auto *CSI : Shape.CoroSuspends) { if (auto *Save = CSI->getCoroSave()) splitAround(Save, "CoroSave"); splitAround(CSI, "CoroSuspend"); } // Put CoroEnds into their own blocks. for (AnyCoroEndInst *CE : Shape.CoroEnds) { splitAround(CE, "CoroEnd"); // Emit the musttail call function in a new block before the CoroEnd. // We do this here so that the right suspend crossing info is computed for // the uses of the musttail call function call. (Arguments to the coro.end // instructions would be ignored) if (auto *AsyncEnd = dyn_cast<CoroAsyncEndInst>(CE)) { auto *MustTailCallFn = AsyncEnd->getMustTailCallFunction(); if (!MustTailCallFn) continue; IRBuilder<> Builder(AsyncEnd); SmallVector<Value *, 8> Args(AsyncEnd->args()); auto Arguments = ArrayRef<Value *>(Args).drop_front(3); auto *Call = createMustTailCall(AsyncEnd->getDebugLoc(), MustTailCallFn, Arguments, Builder); splitAround(Call, "MustTailCall.Before.CoroEnd"); } } // Later code makes structural assumptions about single predecessors phis e.g // that they are not live across a suspend point. cleanupSinglePredPHIs(F); // Transforms multi-edge PHI Nodes, so that any value feeding into a PHI will // never has its definition separated from the PHI by the suspend point. rewritePHIs(F); // Build suspend crossing info. SuspendCrossingInfo Checker(F, Shape); IRBuilder<> Builder(F.getContext()); FrameDataInfo FrameData; SmallVector<CoroAllocaAllocInst*, 4> LocalAllocas; SmallVector<Instruction*, 4> DeadInstructions; { SpillInfo Spills; for (int Repeat = 0; Repeat < 4; ++Repeat) { // See if there are materializable instructions across suspend points. // FIXME: We can use a worklist to track the possible materialize // instructions instead of iterating the whole function again and again. for (Instruction &I : instructions(F)) if (materializable(I)) { for (User *U : I.users()) if (Checker.isDefinitionAcrossSuspend(I, U)) Spills[&I].push_back(cast<Instruction>(U)); } if (Spills.empty()) break; // Rewrite materializable instructions to be materialized at the use // point. LLVM_DEBUG(dumpSpills("Materializations", Spills)); rewriteMaterializableInstructions(Builder, Spills); Spills.clear(); } } if (Shape.ABI != coro::ABI::Async && Shape.ABI != coro::ABI::Retcon && Shape.ABI != coro::ABI::RetconOnce) sinkLifetimeStartMarkers(F, Shape, Checker); // Collect the spills for arguments and other not-materializable values. for (Argument &A : F.args()) for (User *U : A.users()) if (Checker.isDefinitionAcrossSuspend(A, U)) FrameData.Spills[&A].push_back(cast<Instruction>(U)); const DominatorTree DT(F); for (Instruction &I : instructions(F)) { // Values returned from coroutine structure intrinsics should not be part // of the Coroutine Frame. if (isCoroutineStructureIntrinsic(I) || &I == Shape.CoroBegin) continue; // Handle alloca.alloc specially here. if (auto AI = dyn_cast<CoroAllocaAllocInst>(&I)) { // Check whether the alloca's lifetime is bounded by suspend points. if (isLocalAlloca(AI)) { LocalAllocas.push_back(AI); continue; } // If not, do a quick rewrite of the alloca and then add spills of // the rewritten value. The rewrite doesn't invalidate anything in // Spills because the other alloca intrinsics have no other operands // besides AI, and it doesn't invalidate the iteration because we delay // erasing AI. auto Alloc = lowerNonLocalAlloca(AI, Shape, DeadInstructions); for (User *U : Alloc->users()) { if (Checker.isDefinitionAcrossSuspend(*Alloc, U)) FrameData.Spills[Alloc].push_back(cast<Instruction>(U)); } continue; } // Ignore alloca.get; we process this as part of coro.alloca.alloc. if (isa<CoroAllocaGetInst>(I)) continue; if (auto *AI = dyn_cast<AllocaInst>(&I)) { collectFrameAlloca(AI, Shape, Checker, FrameData.Allocas, DT); continue; } for (User *U : I.users()) if (Checker.isDefinitionAcrossSuspend(I, U)) { // We cannot spill a token. if (I.getType()->isTokenTy()) report_fatal_error( "token definition is separated from the use by a suspend point"); FrameData.Spills[&I].push_back(cast<Instruction>(U)); } } LLVM_DEBUG(dumpAllocas(FrameData.Allocas)); // We don't want the layout of coroutine frame to be affected // by debug information. So we only choose to salvage DbgValueInst for // whose value is already in the frame. // We would handle the dbg.values for allocas specially for (auto &Iter : FrameData.Spills) { auto *V = Iter.first; SmallVector<DbgValueInst *, 16> DVIs; findDbgValues(DVIs, V); for (DbgValueInst *DVI : DVIs) if (Checker.isDefinitionAcrossSuspend(*V, DVI)) FrameData.Spills[V].push_back(DVI); } LLVM_DEBUG(dumpSpills("Spills", FrameData.Spills)); if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce || Shape.ABI == coro::ABI::Async) sinkSpillUsesAfterCoroBegin(F, FrameData, Shape.CoroBegin); Shape.FrameTy = buildFrameType(F, Shape, FrameData); createFramePtr(Shape); // For now, this works for C++ programs only. buildFrameDebugInfo(F, Shape, FrameData); insertSpills(FrameData, Shape); lowerLocalAllocas(LocalAllocas, DeadInstructions); for (auto *I : DeadInstructions) I->eraseFromParent(); }