//===-- ProfiledBinary.cpp - Binary decoder ---------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ProfiledBinary.h" #include "ErrorHandling.h" #include "ProfileGenerator.h" #include "llvm/ADT/Triple.h" #include "llvm/Demangle/Demangle.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/MC/TargetRegistry.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Format.h" #include "llvm/Support/TargetSelect.h" #define DEBUG_TYPE "load-binary" using namespace llvm; using namespace sampleprof; cl::opt<bool> ShowDisassemblyOnly("show-disassembly-only", cl::init(false), cl::ZeroOrMore, cl::desc("Print disassembled code.")); cl::opt<bool> ShowSourceLocations("show-source-locations", cl::init(false), cl::ZeroOrMore, cl::desc("Print source locations.")); static cl::opt<bool> ShowCanonicalFnName("show-canonical-fname", cl::init(false), cl::ZeroOrMore, cl::desc("Print canonical function name.")); static cl::opt<bool> ShowPseudoProbe( "show-pseudo-probe", cl::init(false), cl::ZeroOrMore, cl::desc("Print pseudo probe section and disassembled info.")); static cl::opt<bool> UseDwarfCorrelation( "use-dwarf-correlation", cl::init(false), cl::ZeroOrMore, cl::desc("Use dwarf for profile correlation even when binary contains " "pseudo probe.")); static cl::list<std::string> DisassembleFunctions( "disassemble-functions", cl::CommaSeparated, cl::desc("List of functions to print disassembly for. Accept demangled " "names only. Only work with show-disassembly-only")); extern cl::opt<bool> ShowDetailedWarning; namespace llvm { namespace sampleprof { static const Target *getTarget(const ObjectFile *Obj) { Triple TheTriple = Obj->makeTriple(); std::string Error; std::string ArchName; const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, Error); if (!TheTarget) exitWithError(Error, Obj->getFileName()); return TheTarget; } void BinarySizeContextTracker::addInstructionForContext( const SampleContextFrameVector &Context, uint32_t InstrSize) { ContextTrieNode *CurNode = &RootContext; bool IsLeaf = true; for (const auto &Callsite : reverse(Context)) { StringRef CallerName = Callsite.FuncName; LineLocation CallsiteLoc = IsLeaf ? LineLocation(0, 0) : Callsite.Location; CurNode = CurNode->getOrCreateChildContext(CallsiteLoc, CallerName); IsLeaf = false; } CurNode->addFunctionSize(InstrSize); } uint32_t BinarySizeContextTracker::getFuncSizeForContext(const SampleContext &Context) { ContextTrieNode *CurrNode = &RootContext; ContextTrieNode *PrevNode = nullptr; SampleContextFrames Frames = Context.getContextFrames(); int32_t I = Frames.size() - 1; Optional<uint32_t> Size; // Start from top-level context-less function, traverse down the reverse // context trie to find the best/longest match for given context, then // retrieve the size. while (CurrNode && I >= 0) { // Process from leaf function to callers (added to context). const auto &ChildFrame = Frames[I--]; PrevNode = CurrNode; CurrNode = CurrNode->getChildContext(ChildFrame.Location, ChildFrame.FuncName); if (CurrNode && CurrNode->getFunctionSize().hasValue()) Size = CurrNode->getFunctionSize().getValue(); } // If we traversed all nodes along the path of the context and haven't // found a size yet, pivot to look for size from sibling nodes, i.e size // of inlinee under different context. if (!Size.hasValue()) { if (!CurrNode) CurrNode = PrevNode; while (!Size.hasValue() && CurrNode && !CurrNode->getAllChildContext().empty()) { CurrNode = &CurrNode->getAllChildContext().begin()->second; if (CurrNode->getFunctionSize().hasValue()) Size = CurrNode->getFunctionSize().getValue(); } } assert(Size.hasValue() && "We should at least find one context size."); return Size.getValue(); } void BinarySizeContextTracker::trackInlineesOptimizedAway( MCPseudoProbeDecoder &ProbeDecoder) { ProbeFrameStack ProbeContext; for (const auto &Child : ProbeDecoder.getDummyInlineRoot().getChildren()) trackInlineesOptimizedAway(ProbeDecoder, *Child.second.get(), ProbeContext); } void BinarySizeContextTracker::trackInlineesOptimizedAway( MCPseudoProbeDecoder &ProbeDecoder, MCDecodedPseudoProbeInlineTree &ProbeNode, ProbeFrameStack &ProbeContext) { StringRef FuncName = ProbeDecoder.getFuncDescForGUID(ProbeNode.Guid)->FuncName; ProbeContext.emplace_back(FuncName, 0); // This ProbeContext has a probe, so it has code before inlining and // optimization. Make sure we mark its size as known. if (!ProbeNode.getProbes().empty()) { ContextTrieNode *SizeContext = &RootContext; for (auto &ProbeFrame : reverse(ProbeContext)) { StringRef CallerName = ProbeFrame.first; LineLocation CallsiteLoc(ProbeFrame.second, 0); SizeContext = SizeContext->getOrCreateChildContext(CallsiteLoc, CallerName); } // Add 0 size to make known. SizeContext->addFunctionSize(0); } // DFS down the probe inline tree for (const auto &ChildNode : ProbeNode.getChildren()) { InlineSite Location = ChildNode.first; ProbeContext.back().second = std::get<1>(Location); trackInlineesOptimizedAway(ProbeDecoder, *ChildNode.second.get(), ProbeContext); } ProbeContext.pop_back(); } void ProfiledBinary::warnNoFuncEntry() { uint64_t NoFuncEntryNum = 0; for (auto &F : BinaryFunctions) { if (F.second.Ranges.empty()) continue; bool hasFuncEntry = false; for (auto &R : F.second.Ranges) { if (FuncRange *FR = findFuncRangeForStartOffset(R.first)) { if (FR->IsFuncEntry) { hasFuncEntry = true; break; } } } if (!hasFuncEntry) { NoFuncEntryNum++; if (ShowDetailedWarning) WithColor::warning() << "Failed to determine function entry for " << F.first << " due to inconsistent name from symbol table and dwarf info.\n"; } } emitWarningSummary(NoFuncEntryNum, BinaryFunctions.size(), "of functions failed to determine function entry due to " "inconsistent name from symbol table and dwarf info."); } void ProfiledBinary::load() { // Attempt to open the binary. OwningBinary<Binary> OBinary = unwrapOrError(createBinary(Path), Path); Binary &ExeBinary = *OBinary.getBinary(); auto *Obj = dyn_cast<ELFObjectFileBase>(&ExeBinary); if (!Obj) exitWithError("not a valid Elf image", Path); TheTriple = Obj->makeTriple(); // Current only support X86 if (!TheTriple.isX86()) exitWithError("unsupported target", TheTriple.getTriple()); LLVM_DEBUG(dbgs() << "Loading " << Path << "\n"); // Find the preferred load address for text sections. setPreferredTextSegmentAddresses(Obj); // Decode pseudo probe related section decodePseudoProbe(Obj); // Load debug info of subprograms from DWARF section. // If path of debug info binary is specified, use the debug info from it, // otherwise use the debug info from the executable binary. if (!DebugBinaryPath.empty()) { OwningBinary<Binary> DebugPath = unwrapOrError(createBinary(DebugBinaryPath), DebugBinaryPath); loadSymbolsFromDWARF(*dyn_cast<ObjectFile>(DebugPath.getBinary())); } else { loadSymbolsFromDWARF(*dyn_cast<ObjectFile>(&ExeBinary)); } // Disassemble the text sections. disassemble(Obj); // Track size for optimized inlinees when probe is available if (UsePseudoProbes && TrackFuncContextSize) FuncSizeTracker.trackInlineesOptimizedAway(ProbeDecoder); // Use function start and return address to infer prolog and epilog ProEpilogTracker.inferPrologOffsets(StartOffset2FuncRangeMap); ProEpilogTracker.inferEpilogOffsets(RetOffsets); warnNoFuncEntry(); // TODO: decode other sections. } bool ProfiledBinary::inlineContextEqual(uint64_t Address1, uint64_t Address2) { uint64_t Offset1 = virtualAddrToOffset(Address1); uint64_t Offset2 = virtualAddrToOffset(Address2); const SampleContextFrameVector &Context1 = getFrameLocationStack(Offset1); const SampleContextFrameVector &Context2 = getFrameLocationStack(Offset2); if (Context1.size() != Context2.size()) return false; if (Context1.empty()) return false; // The leaf frame contains location within the leaf, and it // needs to be remove that as it's not part of the calling context return std::equal(Context1.begin(), Context1.begin() + Context1.size() - 1, Context2.begin(), Context2.begin() + Context2.size() - 1); } SampleContextFrameVector ProfiledBinary::getExpandedContext(const SmallVectorImpl<uint64_t> &Stack, bool &WasLeafInlined) { SampleContextFrameVector ContextVec; // Process from frame root to leaf for (auto Address : Stack) { uint64_t Offset = virtualAddrToOffset(Address); const SampleContextFrameVector &ExpandedContext = getFrameLocationStack(Offset); // An instruction without a valid debug line will be ignored by sample // processing if (ExpandedContext.empty()) return SampleContextFrameVector(); // Set WasLeafInlined to the size of inlined frame count for the last // address which is leaf WasLeafInlined = (ExpandedContext.size() > 1); ContextVec.append(ExpandedContext); } // Replace with decoded base discriminator for (auto &Frame : ContextVec) { Frame.Location.Discriminator = ProfileGeneratorBase::getBaseDiscriminator( Frame.Location.Discriminator, UseFSDiscriminator); } assert(ContextVec.size() && "Context length should be at least 1"); // Compress the context string except for the leaf frame auto LeafFrame = ContextVec.back(); LeafFrame.Location = LineLocation(0, 0); ContextVec.pop_back(); CSProfileGenerator::compressRecursionContext(ContextVec); CSProfileGenerator::trimContext(ContextVec); ContextVec.push_back(LeafFrame); return ContextVec; } template <class ELFT> void ProfiledBinary::setPreferredTextSegmentAddresses(const ELFFile<ELFT> &Obj, StringRef FileName) { const auto &PhdrRange = unwrapOrError(Obj.program_headers(), FileName); // FIXME: This should be the page size of the system running profiling. // However such info isn't available at post-processing time, assuming // 4K page now. Note that we don't use EXEC_PAGESIZE from <linux/param.h> // because we may build the tools on non-linux. uint32_t PageSize = 0x1000; for (const typename ELFT::Phdr &Phdr : PhdrRange) { if (Phdr.p_type == ELF::PT_LOAD) { if (!FirstLoadableAddress) FirstLoadableAddress = Phdr.p_vaddr & ~(PageSize - 1U); if (Phdr.p_flags & ELF::PF_X) { // Segments will always be loaded at a page boundary. PreferredTextSegmentAddresses.push_back(Phdr.p_vaddr & ~(PageSize - 1U)); TextSegmentOffsets.push_back(Phdr.p_offset & ~(PageSize - 1U)); } } } if (PreferredTextSegmentAddresses.empty()) exitWithError("no executable segment found", FileName); } void ProfiledBinary::setPreferredTextSegmentAddresses(const ELFObjectFileBase *Obj) { if (const auto *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj)) setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName()); else if (const auto *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj)) setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName()); else if (const auto *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj)) setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName()); else if (const auto *ELFObj = cast<ELF64BEObjectFile>(Obj)) setPreferredTextSegmentAddresses(ELFObj->getELFFile(), Obj->getFileName()); else llvm_unreachable("invalid ELF object format"); } void ProfiledBinary::decodePseudoProbe(const ELFObjectFileBase *Obj) { if (UseDwarfCorrelation) return; StringRef FileName = Obj->getFileName(); for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end(); SI != SE; ++SI) { const SectionRef &Section = *SI; StringRef SectionName = unwrapOrError(Section.getName(), FileName); if (SectionName == ".pseudo_probe_desc") { StringRef Contents = unwrapOrError(Section.getContents(), FileName); if (!ProbeDecoder.buildGUID2FuncDescMap( reinterpret_cast<const uint8_t *>(Contents.data()), Contents.size())) exitWithError("Pseudo Probe decoder fail in .pseudo_probe_desc section"); } else if (SectionName == ".pseudo_probe") { StringRef Contents = unwrapOrError(Section.getContents(), FileName); if (!ProbeDecoder.buildAddress2ProbeMap( reinterpret_cast<const uint8_t *>(Contents.data()), Contents.size())) exitWithError("Pseudo Probe decoder fail in .pseudo_probe section"); // set UsePseudoProbes flag, used for PerfReader UsePseudoProbes = true; } } if (ShowPseudoProbe) ProbeDecoder.printGUID2FuncDescMap(outs()); } void ProfiledBinary::setIsFuncEntry(uint64_t Offset, StringRef RangeSymName) { // Note that the start offset of each ELF section can be a non-function // symbol, we need to binary search for the start of a real function range. auto *FuncRange = findFuncRangeForOffset(Offset); // Skip external function symbol. if (!FuncRange) return; // Set IsFuncEntry to ture if there is only one range in the function or the // RangeSymName from ELF is equal to its DWARF-based function name. if (FuncRange->Func->Ranges.size() == 1 || (!FuncRange->IsFuncEntry && FuncRange->getFuncName() == RangeSymName)) FuncRange->IsFuncEntry = true; } bool ProfiledBinary::dissassembleSymbol(std::size_t SI, ArrayRef<uint8_t> Bytes, SectionSymbolsTy &Symbols, const SectionRef &Section) { std::size_t SE = Symbols.size(); uint64_t SectionOffset = Section.getAddress() - getPreferredBaseAddress(); uint64_t SectSize = Section.getSize(); uint64_t StartOffset = Symbols[SI].Addr - getPreferredBaseAddress(); uint64_t NextStartOffset = (SI + 1 < SE) ? Symbols[SI + 1].Addr - getPreferredBaseAddress() : SectionOffset + SectSize; setIsFuncEntry(StartOffset, FunctionSamples::getCanonicalFnName(Symbols[SI].Name)); StringRef SymbolName = ShowCanonicalFnName ? FunctionSamples::getCanonicalFnName(Symbols[SI].Name) : Symbols[SI].Name; bool ShowDisassembly = ShowDisassemblyOnly && (DisassembleFunctionSet.empty() || DisassembleFunctionSet.count(SymbolName)); if (ShowDisassembly) outs() << '<' << SymbolName << ">:\n"; auto WarnInvalidInsts = [](uint64_t Start, uint64_t End) { WithColor::warning() << "Invalid instructions at " << format("%8" PRIx64, Start) << " - " << format("%8" PRIx64, End) << "\n"; }; uint64_t Offset = StartOffset; // Size of a consecutive invalid instruction range starting from Offset -1 // backwards. uint64_t InvalidInstLength = 0; while (Offset < NextStartOffset) { MCInst Inst; uint64_t Size; // Disassemble an instruction. bool Disassembled = DisAsm->getInstruction(Inst, Size, Bytes.slice(Offset - SectionOffset), Offset + getPreferredBaseAddress(), nulls()); if (Size == 0) Size = 1; if (ShowDisassembly) { if (ShowPseudoProbe) { ProbeDecoder.printProbeForAddress(outs(), Offset + getPreferredBaseAddress()); } outs() << format("%8" PRIx64 ":", Offset + getPreferredBaseAddress()); size_t Start = outs().tell(); if (Disassembled) IPrinter->printInst(&Inst, Offset + Size, "", *STI.get(), outs()); else outs() << "\t<unknown>"; if (ShowSourceLocations) { unsigned Cur = outs().tell() - Start; if (Cur < 40) outs().indent(40 - Cur); InstructionPointer IP(this, Offset); outs() << getReversedLocWithContext( symbolize(IP, ShowCanonicalFnName, ShowPseudoProbe)); } outs() << "\n"; } if (Disassembled) { const MCInstrDesc &MCDesc = MII->get(Inst.getOpcode()); // Record instruction size. Offset2InstSizeMap[Offset] = Size; // Populate address maps. CodeAddrOffsets.push_back(Offset); if (MCDesc.isCall()) CallOffsets.insert(Offset); else if (MCDesc.isReturn()) RetOffsets.insert(Offset); else if (MCDesc.isBranch()) BranchOffsets.insert(Offset); if (InvalidInstLength) { WarnInvalidInsts(Offset - InvalidInstLength, Offset - 1); InvalidInstLength = 0; } } else { InvalidInstLength += Size; } Offset += Size; } if (InvalidInstLength) WarnInvalidInsts(Offset - InvalidInstLength, Offset - 1); if (ShowDisassembly) outs() << "\n"; return true; } void ProfiledBinary::setUpDisassembler(const ELFObjectFileBase *Obj) { const Target *TheTarget = getTarget(Obj); std::string TripleName = TheTriple.getTriple(); StringRef FileName = Obj->getFileName(); MRI.reset(TheTarget->createMCRegInfo(TripleName)); if (!MRI) exitWithError("no register info for target " + TripleName, FileName); MCTargetOptions MCOptions; AsmInfo.reset(TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions)); if (!AsmInfo) exitWithError("no assembly info for target " + TripleName, FileName); SubtargetFeatures Features = Obj->getFeatures(); STI.reset( TheTarget->createMCSubtargetInfo(TripleName, "", Features.getString())); if (!STI) exitWithError("no subtarget info for target " + TripleName, FileName); MII.reset(TheTarget->createMCInstrInfo()); if (!MII) exitWithError("no instruction info for target " + TripleName, FileName); MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get()); std::unique_ptr<MCObjectFileInfo> MOFI( TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false)); Ctx.setObjectFileInfo(MOFI.get()); DisAsm.reset(TheTarget->createMCDisassembler(*STI, Ctx)); if (!DisAsm) exitWithError("no disassembler for target " + TripleName, FileName); MIA.reset(TheTarget->createMCInstrAnalysis(MII.get())); int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); IPrinter.reset(TheTarget->createMCInstPrinter( Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); IPrinter->setPrintBranchImmAsAddress(true); } void ProfiledBinary::disassemble(const ELFObjectFileBase *Obj) { // Set up disassembler and related components. setUpDisassembler(Obj); // Create a mapping from virtual address to symbol name. The symbols in text // sections are the candidates to dissassemble. std::map<SectionRef, SectionSymbolsTy> AllSymbols; StringRef FileName = Obj->getFileName(); for (const SymbolRef &Symbol : Obj->symbols()) { const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); const StringRef Name = unwrapOrError(Symbol.getName(), FileName); section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); if (SecI != Obj->section_end()) AllSymbols[*SecI].push_back(SymbolInfoTy(Addr, Name, ELF::STT_NOTYPE)); } // Sort all the symbols. Use a stable sort to stabilize the output. for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) stable_sort(SecSyms.second); DisassembleFunctionSet.insert(DisassembleFunctions.begin(), DisassembleFunctions.end()); assert((DisassembleFunctionSet.empty() || ShowDisassemblyOnly) && "Functions to disassemble should be only specified together with " "--show-disassembly-only"); if (ShowDisassemblyOnly) outs() << "\nDisassembly of " << FileName << ":\n"; // Dissassemble a text section. for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end(); SI != SE; ++SI) { const SectionRef &Section = *SI; if (!Section.isText()) continue; uint64_t ImageLoadAddr = getPreferredBaseAddress(); uint64_t SectionOffset = Section.getAddress() - ImageLoadAddr; uint64_t SectSize = Section.getSize(); if (!SectSize) continue; // Register the text section. TextSections.insert({SectionOffset, SectSize}); StringRef SectionName = unwrapOrError(Section.getName(), FileName); if (ShowDisassemblyOnly) { outs() << "\nDisassembly of section " << SectionName; outs() << " [" << format("0x%" PRIx64, Section.getAddress()) << ", " << format("0x%" PRIx64, Section.getAddress() + SectSize) << "]:\n\n"; } if (SectionName == ".plt") continue; // Get the section data. ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(unwrapOrError(Section.getContents(), FileName)); // Get the list of all the symbols in this section. SectionSymbolsTy &Symbols = AllSymbols[Section]; // Disassemble symbol by symbol. for (std::size_t SI = 0, SE = Symbols.size(); SI != SE; ++SI) { if (!dissassembleSymbol(SI, Bytes, Symbols, Section)) exitWithError("disassembling error", FileName); } } // Dissassemble rodata section to check if FS discriminator symbol exists. checkUseFSDiscriminator(Obj, AllSymbols); } void ProfiledBinary::checkUseFSDiscriminator( const ELFObjectFileBase *Obj, std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { const char *FSDiscriminatorVar = "__llvm_fs_discriminator__"; for (section_iterator SI = Obj->section_begin(), SE = Obj->section_end(); SI != SE; ++SI) { const SectionRef &Section = *SI; if (!Section.isData() || Section.getSize() == 0) continue; SectionSymbolsTy &Symbols = AllSymbols[Section]; for (std::size_t SI = 0, SE = Symbols.size(); SI != SE; ++SI) { if (Symbols[SI].Name == FSDiscriminatorVar) { UseFSDiscriminator = true; return; } } } } void ProfiledBinary::loadSymbolsFromDWARF(ObjectFile &Obj) { auto DebugContext = llvm::DWARFContext::create(Obj); if (!DebugContext) exitWithError("Misssing debug info.", Path); for (const auto &CompilationUnit : DebugContext->compile_units()) { for (const auto &DieInfo : CompilationUnit->dies()) { llvm::DWARFDie Die(CompilationUnit.get(), &DieInfo); if (!Die.isSubprogramDIE()) continue; auto Name = Die.getName(llvm::DINameKind::LinkageName); if (!Name) Name = Die.getName(llvm::DINameKind::ShortName); if (!Name) continue; auto RangesOrError = Die.getAddressRanges(); if (!RangesOrError) continue; const DWARFAddressRangesVector &Ranges = RangesOrError.get(); if (Ranges.empty()) continue; // Different DWARF symbols can have same function name, search or create // BinaryFunction indexed by the name. auto Ret = BinaryFunctions.emplace(Name, BinaryFunction()); auto &Func = Ret.first->second; if (Ret.second) Func.FuncName = Ret.first->first; for (const auto &Range : Ranges) { uint64_t FuncStart = Range.LowPC; uint64_t FuncSize = Range.HighPC - FuncStart; if (FuncSize == 0 || FuncStart < getPreferredBaseAddress()) continue; uint64_t StartOffset = FuncStart - getPreferredBaseAddress(); uint64_t EndOffset = Range.HighPC - getPreferredBaseAddress(); // We may want to know all ranges for one function. Here group the // ranges and store them into BinaryFunction. Func.Ranges.emplace_back(StartOffset, EndOffset); auto R = StartOffset2FuncRangeMap.emplace(StartOffset, FuncRange()); if (R.second) { FuncRange &FRange = R.first->second; FRange.Func = &Func; FRange.StartOffset = StartOffset; FRange.EndOffset = EndOffset; } else { WithColor::warning() << "Duplicated symbol start address at " << format("%8" PRIx64, StartOffset + getPreferredBaseAddress()) << " " << R.first->second.getFuncName() << " and " << Name << "\n"; } } } } assert(!StartOffset2FuncRangeMap.empty() && "Misssing debug info."); } void ProfiledBinary::populateSymbolListFromDWARF( ProfileSymbolList &SymbolList) { for (auto &I : StartOffset2FuncRangeMap) SymbolList.add(I.second.getFuncName()); } void ProfiledBinary::setupSymbolizer() { symbolize::LLVMSymbolizer::Options SymbolizerOpts; SymbolizerOpts.PrintFunctions = DILineInfoSpecifier::FunctionNameKind::LinkageName; SymbolizerOpts.Demangle = false; SymbolizerOpts.DefaultArch = TheTriple.getArchName().str(); SymbolizerOpts.UseSymbolTable = false; SymbolizerOpts.RelativeAddresses = false; Symbolizer = std::make_unique<symbolize::LLVMSymbolizer>(SymbolizerOpts); } SampleContextFrameVector ProfiledBinary::symbolize(const InstructionPointer &IP, bool UseCanonicalFnName, bool UseProbeDiscriminator) { assert(this == IP.Binary && "Binary should only symbolize its own instruction"); auto Addr = object::SectionedAddress{IP.Offset + getPreferredBaseAddress(), object::SectionedAddress::UndefSection}; DIInliningInfo InlineStack = unwrapOrError( Symbolizer->symbolizeInlinedCode(SymbolizerPath.str(), Addr), SymbolizerPath); SampleContextFrameVector CallStack; for (int32_t I = InlineStack.getNumberOfFrames() - 1; I >= 0; I--) { const auto &CallerFrame = InlineStack.getFrame(I); if (CallerFrame.FunctionName == "<invalid>") break; StringRef FunctionName(CallerFrame.FunctionName); if (UseCanonicalFnName) FunctionName = FunctionSamples::getCanonicalFnName(FunctionName); uint32_t Discriminator = CallerFrame.Discriminator; uint32_t LineOffset = (CallerFrame.Line - CallerFrame.StartLine) & 0xffff; if (UseProbeDiscriminator) { LineOffset = PseudoProbeDwarfDiscriminator::extractProbeIndex(Discriminator); Discriminator = 0; } LineLocation Line(LineOffset, Discriminator); auto It = NameStrings.insert(FunctionName.str()); CallStack.emplace_back(*It.first, Line); } return CallStack; } void ProfiledBinary::computeInlinedContextSizeForRange(uint64_t StartOffset, uint64_t EndOffset) { uint64_t RangeBegin = offsetToVirtualAddr(StartOffset); uint64_t RangeEnd = offsetToVirtualAddr(EndOffset); InstructionPointer IP(this, RangeBegin, true); if (IP.Address != RangeBegin) WithColor::warning() << "Invalid start instruction at " << format("%8" PRIx64, RangeBegin) << "\n"; if (IP.Address >= RangeEnd) return; do { uint64_t Offset = virtualAddrToOffset(IP.Address); const SampleContextFrameVector &SymbolizedCallStack = getFrameLocationStack(Offset, UsePseudoProbes); uint64_t Size = Offset2InstSizeMap[Offset]; // Record instruction size for the corresponding context FuncSizeTracker.addInstructionForContext(SymbolizedCallStack, Size); } while (IP.advance() && IP.Address < RangeEnd); } InstructionPointer::InstructionPointer(const ProfiledBinary *Binary, uint64_t Address, bool RoundToNext) : Binary(Binary), Address(Address) { Index = Binary->getIndexForAddr(Address); if (RoundToNext) { // we might get address which is not the code // it should round to the next valid address if (Index >= Binary->getCodeOffsetsSize()) this->Address = UINT64_MAX; else this->Address = Binary->getAddressforIndex(Index); } } bool InstructionPointer::advance() { Index++; if (Index >= Binary->getCodeOffsetsSize()) { Address = UINT64_MAX; return false; } Address = Binary->getAddressforIndex(Index); return true; } bool InstructionPointer::backward() { if (Index == 0) { Address = 0; return false; } Index--; Address = Binary->getAddressforIndex(Index); return true; } void InstructionPointer::update(uint64_t Addr) { Address = Addr; Index = Binary->getIndexForAddr(Address); } } // end namespace sampleprof } // end namespace llvm