#pragma once #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #endif //===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This file provides a collection of function (or more generally, callable) /// type erasure utilities supplementing those provided by the standard library /// in `<function>`. /// /// It provides `unique_function`, which works like `std::function` but supports /// move-only callable objects and const-qualification. /// /// Future plans: /// - Add a `function` that provides ref-qualified support, which doesn't work /// with `std::function`. /// - Provide support for specifying multiple signatures to type erase callable /// objects with an overload set, such as those produced by generic lambdas. /// - Expand to include a copyable utility that directly replaces std::function /// but brings the above improvements. /// /// Note that LLVM's utilities are greatly simplified by not supporting /// allocators. /// /// If the standard library ever begins to provide comparable facilities we can /// consider switching to those. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_FUNCTIONEXTRAS_H #define LLVM_ADT_FUNCTIONEXTRAS_H #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/STLForwardCompat.h" #include "llvm/Support/MemAlloc.h" #include "llvm/Support/type_traits.h" #include <cstring> #include <memory> #include <type_traits> namespace llvm { /// unique_function is a type-erasing functor similar to std::function. /// /// It can hold move-only function objects, like lambdas capturing unique_ptrs. /// Accordingly, it is movable but not copyable. /// /// It supports const-qualification: /// - unique_function<int() const> has a const operator(). /// It can only hold functions which themselves have a const operator(). /// - unique_function<int()> has a non-const operator(). /// It can hold functions with a non-const operator(), like mutable lambdas. template <typename FunctionT> class unique_function; namespace detail { template <typename T> using EnableIfTrivial = std::enable_if_t<llvm::is_trivially_move_constructible<T>::value && std::is_trivially_destructible<T>::value>; template <typename CallableT, typename ThisT> using EnableUnlessSameType = std::enable_if_t<!std::is_same<remove_cvref_t<CallableT>, ThisT>::value>; template <typename CallableT, typename Ret, typename... Params> using EnableIfCallable = std::enable_if_t<llvm::disjunction< std::is_void<Ret>, std::is_same<decltype(std::declval<CallableT>()(std::declval<Params>()...)), Ret>, std::is_same<const decltype(std::declval<CallableT>()( std::declval<Params>()...)), Ret>, std::is_convertible<decltype(std::declval<CallableT>()( std::declval<Params>()...)), Ret>>::value>; template <typename ReturnT, typename... ParamTs> class UniqueFunctionBase { protected: static constexpr size_t InlineStorageSize = sizeof(void *) * 3; template <typename T, class = void> struct IsSizeLessThanThresholdT : std::false_type {}; template <typename T> struct IsSizeLessThanThresholdT< T, std::enable_if_t<sizeof(T) <= 2 * sizeof(void *)>> : std::true_type {}; // Provide a type function to map parameters that won't observe extra copies // or moves and which are small enough to likely pass in register to values // and all other types to l-value reference types. We use this to compute the // types used in our erased call utility to minimize copies and moves unless // doing so would force things unnecessarily into memory. // // The heuristic used is related to common ABI register passing conventions. // It doesn't have to be exact though, and in one way it is more strict // because we want to still be able to observe either moves *or* copies. template <typename T> struct AdjustedParamTBase { static_assert(!std::is_reference<T>::value, "references should be handled by template specialization"); using type = typename std::conditional< llvm::is_trivially_copy_constructible<T>::value && llvm::is_trivially_move_constructible<T>::value && IsSizeLessThanThresholdT<T>::value, T, T &>::type; }; // This specialization ensures that 'AdjustedParam<V<T>&>' or // 'AdjustedParam<V<T>&&>' does not trigger a compile-time error when 'T' is // an incomplete type and V a templated type. template <typename T> struct AdjustedParamTBase<T &> { using type = T &; }; template <typename T> struct AdjustedParamTBase<T &&> { using type = T &; }; template <typename T> using AdjustedParamT = typename AdjustedParamTBase<T>::type; // The type of the erased function pointer we use as a callback to dispatch to // the stored callable when it is trivial to move and destroy. using CallPtrT = ReturnT (*)(void *CallableAddr, AdjustedParamT<ParamTs>... Params); using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr); using DestroyPtrT = void (*)(void *CallableAddr); /// A struct to hold a single trivial callback with sufficient alignment for /// our bitpacking. struct alignas(8) TrivialCallback { CallPtrT CallPtr; }; /// A struct we use to aggregate three callbacks when we need full set of /// operations. struct alignas(8) NonTrivialCallbacks { CallPtrT CallPtr; MovePtrT MovePtr; DestroyPtrT DestroyPtr; }; // Create a pointer union between either a pointer to a static trivial call // pointer in a struct or a pointer to a static struct of the call, move, and // destroy pointers. using CallbackPointerUnionT = PointerUnion<TrivialCallback *, NonTrivialCallbacks *>; // The main storage buffer. This will either have a pointer to out-of-line // storage or an inline buffer storing the callable. union StorageUnionT { // For out-of-line storage we keep a pointer to the underlying storage and // the size. This is enough to deallocate the memory. struct OutOfLineStorageT { void *StoragePtr; size_t Size; size_t Alignment; } OutOfLineStorage; static_assert( sizeof(OutOfLineStorageT) <= InlineStorageSize, "Should always use all of the out-of-line storage for inline storage!"); // For in-line storage, we just provide an aligned character buffer. We // provide three pointers worth of storage here. // This is mutable as an inlined `const unique_function<void() const>` may // still modify its own mutable members. mutable typename std::aligned_storage<InlineStorageSize, alignof(void *)>::type InlineStorage; } StorageUnion; // A compressed pointer to either our dispatching callback or our table of // dispatching callbacks and the flag for whether the callable itself is // stored inline or not. PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag; bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); } bool isTrivialCallback() const { return CallbackAndInlineFlag.getPointer().template is<TrivialCallback *>(); } CallPtrT getTrivialCallback() const { return CallbackAndInlineFlag.getPointer().template get<TrivialCallback *>()->CallPtr; } NonTrivialCallbacks *getNonTrivialCallbacks() const { return CallbackAndInlineFlag.getPointer() .template get<NonTrivialCallbacks *>(); } CallPtrT getCallPtr() const { return isTrivialCallback() ? getTrivialCallback() : getNonTrivialCallbacks()->CallPtr; } // These three functions are only const in the narrow sense. They return // mutable pointers to function state. // This allows unique_function<T const>::operator() to be const, even if the // underlying functor may be internally mutable. // // const callers must ensure they're only used in const-correct ways. void *getCalleePtr() const { return isInlineStorage() ? getInlineStorage() : getOutOfLineStorage(); } void *getInlineStorage() const { return &StorageUnion.InlineStorage; } void *getOutOfLineStorage() const { return StorageUnion.OutOfLineStorage.StoragePtr; } size_t getOutOfLineStorageSize() const { return StorageUnion.OutOfLineStorage.Size; } size_t getOutOfLineStorageAlignment() const { return StorageUnion.OutOfLineStorage.Alignment; } void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) { StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment}; } template <typename CalledAsT> static ReturnT CallImpl(void *CallableAddr, AdjustedParamT<ParamTs>... Params) { auto &Func = *reinterpret_cast<CalledAsT *>(CallableAddr); return Func(std::forward<ParamTs>(Params)...); } template <typename CallableT> static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept { new (LHSCallableAddr) CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr))); } template <typename CallableT> static void DestroyImpl(void *CallableAddr) noexcept { reinterpret_cast<CallableT *>(CallableAddr)->~CallableT(); } // The pointers to call/move/destroy functions are determined for each // callable type (and called-as type, which determines the overload chosen). // (definitions are out-of-line). // By default, we need an object that contains all the different // type erased behaviors needed. Create a static instance of the struct type // here and each instance will contain a pointer to it. // Wrap in a struct to avoid https://gcc.gnu.org/PR71954 template <typename CallableT, typename CalledAs, typename Enable = void> struct CallbacksHolder { static NonTrivialCallbacks Callbacks; }; // See if we can create a trivial callback. We need the callable to be // trivially moved and trivially destroyed so that we don't have to store // type erased callbacks for those operations. template <typename CallableT, typename CalledAs> struct CallbacksHolder<CallableT, CalledAs, EnableIfTrivial<CallableT>> { static TrivialCallback Callbacks; }; // A simple tag type so the call-as type to be passed to the constructor. template <typename T> struct CalledAs {}; // Essentially the "main" unique_function constructor, but subclasses // provide the qualified type to be used for the call. // (We always store a T, even if the call will use a pointer to const T). template <typename CallableT, typename CalledAsT> UniqueFunctionBase(CallableT Callable, CalledAs<CalledAsT>) { bool IsInlineStorage = true; void *CallableAddr = getInlineStorage(); if (sizeof(CallableT) > InlineStorageSize || alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) { IsInlineStorage = false; // Allocate out-of-line storage. FIXME: Use an explicit alignment // parameter in C++17 mode. auto Size = sizeof(CallableT); auto Alignment = alignof(CallableT); CallableAddr = allocate_buffer(Size, Alignment); setOutOfLineStorage(CallableAddr, Size, Alignment); } // Now move into the storage. new (CallableAddr) CallableT(std::move(Callable)); CallbackAndInlineFlag.setPointerAndInt( &CallbacksHolder<CallableT, CalledAsT>::Callbacks, IsInlineStorage); } ~UniqueFunctionBase() { if (!CallbackAndInlineFlag.getPointer()) return; // Cache this value so we don't re-check it after type-erased operations. bool IsInlineStorage = isInlineStorage(); if (!isTrivialCallback()) getNonTrivialCallbacks()->DestroyPtr( IsInlineStorage ? getInlineStorage() : getOutOfLineStorage()); if (!IsInlineStorage) deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(), getOutOfLineStorageAlignment()); } UniqueFunctionBase(UniqueFunctionBase &&RHS) noexcept { // Copy the callback and inline flag. CallbackAndInlineFlag = RHS.CallbackAndInlineFlag; // If the RHS is empty, just copying the above is sufficient. if (!RHS) return; if (!isInlineStorage()) { // The out-of-line case is easiest to move. StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage; } else if (isTrivialCallback()) { // Move is trivial, just memcpy the bytes across. memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize); } else { // Non-trivial move, so dispatch to a type-erased implementation. getNonTrivialCallbacks()->MovePtr(getInlineStorage(), RHS.getInlineStorage()); } // Clear the old callback and inline flag to get back to as-if-null. RHS.CallbackAndInlineFlag = {}; #ifndef NDEBUG // In debug builds, we also scribble across the rest of the storage. memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize); #endif } UniqueFunctionBase &operator=(UniqueFunctionBase &&RHS) noexcept { if (this == &RHS) return *this; // Because we don't try to provide any exception safety guarantees we can // implement move assignment very simply by first destroying the current // object and then move-constructing over top of it. this->~UniqueFunctionBase(); new (this) UniqueFunctionBase(std::move(RHS)); return *this; } UniqueFunctionBase() = default; public: explicit operator bool() const { return (bool)CallbackAndInlineFlag.getPointer(); } }; template <typename R, typename... P> template <typename CallableT, typename CalledAsT, typename Enable> typename UniqueFunctionBase<R, P...>::NonTrivialCallbacks UniqueFunctionBase< R, P...>::CallbacksHolder<CallableT, CalledAsT, Enable>::Callbacks = { &CallImpl<CalledAsT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>}; template <typename R, typename... P> template <typename CallableT, typename CalledAsT> typename UniqueFunctionBase<R, P...>::TrivialCallback UniqueFunctionBase<R, P...>::CallbacksHolder< CallableT, CalledAsT, EnableIfTrivial<CallableT>>::Callbacks{ &CallImpl<CalledAsT>}; } // namespace detail template <typename R, typename... P> class unique_function<R(P...)> : public detail::UniqueFunctionBase<R, P...> { using Base = detail::UniqueFunctionBase<R, P...>; public: unique_function() = default; unique_function(std::nullptr_t) {} unique_function(unique_function &&) = default; unique_function(const unique_function &) = delete; unique_function &operator=(unique_function &&) = default; unique_function &operator=(const unique_function &) = delete; template <typename CallableT> unique_function( CallableT Callable, detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr, detail::EnableIfCallable<CallableT, R, P...> * = nullptr) : Base(std::forward<CallableT>(Callable), typename Base::template CalledAs<CallableT>{}) {} R operator()(P... Params) { return this->getCallPtr()(this->getCalleePtr(), Params...); } }; template <typename R, typename... P> class unique_function<R(P...) const> : public detail::UniqueFunctionBase<R, P...> { using Base = detail::UniqueFunctionBase<R, P...>; public: unique_function() = default; unique_function(std::nullptr_t) {} unique_function(unique_function &&) = default; unique_function(const unique_function &) = delete; unique_function &operator=(unique_function &&) = default; unique_function &operator=(const unique_function &) = delete; template <typename CallableT> unique_function( CallableT Callable, detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr, detail::EnableIfCallable<const CallableT, R, P...> * = nullptr) : Base(std::forward<CallableT>(Callable), typename Base::template CalledAs<const CallableT>{}) {} R operator()(P... Params) const { return this->getCallPtr()(this->getCalleePtr(), Params...); } }; } // end namespace llvm #endif // LLVM_ADT_FUNCTIONEXTRAS_H #ifdef __GNUC__ #pragma GCC diagnostic pop #endif