// -*- C++ -*- //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef _LIBCPP___ITERATOR_ITERATOR_TRAITS_H #define _LIBCPP___ITERATOR_ITERATOR_TRAITS_H #include <__concepts/arithmetic.h> #include <__concepts/constructible.h> #include <__concepts/convertible_to.h> #include <__concepts/copyable.h> #include <__concepts/equality_comparable.h> #include <__concepts/same_as.h> #include <__concepts/totally_ordered.h> #include <__config> #include <__fwd/pair.h> #include <__iterator/incrementable_traits.h> #include <__iterator/readable_traits.h> #include <__type_traits/common_reference.h> #include <__type_traits/conditional.h> #include <__type_traits/disjunction.h> #include <__type_traits/is_convertible.h> #include <__type_traits/is_object.h> #include <__type_traits/is_primary_template.h> #include <__type_traits/is_reference.h> #include <__type_traits/is_valid_expansion.h> #include <__type_traits/remove_const.h> #include <__type_traits/remove_cv.h> #include <__type_traits/remove_cvref.h> #include <__type_traits/void_t.h> #include <__utility/declval.h> #include <cstddef> #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) # pragma GCC system_header #endif _LIBCPP_BEGIN_NAMESPACE_STD #if _LIBCPP_STD_VER >= 20 template <class _Tp> using __with_reference = _Tp&; template <class _Tp> concept __can_reference = requires { typename __with_reference<_Tp>; }; template <class _Tp> concept __dereferenceable = requires(_Tp& __t) { { *__t } -> __can_reference; // not required to be equality-preserving }; // [iterator.traits] template <__dereferenceable _Tp> using iter_reference_t = decltype(*std::declval<_Tp&>()); #endif // _LIBCPP_STD_VER >= 20 template <class _Iter> struct _LIBCPP_TEMPLATE_VIS iterator_traits; struct _LIBCPP_TEMPLATE_VIS input_iterator_tag {}; struct _LIBCPP_TEMPLATE_VIS output_iterator_tag {}; struct _LIBCPP_TEMPLATE_VIS forward_iterator_tag : public input_iterator_tag {}; struct _LIBCPP_TEMPLATE_VIS bidirectional_iterator_tag : public forward_iterator_tag {}; struct _LIBCPP_TEMPLATE_VIS random_access_iterator_tag : public bidirectional_iterator_tag {}; #if _LIBCPP_STD_VER >= 20 struct _LIBCPP_TEMPLATE_VIS contiguous_iterator_tag : public random_access_iterator_tag {}; #endif template <class _Iter> struct __iter_traits_cache { using type = _If< __is_primary_template<iterator_traits<_Iter> >::value, _Iter, iterator_traits<_Iter> >; }; template <class _Iter> using _ITER_TRAITS = typename __iter_traits_cache<_Iter>::type; struct __iter_concept_concept_test { template <class _Iter> using _Apply = typename _ITER_TRAITS<_Iter>::iterator_concept; }; struct __iter_concept_category_test { template <class _Iter> using _Apply = typename _ITER_TRAITS<_Iter>::iterator_category; }; struct __iter_concept_random_fallback { template <class _Iter> using _Apply = __enable_if_t< __is_primary_template<iterator_traits<_Iter> >::value, random_access_iterator_tag >; }; template <class _Iter, class _Tester> struct __test_iter_concept : _IsValidExpansion<_Tester::template _Apply, _Iter>, _Tester {}; template <class _Iter> struct __iter_concept_cache { using type = _Or< __test_iter_concept<_Iter, __iter_concept_concept_test>, __test_iter_concept<_Iter, __iter_concept_category_test>, __test_iter_concept<_Iter, __iter_concept_random_fallback> >; }; template <class _Iter> using _ITER_CONCEPT = typename __iter_concept_cache<_Iter>::type::template _Apply<_Iter>; template <class _Tp> struct __has_iterator_typedefs { private: template <class _Up> static false_type __test(...); template <class _Up> static true_type __test(__void_t<typename _Up::iterator_category>* = nullptr, __void_t<typename _Up::difference_type>* = nullptr, __void_t<typename _Up::value_type>* = nullptr, __void_t<typename _Up::reference>* = nullptr, __void_t<typename _Up::pointer>* = nullptr); public: static const bool value = decltype(__test<_Tp>(nullptr, nullptr, nullptr, nullptr, nullptr))::value; }; template <class _Tp> struct __has_iterator_category { private: template <class _Up> static false_type __test(...); template <class _Up> static true_type __test(typename _Up::iterator_category* = nullptr); public: static const bool value = decltype(__test<_Tp>(nullptr))::value; }; template <class _Tp> struct __has_iterator_concept { private: template <class _Up> static false_type __test(...); template <class _Up> static true_type __test(typename _Up::iterator_concept* = nullptr); public: static const bool value = decltype(__test<_Tp>(nullptr))::value; }; #if _LIBCPP_STD_VER >= 20 // The `cpp17-*-iterator` exposition-only concepts have very similar names to the `Cpp17*Iterator` named requirements // from `[iterator.cpp17]`. To avoid confusion between the two, the exposition-only concepts have been banished to // a "detail" namespace indicating they have a niche use-case. namespace __iterator_traits_detail { template <class _Ip> concept __cpp17_iterator = requires(_Ip __i) { { *__i } -> __can_reference; { ++__i } -> same_as<_Ip&>; { *__i++ } -> __can_reference; } && copyable<_Ip>; template <class _Ip> concept __cpp17_input_iterator = __cpp17_iterator<_Ip> && equality_comparable<_Ip> && requires(_Ip __i) { typename incrementable_traits<_Ip>::difference_type; typename indirectly_readable_traits<_Ip>::value_type; typename common_reference_t<iter_reference_t<_Ip>&&, typename indirectly_readable_traits<_Ip>::value_type&>; typename common_reference_t<decltype(*__i++)&&, typename indirectly_readable_traits<_Ip>::value_type&>; requires signed_integral<typename incrementable_traits<_Ip>::difference_type>; }; template <class _Ip> concept __cpp17_forward_iterator = __cpp17_input_iterator<_Ip> && constructible_from<_Ip> && is_reference_v<iter_reference_t<_Ip>> && same_as<remove_cvref_t<iter_reference_t<_Ip>>, typename indirectly_readable_traits<_Ip>::value_type> && requires(_Ip __i) { { __i++ } -> convertible_to<_Ip const&>; { *__i++ } -> same_as<iter_reference_t<_Ip>>; }; template <class _Ip> concept __cpp17_bidirectional_iterator = __cpp17_forward_iterator<_Ip> && requires(_Ip __i) { { --__i } -> same_as<_Ip&>; { __i-- } -> convertible_to<_Ip const&>; { *__i-- } -> same_as<iter_reference_t<_Ip>>; }; template <class _Ip> concept __cpp17_random_access_iterator = __cpp17_bidirectional_iterator<_Ip> && totally_ordered<_Ip> && requires(_Ip __i, typename incrementable_traits<_Ip>::difference_type __n) { { __i += __n } -> same_as<_Ip&>; { __i -= __n } -> same_as<_Ip&>; { __i + __n } -> same_as<_Ip>; { __n + __i } -> same_as<_Ip>; { __i - __n } -> same_as<_Ip>; { __i - __i } -> same_as<decltype(__n)>; // NOLINT(misc-redundant-expression) ; This is llvm.org/PR54114 { __i[__n] } -> convertible_to<iter_reference_t<_Ip>>; }; } // namespace __iterator_traits_detail template <class _Ip> concept __has_member_reference = requires { typename _Ip::reference; }; template <class _Ip> concept __has_member_pointer = requires { typename _Ip::pointer; }; template <class _Ip> concept __has_member_iterator_category = requires { typename _Ip::iterator_category; }; template <class _Ip> concept __specifies_members = requires { typename _Ip::value_type; typename _Ip::difference_type; requires __has_member_reference<_Ip>; requires __has_member_iterator_category<_Ip>; }; template <class> struct __iterator_traits_member_pointer_or_void { using type = void; }; template <__has_member_pointer _Tp> struct __iterator_traits_member_pointer_or_void<_Tp> { using type = typename _Tp::pointer; }; template <class _Tp> concept __cpp17_iterator_missing_members = !__specifies_members<_Tp> && __iterator_traits_detail::__cpp17_iterator<_Tp>; template <class _Tp> concept __cpp17_input_iterator_missing_members = __cpp17_iterator_missing_members<_Tp> && __iterator_traits_detail::__cpp17_input_iterator<_Tp>; // Otherwise, `pointer` names `void`. template <class> struct __iterator_traits_member_pointer_or_arrow_or_void { using type = void; }; // [iterator.traits]/3.2.1 // If the qualified-id `I::pointer` is valid and denotes a type, `pointer` names that type. template <__has_member_pointer _Ip> struct __iterator_traits_member_pointer_or_arrow_or_void<_Ip> { using type = typename _Ip::pointer; }; // Otherwise, if `decltype(declval<I&>().operator->())` is well-formed, then `pointer` names that // type. template <class _Ip> requires requires(_Ip& __i) { __i.operator->(); } && (!__has_member_pointer<_Ip>) struct __iterator_traits_member_pointer_or_arrow_or_void<_Ip> { using type = decltype(std::declval<_Ip&>().operator->()); }; // Otherwise, `reference` names `iter-reference-t<I>`. template <class _Ip> struct __iterator_traits_member_reference { using type = iter_reference_t<_Ip>; }; // [iterator.traits]/3.2.2 // If the qualified-id `I::reference` is valid and denotes a type, `reference` names that type. template <__has_member_reference _Ip> struct __iterator_traits_member_reference<_Ip> { using type = typename _Ip::reference; }; // [iterator.traits]/3.2.3.4 // input_iterator_tag template <class _Ip> struct __deduce_iterator_category { using type = input_iterator_tag; }; // [iterator.traits]/3.2.3.1 // `random_access_iterator_tag` if `I` satisfies `cpp17-random-access-iterator`, or otherwise template <__iterator_traits_detail::__cpp17_random_access_iterator _Ip> struct __deduce_iterator_category<_Ip> { using type = random_access_iterator_tag; }; // [iterator.traits]/3.2.3.2 // `bidirectional_iterator_tag` if `I` satisfies `cpp17-bidirectional-iterator`, or otherwise template <__iterator_traits_detail::__cpp17_bidirectional_iterator _Ip> struct __deduce_iterator_category<_Ip> { using type = bidirectional_iterator_tag; }; // [iterator.traits]/3.2.3.3 // `forward_iterator_tag` if `I` satisfies `cpp17-forward-iterator`, or otherwise template <__iterator_traits_detail::__cpp17_forward_iterator _Ip> struct __deduce_iterator_category<_Ip> { using type = forward_iterator_tag; }; template <class _Ip> struct __iterator_traits_iterator_category : __deduce_iterator_category<_Ip> {}; // [iterator.traits]/3.2.3 // If the qualified-id `I::iterator-category` is valid and denotes a type, `iterator-category` names // that type. template <__has_member_iterator_category _Ip> struct __iterator_traits_iterator_category<_Ip> { using type = typename _Ip::iterator_category; }; // otherwise, it names void. template <class> struct __iterator_traits_difference_type { using type = void; }; // If the qualified-id `incrementable_traits<I>::difference_type` is valid and denotes a type, then // `difference_type` names that type; template <class _Ip> requires requires { typename incrementable_traits<_Ip>::difference_type; } struct __iterator_traits_difference_type<_Ip> { using type = typename incrementable_traits<_Ip>::difference_type; }; // [iterator.traits]/3.4 // Otherwise, `iterator_traits<I>` has no members by any of the above names. template <class> struct __iterator_traits {}; // [iterator.traits]/3.1 // If `I` has valid ([temp.deduct]) member types `difference-type`, `value-type`, `reference`, and // `iterator-category`, then `iterator-traits<I>` has the following publicly accessible members: template <__specifies_members _Ip> struct __iterator_traits<_Ip> { using iterator_category = typename _Ip::iterator_category; using value_type = typename _Ip::value_type; using difference_type = typename _Ip::difference_type; using pointer = typename __iterator_traits_member_pointer_or_void<_Ip>::type; using reference = typename _Ip::reference; }; // [iterator.traits]/3.2 // Otherwise, if `I` satisfies the exposition-only concept `cpp17-input-iterator`, // `iterator-traits<I>` has the following publicly accessible members: template <__cpp17_input_iterator_missing_members _Ip> struct __iterator_traits<_Ip> { using iterator_category = typename __iterator_traits_iterator_category<_Ip>::type; using value_type = typename indirectly_readable_traits<_Ip>::value_type; using difference_type = typename incrementable_traits<_Ip>::difference_type; using pointer = typename __iterator_traits_member_pointer_or_arrow_or_void<_Ip>::type; using reference = typename __iterator_traits_member_reference<_Ip>::type; }; // Otherwise, if `I` satisfies the exposition-only concept `cpp17-iterator`, then // `iterator_traits<I>` has the following publicly accessible members: template <__cpp17_iterator_missing_members _Ip> struct __iterator_traits<_Ip> { using iterator_category = output_iterator_tag; using value_type = void; using difference_type = typename __iterator_traits_difference_type<_Ip>::type; using pointer = void; using reference = void; }; template <class _Ip> struct iterator_traits : __iterator_traits<_Ip> { using __primary_template = iterator_traits; }; #else // _LIBCPP_STD_VER >= 20 template <class _Iter, bool> struct __iterator_traits {}; template <class _Iter, bool> struct __iterator_traits_impl {}; template <class _Iter> struct __iterator_traits_impl<_Iter, true> { typedef typename _Iter::difference_type difference_type; typedef typename _Iter::value_type value_type; typedef typename _Iter::pointer pointer; typedef typename _Iter::reference reference; typedef typename _Iter::iterator_category iterator_category; }; template <class _Iter> struct __iterator_traits<_Iter, true> : __iterator_traits_impl< _Iter, is_convertible<typename _Iter::iterator_category, input_iterator_tag>::value || is_convertible<typename _Iter::iterator_category, output_iterator_tag>::value > {}; // iterator_traits<Iterator> will only have the nested types if Iterator::iterator_category // exists. Else iterator_traits<Iterator> will be an empty class. This is a // conforming extension which allows some programs to compile and behave as // the client expects instead of failing at compile time. template <class _Iter> struct _LIBCPP_TEMPLATE_VIS iterator_traits : __iterator_traits<_Iter, __has_iterator_typedefs<_Iter>::value> { using __primary_template = iterator_traits; }; #endif // _LIBCPP_STD_VER >= 20 template <class _Tp> #if _LIBCPP_STD_VER >= 20 requires is_object_v<_Tp> #endif struct _LIBCPP_TEMPLATE_VIS iterator_traits<_Tp*> { typedef ptrdiff_t difference_type; typedef __remove_cv_t<_Tp> value_type; typedef _Tp* pointer; typedef _Tp& reference; typedef random_access_iterator_tag iterator_category; #if _LIBCPP_STD_VER >= 20 typedef contiguous_iterator_tag iterator_concept; #endif }; template <class _Tp, class _Up, bool = __has_iterator_category<iterator_traits<_Tp> >::value> struct __has_iterator_category_convertible_to : is_convertible<typename iterator_traits<_Tp>::iterator_category, _Up> { }; template <class _Tp, class _Up> struct __has_iterator_category_convertible_to<_Tp, _Up, false> : false_type {}; template <class _Tp, class _Up, bool = __has_iterator_concept<_Tp>::value> struct __has_iterator_concept_convertible_to : is_convertible<typename _Tp::iterator_concept, _Up> {}; template <class _Tp, class _Up> struct __has_iterator_concept_convertible_to<_Tp, _Up, false> : false_type {}; template <class _Tp> using __has_input_iterator_category = __has_iterator_category_convertible_to<_Tp, input_iterator_tag>; template <class _Tp> using __has_forward_iterator_category = __has_iterator_category_convertible_to<_Tp, forward_iterator_tag>; template <class _Tp> using __has_bidirectional_iterator_category = __has_iterator_category_convertible_to<_Tp, bidirectional_iterator_tag>; template <class _Tp> using __has_random_access_iterator_category = __has_iterator_category_convertible_to<_Tp, random_access_iterator_tag>; // __libcpp_is_contiguous_iterator determines if an iterator is known by // libc++ to be contiguous, either because it advertises itself as such // (in C++20) or because it is a pointer type or a known trivial wrapper // around a (possibly fancy) pointer type, such as __wrap_iter<T*>. // Such iterators receive special "contiguous" optimizations in // std::copy and std::sort. // #if _LIBCPP_STD_VER >= 20 template <class _Tp> struct __libcpp_is_contiguous_iterator : _Or< __has_iterator_category_convertible_to<_Tp, contiguous_iterator_tag>, __has_iterator_concept_convertible_to<_Tp, contiguous_iterator_tag> > {}; #else template <class _Tp> struct __libcpp_is_contiguous_iterator : false_type {}; #endif // Any native pointer which is an iterator is also a contiguous iterator. template <class _Up> struct __libcpp_is_contiguous_iterator<_Up*> : true_type {}; template <class _Iter> class __wrap_iter; template <class _Tp> using __has_exactly_input_iterator_category = integral_constant<bool, __has_iterator_category_convertible_to<_Tp, input_iterator_tag>::value && !__has_iterator_category_convertible_to<_Tp, forward_iterator_tag>::value>; template <class _Tp> using __has_exactly_forward_iterator_category = integral_constant<bool, __has_iterator_category_convertible_to<_Tp, forward_iterator_tag>::value && !__has_iterator_category_convertible_to<_Tp, bidirectional_iterator_tag>::value>; template <class _Tp> using __has_exactly_bidirectional_iterator_category = integral_constant<bool, __has_iterator_category_convertible_to<_Tp, bidirectional_iterator_tag>::value && !__has_iterator_category_convertible_to<_Tp, random_access_iterator_tag>::value>; template <class _InputIterator> using __iter_value_type = typename iterator_traits<_InputIterator>::value_type; template <class _InputIterator> using __iter_key_type = __remove_const_t<typename iterator_traits<_InputIterator>::value_type::first_type>; template <class _InputIterator> using __iter_mapped_type = typename iterator_traits<_InputIterator>::value_type::second_type; template <class _InputIterator> using __iter_to_alloc_type = pair<const typename iterator_traits<_InputIterator>::value_type::first_type, typename iterator_traits<_InputIterator>::value_type::second_type>; template <class _Iter> using __iterator_category_type = typename iterator_traits<_Iter>::iterator_category; template <class _Iter> using __iterator_pointer_type = typename iterator_traits<_Iter>::pointer; template <class _Iter> using __iter_diff_t = typename iterator_traits<_Iter>::difference_type; template <class _Iter> using __iter_reference = typename iterator_traits<_Iter>::reference; #if _LIBCPP_STD_VER >= 20 // [readable.traits] // Let `RI` be `remove_cvref_t<I>`. The type `iter_value_t<I>` denotes // `indirectly_readable_traits<RI>::value_type` if `iterator_traits<RI>` names a specialization // generated from the primary template, and `iterator_traits<RI>::value_type` otherwise. // This has to be in this file and not readable_traits.h to break the include cycle between the two. template <class _Ip> using iter_value_t = typename conditional_t<__is_primary_template<iterator_traits<remove_cvref_t<_Ip> > >::value, indirectly_readable_traits<remove_cvref_t<_Ip> >, iterator_traits<remove_cvref_t<_Ip> > >::value_type; #endif // _LIBCPP_STD_VER >= 20 _LIBCPP_END_NAMESPACE_STD #endif // _LIBCPP___ITERATOR_ITERATOR_TRAITS_H