// Copyright 2010 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Defines GfUtil template class which implements // 1. some useful operations in GF(2^n), // 2. CRC helper function (e.g. concatenation of CRCs) which are // not affected by specific implemenation of CRC computation per se. // // Please read crc.pdf to understand how it all works. #ifndef CRCUTIL_GF_UTIL_H_ #define CRCUTIL_GF_UTIL_H_ #include "base_types.h" // uint8, uint64 #include "crc_casts.h" // TO_BYTE() #include "platform.h" // GCC_ALIGN_ATTRIBUTE(16), SHIFT_*_SAFE namespace crcutil { #pragma pack(push, 16) // "Crc" is the type used internally and to return values of N-bit CRC. template<typename Crc> class GfUtil { public: // Initializes the tables given generating polynomial of degree (degree). // If "canonical" is true, starting CRC value and computed CRC value will be // XOR-ed with 111...111. GfUtil() {} GfUtil(const Crc &generating_polynomial, size_t degree, bool canonical) { Init(generating_polynomial, degree, canonical); } void Init(const Crc &generating_polynomial, size_t degree, bool canonical) { Crc one = 1; one <<= degree - 1; this->generating_polynomial_ = generating_polynomial; this->crc_bytes_ = (degree + 7) >> 3; this->degree_ = degree; this->one_ = one; if (canonical) { this->canonize_ = one | (one - 1); } else { this->canonize_ = 0; } this->normalize_[0] = 0; this->normalize_[1] = generating_polynomial; Crc k = one >> 1; for (size_t i = 0; i < sizeof(uint64) * 8; ++i) { this->x_pow_2n_[i] = k; k = Multiply(k, k); } this->crc_of_crc_ = Multiply(this->canonize_, this->one_ ^ Xpow8N((degree + 7) >> 3)); FindLCD(Xpow8N(this->crc_bytes_), &this->x_pow_minus_W_); } // Returns generating polynomial. Crc GeneratingPolynomial() const { return this->generating_polynomial_; } // Returns number of bits in CRC (degree of generating polynomial). size_t Degree() const { return this->degree_; } // Returns start/finish adjustment constant. Crc Canonize() const { return this->canonize_; } // Returns normalized value of 1. Crc One() const { return this->one_; } // Returns value of CRC(A, |A|, start_new) given known // crc=CRC(A, |A|, start_old) -- without touching the data. Crc ChangeStartValue(const Crc &crc, uint64 bytes, const Crc &start_old, const Crc &start_new) const { return (crc ^ Multiply(start_new ^ start_old, Xpow8N(bytes))); } // Returns CRC of concatenation of blocks A and B when CRCs // of blocks A and B are known -- without touching the data. // // To be precise, given CRC(A, |A|, startA) and CRC(B, |B|, 0), // returns CRC(AB, |AB|, startA). Crc Concatenate(const Crc &crc_A, const Crc &crc_B, uint64 bytes_B) const { return ChangeStartValue(crc_B, bytes_B, 0 /* start_B */, crc_A); } // Returns CRC of sequence of zeroes -- without touching the data. Crc CrcOfZeroes(uint64 bytes, const Crc &start) const { Crc tmp = Multiply(start ^ this->canonize_, Xpow8N(bytes)); return (tmp ^ this->canonize_); } // Given CRC of a message, stores extra (degree + 7)/8 bytes after // the message so that CRC(message+extra, start) = result. // Does not change CRC start value (use ChangeStartValue for that). // Returns number of stored bytes. size_t StoreComplementaryCrc(void *dst, const Crc &message_crc, const Crc &result) const { Crc crc0 = Multiply(result ^ this->canonize_, this->x_pow_minus_W_); crc0 ^= message_crc ^ this->canonize_; uint8 *d = reinterpret_cast<uint8 *>(dst); for (size_t i = 0; i < this->crc_bytes_; ++i) { d[i] = TO_BYTE(crc0); crc0 >>= 8; } return this->crc_bytes_; } // Stores given CRC of a message as (degree + 7)/8 bytes filled // with 0s to the right. Returns number of stored bytes. // CRC of the message and stored CRC is a constant value returned // by CrcOfCrc() -- it does not depend on contents of the message. size_t StoreCrc(void *dst, const Crc &crc) const { uint8 *d = reinterpret_cast<uint8 *>(dst); Crc crc0 = crc; for (size_t i = 0; i < this->crc_bytes_; ++i) { d[i] = TO_BYTE(crc0); crc0 >>= 8; } return this->crc_bytes_; } // Returns expected CRC value of CRC(Message,CRC(Message)) // when CRC is stored after the message. This value is fixed // and does not depend on the message or CRC start value. Crc CrcOfCrc() const { return this->crc_of_crc_; } // Returns ((a * b) mod P) where "a" and "b" are of degree <= (D-1). Crc Multiply(const Crc &aa, const Crc &bb) const { Crc a = aa; Crc b = bb; if ((a ^ (a - 1)) < (b ^ (b - 1))) { Crc temp = a; a = b; b = temp; } if (a == 0) { return a; } Crc product = 0; Crc one = this->one_; for (; a != 0; a <<= 1) { if ((a & one) != 0) { product ^= b; a ^= one; } b = (b >> 1) ^ this->normalize_[Downcast<Crc, size_t>(b & 1)]; } return product; } // Returns ((unnorm * m) mod P) where degree of m is <= (D-1) // and degree of value "unnorm" is provided explicitly. Crc MultiplyUnnormalized(const Crc &unnorm, size_t degree, const Crc &m) const { Crc v = unnorm; Crc result = 0; while (degree > this->degree_) { degree -= this->degree_; Crc value = v & (this->one_ | (this->one_ - 1)); result ^= Multiply(value, Multiply(m, XpowN(degree))); v >>= this->degree_; } result ^= Multiply(v << (this->degree_ - degree), m); return result; } // returns ((x ** n) mod P). Crc XpowN(uint64 n) const { Crc one = this->one_; Crc result = one; for (size_t i = 0; n != 0; ++i, n >>= 1) { if (n & 1) { result = Multiply(result, this->x_pow_2n_[i]); } } return result; } // Returns (x ** (8 * n) mod P). Crc Xpow8N(uint64 n) const { return XpowN(n << 3); } // Returns remainder (A mod B) and sets *q = (A/B) of division // of two polynomials: // A = dividend + dividend_x_pow_D_coef * x**degree, // B = divisor. Crc Divide(const Crc ÷nd0, int dividend_x_pow_D_coef, const Crc &divisor0, Crc *q) const { Crc divisor = divisor0; Crc dividend = dividend0; Crc quotient = 0; Crc coef = this->one_; while ((divisor & 1) == 0) { divisor >>= 1; coef >>= 1; } if (dividend_x_pow_D_coef) { quotient = coef >> 1; dividend ^= divisor >> 1; } Crc x_pow_degree_b = 1; for (;;) { if ((dividend & x_pow_degree_b) != 0) { dividend ^= divisor; quotient ^= coef; } if (coef == this->one_) { break; } coef <<= 1; x_pow_degree_b <<= 1; divisor <<= 1; } *q = quotient; return dividend; } // Extended Euclid's algorith -- for given A finds LCD(A, P) and // value B such that (A * B) mod P = LCD(A, P). Crc FindLCD(const Crc &A, Crc *B) const { if (A == 0 || A == this->one_) { *B = A; return A; } // Actually, generating polynomial is // (generating_polynomial_ + x**degree). int r0_x_pow_D_coef = 1; Crc r0 = this->generating_polynomial_; Crc b0 = 0; Crc r1 = A; Crc b1 = this->one_; for (;;) { Crc q; Crc r = Divide(r0, r0_x_pow_D_coef, r1, &q); if (r == 0) { break; } r0_x_pow_D_coef = 0; r0 = r1; r1 = r; Crc b = b0 ^ Multiply(q, b1); b0 = b1; b1 = b; } *B = b1; return r1; } protected: Crc canonize_; Crc x_pow_2n_[sizeof(uint64) * 8]; Crc generating_polynomial_; Crc one_; Crc x_pow_minus_W_; Crc crc_of_crc_; Crc normalize_[2]; size_t crc_bytes_; size_t degree_; } GCC_ALIGN_ATTRIBUTE(16); #pragma pack(pop) } // namespace crcutil #endif // CRCUTIL_GF_UTIL_H_