/* zlar2v.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int zlar2v_(integer *n, doublecomplex *x, doublecomplex *y, 
	doublecomplex *z__, integer *incx, doublereal *c__, doublecomplex *s, 
	integer *incc)
{
    /* System generated locals */
    integer i__1, i__2;
    doublereal d__1;
    doublecomplex z__1, z__2, z__3, z__4, z__5;

    /* Builtin functions */
    double d_imag(doublecomplex *);
    void d_cnjg(doublecomplex *, doublecomplex *);

    /* Local variables */
    integer i__;
    doublecomplex t2, t3, t4;
    doublereal t5, t6;
    integer ic;
    doublereal ci;
    doublecomplex si;
    integer ix;
    doublereal xi, yi;
    doublecomplex zi;
    doublereal t1i, t1r, sii, zii, sir, zir;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZLAR2V applies a vector of complex plane rotations with real cosines */
/*  from both sides to a sequence of 2-by-2 complex Hermitian matrices, */
/*  defined by the elements of the vectors x, y and z. For i = 1,2,...,n */

/*     (       x(i)  z(i) ) := */
/*     ( conjg(z(i)) y(i) ) */

/*       (  c(i) conjg(s(i)) ) (       x(i)  z(i) ) ( c(i) -conjg(s(i)) ) */
/*       ( -s(i)       c(i)  ) ( conjg(z(i)) y(i) ) ( s(i)        c(i)  ) */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The number of plane rotations to be applied. */

/*  X       (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX) */
/*          The vector x; the elements of x are assumed to be real. */

/*  Y       (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX) */
/*          The vector y; the elements of y are assumed to be real. */

/*  Z       (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX) */
/*          The vector z. */

/*  INCX    (input) INTEGER */
/*          The increment between elements of X, Y and Z. INCX > 0. */

/*  C       (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC) */
/*          The cosines of the plane rotations. */

/*  S       (input) COMPLEX*16 array, dimension (1+(N-1)*INCC) */
/*          The sines of the plane rotations. */

/*  INCC    (input) INTEGER */
/*          The increment between elements of C and S. INCC > 0. */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --s;
    --c__;
    --z__;
    --y;
    --x;

    /* Function Body */
    ix = 1;
    ic = 1;
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = ix;
	xi = x[i__2].r;
	i__2 = ix;
	yi = y[i__2].r;
	i__2 = ix;
	zi.r = z__[i__2].r, zi.i = z__[i__2].i;
	zir = zi.r;
	zii = d_imag(&zi);
	ci = c__[ic];
	i__2 = ic;
	si.r = s[i__2].r, si.i = s[i__2].i;
	sir = si.r;
	sii = d_imag(&si);
	t1r = sir * zir - sii * zii;
	t1i = sir * zii + sii * zir;
	z__1.r = ci * zi.r, z__1.i = ci * zi.i;
	t2.r = z__1.r, t2.i = z__1.i;
	d_cnjg(&z__3, &si);
	z__2.r = xi * z__3.r, z__2.i = xi * z__3.i;
	z__1.r = t2.r - z__2.r, z__1.i = t2.i - z__2.i;
	t3.r = z__1.r, t3.i = z__1.i;
	d_cnjg(&z__2, &t2);
	z__3.r = yi * si.r, z__3.i = yi * si.i;
	z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
	t4.r = z__1.r, t4.i = z__1.i;
	t5 = ci * xi + t1r;
	t6 = ci * yi - t1r;
	i__2 = ix;
	d__1 = ci * t5 + (sir * t4.r + sii * d_imag(&t4));
	x[i__2].r = d__1, x[i__2].i = 0.;
	i__2 = ix;
	d__1 = ci * t6 - (sir * t3.r - sii * d_imag(&t3));
	y[i__2].r = d__1, y[i__2].i = 0.;
	i__2 = ix;
	z__2.r = ci * t3.r, z__2.i = ci * t3.i;
	d_cnjg(&z__4, &si);
	z__5.r = t6, z__5.i = t1i;
	z__3.r = z__4.r * z__5.r - z__4.i * z__5.i, z__3.i = z__4.r * z__5.i 
		+ z__4.i * z__5.r;
	z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
	z__[i__2].r = z__1.r, z__[i__2].i = z__1.i;
	ix += *incx;
	ic += *incc;
/* L10: */
    }
    return 0;

/*     End of ZLAR2V */

} /* zlar2v_ */