/* zhpevd.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int zhpevd_(char *jobz, char *uplo, integer *n, 
	doublecomplex *ap, doublereal *w, doublecomplex *z__, integer *ldz, 
	doublecomplex *work, integer *lwork, doublereal *rwork, integer *
	lrwork, integer *iwork, integer *liwork, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    doublereal d__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    doublereal eps;
    integer inde;
    doublereal anrm;
    integer imax;
    doublereal rmin, rmax;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    doublereal sigma;
    extern logical lsame_(char *, char *);
    integer iinfo, lwmin, llrwk, llwrk;
    logical wantz;
    extern doublereal dlamch_(char *);
    integer iscale;
    doublereal safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_(
	    integer *, doublereal *, doublecomplex *, integer *);
    doublereal bignum;
    integer indtau;
    extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, 
	     integer *);
    extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, 
	    doublereal *);
    extern /* Subroutine */ int zstedc_(char *, integer *, doublereal *, 
	    doublereal *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublereal *, integer *, integer *, integer *, integer 
	    *);
    integer indrwk, indwrk, liwmin, lrwmin;
    doublereal smlnum;
    extern /* Subroutine */ int zhptrd_(char *, integer *, doublecomplex *, 
	    doublereal *, doublereal *, doublecomplex *, integer *);
    logical lquery;
    extern /* Subroutine */ int zupmtr_(char *, char *, char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of */
/*  a complex Hermitian matrix A in packed storage.  If eigenvectors are */
/*  desired, it uses a divide and conquer algorithm. */

/*  The divide and conquer algorithm makes very mild assumptions about */
/*  floating point arithmetic. It will work on machines with a guard */
/*  digit in add/subtract, or on those binary machines without guard */
/*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
/*  Cray-2. It could conceivably fail on hexadecimal or decimal machines */
/*  without guard digits, but we know of none. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          A, packed columnwise in a linear array.  The j-th column of A */
/*          is stored in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */

/*          On exit, AP is overwritten by values generated during the */
/*          reduction to tridiagonal form.  If UPLO = 'U', the diagonal */
/*          and first superdiagonal of the tridiagonal matrix T overwrite */
/*          the corresponding elements of A, and if UPLO = 'L', the */
/*          diagonal and first subdiagonal of T overwrite the */
/*          corresponding elements of A. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          If INFO = 0, the eigenvalues in ascending order. */

/*  Z       (output) COMPLEX*16 array, dimension (LDZ, N) */
/*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/*          eigenvectors of the matrix A, with the i-th column of Z */
/*          holding the eigenvector associated with W(i). */
/*          If JOBZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the required LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of array WORK. */
/*          If N <= 1,               LWORK must be at least 1. */
/*          If JOBZ = 'N' and N > 1, LWORK must be at least N. */
/*          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the required sizes of the WORK, RWORK and */
/*          IWORK arrays, returns these values as the first entries of */
/*          the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  RWORK   (workspace/output) DOUBLE PRECISION array, */
/*                                         dimension (LRWORK) */
/*          On exit, if INFO = 0, RWORK(1) returns the required LRWORK. */

/*  LRWORK  (input) INTEGER */
/*          The dimension of array RWORK. */
/*          If N <= 1,               LRWORK must be at least 1. */
/*          If JOBZ = 'N' and N > 1, LRWORK must be at least N. */
/*          If JOBZ = 'V' and N > 1, LRWORK must be at least */
/*                    1 + 5*N + 2*N**2. */

/*          If LRWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the required sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/*          On exit, if INFO = 0, IWORK(1) returns the required LIWORK. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of array IWORK. */
/*          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1. */
/*          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the required sizes of the WORK, RWORK */
/*          and IWORK arrays, returns these values as the first entries */
/*          of the WORK, RWORK and IWORK arrays, and no error message */
/*          related to LWORK or LRWORK or LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  if INFO = i, the algorithm failed to converge; i */
/*                off-diagonal elements of an intermediate tridiagonal */
/*                form did not converge to zero. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (lsame_(uplo, "L") || lsame_(uplo, 
	    "U"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -7;
    }

    if (*info == 0) {
	if (*n <= 1) {
	    lwmin = 1;
	    liwmin = 1;
	    lrwmin = 1;
	} else {
	    if (wantz) {
		lwmin = *n << 1;
/* Computing 2nd power */
		i__1 = *n;
		lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
		liwmin = *n * 5 + 3;
	    } else {
		lwmin = *n;
		lrwmin = *n;
		liwmin = 1;
	    }
	}
	work[1].r = (doublereal) lwmin, work[1].i = 0.;
	rwork[1] = (doublereal) lrwmin;
	iwork[1] = liwmin;

	if (*lwork < lwmin && ! lquery) {
	    *info = -9;
	} else if (*lrwork < lrwmin && ! lquery) {
	    *info = -11;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -13;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZHPEVD", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	w[1] = ap[1].r;
	if (wantz) {
	    i__1 = z_dim1 + 1;
	    z__[i__1].r = 1., z__[i__1].i = 0.;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = zlanhp_("M", uplo, n, &ap[1], &rwork[1]);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	i__1 = *n * (*n + 1) / 2;
	zdscal_(&i__1, &sigma, &ap[1], &c__1);
    }

/*     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form. */

    inde = 1;
    indtau = 1;
    indrwk = inde + *n;
    indwrk = indtau + *n;
    llwrk = *lwork - indwrk + 1;
    llrwk = *lrwork - indrwk + 1;
    zhptrd_(uplo, n, &ap[1], &w[1], &rwork[inde], &work[indtau], &iinfo);

/*     For eigenvalues only, call DSTERF.  For eigenvectors, first call */
/*     ZUPGTR to generate the orthogonal matrix, then call ZSTEDC. */

    if (! wantz) {
	dsterf_(n, &w[1], &rwork[inde], info);
    } else {
	zstedc_("I", n, &w[1], &rwork[inde], &z__[z_offset], ldz, &work[
		indwrk], &llwrk, &rwork[indrwk], &llrwk, &iwork[1], liwork, 
		info);
	zupmtr_("L", uplo, "N", n, n, &ap[1], &work[indtau], &z__[z_offset], 
		ldz, &work[indwrk], &iinfo);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	dscal_(&imax, &d__1, &w[1], &c__1);
    }

    work[1].r = (doublereal) lwmin, work[1].i = 0.;
    rwork[1] = (doublereal) lrwmin;
    iwork[1] = liwmin;
    return 0;

/*     End of ZHPEVD */

} /* zhpevd_ */