/* zgglse.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static doublecomplex c_b1 = {1.,0.};
static integer c__1 = 1;
static integer c_n1 = -1;

/* Subroutine */ int zgglse_(integer *m, integer *n, integer *p, 
	doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, 
	doublecomplex *c__, doublecomplex *d__, doublecomplex *x, 
	doublecomplex *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
    doublecomplex z__1;

    /* Local variables */
    integer nb, mn, nr, nb1, nb2, nb3, nb4, lopt;
    extern /* Subroutine */ int zgemv_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *), 
	    zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, 
	    integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *), ztrmv_(char *, char *, 
	    char *, integer *, doublecomplex *, integer *, doublecomplex *, 
	    integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int zggrqf_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, integer *)
	    ;
    integer lwkmin, lwkopt;
    logical lquery;
    extern /* Subroutine */ int zunmqr_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *), zunmrq_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *), ztrtrs_(char *, char *, char *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *, 
	     integer *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     February 2007 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGGLSE solves the linear equality-constrained least squares (LSE) */
/*  problem: */

/*          minimize || c - A*x ||_2   subject to   B*x = d */

/*  where A is an M-by-N matrix, B is a P-by-N matrix, c is a given */
/*  M-vector, and d is a given P-vector. It is assumed that */
/*  P <= N <= M+P, and */

/*           rank(B) = P and  rank( ( A ) ) = N. */
/*                                ( ( B ) ) */

/*  These conditions ensure that the LSE problem has a unique solution, */
/*  which is obtained using a generalized RQ factorization of the */
/*  matrices (B, A) given by */

/*     B = (0 R)*Q,   A = Z*T*Q. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrices A and B. N >= 0. */

/*  P       (input) INTEGER */
/*          The number of rows of the matrix B. 0 <= P <= N <= M+P. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, the elements on and above the diagonal of the array */
/*          contain the min(M,N)-by-N upper trapezoidal matrix T. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= max(1,M). */

/*  B       (input/output) COMPLEX*16 array, dimension (LDB,N) */
/*          On entry, the P-by-N matrix B. */
/*          On exit, the upper triangle of the subarray B(1:P,N-P+1:N) */
/*          contains the P-by-P upper triangular matrix R. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= max(1,P). */

/*  C       (input/output) COMPLEX*16 array, dimension (M) */
/*          On entry, C contains the right hand side vector for the */
/*          least squares part of the LSE problem. */
/*          On exit, the residual sum of squares for the solution */
/*          is given by the sum of squares of elements N-P+1 to M of */
/*          vector C. */

/*  D       (input/output) COMPLEX*16 array, dimension (P) */
/*          On entry, D contains the right hand side vector for the */
/*          constrained equation. */
/*          On exit, D is destroyed. */

/*  X       (output) COMPLEX*16 array, dimension (N) */
/*          On exit, X is the solution of the LSE problem. */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. LWORK >= max(1,M+N+P). */
/*          For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB, */
/*          where NB is an upper bound for the optimal blocksizes for */
/*          ZGEQRF, CGERQF, ZUNMQR and CUNMRQ. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          = 1:  the upper triangular factor R associated with B in the */
/*                generalized RQ factorization of the pair (B, A) is */
/*                singular, so that rank(B) < P; the least squares */
/*                solution could not be computed. */
/*          = 2:  the (N-P) by (N-P) part of the upper trapezoidal factor */
/*                T associated with A in the generalized RQ factorization */
/*                of the pair (B, A) is singular, so that */
/*                rank( (A) ) < N; the least squares solution could not */
/*                    ( (B) ) */
/*                be computed. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --c__;
    --d__;
    --x;
    --work;

    /* Function Body */
    *info = 0;
    mn = min(*m,*n);
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*p < 0 || *p > *n || *p < *n - *m) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldb < max(1,*p)) {
	*info = -7;
    }

/*     Calculate workspace */

    if (*info == 0) {
	if (*n == 0) {
	    lwkmin = 1;
	    lwkopt = 1;
	} else {
	    nb1 = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1);
	    nb2 = ilaenv_(&c__1, "ZGERQF", " ", m, n, &c_n1, &c_n1);
	    nb3 = ilaenv_(&c__1, "ZUNMQR", " ", m, n, p, &c_n1);
	    nb4 = ilaenv_(&c__1, "ZUNMRQ", " ", m, n, p, &c_n1);
/* Computing MAX */
	    i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);
	    nb = max(i__1,nb4);
	    lwkmin = *m + *n + *p;
	    lwkopt = *p + mn + max(*m,*n) * nb;
	}
	work[1].r = (doublereal) lwkopt, work[1].i = 0.;

	if (*lwork < lwkmin && ! lquery) {
	    *info = -12;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGGLSE", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Compute the GRQ factorization of matrices B and A: */

/*            B*Q' = (  0  T12 ) P   Z'*A*Q' = ( R11 R12 ) N-P */
/*                     N-P  P                  (  0  R22 ) M+P-N */
/*                                               N-P  P */

/*     where T12 and R11 are upper triangular, and Q and Z are */
/*     unitary. */

    i__1 = *lwork - *p - mn;
    zggrqf_(p, m, n, &b[b_offset], ldb, &work[1], &a[a_offset], lda, &work[*p 
	    + 1], &work[*p + mn + 1], &i__1, info);
    i__1 = *p + mn + 1;
    lopt = (integer) work[i__1].r;

/*     Update c = Z'*c = ( c1 ) N-P */
/*                       ( c2 ) M+P-N */

    i__1 = max(1,*m);
    i__2 = *lwork - *p - mn;
    zunmqr_("Left", "Conjugate Transpose", m, &c__1, &mn, &a[a_offset], lda, &
	    work[*p + 1], &c__[1], &i__1, &work[*p + mn + 1], &i__2, info);
/* Computing MAX */
    i__3 = *p + mn + 1;
    i__1 = lopt, i__2 = (integer) work[i__3].r;
    lopt = max(i__1,i__2);

/*     Solve T12*x2 = d for x2 */

    if (*p > 0) {
	ztrtrs_("Upper", "No transpose", "Non-unit", p, &c__1, &b[(*n - *p + 
		1) * b_dim1 + 1], ldb, &d__[1], p, info);

	if (*info > 0) {
	    *info = 1;
	    return 0;
	}

/*        Put the solution in X */

	zcopy_(p, &d__[1], &c__1, &x[*n - *p + 1], &c__1);

/*        Update c1 */

	i__1 = *n - *p;
	z__1.r = -1., z__1.i = -0.;
	zgemv_("No transpose", &i__1, p, &z__1, &a[(*n - *p + 1) * a_dim1 + 1]
, lda, &d__[1], &c__1, &c_b1, &c__[1], &c__1);
    }

/*     Solve R11*x1 = c1 for x1 */

    if (*n > *p) {
	i__1 = *n - *p;
	i__2 = *n - *p;
	ztrtrs_("Upper", "No transpose", "Non-unit", &i__1, &c__1, &a[
		a_offset], lda, &c__[1], &i__2, info);

	if (*info > 0) {
	    *info = 2;
	    return 0;
	}

/*        Put the solutions in X */

	i__1 = *n - *p;
	zcopy_(&i__1, &c__[1], &c__1, &x[1], &c__1);
    }

/*     Compute the residual vector: */

    if (*m < *n) {
	nr = *m + *p - *n;
	if (nr > 0) {
	    i__1 = *n - *m;
	    z__1.r = -1., z__1.i = -0.;
	    zgemv_("No transpose", &nr, &i__1, &z__1, &a[*n - *p + 1 + (*m + 
		    1) * a_dim1], lda, &d__[nr + 1], &c__1, &c_b1, &c__[*n - *
		    p + 1], &c__1);
	}
    } else {
	nr = *p;
    }
    if (nr > 0) {
	ztrmv_("Upper", "No transpose", "Non unit", &nr, &a[*n - *p + 1 + (*n 
		- *p + 1) * a_dim1], lda, &d__[1], &c__1);
	z__1.r = -1., z__1.i = -0.;
	zaxpy_(&nr, &z__1, &d__[1], &c__1, &c__[*n - *p + 1], &c__1);
    }

/*     Backward transformation x = Q'*x */

    i__1 = *lwork - *p - mn;
    zunmrq_("Left", "Conjugate Transpose", n, &c__1, p, &b[b_offset], ldb, &
	    work[1], &x[1], n, &work[*p + mn + 1], &i__1, info);
/* Computing MAX */
    i__4 = *p + mn + 1;
    i__2 = lopt, i__3 = (integer) work[i__4].r;
    i__1 = *p + mn + max(i__2,i__3);
    work[1].r = (doublereal) i__1, work[1].i = 0.;

    return 0;

/*     End of ZGGLSE */

} /* zgglse_ */