/* ssytf2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int ssytf2_(char *uplo, integer *n, real *a, integer *lda, 
	integer *ipiv, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    real r__1, r__2, r__3;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, k;
    real t, r1, d11, d12, d21, d22;
    integer kk, kp;
    real wk, wkm1, wkp1;
    integer imax, jmax;
    extern /* Subroutine */ int ssyr_(char *, integer *, real *, real *, 
	    integer *, real *, integer *);
    real alpha;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    integer kstep;
    logical upper;
    extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *, 
	    integer *);
    real absakk;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer isamax_(integer *, real *, integer *);
    real colmax;
    extern logical sisnan_(real *);
    real rowmax;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SSYTF2 computes the factorization of a real symmetric matrix A using */
/*  the Bunch-Kaufman diagonal pivoting method: */

/*     A = U*D*U'  or  A = L*D*L' */

/*  where U (or L) is a product of permutation and unit upper (lower) */
/*  triangular matrices, U' is the transpose of U, and D is symmetric and */
/*  block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */

/*  This is the unblocked version of the algorithm, calling Level 2 BLAS. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the upper or lower triangular part of the */
/*          symmetric matrix A is stored: */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  A       (input/output) REAL array, dimension (LDA,N) */
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
/*          n-by-n upper triangular part of A contains the upper */
/*          triangular part of the matrix A, and the strictly lower */
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
/*          leading n-by-n lower triangular part of A contains the lower */
/*          triangular part of the matrix A, and the strictly upper */
/*          triangular part of A is not referenced. */

/*          On exit, the block diagonal matrix D and the multipliers used */
/*          to obtain the factor U or L (see below for further details). */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  IPIV    (output) INTEGER array, dimension (N) */
/*          Details of the interchanges and the block structure of D. */
/*          If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
/*          interchanged and D(k,k) is a 1-by-1 diagonal block. */
/*          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
/*          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
/*          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) = */
/*          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
/*          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -k, the k-th argument had an illegal value */
/*          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization */
/*               has been completed, but the block diagonal matrix D is */
/*               exactly singular, and division by zero will occur if it */
/*               is used to solve a system of equations. */

/*  Further Details */
/*  =============== */

/*  09-29-06 - patch from */
/*    Bobby Cheng, MathWorks */

/*    Replace l.204 and l.372 */
/*         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN */
/*    by */
/*         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. SISNAN(ABSAKK) ) THEN */

/*  01-01-96 - Based on modifications by */
/*    J. Lewis, Boeing Computer Services Company */
/*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
/*  1-96 - Based on modifications by J. Lewis, Boeing Computer Services */
/*         Company */

/*  If UPLO = 'U', then A = U*D*U', where */
/*     U = P(n)*U(n)* ... *P(k)U(k)* ..., */
/*  i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
/*  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
/*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as */
/*  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
/*  that if the diagonal block D(k) is of order s (s = 1 or 2), then */

/*             (   I    v    0   )   k-s */
/*     U(k) =  (   0    I    0   )   s */
/*             (   0    0    I   )   n-k */
/*                k-s   s   n-k */

/*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
/*  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
/*  and A(k,k), and v overwrites A(1:k-2,k-1:k). */

/*  If UPLO = 'L', then A = L*D*L', where */
/*     L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
/*  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
/*  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
/*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as */
/*  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
/*  that if the diagonal block D(k) is of order s (s = 1 or 2), then */

/*             (   I    0     0   )  k-1 */
/*     L(k) =  (   0    I     0   )  s */
/*             (   0    v     I   )  n-k-s+1 */
/*                k-1   s  n-k-s+1 */

/*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
/*  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
/*  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*n)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSYTF2", &i__1);
	return 0;
    }

/*     Initialize ALPHA for use in choosing pivot block size. */

    alpha = (sqrt(17.f) + 1.f) / 8.f;

    if (upper) {

/*        Factorize A as U*D*U' using the upper triangle of A */

/*        K is the main loop index, decreasing from N to 1 in steps of */
/*        1 or 2 */

	k = *n;
L10:

/*        If K < 1, exit from loop */

	if (k < 1) {
	    goto L70;
	}
	kstep = 1;

/*        Determine rows and columns to be interchanged and whether */
/*        a 1-by-1 or 2-by-2 pivot block will be used */

	absakk = (r__1 = a[k + k * a_dim1], dabs(r__1));

/*        IMAX is the row-index of the largest off-diagonal element in */
/*        column K, and COLMAX is its absolute value */

	if (k > 1) {
	    i__1 = k - 1;
	    imax = isamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
	    colmax = (r__1 = a[imax + k * a_dim1], dabs(r__1));
	} else {
	    colmax = 0.f;
	}

	if (dmax(absakk,colmax) == 0.f || sisnan_(&absakk)) {

/*           Column K is zero or contains a NaN: set INFO and continue */

	    if (*info == 0) {
		*info = k;
	    }
	    kp = k;
	} else {
	    if (absakk >= alpha * colmax) {

/*              no interchange, use 1-by-1 pivot block */

		kp = k;
	    } else {

/*              JMAX is the column-index of the largest off-diagonal */
/*              element in row IMAX, and ROWMAX is its absolute value */

		i__1 = k - imax;
		jmax = imax + isamax_(&i__1, &a[imax + (imax + 1) * a_dim1], 
			lda);
		rowmax = (r__1 = a[imax + jmax * a_dim1], dabs(r__1));
		if (imax > 1) {
		    i__1 = imax - 1;
		    jmax = isamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
/* Computing MAX */
		    r__2 = rowmax, r__3 = (r__1 = a[jmax + imax * a_dim1], 
			    dabs(r__1));
		    rowmax = dmax(r__2,r__3);
		}

		if (absakk >= alpha * colmax * (colmax / rowmax)) {

/*                 no interchange, use 1-by-1 pivot block */

		    kp = k;
		} else if ((r__1 = a[imax + imax * a_dim1], dabs(r__1)) >= 
			alpha * rowmax) {

/*                 interchange rows and columns K and IMAX, use 1-by-1 */
/*                 pivot block */

		    kp = imax;
		} else {

/*                 interchange rows and columns K-1 and IMAX, use 2-by-2 */
/*                 pivot block */

		    kp = imax;
		    kstep = 2;
		}
	    }

	    kk = k - kstep + 1;
	    if (kp != kk) {

/*              Interchange rows and columns KK and KP in the leading */
/*              submatrix A(1:k,1:k) */

		i__1 = kp - 1;
		sswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], 
			 &c__1);
		i__1 = kk - kp - 1;
		sswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp + 
			1) * a_dim1], lda);
		t = a[kk + kk * a_dim1];
		a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
		a[kp + kp * a_dim1] = t;
		if (kstep == 2) {
		    t = a[k - 1 + k * a_dim1];
		    a[k - 1 + k * a_dim1] = a[kp + k * a_dim1];
		    a[kp + k * a_dim1] = t;
		}
	    }

/*           Update the leading submatrix */

	    if (kstep == 1) {

/*              1-by-1 pivot block D(k): column k now holds */

/*              W(k) = U(k)*D(k) */

/*              where U(k) is the k-th column of U */

/*              Perform a rank-1 update of A(1:k-1,1:k-1) as */

/*              A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */

		r1 = 1.f / a[k + k * a_dim1];
		i__1 = k - 1;
		r__1 = -r1;
		ssyr_(uplo, &i__1, &r__1, &a[k * a_dim1 + 1], &c__1, &a[
			a_offset], lda);

/*              Store U(k) in column k */

		i__1 = k - 1;
		sscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
	    } else {

/*              2-by-2 pivot block D(k): columns k and k-1 now hold */

/*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */

/*              where U(k) and U(k-1) are the k-th and (k-1)-th columns */
/*              of U */

/*              Perform a rank-2 update of A(1:k-2,1:k-2) as */

/*              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' */
/*                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */

		if (k > 2) {

		    d12 = a[k - 1 + k * a_dim1];
		    d22 = a[k - 1 + (k - 1) * a_dim1] / d12;
		    d11 = a[k + k * a_dim1] / d12;
		    t = 1.f / (d11 * d22 - 1.f);
		    d12 = t / d12;

		    for (j = k - 2; j >= 1; --j) {
			wkm1 = d12 * (d11 * a[j + (k - 1) * a_dim1] - a[j + k 
				* a_dim1]);
			wk = d12 * (d22 * a[j + k * a_dim1] - a[j + (k - 1) * 
				a_dim1]);
			for (i__ = j; i__ >= 1; --i__) {
			    a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__ 
				    + k * a_dim1] * wk - a[i__ + (k - 1) * 
				    a_dim1] * wkm1;
/* L20: */
			}
			a[j + k * a_dim1] = wk;
			a[j + (k - 1) * a_dim1] = wkm1;
/* L30: */
		    }

		}

	    }
	}

/*        Store details of the interchanges in IPIV */

	if (kstep == 1) {
	    ipiv[k] = kp;
	} else {
	    ipiv[k] = -kp;
	    ipiv[k - 1] = -kp;
	}

/*        Decrease K and return to the start of the main loop */

	k -= kstep;
	goto L10;

    } else {

/*        Factorize A as L*D*L' using the lower triangle of A */

/*        K is the main loop index, increasing from 1 to N in steps of */
/*        1 or 2 */

	k = 1;
L40:

/*        If K > N, exit from loop */

	if (k > *n) {
	    goto L70;
	}
	kstep = 1;

/*        Determine rows and columns to be interchanged and whether */
/*        a 1-by-1 or 2-by-2 pivot block will be used */

	absakk = (r__1 = a[k + k * a_dim1], dabs(r__1));

/*        IMAX is the row-index of the largest off-diagonal element in */
/*        column K, and COLMAX is its absolute value */

	if (k < *n) {
	    i__1 = *n - k;
	    imax = k + isamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
	    colmax = (r__1 = a[imax + k * a_dim1], dabs(r__1));
	} else {
	    colmax = 0.f;
	}

	if (dmax(absakk,colmax) == 0.f || sisnan_(&absakk)) {

/*           Column K is zero or contains a NaN: set INFO and continue */

	    if (*info == 0) {
		*info = k;
	    }
	    kp = k;
	} else {
	    if (absakk >= alpha * colmax) {

/*              no interchange, use 1-by-1 pivot block */

		kp = k;
	    } else {

/*              JMAX is the column-index of the largest off-diagonal */
/*              element in row IMAX, and ROWMAX is its absolute value */

		i__1 = imax - k;
		jmax = k - 1 + isamax_(&i__1, &a[imax + k * a_dim1], lda);
		rowmax = (r__1 = a[imax + jmax * a_dim1], dabs(r__1));
		if (imax < *n) {
		    i__1 = *n - imax;
		    jmax = imax + isamax_(&i__1, &a[imax + 1 + imax * a_dim1], 
			     &c__1);
/* Computing MAX */
		    r__2 = rowmax, r__3 = (r__1 = a[jmax + imax * a_dim1], 
			    dabs(r__1));
		    rowmax = dmax(r__2,r__3);
		}

		if (absakk >= alpha * colmax * (colmax / rowmax)) {

/*                 no interchange, use 1-by-1 pivot block */

		    kp = k;
		} else if ((r__1 = a[imax + imax * a_dim1], dabs(r__1)) >= 
			alpha * rowmax) {

/*                 interchange rows and columns K and IMAX, use 1-by-1 */
/*                 pivot block */

		    kp = imax;
		} else {

/*                 interchange rows and columns K+1 and IMAX, use 2-by-2 */
/*                 pivot block */

		    kp = imax;
		    kstep = 2;
		}
	    }

	    kk = k + kstep - 1;
	    if (kp != kk) {

/*              Interchange rows and columns KK and KP in the trailing */
/*              submatrix A(k:n,k:n) */

		if (kp < *n) {
		    i__1 = *n - kp;
		    sswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1 
			    + kp * a_dim1], &c__1);
		}
		i__1 = kp - kk - 1;
		sswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk + 
			1) * a_dim1], lda);
		t = a[kk + kk * a_dim1];
		a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
		a[kp + kp * a_dim1] = t;
		if (kstep == 2) {
		    t = a[k + 1 + k * a_dim1];
		    a[k + 1 + k * a_dim1] = a[kp + k * a_dim1];
		    a[kp + k * a_dim1] = t;
		}
	    }

/*           Update the trailing submatrix */

	    if (kstep == 1) {

/*              1-by-1 pivot block D(k): column k now holds */

/*              W(k) = L(k)*D(k) */

/*              where L(k) is the k-th column of L */

		if (k < *n) {

/*                 Perform a rank-1 update of A(k+1:n,k+1:n) as */

/*                 A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */

		    d11 = 1.f / a[k + k * a_dim1];
		    i__1 = *n - k;
		    r__1 = -d11;
		    ssyr_(uplo, &i__1, &r__1, &a[k + 1 + k * a_dim1], &c__1, &
			    a[k + 1 + (k + 1) * a_dim1], lda);

/*                 Store L(k) in column K */

		    i__1 = *n - k;
		    sscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
		}
	    } else {

/*              2-by-2 pivot block D(k) */

		if (k < *n - 1) {

/*                 Perform a rank-2 update of A(k+2:n,k+2:n) as */

/*                 A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))' */

/*                 where L(k) and L(k+1) are the k-th and (k+1)-th */
/*                 columns of L */

		    d21 = a[k + 1 + k * a_dim1];
		    d11 = a[k + 1 + (k + 1) * a_dim1] / d21;
		    d22 = a[k + k * a_dim1] / d21;
		    t = 1.f / (d11 * d22 - 1.f);
		    d21 = t / d21;

		    i__1 = *n;
		    for (j = k + 2; j <= i__1; ++j) {

			wk = d21 * (d11 * a[j + k * a_dim1] - a[j + (k + 1) * 
				a_dim1]);
			wkp1 = d21 * (d22 * a[j + (k + 1) * a_dim1] - a[j + k 
				* a_dim1]);

			i__2 = *n;
			for (i__ = j; i__ <= i__2; ++i__) {
			    a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__ 
				    + k * a_dim1] * wk - a[i__ + (k + 1) * 
				    a_dim1] * wkp1;
/* L50: */
			}

			a[j + k * a_dim1] = wk;
			a[j + (k + 1) * a_dim1] = wkp1;

/* L60: */
		    }
		}
	    }
	}

/*        Store details of the interchanges in IPIV */

	if (kstep == 1) {
	    ipiv[k] = kp;
	} else {
	    ipiv[k] = -kp;
	    ipiv[k + 1] = -kp;
	}

/*        Increase K and return to the start of the main loop */

	k += kstep;
	goto L40;

    }

L70:

    return 0;

/*     End of SSYTF2 */

} /* ssytf2_ */