/* sstein.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__2 = 2;
static integer c__1 = 1;
static integer c_n1 = -1;

/* Subroutine */ int sstein_(integer *n, real *d__, real *e, integer *m, real 
	*w, integer *iblock, integer *isplit, real *z__, integer *ldz, real *
	work, integer *iwork, integer *ifail, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2, i__3;
    real r__1, r__2, r__3, r__4, r__5;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, b1, j1, bn;
    real xj, scl, eps, ctr, sep, nrm, tol;
    integer its;
    real xjm, eps1;
    integer jblk, nblk, jmax;
    extern doublereal sdot_(integer *, real *, integer *, real *, integer *), 
	    snrm2_(integer *, real *, integer *);
    integer iseed[4], gpind, iinfo;
    extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
    extern doublereal sasum_(integer *, real *, integer *);
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *);
    real ortol;
    extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *, 
	    real *, integer *);
    integer indrv1, indrv2, indrv3, indrv4, indrv5;
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int xerbla_(char *, integer *), slagtf_(
	    integer *, real *, real *, real *, real *, real *, real *, 
	    integer *, integer *);
    integer nrmchk;
    extern integer isamax_(integer *, real *, integer *);
    extern /* Subroutine */ int slagts_(integer *, integer *, real *, real *, 
	    real *, real *, integer *, real *, real *, integer *);
    integer blksiz;
    real onenrm, pertol;
    extern /* Subroutine */ int slarnv_(integer *, integer *, integer *, real 
	    *);
    real stpcrt;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SSTEIN computes the eigenvectors of a real symmetric tridiagonal */
/*  matrix T corresponding to specified eigenvalues, using inverse */
/*  iteration. */

/*  The maximum number of iterations allowed for each eigenvector is */
/*  specified by an internal parameter MAXITS (currently set to 5). */

/*  Arguments */
/*  ========= */

/*  N       (input) INTEGER */
/*          The order of the matrix.  N >= 0. */

/*  D       (input) REAL array, dimension (N) */
/*          The n diagonal elements of the tridiagonal matrix T. */

/*  E       (input) REAL array, dimension (N-1) */
/*          The (n-1) subdiagonal elements of the tridiagonal matrix */
/*          T, in elements 1 to N-1. */

/*  M       (input) INTEGER */
/*          The number of eigenvectors to be found.  0 <= M <= N. */

/*  W       (input) REAL array, dimension (N) */
/*          The first M elements of W contain the eigenvalues for */
/*          which eigenvectors are to be computed.  The eigenvalues */
/*          should be grouped by split-off block and ordered from */
/*          smallest to largest within the block.  ( The output array */
/*          W from SSTEBZ with ORDER = 'B' is expected here. ) */

/*  IBLOCK  (input) INTEGER array, dimension (N) */
/*          The submatrix indices associated with the corresponding */
/*          eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to */
/*          the first submatrix from the top, =2 if W(i) belongs to */
/*          the second submatrix, etc.  ( The output array IBLOCK */
/*          from SSTEBZ is expected here. ) */

/*  ISPLIT  (input) INTEGER array, dimension (N) */
/*          The splitting points, at which T breaks up into submatrices. */
/*          The first submatrix consists of rows/columns 1 to */
/*          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */
/*          through ISPLIT( 2 ), etc. */
/*          ( The output array ISPLIT from SSTEBZ is expected here. ) */

/*  Z       (output) REAL array, dimension (LDZ, M) */
/*          The computed eigenvectors.  The eigenvector associated */
/*          with the eigenvalue W(i) is stored in the i-th column of */
/*          Z.  Any vector which fails to converge is set to its current */
/*          iterate after MAXITS iterations. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= max(1,N). */

/*  WORK    (workspace) REAL array, dimension (5*N) */

/*  IWORK   (workspace) INTEGER array, dimension (N) */

/*  IFAIL   (output) INTEGER array, dimension (M) */
/*          On normal exit, all elements of IFAIL are zero. */
/*          If one or more eigenvectors fail to converge after */
/*          MAXITS iterations, then their indices are stored in */
/*          array IFAIL. */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit. */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */
/*          > 0: if INFO = i, then i eigenvectors failed to converge */
/*               in MAXITS iterations.  Their indices are stored in */
/*               array IFAIL. */

/*  Internal Parameters */
/*  =================== */

/*  MAXITS  INTEGER, default = 5 */
/*          The maximum number of iterations performed. */

/*  EXTRA   INTEGER, default = 2 */
/*          The number of iterations performed after norm growth */
/*          criterion is satisfied, should be at least 1. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    --w;
    --iblock;
    --isplit;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;

    /* Function Body */
    *info = 0;
    i__1 = *m;
    for (i__ = 1; i__ <= i__1; ++i__) {
	ifail[i__] = 0;
/* L10: */
    }

    if (*n < 0) {
	*info = -1;
    } else if (*m < 0 || *m > *n) {
	*info = -4;
    } else if (*ldz < max(1,*n)) {
	*info = -9;
    } else {
	i__1 = *m;
	for (j = 2; j <= i__1; ++j) {
	    if (iblock[j] < iblock[j - 1]) {
		*info = -6;
		goto L30;
	    }
	    if (iblock[j] == iblock[j - 1] && w[j] < w[j - 1]) {
		*info = -5;
		goto L30;
	    }
/* L20: */
	}
L30:
	;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SSTEIN", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *m == 0) {
	return 0;
    } else if (*n == 1) {
	z__[z_dim1 + 1] = 1.f;
	return 0;
    }

/*     Get machine constants. */

    eps = slamch_("Precision");

/*     Initialize seed for random number generator SLARNV. */

    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = 1;
/* L40: */
    }

/*     Initialize pointers. */

    indrv1 = 0;
    indrv2 = indrv1 + *n;
    indrv3 = indrv2 + *n;
    indrv4 = indrv3 + *n;
    indrv5 = indrv4 + *n;

/*     Compute eigenvectors of matrix blocks. */

    j1 = 1;
    i__1 = iblock[*m];
    for (nblk = 1; nblk <= i__1; ++nblk) {

/*        Find starting and ending indices of block nblk. */

	if (nblk == 1) {
	    b1 = 1;
	} else {
	    b1 = isplit[nblk - 1] + 1;
	}
	bn = isplit[nblk];
	blksiz = bn - b1 + 1;
	if (blksiz == 1) {
	    goto L60;
	}
	gpind = b1;

/*        Compute reorthogonalization criterion and stopping criterion. */

	onenrm = (r__1 = d__[b1], dabs(r__1)) + (r__2 = e[b1], dabs(r__2));
/* Computing MAX */
	r__3 = onenrm, r__4 = (r__1 = d__[bn], dabs(r__1)) + (r__2 = e[bn - 1]
		, dabs(r__2));
	onenrm = dmax(r__3,r__4);
	i__2 = bn - 1;
	for (i__ = b1 + 1; i__ <= i__2; ++i__) {
/* Computing MAX */
	    r__4 = onenrm, r__5 = (r__1 = d__[i__], dabs(r__1)) + (r__2 = e[
		    i__ - 1], dabs(r__2)) + (r__3 = e[i__], dabs(r__3));
	    onenrm = dmax(r__4,r__5);
/* L50: */
	}
	ortol = onenrm * .001f;

	stpcrt = sqrt(.1f / blksiz);

/*        Loop through eigenvalues of block nblk. */

L60:
	jblk = 0;
	i__2 = *m;
	for (j = j1; j <= i__2; ++j) {
	    if (iblock[j] != nblk) {
		j1 = j;
		goto L160;
	    }
	    ++jblk;
	    xj = w[j];

/*           Skip all the work if the block size is one. */

	    if (blksiz == 1) {
		work[indrv1 + 1] = 1.f;
		goto L120;
	    }

/*           If eigenvalues j and j-1 are too close, add a relatively */
/*           small perturbation. */

	    if (jblk > 1) {
		eps1 = (r__1 = eps * xj, dabs(r__1));
		pertol = eps1 * 10.f;
		sep = xj - xjm;
		if (sep < pertol) {
		    xj = xjm + pertol;
		}
	    }

	    its = 0;
	    nrmchk = 0;

/*           Get random starting vector. */

	    slarnv_(&c__2, iseed, &blksiz, &work[indrv1 + 1]);

/*           Copy the matrix T so it won't be destroyed in factorization. */

	    scopy_(&blksiz, &d__[b1], &c__1, &work[indrv4 + 1], &c__1);
	    i__3 = blksiz - 1;
	    scopy_(&i__3, &e[b1], &c__1, &work[indrv2 + 2], &c__1);
	    i__3 = blksiz - 1;
	    scopy_(&i__3, &e[b1], &c__1, &work[indrv3 + 1], &c__1);

/*           Compute LU factors with partial pivoting  ( PT = LU ) */

	    tol = 0.f;
	    slagtf_(&blksiz, &work[indrv4 + 1], &xj, &work[indrv2 + 2], &work[
		    indrv3 + 1], &tol, &work[indrv5 + 1], &iwork[1], &iinfo);

/*           Update iteration count. */

L70:
	    ++its;
	    if (its > 5) {
		goto L100;
	    }

/*           Normalize and scale the righthand side vector Pb. */

/* Computing MAX */
	    r__2 = eps, r__3 = (r__1 = work[indrv4 + blksiz], dabs(r__1));
	    scl = blksiz * onenrm * dmax(r__2,r__3) / sasum_(&blksiz, &work[
		    indrv1 + 1], &c__1);
	    sscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);

/*           Solve the system LU = Pb. */

	    slagts_(&c_n1, &blksiz, &work[indrv4 + 1], &work[indrv2 + 2], &
		    work[indrv3 + 1], &work[indrv5 + 1], &iwork[1], &work[
		    indrv1 + 1], &tol, &iinfo);

/*           Reorthogonalize by modified Gram-Schmidt if eigenvalues are */
/*           close enough. */

	    if (jblk == 1) {
		goto L90;
	    }
	    if ((r__1 = xj - xjm, dabs(r__1)) > ortol) {
		gpind = j;
	    }
	    if (gpind != j) {
		i__3 = j - 1;
		for (i__ = gpind; i__ <= i__3; ++i__) {
		    ctr = -sdot_(&blksiz, &work[indrv1 + 1], &c__1, &z__[b1 + 
			    i__ * z_dim1], &c__1);
		    saxpy_(&blksiz, &ctr, &z__[b1 + i__ * z_dim1], &c__1, &
			    work[indrv1 + 1], &c__1);
/* L80: */
		}
	    }

/*           Check the infinity norm of the iterate. */

L90:
	    jmax = isamax_(&blksiz, &work[indrv1 + 1], &c__1);
	    nrm = (r__1 = work[indrv1 + jmax], dabs(r__1));

/*           Continue for additional iterations after norm reaches */
/*           stopping criterion. */

	    if (nrm < stpcrt) {
		goto L70;
	    }
	    ++nrmchk;
	    if (nrmchk < 3) {
		goto L70;
	    }

	    goto L110;

/*           If stopping criterion was not satisfied, update info and */
/*           store eigenvector number in array ifail. */

L100:
	    ++(*info);
	    ifail[*info] = j;

/*           Accept iterate as jth eigenvector. */

L110:
	    scl = 1.f / snrm2_(&blksiz, &work[indrv1 + 1], &c__1);
	    jmax = isamax_(&blksiz, &work[indrv1 + 1], &c__1);
	    if (work[indrv1 + jmax] < 0.f) {
		scl = -scl;
	    }
	    sscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
L120:
	    i__3 = *n;
	    for (i__ = 1; i__ <= i__3; ++i__) {
		z__[i__ + j * z_dim1] = 0.f;
/* L130: */
	    }
	    i__3 = blksiz;
	    for (i__ = 1; i__ <= i__3; ++i__) {
		z__[b1 + i__ - 1 + j * z_dim1] = work[indrv1 + i__];
/* L140: */
	    }

/*           Save the shift to check eigenvalue spacing at next */
/*           iteration. */

	    xjm = xj;

/* L150: */
	}
L160:
	;
    }

    return 0;

/*     End of SSTEIN */

} /* sstein_ */