/* slaed6.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int slaed6_(integer *kniter, logical *orgati, real *rho, 
	real *d__, real *z__, real *finit, real *tau, integer *info)
{
    /* System generated locals */
    integer i__1;
    real r__1, r__2, r__3, r__4;

    /* Builtin functions */
    double sqrt(doublereal), log(doublereal), pow_ri(real *, integer *);

    /* Local variables */
    real a, b, c__, f;
    integer i__;
    real fc, df, ddf, lbd, eta, ubd, eps, base;
    integer iter;
    real temp, temp1, temp2, temp3, temp4;
    logical scale;
    integer niter;
    real small1, small2, sminv1, sminv2, dscale[3], sclfac;
    extern doublereal slamch_(char *);
    real zscale[3], erretm, sclinv;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     February 2007 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLAED6 computes the positive or negative root (closest to the origin) */
/*  of */
/*                   z(1)        z(2)        z(3) */
/*  f(x) =   rho + --------- + ---------- + --------- */
/*                  d(1)-x      d(2)-x      d(3)-x */

/*  It is assumed that */

/*        if ORGATI = .true. the root is between d(2) and d(3); */
/*        otherwise it is between d(1) and d(2) */

/*  This routine will be called by SLAED4 when necessary. In most cases, */
/*  the root sought is the smallest in magnitude, though it might not be */
/*  in some extremely rare situations. */

/*  Arguments */
/*  ========= */

/*  KNITER       (input) INTEGER */
/*               Refer to SLAED4 for its significance. */

/*  ORGATI       (input) LOGICAL */
/*               If ORGATI is true, the needed root is between d(2) and */
/*               d(3); otherwise it is between d(1) and d(2).  See */
/*               SLAED4 for further details. */

/*  RHO          (input) REAL */
/*               Refer to the equation f(x) above. */

/*  D            (input) REAL array, dimension (3) */
/*               D satisfies d(1) < d(2) < d(3). */

/*  Z            (input) REAL array, dimension (3) */
/*               Each of the elements in z must be positive. */

/*  FINIT        (input) REAL */
/*               The value of f at 0. It is more accurate than the one */
/*               evaluated inside this routine (if someone wants to do */
/*               so). */

/*  TAU          (output) REAL */
/*               The root of the equation f(x). */

/*  INFO         (output) INTEGER */
/*               = 0: successful exit */
/*               > 0: if INFO = 1, failure to converge */

/*  Further Details */
/*  =============== */

/*  30/06/99: Based on contributions by */
/*     Ren-Cang Li, Computer Science Division, University of California */
/*     at Berkeley, USA */

/*  10/02/03: This version has a few statements commented out for thread safety */
/*     (machine parameters are computed on each entry). SJH. */

/*  05/10/06: Modified from a new version of Ren-Cang Li, use */
/*     Gragg-Thornton-Warner cubic convergent scheme for better stability. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --z__;
    --d__;

    /* Function Body */
    *info = 0;

    if (*orgati) {
	lbd = d__[2];
	ubd = d__[3];
    } else {
	lbd = d__[1];
	ubd = d__[2];
    }
    if (*finit < 0.f) {
	lbd = 0.f;
    } else {
	ubd = 0.f;
    }

    niter = 1;
    *tau = 0.f;
    if (*kniter == 2) {
	if (*orgati) {
	    temp = (d__[3] - d__[2]) / 2.f;
	    c__ = *rho + z__[1] / (d__[1] - d__[2] - temp);
	    a = c__ * (d__[2] + d__[3]) + z__[2] + z__[3];
	    b = c__ * d__[2] * d__[3] + z__[2] * d__[3] + z__[3] * d__[2];
	} else {
	    temp = (d__[1] - d__[2]) / 2.f;
	    c__ = *rho + z__[3] / (d__[3] - d__[2] - temp);
	    a = c__ * (d__[1] + d__[2]) + z__[1] + z__[2];
	    b = c__ * d__[1] * d__[2] + z__[1] * d__[2] + z__[2] * d__[1];
	}
/* Computing MAX */
	r__1 = dabs(a), r__2 = dabs(b), r__1 = max(r__1,r__2), r__2 = dabs(
		c__);
	temp = dmax(r__1,r__2);
	a /= temp;
	b /= temp;
	c__ /= temp;
	if (c__ == 0.f) {
	    *tau = b / a;
	} else if (a <= 0.f) {
	    *tau = (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) / (
		    c__ * 2.f);
	} else {
	    *tau = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs(
		    r__1))));
	}
	if (*tau < lbd || *tau > ubd) {
	    *tau = (lbd + ubd) / 2.f;
	}
	if (d__[1] == *tau || d__[2] == *tau || d__[3] == *tau) {
	    *tau = 0.f;
	} else {
	    temp = *finit + *tau * z__[1] / (d__[1] * (d__[1] - *tau)) + *tau 
		    * z__[2] / (d__[2] * (d__[2] - *tau)) + *tau * z__[3] / (
		    d__[3] * (d__[3] - *tau));
	    if (temp <= 0.f) {
		lbd = *tau;
	    } else {
		ubd = *tau;
	    }
	    if (dabs(*finit) <= dabs(temp)) {
		*tau = 0.f;
	    }
	}
    }

/*     get machine parameters for possible scaling to avoid overflow */

/*     modified by Sven: parameters SMALL1, SMINV1, SMALL2, */
/*     SMINV2, EPS are not SAVEd anymore between one call to the */
/*     others but recomputed at each call */

    eps = slamch_("Epsilon");
    base = slamch_("Base");
    i__1 = (integer) (log(slamch_("SafMin")) / log(base) / 3.f);
    small1 = pow_ri(&base, &i__1);
    sminv1 = 1.f / small1;
    small2 = small1 * small1;
    sminv2 = sminv1 * sminv1;

/*     Determine if scaling of inputs necessary to avoid overflow */
/*     when computing 1/TEMP**3 */

    if (*orgati) {
/* Computing MIN */
	r__3 = (r__1 = d__[2] - *tau, dabs(r__1)), r__4 = (r__2 = d__[3] - *
		tau, dabs(r__2));
	temp = dmin(r__3,r__4);
    } else {
/* Computing MIN */
	r__3 = (r__1 = d__[1] - *tau, dabs(r__1)), r__4 = (r__2 = d__[2] - *
		tau, dabs(r__2));
	temp = dmin(r__3,r__4);
    }
    scale = FALSE_;
    if (temp <= small1) {
	scale = TRUE_;
	if (temp <= small2) {

/*        Scale up by power of radix nearest 1/SAFMIN**(2/3) */

	    sclfac = sminv2;
	    sclinv = small2;
	} else {

/*        Scale up by power of radix nearest 1/SAFMIN**(1/3) */

	    sclfac = sminv1;
	    sclinv = small1;
	}

/*        Scaling up safe because D, Z, TAU scaled elsewhere to be O(1) */

	for (i__ = 1; i__ <= 3; ++i__) {
	    dscale[i__ - 1] = d__[i__] * sclfac;
	    zscale[i__ - 1] = z__[i__] * sclfac;
/* L10: */
	}
	*tau *= sclfac;
	lbd *= sclfac;
	ubd *= sclfac;
    } else {

/*        Copy D and Z to DSCALE and ZSCALE */

	for (i__ = 1; i__ <= 3; ++i__) {
	    dscale[i__ - 1] = d__[i__];
	    zscale[i__ - 1] = z__[i__];
/* L20: */
	}
    }

    fc = 0.f;
    df = 0.f;
    ddf = 0.f;
    for (i__ = 1; i__ <= 3; ++i__) {
	temp = 1.f / (dscale[i__ - 1] - *tau);
	temp1 = zscale[i__ - 1] * temp;
	temp2 = temp1 * temp;
	temp3 = temp2 * temp;
	fc += temp1 / dscale[i__ - 1];
	df += temp2;
	ddf += temp3;
/* L30: */
    }
    f = *finit + *tau * fc;

    if (dabs(f) <= 0.f) {
	goto L60;
    }
    if (f <= 0.f) {
	lbd = *tau;
    } else {
	ubd = *tau;
    }

/*        Iteration begins -- Use Gragg-Thornton-Warner cubic convergent */
/*                            scheme */

/*     It is not hard to see that */

/*           1) Iterations will go up monotonically */
/*              if FINIT < 0; */

/*           2) Iterations will go down monotonically */
/*              if FINIT > 0. */

    iter = niter + 1;

    for (niter = iter; niter <= 40; ++niter) {

	if (*orgati) {
	    temp1 = dscale[1] - *tau;
	    temp2 = dscale[2] - *tau;
	} else {
	    temp1 = dscale[0] - *tau;
	    temp2 = dscale[1] - *tau;
	}
	a = (temp1 + temp2) * f - temp1 * temp2 * df;
	b = temp1 * temp2 * f;
	c__ = f - (temp1 + temp2) * df + temp1 * temp2 * ddf;
/* Computing MAX */
	r__1 = dabs(a), r__2 = dabs(b), r__1 = max(r__1,r__2), r__2 = dabs(
		c__);
	temp = dmax(r__1,r__2);
	a /= temp;
	b /= temp;
	c__ /= temp;
	if (c__ == 0.f) {
	    eta = b / a;
	} else if (a <= 0.f) {
	    eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) / (
		    c__ * 2.f);
	} else {
	    eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs(
		    r__1))));
	}
	if (f * eta >= 0.f) {
	    eta = -f / df;
	}

	*tau += eta;
	if (*tau < lbd || *tau > ubd) {
	    *tau = (lbd + ubd) / 2.f;
	}

	fc = 0.f;
	erretm = 0.f;
	df = 0.f;
	ddf = 0.f;
	for (i__ = 1; i__ <= 3; ++i__) {
	    temp = 1.f / (dscale[i__ - 1] - *tau);
	    temp1 = zscale[i__ - 1] * temp;
	    temp2 = temp1 * temp;
	    temp3 = temp2 * temp;
	    temp4 = temp1 / dscale[i__ - 1];
	    fc += temp4;
	    erretm += dabs(temp4);
	    df += temp2;
	    ddf += temp3;
/* L40: */
	}
	f = *finit + *tau * fc;
	erretm = (dabs(*finit) + dabs(*tau) * erretm) * 8.f + dabs(*tau) * df;
	if (dabs(f) <= eps * erretm) {
	    goto L60;
	}
	if (f <= 0.f) {
	    lbd = *tau;
	} else {
	    ubd = *tau;
	}
/* L50: */
    }
    *info = 1;
L60:

/*     Undo scaling */

    if (scale) {
	*tau *= sclinv;
    }
    return 0;

/*     End of SLAED6 */

} /* slaed6_ */