/* sgesvj.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static real c_b17 = 0.f; static real c_b18 = 1.f; static integer c__1 = 1; static integer c__0 = 0; static integer c__2 = 2; /* Subroutine */ int sgesvj_(char *joba, char *jobu, char *jobv, integer *m, integer *n, real *a, integer *lda, real *sva, integer *mv, real *v, integer *ldv, real *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5; real r__1, r__2; /* Builtin functions */ double sqrt(doublereal), r_sign(real *, real *); /* Local variables */ real bigtheta; integer pskipped, i__, p, q; real t; integer n2, n4; real rootsfmin; integer n34; real cs, sn; integer ir1, jbc; real big; integer kbl, igl, ibr, jgl, nbl; real tol; integer mvl; real aapp, aapq, aaqq, ctol; integer ierr; extern doublereal sdot_(integer *, real *, integer *, real *, integer *); real aapp0, temp1; extern doublereal snrm2_(integer *, real *, integer *); real scale, large, apoaq, aqoap; extern logical lsame_(char *, char *); real theta; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); real small, sfmin; logical lsvec; real fastr[5]; logical applv, rsvec, uctol, lower, upper; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); logical rotok; extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *, integer *), saxpy_(integer *, real *, real *, integer *, real *, integer *), srotm_(integer *, real *, integer *, real *, integer * , real *), sgsvj0_(char *, integer *, integer *, real *, integer * , real *, real *, integer *, real *, integer *, real *, real *, real *, integer *, real *, integer *, integer *), sgsvj1_( char *, integer *, integer *, integer *, real *, integer *, real * , real *, integer *, real *, integer *, real *, real *, real *, integer *, real *, integer *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *); integer ijblsk, swband; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *); extern integer isamax_(integer *, real *, integer *); integer blskip; real mxaapq; extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *, real *, real *, integer *); real thsign; extern /* Subroutine */ int slassq_(integer *, real *, integer *, real *, real *); real mxsinj; integer emptsw, notrot, iswrot, lkahead; logical goscale, noscale; real rootbig, epsilon, rooteps; integer rowskip; real roottol; /* -- LAPACK routine (version 3.2) -- */ /* -- Contributed by Zlatko Drmac of the University of Zagreb and -- */ /* -- Kresimir Veselic of the Fernuniversitaet Hagen -- */ /* -- November 2008 -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* This routine is also part of SIGMA (version 1.23, October 23. 2008.) */ /* SIGMA is a library of algorithms for highly accurate algorithms for */ /* computation of SVD, PSVD, QSVD, (H,K)-SVD, and for solution of the */ /* eigenvalue problems Hx = lambda M x, H M x = lambda x with H, M > 0. */ /* -#- Scalar Arguments -#- */ /* -#- Array Arguments -#- */ /* .. */ /* Purpose */ /* ~~~~~~~ */ /* SGESVJ computes the singular value decomposition (SVD) of a real */ /* M-by-N matrix A, where M >= N. The SVD of A is written as */ /* [++] [xx] [x0] [xx] */ /* A = U * SIGMA * V^t, [++] = [xx] * [ox] * [xx] */ /* [++] [xx] */ /* where SIGMA is an N-by-N diagonal matrix, U is an M-by-N orthonormal */ /* matrix, and V is an N-by-N orthogonal matrix. The diagonal elements */ /* of SIGMA are the singular values of A. The columns of U and V are the */ /* left and the right singular vectors of A, respectively. */ /* Further Details */ /* ~~~~~~~~~~~~~~~ */ /* The orthogonal N-by-N matrix V is obtained as a product of Jacobi plane */ /* rotations. The rotations are implemented as fast scaled rotations of */ /* Anda and Park [1]. In the case of underflow of the Jacobi angle, a */ /* modified Jacobi transformation of Drmac [4] is used. Pivot strategy uses */ /* column interchanges of de Rijk [2]. The relative accuracy of the computed */ /* singular values and the accuracy of the computed singular vectors (in */ /* angle metric) is as guaranteed by the theory of Demmel and Veselic [3]. */ /* The condition number that determines the accuracy in the full rank case */ /* is essentially min_{D=diag} kappa(A*D), where kappa(.) is the */ /* spectral condition number. The best performance of this Jacobi SVD */ /* procedure is achieved if used in an accelerated version of Drmac and */ /* Veselic [5,6], and it is the kernel routine in the SIGMA library [7]. */ /* Some tunning parameters (marked with [TP]) are available for the */ /* implementer. */ /* The computational range for the nonzero singular values is the machine */ /* number interval ( UNDERFLOW , OVERFLOW ). In extreme cases, even */ /* denormalized singular values can be computed with the corresponding */ /* gradual loss of accurate digits. */ /* Contributors */ /* ~~~~~~~~~~~~ */ /* Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) */ /* References */ /* ~~~~~~~~~~ */ /* [1] A. A. Anda and H. Park: Fast plane rotations with dynamic scaling. */ /* SIAM J. matrix Anal. Appl., Vol. 15 (1994), pp. 162-174. */ /* [2] P. P. M. De Rijk: A one-sided Jacobi algorithm for computing the */ /* singular value decomposition on a vector computer. */ /* SIAM J. Sci. Stat. Comp., Vol. 10 (1998), pp. 359-371. */ /* [3] J. Demmel and K. Veselic: Jacobi method is more accurate than QR. */ /* [4] Z. Drmac: Implementation of Jacobi rotations for accurate singular */ /* value computation in floating point arithmetic. */ /* SIAM J. Sci. Comp., Vol. 18 (1997), pp. 1200-1222. */ /* [5] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I. */ /* SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. */ /* LAPACK Working note 169. */ /* [6] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II. */ /* SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. */ /* LAPACK Working note 170. */ /* [7] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV, */ /* QSVD, (H,K)-SVD computations. */ /* Department of Mathematics, University of Zagreb, 2008. */ /* Bugs, Examples and Comments */ /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ /* Please report all bugs and send interesting test examples and comments to */ /* drmac@math.hr. Thank you. */ /* Arguments */ /* ~~~~~~~~~ */ /* JOBA (input) CHARACTER* 1 */ /* Specifies the structure of A. */ /* = 'L': The input matrix A is lower triangular; */ /* = 'U': The input matrix A is upper triangular; */ /* = 'G': The input matrix A is general M-by-N matrix, M >= N. */ /* JOBU (input) CHARACTER*1 */ /* Specifies whether to compute the left singular vectors */ /* (columns of U): */ /* = 'U': The left singular vectors corresponding to the nonzero */ /* singular values are computed and returned in the leading */ /* columns of A. See more details in the description of A. */ /* The default numerical orthogonality threshold is set to */ /* approximately TOL=CTOL*EPS, CTOL=SQRT(M), EPS=SLAMCH('E'). */ /* = 'C': Analogous to JOBU='U', except that user can control the */ /* level of numerical orthogonality of the computed left */ /* singular vectors. TOL can be set to TOL = CTOL*EPS, where */ /* CTOL is given on input in the array WORK. */ /* No CTOL smaller than ONE is allowed. CTOL greater */ /* than 1 / EPS is meaningless. The option 'C' */ /* can be used if M*EPS is satisfactory orthogonality */ /* of the computed left singular vectors, so CTOL=M could */ /* save few sweeps of Jacobi rotations. */ /* See the descriptions of A and WORK(1). */ /* = 'N': The matrix U is not computed. However, see the */ /* description of A. */ /* JOBV (input) CHARACTER*1 */ /* Specifies whether to compute the right singular vectors, that */ /* is, the matrix V: */ /* = 'V' : the matrix V is computed and returned in the array V */ /* = 'A' : the Jacobi rotations are applied to the MV-by-N */ /* array V. In other words, the right singular vector */ /* matrix V is not computed explicitly; instead it is */ /* applied to an MV-by-N matrix initially stored in the */ /* first MV rows of V. */ /* = 'N' : the matrix V is not computed and the array V is not */ /* referenced */ /* M (input) INTEGER */ /* The number of rows of the input matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the input matrix A. */ /* M >= N >= 0. */ /* A (input/output) REAL array, dimension (LDA,N) */ /* On entry, the M-by-N matrix A. */ /* On exit, */ /* If JOBU .EQ. 'U' .OR. JOBU .EQ. 'C': */ /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ /* If INFO .EQ. 0, */ /* ~~~~~~~~~~~~~~~ */ /* RANKA orthonormal columns of U are returned in the */ /* leading RANKA columns of the array A. Here RANKA <= N */ /* is the number of computed singular values of A that are */ /* above the underflow threshold SLAMCH('S'). The singular */ /* vectors corresponding to underflowed or zero singular */ /* values are not computed. The value of RANKA is returned */ /* in the array WORK as RANKA=NINT(WORK(2)). Also see the */ /* descriptions of SVA and WORK. The computed columns of U */ /* are mutually numerically orthogonal up to approximately */ /* TOL=SQRT(M)*EPS (default); or TOL=CTOL*EPS (JOBU.EQ.'C'), */ /* see the description of JOBU. */ /* If INFO .GT. 0, */ /* ~~~~~~~~~~~~~~~ */ /* the procedure SGESVJ did not converge in the given number */ /* of iterations (sweeps). In that case, the computed */ /* columns of U may not be orthogonal up to TOL. The output */ /* U (stored in A), SIGMA (given by the computed singular */ /* values in SVA(1:N)) and V is still a decomposition of the */ /* input matrix A in the sense that the residual */ /* ||A-SCALE*U*SIGMA*V^T||_2 / ||A||_2 is small. */ /* If JOBU .EQ. 'N': */ /* ~~~~~~~~~~~~~~~~~ */ /* If INFO .EQ. 0 */ /* ~~~~~~~~~~~~~~ */ /* Note that the left singular vectors are 'for free' in the */ /* one-sided Jacobi SVD algorithm. However, if only the */ /* singular values are needed, the level of numerical */ /* orthogonality of U is not an issue and iterations are */ /* stopped when the columns of the iterated matrix are */ /* numerically orthogonal up to approximately M*EPS. Thus, */ /* on exit, A contains the columns of U scaled with the */ /* corresponding singular values. */ /* If INFO .GT. 0, */ /* ~~~~~~~~~~~~~~~ */ /* the procedure SGESVJ did not converge in the given number */ /* of iterations (sweeps). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* SVA (workspace/output) REAL array, dimension (N) */ /* On exit, */ /* If INFO .EQ. 0, */ /* ~~~~~~~~~~~~~~~ */ /* depending on the value SCALE = WORK(1), we have: */ /* If SCALE .EQ. ONE: */ /* ~~~~~~~~~~~~~~~~~~ */ /* SVA(1:N) contains the computed singular values of A. */ /* During the computation SVA contains the Euclidean column */ /* norms of the iterated matrices in the array A. */ /* If SCALE .NE. ONE: */ /* ~~~~~~~~~~~~~~~~~~ */ /* The singular values of A are SCALE*SVA(1:N), and this */ /* factored representation is due to the fact that some of the */ /* singular values of A might underflow or overflow. */ /* If INFO .GT. 0, */ /* ~~~~~~~~~~~~~~~ */ /* the procedure SGESVJ did not converge in the given number of */ /* iterations (sweeps) and SCALE*SVA(1:N) may not be accurate. */ /* MV (input) INTEGER */ /* If JOBV .EQ. 'A', then the product of Jacobi rotations in SGESVJ */ /* is applied to the first MV rows of V. See the description of JOBV. */ /* V (input/output) REAL array, dimension (LDV,N) */ /* If JOBV = 'V', then V contains on exit the N-by-N matrix of */ /* the right singular vectors; */ /* If JOBV = 'A', then V contains the product of the computed right */ /* singular vector matrix and the initial matrix in */ /* the array V. */ /* If JOBV = 'N', then V is not referenced. */ /* LDV (input) INTEGER */ /* The leading dimension of the array V, LDV .GE. 1. */ /* If JOBV .EQ. 'V', then LDV .GE. max(1,N). */ /* If JOBV .EQ. 'A', then LDV .GE. max(1,MV) . */ /* WORK (input/workspace/output) REAL array, dimension max(4,M+N). */ /* On entry, */ /* If JOBU .EQ. 'C', */ /* ~~~~~~~~~~~~~~~~~ */ /* WORK(1) = CTOL, where CTOL defines the threshold for convergence. */ /* The process stops if all columns of A are mutually */ /* orthogonal up to CTOL*EPS, EPS=SLAMCH('E'). */ /* It is required that CTOL >= ONE, i.e. it is not */ /* allowed to force the routine to obtain orthogonality */ /* below EPSILON. */ /* On exit, */ /* WORK(1) = SCALE is the scaling factor such that SCALE*SVA(1:N) */ /* are the computed singular vcalues of A. */ /* (See description of SVA().) */ /* WORK(2) = NINT(WORK(2)) is the number of the computed nonzero */ /* singular values. */ /* WORK(3) = NINT(WORK(3)) is the number of the computed singular */ /* values that are larger than the underflow threshold. */ /* WORK(4) = NINT(WORK(4)) is the number of sweeps of Jacobi */ /* rotations needed for numerical convergence. */ /* WORK(5) = max_{i.NE.j} |COS(A(:,i),A(:,j))| in the last sweep. */ /* This is useful information in cases when SGESVJ did */ /* not converge, as it can be used to estimate whether */ /* the output is stil useful and for post festum analysis. */ /* WORK(6) = the largest absolute value over all sines of the */ /* Jacobi rotation angles in the last sweep. It can be */ /* useful for a post festum analysis. */ /* LWORK length of WORK, WORK >= MAX(6,M+N) */ /* INFO (output) INTEGER */ /* = 0 : successful exit. */ /* < 0 : if INFO = -i, then the i-th argument had an illegal value */ /* > 0 : SGESVJ did not converge in the maximal allowed number (30) */ /* of sweeps. The output may still be useful. See the */ /* description of WORK. */ /* Local Parameters */ /* Local Scalars */ /* Local Arrays */ /* Intrinsic Functions */ /* External Functions */ /* .. from BLAS */ /* .. from LAPACK */ /* External Subroutines */ /* .. from BLAS */ /* .. from LAPACK */ /* Test the input arguments */ /* Parameter adjustments */ --sva; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; v_dim1 = *ldv; v_offset = 1 + v_dim1; v -= v_offset; --work; /* Function Body */ lsvec = lsame_(jobu, "U"); uctol = lsame_(jobu, "C"); rsvec = lsame_(jobv, "V"); applv = lsame_(jobv, "A"); upper = lsame_(joba, "U"); lower = lsame_(joba, "L"); if (! (upper || lower || lsame_(joba, "G"))) { *info = -1; } else if (! (lsvec || uctol || lsame_(jobu, "N"))) { *info = -2; } else if (! (rsvec || applv || lsame_(jobv, "N"))) { *info = -3; } else if (*m < 0) { *info = -4; } else if (*n < 0 || *n > *m) { *info = -5; } else if (*lda < *m) { *info = -7; } else if (*mv < 0) { *info = -9; } else if (rsvec && *ldv < *n || applv && *ldv < *mv) { *info = -11; } else if (uctol && work[1] <= 1.f) { *info = -12; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = *m + *n; if (*lwork < max(i__1,6)) { *info = -13; } else { *info = 0; } } /* #:( */ if (*info != 0) { i__1 = -(*info); xerbla_("SGESVJ", &i__1); return 0; } /* #:) Quick return for void matrix */ if (*m == 0 || *n == 0) { return 0; } /* Set numerical parameters */ /* The stopping criterion for Jacobi rotations is */ /* max_{i<>j}|A(:,i)^T * A(:,j)|/(||A(:,i)||*||A(:,j)||) < CTOL*EPS */ /* where EPS is the round-off and CTOL is defined as follows: */ if (uctol) { /* ... user controlled */ ctol = work[1]; } else { /* ... default */ if (lsvec || rsvec || applv) { ctol = sqrt((real) (*m)); } else { ctol = (real) (*m); } } /* ... and the machine dependent parameters are */ /* [!] (Make sure that SLAMCH() works properly on the target machine.) */ epsilon = slamch_("Epsilon"); rooteps = sqrt(epsilon); sfmin = slamch_("SafeMinimum"); rootsfmin = sqrt(sfmin); small = sfmin / epsilon; big = slamch_("Overflow"); rootbig = 1.f / rootsfmin; large = big / sqrt((real) (*m * *n)); bigtheta = 1.f / rooteps; tol = ctol * epsilon; roottol = sqrt(tol); if ((real) (*m) * epsilon >= 1.f) { *info = -5; i__1 = -(*info); xerbla_("SGESVJ", &i__1); return 0; } /* Initialize the right singular vector matrix. */ if (rsvec) { mvl = *n; slaset_("A", &mvl, n, &c_b17, &c_b18, &v[v_offset], ldv); } else if (applv) { mvl = *mv; } rsvec = rsvec || applv; /* Initialize SVA( 1:N ) = ( ||A e_i||_2, i = 1:N ) */ /* (!) If necessary, scale A to protect the largest singular value */ /* from overflow. It is possible that saving the largest singular */ /* value destroys the information about the small ones. */ /* This initial scaling is almost minimal in the sense that the */ /* goal is to make sure that no column norm overflows, and that */ /* SQRT(N)*max_i SVA(i) does not overflow. If INFinite entries */ /* in A are detected, the procedure returns with INFO=-6. */ scale = 1.f / sqrt((real) (*m) * (real) (*n)); noscale = TRUE_; goscale = TRUE_; if (lower) { /* the input matrix is M-by-N lower triangular (trapezoidal) */ i__1 = *n; for (p = 1; p <= i__1; ++p) { aapp = 0.f; aaqq = 0.f; i__2 = *m - p + 1; slassq_(&i__2, &a[p + p * a_dim1], &c__1, &aapp, &aaqq); if (aapp > big) { *info = -6; i__2 = -(*info); xerbla_("SGESVJ", &i__2); return 0; } aaqq = sqrt(aaqq); if (aapp < big / aaqq && noscale) { sva[p] = aapp * aaqq; } else { noscale = FALSE_; sva[p] = aapp * (aaqq * scale); if (goscale) { goscale = FALSE_; i__2 = p - 1; for (q = 1; q <= i__2; ++q) { sva[q] *= scale; /* L1873: */ } } } /* L1874: */ } } else if (upper) { /* the input matrix is M-by-N upper triangular (trapezoidal) */ i__1 = *n; for (p = 1; p <= i__1; ++p) { aapp = 0.f; aaqq = 0.f; slassq_(&p, &a[p * a_dim1 + 1], &c__1, &aapp, &aaqq); if (aapp > big) { *info = -6; i__2 = -(*info); xerbla_("SGESVJ", &i__2); return 0; } aaqq = sqrt(aaqq); if (aapp < big / aaqq && noscale) { sva[p] = aapp * aaqq; } else { noscale = FALSE_; sva[p] = aapp * (aaqq * scale); if (goscale) { goscale = FALSE_; i__2 = p - 1; for (q = 1; q <= i__2; ++q) { sva[q] *= scale; /* L2873: */ } } } /* L2874: */ } } else { /* the input matrix is M-by-N general dense */ i__1 = *n; for (p = 1; p <= i__1; ++p) { aapp = 0.f; aaqq = 0.f; slassq_(m, &a[p * a_dim1 + 1], &c__1, &aapp, &aaqq); if (aapp > big) { *info = -6; i__2 = -(*info); xerbla_("SGESVJ", &i__2); return 0; } aaqq = sqrt(aaqq); if (aapp < big / aaqq && noscale) { sva[p] = aapp * aaqq; } else { noscale = FALSE_; sva[p] = aapp * (aaqq * scale); if (goscale) { goscale = FALSE_; i__2 = p - 1; for (q = 1; q <= i__2; ++q) { sva[q] *= scale; /* L3873: */ } } } /* L3874: */ } } if (noscale) { scale = 1.f; } /* Move the smaller part of the spectrum from the underflow threshold */ /* (!) Start by determining the position of the nonzero entries of the */ /* array SVA() relative to ( SFMIN, BIG ). */ aapp = 0.f; aaqq = big; i__1 = *n; for (p = 1; p <= i__1; ++p) { if (sva[p] != 0.f) { /* Computing MIN */ r__1 = aaqq, r__2 = sva[p]; aaqq = dmin(r__1,r__2); } /* Computing MAX */ r__1 = aapp, r__2 = sva[p]; aapp = dmax(r__1,r__2); /* L4781: */ } /* #:) Quick return for zero matrix */ if (aapp == 0.f) { if (lsvec) { slaset_("G", m, n, &c_b17, &c_b18, &a[a_offset], lda); } work[1] = 1.f; work[2] = 0.f; work[3] = 0.f; work[4] = 0.f; work[5] = 0.f; work[6] = 0.f; return 0; } /* #:) Quick return for one-column matrix */ if (*n == 1) { if (lsvec) { slascl_("G", &c__0, &c__0, &sva[1], &scale, m, &c__1, &a[a_dim1 + 1], lda, &ierr); } work[1] = 1.f / scale; if (sva[1] >= sfmin) { work[2] = 1.f; } else { work[2] = 0.f; } work[3] = 0.f; work[4] = 0.f; work[5] = 0.f; work[6] = 0.f; return 0; } /* Protect small singular values from underflow, and try to */ /* avoid underflows/overflows in computing Jacobi rotations. */ sn = sqrt(sfmin / epsilon); temp1 = sqrt(big / (real) (*n)); if (aapp <= sn || aaqq >= temp1 || sn <= aaqq && aapp <= temp1) { /* Computing MIN */ r__1 = big, r__2 = temp1 / aapp; temp1 = dmin(r__1,r__2); /* AAQQ = AAQQ*TEMP1 */ /* AAPP = AAPP*TEMP1 */ } else if (aaqq <= sn && aapp <= temp1) { /* Computing MIN */ r__1 = sn / aaqq, r__2 = big / (aapp * sqrt((real) (*n))); temp1 = dmin(r__1,r__2); /* AAQQ = AAQQ*TEMP1 */ /* AAPP = AAPP*TEMP1 */ } else if (aaqq >= sn && aapp >= temp1) { /* Computing MAX */ r__1 = sn / aaqq, r__2 = temp1 / aapp; temp1 = dmax(r__1,r__2); /* AAQQ = AAQQ*TEMP1 */ /* AAPP = AAPP*TEMP1 */ } else if (aaqq <= sn && aapp >= temp1) { /* Computing MIN */ r__1 = sn / aaqq, r__2 = big / (sqrt((real) (*n)) * aapp); temp1 = dmin(r__1,r__2); /* AAQQ = AAQQ*TEMP1 */ /* AAPP = AAPP*TEMP1 */ } else { temp1 = 1.f; } /* Scale, if necessary */ if (temp1 != 1.f) { slascl_("G", &c__0, &c__0, &c_b18, &temp1, n, &c__1, &sva[1], n, & ierr); } scale = temp1 * scale; if (scale != 1.f) { slascl_(joba, &c__0, &c__0, &c_b18, &scale, m, n, &a[a_offset], lda, & ierr); scale = 1.f / scale; } /* Row-cyclic Jacobi SVD algorithm with column pivoting */ emptsw = *n * (*n - 1) / 2; notrot = 0; fastr[0] = 0.f; /* A is represented in factored form A = A * diag(WORK), where diag(WORK) */ /* is initialized to identity. WORK is updated during fast scaled */ /* rotations. */ i__1 = *n; for (q = 1; q <= i__1; ++q) { work[q] = 1.f; /* L1868: */ } swband = 3; /* [TP] SWBAND is a tuning parameter [TP]. It is meaningful and effective */ /* if SGESVJ is used as a computational routine in the preconditioned */ /* Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure */ /* works on pivots inside a band-like region around the diagonal. */ /* The boundaries are determined dynamically, based on the number of */ /* pivots above a threshold. */ kbl = min(8,*n); /* [TP] KBL is a tuning parameter that defines the tile size in the */ /* tiling of the p-q loops of pivot pairs. In general, an optimal */ /* value of KBL depends on the matrix dimensions and on the */ /* parameters of the computer's memory. */ nbl = *n / kbl; if (nbl * kbl != *n) { ++nbl; } /* Computing 2nd power */ i__1 = kbl; blskip = i__1 * i__1; /* [TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. */ rowskip = min(5,kbl); /* [TP] ROWSKIP is a tuning parameter. */ lkahead = 1; /* [TP] LKAHEAD is a tuning parameter. */ /* Quasi block transformations, using the lower (upper) triangular */ /* structure of the input matrix. The quasi-block-cycling usually */ /* invokes cubic convergence. Big part of this cycle is done inside */ /* canonical subspaces of dimensions less than M. */ /* Computing MAX */ i__1 = 64, i__2 = kbl << 2; if ((lower || upper) && *n > max(i__1,i__2)) { /* [TP] The number of partition levels and the actual partition are */ /* tuning parameters. */ n4 = *n / 4; n2 = *n / 2; n34 = n4 * 3; if (applv) { q = 0; } else { q = 1; } if (lower) { /* This works very well on lower triangular matrices, in particular */ /* in the framework of the preconditioned Jacobi SVD (xGEJSV). */ /* The idea is simple: */ /* [+ 0 0 0] Note that Jacobi transformations of [0 0] */ /* [+ + 0 0] [0 0] */ /* [+ + x 0] actually work on [x 0] [x 0] */ /* [+ + x x] [x x]. [x x] */ i__1 = *m - n34; i__2 = *n - n34; i__3 = *lwork - *n; sgsvj0_(jobv, &i__1, &i__2, &a[n34 + 1 + (n34 + 1) * a_dim1], lda, &work[n34 + 1], &sva[n34 + 1], &mvl, &v[n34 * q + 1 + ( n34 + 1) * v_dim1], ldv, &epsilon, &sfmin, &tol, &c__2, & work[*n + 1], &i__3, &ierr); i__1 = *m - n2; i__2 = n34 - n2; i__3 = *lwork - *n; sgsvj0_(jobv, &i__1, &i__2, &a[n2 + 1 + (n2 + 1) * a_dim1], lda, & work[n2 + 1], &sva[n2 + 1], &mvl, &v[n2 * q + 1 + (n2 + 1) * v_dim1], ldv, &epsilon, &sfmin, &tol, &c__2, &work[*n + 1], &i__3, &ierr); i__1 = *m - n2; i__2 = *n - n2; i__3 = *lwork - *n; sgsvj1_(jobv, &i__1, &i__2, &n4, &a[n2 + 1 + (n2 + 1) * a_dim1], lda, &work[n2 + 1], &sva[n2 + 1], &mvl, &v[n2 * q + 1 + ( n2 + 1) * v_dim1], ldv, &epsilon, &sfmin, &tol, &c__1, & work[*n + 1], &i__3, &ierr); i__1 = *m - n4; i__2 = n2 - n4; i__3 = *lwork - *n; sgsvj0_(jobv, &i__1, &i__2, &a[n4 + 1 + (n4 + 1) * a_dim1], lda, & work[n4 + 1], &sva[n4 + 1], &mvl, &v[n4 * q + 1 + (n4 + 1) * v_dim1], ldv, &epsilon, &sfmin, &tol, &c__1, &work[*n + 1], &i__3, &ierr); i__1 = *lwork - *n; sgsvj0_(jobv, m, &n4, &a[a_offset], lda, &work[1], &sva[1], &mvl, &v[v_offset], ldv, &epsilon, &sfmin, &tol, &c__1, &work[* n + 1], &i__1, &ierr); i__1 = *lwork - *n; sgsvj1_(jobv, m, &n2, &n4, &a[a_offset], lda, &work[1], &sva[1], & mvl, &v[v_offset], ldv, &epsilon, &sfmin, &tol, &c__1, & work[*n + 1], &i__1, &ierr); } else if (upper) { i__1 = *lwork - *n; sgsvj0_(jobv, &n4, &n4, &a[a_offset], lda, &work[1], &sva[1], & mvl, &v[v_offset], ldv, &epsilon, &sfmin, &tol, &c__2, & work[*n + 1], &i__1, &ierr); i__1 = *lwork - *n; sgsvj0_(jobv, &n2, &n4, &a[(n4 + 1) * a_dim1 + 1], lda, &work[n4 + 1], &sva[n4 + 1], &mvl, &v[n4 * q + 1 + (n4 + 1) * v_dim1], ldv, &epsilon, &sfmin, &tol, &c__1, &work[*n + 1] , &i__1, &ierr); i__1 = *lwork - *n; sgsvj1_(jobv, &n2, &n2, &n4, &a[a_offset], lda, &work[1], &sva[1], &mvl, &v[v_offset], ldv, &epsilon, &sfmin, &tol, &c__1, & work[*n + 1], &i__1, &ierr); i__1 = n2 + n4; i__2 = *lwork - *n; sgsvj0_(jobv, &i__1, &n4, &a[(n2 + 1) * a_dim1 + 1], lda, &work[ n2 + 1], &sva[n2 + 1], &mvl, &v[n2 * q + 1 + (n2 + 1) * v_dim1], ldv, &epsilon, &sfmin, &tol, &c__1, &work[*n + 1] , &i__2, &ierr); } } /* -#- Row-cyclic pivot strategy with de Rijk's pivoting -#- */ for (i__ = 1; i__ <= 30; ++i__) { /* .. go go go ... */ mxaapq = 0.f; mxsinj = 0.f; iswrot = 0; notrot = 0; pskipped = 0; /* Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs */ /* 1 <= p < q <= N. This is the first step toward a blocked implementation */ /* of the rotations. New implementation, based on block transformations, */ /* is under development. */ i__1 = nbl; for (ibr = 1; ibr <= i__1; ++ibr) { igl = (ibr - 1) * kbl + 1; /* Computing MIN */ i__3 = lkahead, i__4 = nbl - ibr; i__2 = min(i__3,i__4); for (ir1 = 0; ir1 <= i__2; ++ir1) { igl += ir1 * kbl; /* Computing MIN */ i__4 = igl + kbl - 1, i__5 = *n - 1; i__3 = min(i__4,i__5); for (p = igl; p <= i__3; ++p) { /* .. de Rijk's pivoting */ i__4 = *n - p + 1; q = isamax_(&i__4, &sva[p], &c__1) + p - 1; if (p != q) { sswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1); if (rsvec) { sswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &c__1); } temp1 = sva[p]; sva[p] = sva[q]; sva[q] = temp1; temp1 = work[p]; work[p] = work[q]; work[q] = temp1; } if (ir1 == 0) { /* Column norms are periodically updated by explicit */ /* norm computation. */ /* Caveat: */ /* Unfortunately, some BLAS implementations compute SNRM2(M,A(1,p),1) */ /* as SQRT(SDOT(M,A(1,p),1,A(1,p),1)), which may cause the result to */ /* overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and to */ /* underflow for ||A(:,p)||_2 < SQRT(underflow_threshold). */ /* Hence, SNRM2 cannot be trusted, not even in the case when */ /* the true norm is far from the under(over)flow boundaries. */ /* If properly implemented SNRM2 is available, the IF-THEN-ELSE */ /* below should read "AAPP = SNRM2( M, A(1,p), 1 ) * WORK(p)". */ if (sva[p] < rootbig && sva[p] > rootsfmin) { sva[p] = snrm2_(m, &a[p * a_dim1 + 1], &c__1) * work[p]; } else { temp1 = 0.f; aapp = 0.f; slassq_(m, &a[p * a_dim1 + 1], &c__1, &temp1, & aapp); sva[p] = temp1 * sqrt(aapp) * work[p]; } aapp = sva[p]; } else { aapp = sva[p]; } if (aapp > 0.f) { pskipped = 0; /* Computing MIN */ i__5 = igl + kbl - 1; i__4 = min(i__5,*n); for (q = p + 1; q <= i__4; ++q) { aaqq = sva[q]; if (aaqq > 0.f) { aapp0 = aapp; if (aaqq >= 1.f) { rotok = small * aapp <= aaqq; if (aapp < big / aaqq) { aapq = sdot_(m, &a[p * a_dim1 + 1], & c__1, &a[q * a_dim1 + 1], & c__1) * work[p] * work[q] / aaqq / aapp; } else { scopy_(m, &a[p * a_dim1 + 1], &c__1, & work[*n + 1], &c__1); slascl_("G", &c__0, &c__0, &aapp, & work[p], m, &c__1, &work[*n + 1], lda, &ierr); aapq = sdot_(m, &work[*n + 1], &c__1, &a[q * a_dim1 + 1], &c__1) * work[q] / aaqq; } } else { rotok = aapp <= aaqq / small; if (aapp > small / aaqq) { aapq = sdot_(m, &a[p * a_dim1 + 1], & c__1, &a[q * a_dim1 + 1], & c__1) * work[p] * work[q] / aaqq / aapp; } else { scopy_(m, &a[q * a_dim1 + 1], &c__1, & work[*n + 1], &c__1); slascl_("G", &c__0, &c__0, &aaqq, & work[q], m, &c__1, &work[*n + 1], lda, &ierr); aapq = sdot_(m, &work[*n + 1], &c__1, &a[p * a_dim1 + 1], &c__1) * work[p] / aapp; } } /* Computing MAX */ r__1 = mxaapq, r__2 = dabs(aapq); mxaapq = dmax(r__1,r__2); /* TO rotate or NOT to rotate, THAT is the question ... */ if (dabs(aapq) > tol) { /* .. rotate */ /* [RTD] ROTATED = ROTATED + ONE */ if (ir1 == 0) { notrot = 0; pskipped = 0; ++iswrot; } if (rotok) { aqoap = aaqq / aapp; apoaq = aapp / aaqq; theta = (r__1 = aqoap - apoaq, dabs( r__1)) * -.5f / aapq; if (dabs(theta) > bigtheta) { t = .5f / theta; fastr[2] = t * work[p] / work[q]; fastr[3] = -t * work[q] / work[p]; srotm_(m, &a[p * a_dim1 + 1], & c__1, &a[q * a_dim1 + 1], &c__1, fastr); if (rsvec) { srotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &c__1, fastr); } /* Computing MAX */ r__1 = 0.f, r__2 = t * apoaq * aapq + 1.f; sva[q] = aaqq * sqrt((dmax(r__1, r__2))); aapp *= sqrt(1.f - t * aqoap * aapq); /* Computing MAX */ r__1 = mxsinj, r__2 = dabs(t); mxsinj = dmax(r__1,r__2); } else { /* .. choose correct signum for THETA and rotate */ thsign = -r_sign(&c_b18, &aapq); t = 1.f / (theta + thsign * sqrt( theta * theta + 1.f)); cs = sqrt(1.f / (t * t + 1.f)); sn = t * cs; /* Computing MAX */ r__1 = mxsinj, r__2 = dabs(sn); mxsinj = dmax(r__1,r__2); /* Computing MAX */ r__1 = 0.f, r__2 = t * apoaq * aapq + 1.f; sva[q] = aaqq * sqrt((dmax(r__1, r__2))); /* Computing MAX */ r__1 = 0.f, r__2 = 1.f - t * aqoap * aapq; aapp *= sqrt((dmax(r__1,r__2))); apoaq = work[p] / work[q]; aqoap = work[q] / work[p]; if (work[p] >= 1.f) { if (work[q] >= 1.f) { fastr[2] = t * apoaq; fastr[3] = -t * aqoap; work[p] *= cs; work[q] *= cs; srotm_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1, fastr); if (rsvec) { srotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[ q * v_dim1 + 1], &c__1, fastr); } } else { r__1 = -t * aqoap; saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1, &a[ p * a_dim1 + 1], &c__1); r__1 = cs * sn * apoaq; saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1, &a[ q * a_dim1 + 1], &c__1); work[p] *= cs; work[q] /= cs; if (rsvec) { r__1 = -t * aqoap; saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1], & c__1, &v[p * v_dim1 + 1], &c__1); r__1 = cs * sn * apoaq; saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1], & c__1, &v[q * v_dim1 + 1], &c__1); } } } else { if (work[q] >= 1.f) { r__1 = t * apoaq; saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1, &a[ q * a_dim1 + 1], &c__1); r__1 = -cs * sn * aqoap; saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1, &a[ p * a_dim1 + 1], &c__1); work[p] /= cs; work[q] *= cs; if (rsvec) { r__1 = t * apoaq; saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1], & c__1, &v[q * v_dim1 + 1], &c__1); r__1 = -cs * sn * aqoap; saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1], & c__1, &v[p * v_dim1 + 1], &c__1); } } else { if (work[p] >= work[q]) { r__1 = -t * aqoap; saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1, &a[p * a_dim1 + 1], &c__1); r__1 = cs * sn * apoaq; saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1); work[p] *= cs; work[q] /= cs; if (rsvec) { r__1 = -t * aqoap; saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1], &c__1, &v[p * v_dim1 + 1], & c__1); r__1 = cs * sn * apoaq; saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], & c__1); } } else { r__1 = t * apoaq; saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1); r__1 = -cs * sn * aqoap; saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1, &a[p * a_dim1 + 1], &c__1); work[p] /= cs; work[q] *= cs; if (rsvec) { r__1 = t * apoaq; saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], & c__1); r__1 = -cs * sn * aqoap; saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1], &c__1, &v[p * v_dim1 + 1], & c__1); } } } } } } else { /* .. have to use modified Gram-Schmidt like transformation */ scopy_(m, &a[p * a_dim1 + 1], &c__1, & work[*n + 1], &c__1); slascl_("G", &c__0, &c__0, &aapp, & c_b18, m, &c__1, &work[*n + 1] , lda, &ierr); slascl_("G", &c__0, &c__0, &aaqq, & c_b18, m, &c__1, &a[q * a_dim1 + 1], lda, &ierr); temp1 = -aapq * work[p] / work[q]; saxpy_(m, &temp1, &work[*n + 1], & c__1, &a[q * a_dim1 + 1], & c__1); slascl_("G", &c__0, &c__0, &c_b18, & aaqq, m, &c__1, &a[q * a_dim1 + 1], lda, &ierr); /* Computing MAX */ r__1 = 0.f, r__2 = 1.f - aapq * aapq; sva[q] = aaqq * sqrt((dmax(r__1,r__2)) ); mxsinj = dmax(mxsinj,sfmin); } /* END IF ROTOK THEN ... ELSE */ /* In the case of cancellation in updating SVA(q), SVA(p) */ /* recompute SVA(q), SVA(p). */ /* Computing 2nd power */ r__1 = sva[q] / aaqq; if (r__1 * r__1 <= rooteps) { if (aaqq < rootbig && aaqq > rootsfmin) { sva[q] = snrm2_(m, &a[q * a_dim1 + 1], &c__1) * work[q]; } else { t = 0.f; aaqq = 0.f; slassq_(m, &a[q * a_dim1 + 1], & c__1, &t, &aaqq); sva[q] = t * sqrt(aaqq) * work[q]; } } if (aapp / aapp0 <= rooteps) { if (aapp < rootbig && aapp > rootsfmin) { aapp = snrm2_(m, &a[p * a_dim1 + 1], &c__1) * work[p]; } else { t = 0.f; aapp = 0.f; slassq_(m, &a[p * a_dim1 + 1], & c__1, &t, &aapp); aapp = t * sqrt(aapp) * work[p]; } sva[p] = aapp; } } else { /* A(:,p) and A(:,q) already numerically orthogonal */ if (ir1 == 0) { ++notrot; } /* [RTD] SKIPPED = SKIPPED + 1 */ ++pskipped; } } else { /* A(:,q) is zero column */ if (ir1 == 0) { ++notrot; } ++pskipped; } if (i__ <= swband && pskipped > rowskip) { if (ir1 == 0) { aapp = -aapp; } notrot = 0; goto L2103; } /* L2002: */ } /* END q-LOOP */ L2103: /* bailed out of q-loop */ sva[p] = aapp; } else { sva[p] = aapp; if (ir1 == 0 && aapp == 0.f) { /* Computing MIN */ i__4 = igl + kbl - 1; notrot = notrot + min(i__4,*n) - p; } } /* L2001: */ } /* end of the p-loop */ /* end of doing the block ( ibr, ibr ) */ /* L1002: */ } /* end of ir1-loop */ /* ... go to the off diagonal blocks */ igl = (ibr - 1) * kbl + 1; i__2 = nbl; for (jbc = ibr + 1; jbc <= i__2; ++jbc) { jgl = (jbc - 1) * kbl + 1; /* doing the block at ( ibr, jbc ) */ ijblsk = 0; /* Computing MIN */ i__4 = igl + kbl - 1; i__3 = min(i__4,*n); for (p = igl; p <= i__3; ++p) { aapp = sva[p]; if (aapp > 0.f) { pskipped = 0; /* Computing MIN */ i__5 = jgl + kbl - 1; i__4 = min(i__5,*n); for (q = jgl; q <= i__4; ++q) { aaqq = sva[q]; if (aaqq > 0.f) { aapp0 = aapp; /* -#- M x 2 Jacobi SVD -#- */ /* Safe Gram matrix computation */ if (aaqq >= 1.f) { if (aapp >= aaqq) { rotok = small * aapp <= aaqq; } else { rotok = small * aaqq <= aapp; } if (aapp < big / aaqq) { aapq = sdot_(m, &a[p * a_dim1 + 1], & c__1, &a[q * a_dim1 + 1], & c__1) * work[p] * work[q] / aaqq / aapp; } else { scopy_(m, &a[p * a_dim1 + 1], &c__1, & work[*n + 1], &c__1); slascl_("G", &c__0, &c__0, &aapp, & work[p], m, &c__1, &work[*n + 1], lda, &ierr); aapq = sdot_(m, &work[*n + 1], &c__1, &a[q * a_dim1 + 1], &c__1) * work[q] / aaqq; } } else { if (aapp >= aaqq) { rotok = aapp <= aaqq / small; } else { rotok = aaqq <= aapp / small; } if (aapp > small / aaqq) { aapq = sdot_(m, &a[p * a_dim1 + 1], & c__1, &a[q * a_dim1 + 1], & c__1) * work[p] * work[q] / aaqq / aapp; } else { scopy_(m, &a[q * a_dim1 + 1], &c__1, & work[*n + 1], &c__1); slascl_("G", &c__0, &c__0, &aaqq, & work[q], m, &c__1, &work[*n + 1], lda, &ierr); aapq = sdot_(m, &work[*n + 1], &c__1, &a[p * a_dim1 + 1], &c__1) * work[p] / aapp; } } /* Computing MAX */ r__1 = mxaapq, r__2 = dabs(aapq); mxaapq = dmax(r__1,r__2); /* TO rotate or NOT to rotate, THAT is the question ... */ if (dabs(aapq) > tol) { notrot = 0; /* [RTD] ROTATED = ROTATED + 1 */ pskipped = 0; ++iswrot; if (rotok) { aqoap = aaqq / aapp; apoaq = aapp / aaqq; theta = (r__1 = aqoap - apoaq, dabs( r__1)) * -.5f / aapq; if (aaqq > aapp0) { theta = -theta; } if (dabs(theta) > bigtheta) { t = .5f / theta; fastr[2] = t * work[p] / work[q]; fastr[3] = -t * work[q] / work[p]; srotm_(m, &a[p * a_dim1 + 1], & c__1, &a[q * a_dim1 + 1], &c__1, fastr); if (rsvec) { srotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &c__1, fastr); } /* Computing MAX */ r__1 = 0.f, r__2 = t * apoaq * aapq + 1.f; sva[q] = aaqq * sqrt((dmax(r__1, r__2))); /* Computing MAX */ r__1 = 0.f, r__2 = 1.f - t * aqoap * aapq; aapp *= sqrt((dmax(r__1,r__2))); /* Computing MAX */ r__1 = mxsinj, r__2 = dabs(t); mxsinj = dmax(r__1,r__2); } else { /* .. choose correct signum for THETA and rotate */ thsign = -r_sign(&c_b18, &aapq); if (aaqq > aapp0) { thsign = -thsign; } t = 1.f / (theta + thsign * sqrt( theta * theta + 1.f)); cs = sqrt(1.f / (t * t + 1.f)); sn = t * cs; /* Computing MAX */ r__1 = mxsinj, r__2 = dabs(sn); mxsinj = dmax(r__1,r__2); /* Computing MAX */ r__1 = 0.f, r__2 = t * apoaq * aapq + 1.f; sva[q] = aaqq * sqrt((dmax(r__1, r__2))); aapp *= sqrt(1.f - t * aqoap * aapq); apoaq = work[p] / work[q]; aqoap = work[q] / work[p]; if (work[p] >= 1.f) { if (work[q] >= 1.f) { fastr[2] = t * apoaq; fastr[3] = -t * aqoap; work[p] *= cs; work[q] *= cs; srotm_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1, fastr); if (rsvec) { srotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[ q * v_dim1 + 1], &c__1, fastr); } } else { r__1 = -t * aqoap; saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1, &a[ p * a_dim1 + 1], &c__1); r__1 = cs * sn * apoaq; saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1, &a[ q * a_dim1 + 1], &c__1); if (rsvec) { r__1 = -t * aqoap; saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1], & c__1, &v[p * v_dim1 + 1], &c__1); r__1 = cs * sn * apoaq; saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1], & c__1, &v[q * v_dim1 + 1], &c__1); } work[p] *= cs; work[q] /= cs; } } else { if (work[q] >= 1.f) { r__1 = t * apoaq; saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1, &a[ q * a_dim1 + 1], &c__1); r__1 = -cs * sn * aqoap; saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1, &a[ p * a_dim1 + 1], &c__1); if (rsvec) { r__1 = t * apoaq; saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1], & c__1, &v[q * v_dim1 + 1], &c__1); r__1 = -cs * sn * aqoap; saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1], & c__1, &v[p * v_dim1 + 1], &c__1); } work[p] /= cs; work[q] *= cs; } else { if (work[p] >= work[q]) { r__1 = -t * aqoap; saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1, &a[p * a_dim1 + 1], &c__1); r__1 = cs * sn * apoaq; saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1); work[p] *= cs; work[q] /= cs; if (rsvec) { r__1 = -t * aqoap; saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1], &c__1, &v[p * v_dim1 + 1], & c__1); r__1 = cs * sn * apoaq; saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], & c__1); } } else { r__1 = t * apoaq; saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1); r__1 = -cs * sn * aqoap; saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1, &a[p * a_dim1 + 1], &c__1); work[p] /= cs; work[q] *= cs; if (rsvec) { r__1 = t * apoaq; saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], & c__1); r__1 = -cs * sn * aqoap; saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1], &c__1, &v[p * v_dim1 + 1], & c__1); } } } } } } else { if (aapp > aaqq) { scopy_(m, &a[p * a_dim1 + 1], & c__1, &work[*n + 1], & c__1); slascl_("G", &c__0, &c__0, &aapp, &c_b18, m, &c__1, &work[* n + 1], lda, &ierr); slascl_("G", &c__0, &c__0, &aaqq, &c_b18, m, &c__1, &a[q * a_dim1 + 1], lda, &ierr); temp1 = -aapq * work[p] / work[q]; saxpy_(m, &temp1, &work[*n + 1], & c__1, &a[q * a_dim1 + 1], &c__1); slascl_("G", &c__0, &c__0, &c_b18, &aaqq, m, &c__1, &a[q * a_dim1 + 1], lda, &ierr); /* Computing MAX */ r__1 = 0.f, r__2 = 1.f - aapq * aapq; sva[q] = aaqq * sqrt((dmax(r__1, r__2))); mxsinj = dmax(mxsinj,sfmin); } else { scopy_(m, &a[q * a_dim1 + 1], & c__1, &work[*n + 1], & c__1); slascl_("G", &c__0, &c__0, &aaqq, &c_b18, m, &c__1, &work[* n + 1], lda, &ierr); slascl_("G", &c__0, &c__0, &aapp, &c_b18, m, &c__1, &a[p * a_dim1 + 1], lda, &ierr); temp1 = -aapq * work[q] / work[p]; saxpy_(m, &temp1, &work[*n + 1], & c__1, &a[p * a_dim1 + 1], &c__1); slascl_("G", &c__0, &c__0, &c_b18, &aapp, m, &c__1, &a[p * a_dim1 + 1], lda, &ierr); /* Computing MAX */ r__1 = 0.f, r__2 = 1.f - aapq * aapq; sva[p] = aapp * sqrt((dmax(r__1, r__2))); mxsinj = dmax(mxsinj,sfmin); } } /* END IF ROTOK THEN ... ELSE */ /* In the case of cancellation in updating SVA(q) */ /* .. recompute SVA(q) */ /* Computing 2nd power */ r__1 = sva[q] / aaqq; if (r__1 * r__1 <= rooteps) { if (aaqq < rootbig && aaqq > rootsfmin) { sva[q] = snrm2_(m, &a[q * a_dim1 + 1], &c__1) * work[q]; } else { t = 0.f; aaqq = 0.f; slassq_(m, &a[q * a_dim1 + 1], & c__1, &t, &aaqq); sva[q] = t * sqrt(aaqq) * work[q]; } } /* Computing 2nd power */ r__1 = aapp / aapp0; if (r__1 * r__1 <= rooteps) { if (aapp < rootbig && aapp > rootsfmin) { aapp = snrm2_(m, &a[p * a_dim1 + 1], &c__1) * work[p]; } else { t = 0.f; aapp = 0.f; slassq_(m, &a[p * a_dim1 + 1], & c__1, &t, &aapp); aapp = t * sqrt(aapp) * work[p]; } sva[p] = aapp; } /* end of OK rotation */ } else { ++notrot; /* [RTD] SKIPPED = SKIPPED + 1 */ ++pskipped; ++ijblsk; } } else { ++notrot; ++pskipped; ++ijblsk; } if (i__ <= swband && ijblsk >= blskip) { sva[p] = aapp; notrot = 0; goto L2011; } if (i__ <= swband && pskipped > rowskip) { aapp = -aapp; notrot = 0; goto L2203; } /* L2200: */ } /* end of the q-loop */ L2203: sva[p] = aapp; } else { if (aapp == 0.f) { /* Computing MIN */ i__4 = jgl + kbl - 1; notrot = notrot + min(i__4,*n) - jgl + 1; } if (aapp < 0.f) { notrot = 0; } } /* L2100: */ } /* end of the p-loop */ /* L2010: */ } /* end of the jbc-loop */ L2011: /* 2011 bailed out of the jbc-loop */ /* Computing MIN */ i__3 = igl + kbl - 1; i__2 = min(i__3,*n); for (p = igl; p <= i__2; ++p) { sva[p] = (r__1 = sva[p], dabs(r__1)); /* L2012: */ } /* ** */ /* L2000: */ } /* 2000 :: end of the ibr-loop */ /* .. update SVA(N) */ if (sva[*n] < rootbig && sva[*n] > rootsfmin) { sva[*n] = snrm2_(m, &a[*n * a_dim1 + 1], &c__1) * work[*n]; } else { t = 0.f; aapp = 0.f; slassq_(m, &a[*n * a_dim1 + 1], &c__1, &t, &aapp); sva[*n] = t * sqrt(aapp) * work[*n]; } /* Additional steering devices */ if (i__ < swband && (mxaapq <= roottol || iswrot <= *n)) { swband = i__; } if (i__ > swband + 1 && mxaapq < sqrt((real) (*n)) * tol && (real) (* n) * mxaapq * mxsinj < tol) { goto L1994; } if (notrot >= emptsw) { goto L1994; } /* L1993: */ } /* end i=1:NSWEEP loop */ /* #:( Reaching this point means that the procedure has not converged. */ *info = 29; goto L1995; L1994: /* #:) Reaching this point means numerical convergence after the i-th */ /* sweep. */ *info = 0; /* #:) INFO = 0 confirms successful iterations. */ L1995: /* Sort the singular values and find how many are above */ /* the underflow threshold. */ n2 = 0; n4 = 0; i__1 = *n - 1; for (p = 1; p <= i__1; ++p) { i__2 = *n - p + 1; q = isamax_(&i__2, &sva[p], &c__1) + p - 1; if (p != q) { temp1 = sva[p]; sva[p] = sva[q]; sva[q] = temp1; temp1 = work[p]; work[p] = work[q]; work[q] = temp1; sswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1); if (rsvec) { sswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], & c__1); } } if (sva[p] != 0.f) { ++n4; if (sva[p] * scale > sfmin) { ++n2; } } /* L5991: */ } if (sva[*n] != 0.f) { ++n4; if (sva[*n] * scale > sfmin) { ++n2; } } /* Normalize the left singular vectors. */ if (lsvec || uctol) { i__1 = n2; for (p = 1; p <= i__1; ++p) { r__1 = work[p] / sva[p]; sscal_(m, &r__1, &a[p * a_dim1 + 1], &c__1); /* L1998: */ } } /* Scale the product of Jacobi rotations (assemble the fast rotations). */ if (rsvec) { if (applv) { i__1 = *n; for (p = 1; p <= i__1; ++p) { sscal_(&mvl, &work[p], &v[p * v_dim1 + 1], &c__1); /* L2398: */ } } else { i__1 = *n; for (p = 1; p <= i__1; ++p) { temp1 = 1.f / snrm2_(&mvl, &v[p * v_dim1 + 1], &c__1); sscal_(&mvl, &temp1, &v[p * v_dim1 + 1], &c__1); /* L2399: */ } } } /* Undo scaling, if necessary (and possible). */ if (scale > 1.f && sva[1] < big / scale || scale < 1.f && sva[n2] > sfmin / scale) { i__1 = *n; for (p = 1; p <= i__1; ++p) { sva[p] = scale * sva[p]; /* L2400: */ } scale = 1.f; } work[1] = scale; /* The singular values of A are SCALE*SVA(1:N). If SCALE.NE.ONE */ /* then some of the singular values may overflow or underflow and */ /* the spectrum is given in this factored representation. */ work[2] = (real) n4; /* N4 is the number of computed nonzero singular values of A. */ work[3] = (real) n2; /* N2 is the number of singular values of A greater than SFMIN. */ /* If N2<N, SVA(N2:N) contains ZEROS and/or denormalized numbers */ /* that may carry some information. */ work[4] = (real) i__; /* i is the index of the last sweep before declaring convergence. */ work[5] = mxaapq; /* MXAAPQ is the largest absolute value of scaled pivots in the */ /* last sweep */ work[6] = mxsinj; /* MXSINJ is the largest absolute value of the sines of Jacobi angles */ /* in the last sweep */ return 0; /* .. */ /* .. END OF SGESVJ */ /* .. */ } /* sgesvj_ */