/* dstedc.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__9 = 9;
static integer c__0 = 0;
static integer c__2 = 2;
static doublereal c_b17 = 0.;
static doublereal c_b18 = 1.;
static integer c__1 = 1;

/* Subroutine */ int dstedc_(char *compz, integer *n, doublereal *d__, 
	doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 
	integer *lwork, integer *iwork, integer *liwork, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double log(doublereal);
    integer pow_ii(integer *, integer *);
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, k, m;
    doublereal p;
    integer ii, lgn;
    doublereal eps, tiny;
    extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    integer lwmin;
    extern /* Subroutine */ int dlaed0_(integer *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 
	     integer *, doublereal *, integer *, integer *);
    integer start;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), dlacpy_(char *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, integer *), 
	    dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    integer finish;
    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
    extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, 
	     integer *), dlasrt_(char *, integer *, doublereal *, integer *);
    integer liwmin, icompz;
    extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *);
    doublereal orgnrm;
    logical lquery;
    integer smlsiz, storez, strtrw;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSTEDC computes all eigenvalues and, optionally, eigenvectors of a */
/*  symmetric tridiagonal matrix using the divide and conquer method. */
/*  The eigenvectors of a full or band real symmetric matrix can also be */
/*  found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this */
/*  matrix to tridiagonal form. */

/*  This code makes very mild assumptions about floating point */
/*  arithmetic. It will work on machines with a guard digit in */
/*  add/subtract, or on those binary machines without guard digits */
/*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
/*  It could conceivably fail on hexadecimal or decimal machines */
/*  without guard digits, but we know of none.  See DLAED3 for details. */

/*  Arguments */
/*  ========= */

/*  COMPZ   (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only. */
/*          = 'I':  Compute eigenvectors of tridiagonal matrix also. */
/*          = 'V':  Compute eigenvectors of original dense symmetric */
/*                  matrix also.  On entry, Z contains the orthogonal */
/*                  matrix used to reduce the original matrix to */
/*                  tridiagonal form. */

/*  N       (input) INTEGER */
/*          The dimension of the symmetric tridiagonal matrix.  N >= 0. */

/*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
/*          On entry, the diagonal elements of the tridiagonal matrix. */
/*          On exit, if INFO = 0, the eigenvalues in ascending order. */

/*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) */
/*          On entry, the subdiagonal elements of the tridiagonal matrix. */
/*          On exit, E has been destroyed. */

/*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
/*          On entry, if COMPZ = 'V', then Z contains the orthogonal */
/*          matrix used in the reduction to tridiagonal form. */
/*          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
/*          orthonormal eigenvectors of the original symmetric matrix, */
/*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
/*          of the symmetric tridiagonal matrix. */
/*          If  COMPZ = 'N', then Z is not referenced. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1. */
/*          If eigenvectors are desired, then LDZ >= max(1,N). */

/*  WORK    (workspace/output) DOUBLE PRECISION array, */
/*                                         dimension (LWORK) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */
/*          If COMPZ = 'N' or N <= 1 then LWORK must be at least 1. */
/*          If COMPZ = 'V' and N > 1 then LWORK must be at least */
/*                         ( 1 + 3*N + 2*N*lg N + 3*N**2 ), */
/*                         where lg( N ) = smallest integer k such */
/*                         that 2**k >= N. */
/*          If COMPZ = 'I' and N > 1 then LWORK must be at least */
/*                         ( 1 + 4*N + N**2 ). */
/*          Note that for COMPZ = 'I' or 'V', then if N is less than or */
/*          equal to the minimum divide size, usually 25, then LWORK need */
/*          only be max(1,2*(N-1)). */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */

/*  LIWORK  (input) INTEGER */
/*          The dimension of the array IWORK. */
/*          If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1. */
/*          If COMPZ = 'V' and N > 1 then LIWORK must be at least */
/*                         ( 6 + 6*N + 5*N*lg N ). */
/*          If COMPZ = 'I' and N > 1 then LIWORK must be at least */
/*                         ( 3 + 5*N ). */
/*          Note that for COMPZ = 'I' or 'V', then if N is less than or */
/*          equal to the minimum divide size, usually 25, then LIWORK */
/*          need only be 1. */

/*          If LIWORK = -1, then a workspace query is assumed; the */
/*          routine only calculates the optimal size of the IWORK array, */
/*          returns this value as the first entry of the IWORK array, and */
/*          no error message related to LIWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit. */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          > 0:  The algorithm failed to compute an eigenvalue while */
/*                working on the submatrix lying in rows and columns */
/*                INFO/(N+1) through mod(INFO,N+1). */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Jeff Rutter, Computer Science Division, University of California */
/*     at Berkeley, USA */
/*  Modified by Francoise Tisseur, University of Tennessee. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --e;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1 || *liwork == -1;

    if (lsame_(compz, "N")) {
	icompz = 0;
    } else if (lsame_(compz, "V")) {
	icompz = 1;
    } else if (lsame_(compz, "I")) {
	icompz = 2;
    } else {
	icompz = -1;
    }
    if (icompz < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
	*info = -6;
    }

    if (*info == 0) {

/*        Compute the workspace requirements */

	smlsiz = ilaenv_(&c__9, "DSTEDC", " ", &c__0, &c__0, &c__0, &c__0);
	if (*n <= 1 || icompz == 0) {
	    liwmin = 1;
	    lwmin = 1;
	} else if (*n <= smlsiz) {
	    liwmin = 1;
	    lwmin = *n - 1 << 1;
	} else {
	    lgn = (integer) (log((doublereal) (*n)) / log(2.));
	    if (pow_ii(&c__2, &lgn) < *n) {
		++lgn;
	    }
	    if (pow_ii(&c__2, &lgn) < *n) {
		++lgn;
	    }
	    if (icompz == 1) {
/* Computing 2nd power */
		i__1 = *n;
		lwmin = *n * 3 + 1 + (*n << 1) * lgn + i__1 * i__1 * 3;
		liwmin = *n * 6 + 6 + *n * 5 * lgn;
	    } else if (icompz == 2) {
/* Computing 2nd power */
		i__1 = *n;
		lwmin = (*n << 2) + 1 + i__1 * i__1;
		liwmin = *n * 5 + 3;
	    }
	}
	work[1] = (doublereal) lwmin;
	iwork[1] = liwmin;

	if (*lwork < lwmin && ! lquery) {
	    *info = -8;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -10;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSTEDC", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }
    if (*n == 1) {
	if (icompz != 0) {
	    z__[z_dim1 + 1] = 1.;
	}
	return 0;
    }

/*     If the following conditional clause is removed, then the routine */
/*     will use the Divide and Conquer routine to compute only the */
/*     eigenvalues, which requires (3N + 3N**2) real workspace and */
/*     (2 + 5N + 2N lg(N)) integer workspace. */
/*     Since on many architectures DSTERF is much faster than any other */
/*     algorithm for finding eigenvalues only, it is used here */
/*     as the default. If the conditional clause is removed, then */
/*     information on the size of workspace needs to be changed. */

/*     If COMPZ = 'N', use DSTERF to compute the eigenvalues. */

    if (icompz == 0) {
	dsterf_(n, &d__[1], &e[1], info);
	goto L50;
    }

/*     If N is smaller than the minimum divide size (SMLSIZ+1), then */
/*     solve the problem with another solver. */

    if (*n <= smlsiz) {

	dsteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], info);

    } else {

/*        If COMPZ = 'V', the Z matrix must be stored elsewhere for later */
/*        use. */

	if (icompz == 1) {
	    storez = *n * *n + 1;
	} else {
	    storez = 1;
	}

	if (icompz == 2) {
	    dlaset_("Full", n, n, &c_b17, &c_b18, &z__[z_offset], ldz);
	}

/*        Scale. */

	orgnrm = dlanst_("M", n, &d__[1], &e[1]);
	if (orgnrm == 0.) {
	    goto L50;
	}

	eps = dlamch_("Epsilon");

	start = 1;

/*        while ( START <= N ) */

L10:
	if (start <= *n) {

/*           Let FINISH be the position of the next subdiagonal entry */
/*           such that E( FINISH ) <= TINY or FINISH = N if no such */
/*           subdiagonal exists.  The matrix identified by the elements */
/*           between START and FINISH constitutes an independent */
/*           sub-problem. */

	    finish = start;
L20:
	    if (finish < *n) {
		tiny = eps * sqrt((d__1 = d__[finish], abs(d__1))) * sqrt((
			d__2 = d__[finish + 1], abs(d__2)));
		if ((d__1 = e[finish], abs(d__1)) > tiny) {
		    ++finish;
		    goto L20;
		}
	    }

/*           (Sub) Problem determined.  Compute its size and solve it. */

	    m = finish - start + 1;
	    if (m == 1) {
		start = finish + 1;
		goto L10;
	    }
	    if (m > smlsiz) {

/*              Scale. */

		orgnrm = dlanst_("M", &m, &d__[start], &e[start]);
		dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[
			start], &m, info);
		i__1 = m - 1;
		i__2 = m - 1;
		dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[
			start], &i__2, info);

		if (icompz == 1) {
		    strtrw = 1;
		} else {
		    strtrw = start;
		}
		dlaed0_(&icompz, n, &m, &d__[start], &e[start], &z__[strtrw + 
			start * z_dim1], ldz, &work[1], n, &work[storez], &
			iwork[1], info);
		if (*info != 0) {
		    *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info %
			     (m + 1) + start - 1;
		    goto L50;
		}

/*              Scale back. */

		dlascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[
			start], &m, info);

	    } else {
		if (icompz == 1) {

/*                 Since QR won't update a Z matrix which is larger than */
/*                 the length of D, we must solve the sub-problem in a */
/*                 workspace and then multiply back into Z. */

		    dsteqr_("I", &m, &d__[start], &e[start], &work[1], &m, &
			    work[m * m + 1], info);
		    dlacpy_("A", n, &m, &z__[start * z_dim1 + 1], ldz, &work[
			    storez], n);
		    dgemm_("N", "N", n, &m, &m, &c_b18, &work[storez], n, &
			    work[1], &m, &c_b17, &z__[start * z_dim1 + 1], 
			    ldz);
		} else if (icompz == 2) {
		    dsteqr_("I", &m, &d__[start], &e[start], &z__[start + 
			    start * z_dim1], ldz, &work[1], info);
		} else {
		    dsterf_(&m, &d__[start], &e[start], info);
		}
		if (*info != 0) {
		    *info = start * (*n + 1) + finish;
		    goto L50;
		}
	    }

	    start = finish + 1;
	    goto L10;
	}

/*        endwhile */

/*        If the problem split any number of times, then the eigenvalues */
/*        will not be properly ordered.  Here we permute the eigenvalues */
/*        (and the associated eigenvectors) into ascending order. */

	if (m != *n) {
	    if (icompz == 0) {

/*              Use Quick Sort */

		dlasrt_("I", n, &d__[1], info);

	    } else {

/*              Use Selection Sort to minimize swaps of eigenvectors */

		i__1 = *n;
		for (ii = 2; ii <= i__1; ++ii) {
		    i__ = ii - 1;
		    k = i__;
		    p = d__[i__];
		    i__2 = *n;
		    for (j = ii; j <= i__2; ++j) {
			if (d__[j] < p) {
			    k = j;
			    p = d__[j];
			}
/* L30: */
		    }
		    if (k != i__) {
			d__[k] = d__[i__];
			d__[i__] = p;
			dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * 
				z_dim1 + 1], &c__1);
		    }
/* L40: */
		}
	    }
	}
    }

L50:
    work[1] = (doublereal) lwmin;
    iwork[1] = liwmin;

    return 0;

/*     End of DSTEDC */

} /* dstedc_ */