/* dlaqr4.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__13 = 13; static integer c__15 = 15; static integer c_n1 = -1; static integer c__12 = 12; static integer c__14 = 14; static integer c__16 = 16; static logical c_false = FALSE_; static integer c__1 = 1; static integer c__3 = 3; /* Subroutine */ int dlaqr4_(logical *wantt, logical *wantz, integer *n, integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal *wr, doublereal *wi, integer *iloz, integer *ihiz, doublereal *z__, integer *ldz, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5; doublereal d__1, d__2, d__3, d__4; /* Local variables */ integer i__, k; doublereal aa, bb, cc, dd; integer ld; doublereal cs; integer nh, it, ks, kt; doublereal sn; integer ku, kv, ls, ns; doublereal ss; integer nw, inf, kdu, nho, nve, kwh, nsr, nwr, kwv, ndec, ndfl, kbot, nmin; doublereal swap; integer ktop; doublereal zdum[1] /* was [1][1] */; integer kacc22, itmax, nsmax, nwmax, kwtop; extern /* Subroutine */ int dlaqr2_(logical *, logical *, integer *, integer *, integer *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), dlanv2_(doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *), dlaqr5_( logical *, logical *, integer *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *); integer nibble; extern /* Subroutine */ int dlahqr_(logical *, logical *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); char jbcmpz[1]; integer nwupbd; logical sorted; integer lwkopt; /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* This subroutine implements one level of recursion for DLAQR0. */ /* It is a complete implementation of the small bulge multi-shift */ /* QR algorithm. It may be called by DLAQR0 and, for large enough */ /* deflation window size, it may be called by DLAQR3. This */ /* subroutine is identical to DLAQR0 except that it calls DLAQR2 */ /* instead of DLAQR3. */ /* Purpose */ /* ======= */ /* DLAQR4 computes the eigenvalues of a Hessenberg matrix H */ /* and, optionally, the matrices T and Z from the Schur decomposition */ /* H = Z T Z**T, where T is an upper quasi-triangular matrix (the */ /* Schur form), and Z is the orthogonal matrix of Schur vectors. */ /* Optionally Z may be postmultiplied into an input orthogonal */ /* matrix Q so that this routine can give the Schur factorization */ /* of a matrix A which has been reduced to the Hessenberg form H */ /* by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T. */ /* Arguments */ /* ========= */ /* WANTT (input) LOGICAL */ /* = .TRUE. : the full Schur form T is required; */ /* = .FALSE.: only eigenvalues are required. */ /* WANTZ (input) LOGICAL */ /* = .TRUE. : the matrix of Schur vectors Z is required; */ /* = .FALSE.: Schur vectors are not required. */ /* N (input) INTEGER */ /* The order of the matrix H. N .GE. 0. */ /* ILO (input) INTEGER */ /* IHI (input) INTEGER */ /* It is assumed that H is already upper triangular in rows */ /* and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1, */ /* H(ILO,ILO-1) is zero. ILO and IHI are normally set by a */ /* previous call to DGEBAL, and then passed to DGEHRD when the */ /* matrix output by DGEBAL is reduced to Hessenberg form. */ /* Otherwise, ILO and IHI should be set to 1 and N, */ /* respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. */ /* If N = 0, then ILO = 1 and IHI = 0. */ /* H (input/output) DOUBLE PRECISION array, dimension (LDH,N) */ /* On entry, the upper Hessenberg matrix H. */ /* On exit, if INFO = 0 and WANTT is .TRUE., then H contains */ /* the upper quasi-triangular matrix T from the Schur */ /* decomposition (the Schur form); 2-by-2 diagonal blocks */ /* (corresponding to complex conjugate pairs of eigenvalues) */ /* are returned in standard form, with H(i,i) = H(i+1,i+1) */ /* and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is */ /* .FALSE., then the contents of H are unspecified on exit. */ /* (The output value of H when INFO.GT.0 is given under the */ /* description of INFO below.) */ /* This subroutine may explicitly set H(i,j) = 0 for i.GT.j and */ /* j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. */ /* LDH (input) INTEGER */ /* The leading dimension of the array H. LDH .GE. max(1,N). */ /* WR (output) DOUBLE PRECISION array, dimension (IHI) */ /* WI (output) DOUBLE PRECISION array, dimension (IHI) */ /* The real and imaginary parts, respectively, of the computed */ /* eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI) */ /* and WI(ILO:IHI). If two eigenvalues are computed as a */ /* complex conjugate pair, they are stored in consecutive */ /* elements of WR and WI, say the i-th and (i+1)th, with */ /* WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then */ /* the eigenvalues are stored in the same order as on the */ /* diagonal of the Schur form returned in H, with */ /* WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal */ /* block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and */ /* WI(i+1) = -WI(i). */ /* ILOZ (input) INTEGER */ /* IHIZ (input) INTEGER */ /* Specify the rows of Z to which transformations must be */ /* applied if WANTZ is .TRUE.. */ /* 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N. */ /* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI) */ /* If WANTZ is .FALSE., then Z is not referenced. */ /* If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is */ /* replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the */ /* orthogonal Schur factor of H(ILO:IHI,ILO:IHI). */ /* (The output value of Z when INFO.GT.0 is given under */ /* the description of INFO below.) */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. if WANTZ is .TRUE. */ /* then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1. */ /* WORK (workspace/output) DOUBLE PRECISION array, dimension LWORK */ /* On exit, if LWORK = -1, WORK(1) returns an estimate of */ /* the optimal value for LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK .GE. max(1,N) */ /* is sufficient, but LWORK typically as large as 6*N may */ /* be required for optimal performance. A workspace query */ /* to determine the optimal workspace size is recommended. */ /* If LWORK = -1, then DLAQR4 does a workspace query. */ /* In this case, DLAQR4 checks the input parameters and */ /* estimates the optimal workspace size for the given */ /* values of N, ILO and IHI. The estimate is returned */ /* in WORK(1). No error message related to LWORK is */ /* issued by XERBLA. Neither H nor Z are accessed. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* .GT. 0: if INFO = i, DLAQR4 failed to compute all of */ /* the eigenvalues. Elements 1:ilo-1 and i+1:n of WR */ /* and WI contain those eigenvalues which have been */ /* successfully computed. (Failures are rare.) */ /* If INFO .GT. 0 and WANT is .FALSE., then on exit, */ /* the remaining unconverged eigenvalues are the eigen- */ /* values of the upper Hessenberg matrix rows and */ /* columns ILO through INFO of the final, output */ /* value of H. */ /* If INFO .GT. 0 and WANTT is .TRUE., then on exit */ /* (*) (initial value of H)*U = U*(final value of H) */ /* where U is an orthogonal matrix. The final */ /* value of H is upper Hessenberg and quasi-triangular */ /* in rows and columns INFO+1 through IHI. */ /* If INFO .GT. 0 and WANTZ is .TRUE., then on exit */ /* (final value of Z(ILO:IHI,ILOZ:IHIZ) */ /* = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U */ /* where U is the orthogonal matrix in (*) (regard- */ /* less of the value of WANTT.) */ /* If INFO .GT. 0 and WANTZ is .FALSE., then Z is not */ /* accessed. */ /* ================================================================ */ /* Based on contributions by */ /* Karen Braman and Ralph Byers, Department of Mathematics, */ /* University of Kansas, USA */ /* ================================================================ */ /* References: */ /* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */ /* Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */ /* Performance, SIAM Journal of Matrix Analysis, volume 23, pages */ /* 929--947, 2002. */ /* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */ /* Algorithm Part II: Aggressive Early Deflation, SIAM Journal */ /* of Matrix Analysis, volume 23, pages 948--973, 2002. */ /* ================================================================ */ /* .. Parameters .. */ /* ==== Matrices of order NTINY or smaller must be processed by */ /* . DLAHQR because of insufficient subdiagonal scratch space. */ /* . (This is a hard limit.) ==== */ /* ==== Exceptional deflation windows: try to cure rare */ /* . slow convergence by varying the size of the */ /* . deflation window after KEXNW iterations. ==== */ /* ==== Exceptional shifts: try to cure rare slow convergence */ /* . with ad-hoc exceptional shifts every KEXSH iterations. */ /* . ==== */ /* ==== The constants WILK1 and WILK2 are used to form the */ /* . exceptional shifts. ==== */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ h_dim1 = *ldh; h_offset = 1 + h_dim1; h__ -= h_offset; --wr; --wi; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; /* Function Body */ *info = 0; /* ==== Quick return for N = 0: nothing to do. ==== */ if (*n == 0) { work[1] = 1.; return 0; } if (*n <= 11) { /* ==== Tiny matrices must use DLAHQR. ==== */ lwkopt = 1; if (*lwork != -1) { dlahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], & wi[1], iloz, ihiz, &z__[z_offset], ldz, info); } } else { /* ==== Use small bulge multi-shift QR with aggressive early */ /* . deflation on larger-than-tiny matrices. ==== */ /* ==== Hope for the best. ==== */ *info = 0; /* ==== Set up job flags for ILAENV. ==== */ if (*wantt) { *(unsigned char *)jbcmpz = 'S'; } else { *(unsigned char *)jbcmpz = 'E'; } if (*wantz) { *(unsigned char *)&jbcmpz[1] = 'V'; } else { *(unsigned char *)&jbcmpz[1] = 'N'; } /* ==== NWR = recommended deflation window size. At this */ /* . point, N .GT. NTINY = 11, so there is enough */ /* . subdiagonal workspace for NWR.GE.2 as required. */ /* . (In fact, there is enough subdiagonal space for */ /* . NWR.GE.3.) ==== */ nwr = ilaenv_(&c__13, "DLAQR4", jbcmpz, n, ilo, ihi, lwork); nwr = max(2,nwr); /* Computing MIN */ i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = min(i__1,i__2); nwr = min(i__1,nwr); /* ==== NSR = recommended number of simultaneous shifts. */ /* . At this point N .GT. NTINY = 11, so there is at */ /* . enough subdiagonal workspace for NSR to be even */ /* . and greater than or equal to two as required. ==== */ nsr = ilaenv_(&c__15, "DLAQR4", jbcmpz, n, ilo, ihi, lwork); /* Computing MIN */ i__1 = nsr, i__2 = (*n + 6) / 9, i__1 = min(i__1,i__2), i__2 = *ihi - *ilo; nsr = min(i__1,i__2); /* Computing MAX */ i__1 = 2, i__2 = nsr - nsr % 2; nsr = max(i__1,i__2); /* ==== Estimate optimal workspace ==== */ /* ==== Workspace query call to DLAQR2 ==== */ i__1 = nwr + 1; dlaqr2_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], &h__[ h_offset], ldh, n, &h__[h_offset], ldh, n, &h__[h_offset], ldh, &work[1], &c_n1); /* ==== Optimal workspace = MAX(DLAQR5, DLAQR2) ==== */ /* Computing MAX */ i__1 = nsr * 3 / 2, i__2 = (integer) work[1]; lwkopt = max(i__1,i__2); /* ==== Quick return in case of workspace query. ==== */ if (*lwork == -1) { work[1] = (doublereal) lwkopt; return 0; } /* ==== DLAHQR/DLAQR0 crossover point ==== */ nmin = ilaenv_(&c__12, "DLAQR4", jbcmpz, n, ilo, ihi, lwork); nmin = max(11,nmin); /* ==== Nibble crossover point ==== */ nibble = ilaenv_(&c__14, "DLAQR4", jbcmpz, n, ilo, ihi, lwork); nibble = max(0,nibble); /* ==== Accumulate reflections during ttswp? Use block */ /* . 2-by-2 structure during matrix-matrix multiply? ==== */ kacc22 = ilaenv_(&c__16, "DLAQR4", jbcmpz, n, ilo, ihi, lwork); kacc22 = max(0,kacc22); kacc22 = min(2,kacc22); /* ==== NWMAX = the largest possible deflation window for */ /* . which there is sufficient workspace. ==== */ /* Computing MIN */ i__1 = (*n - 1) / 3, i__2 = *lwork / 2; nwmax = min(i__1,i__2); nw = nwmax; /* ==== NSMAX = the Largest number of simultaneous shifts */ /* . for which there is sufficient workspace. ==== */ /* Computing MIN */ i__1 = (*n + 6) / 9, i__2 = (*lwork << 1) / 3; nsmax = min(i__1,i__2); nsmax -= nsmax % 2; /* ==== NDFL: an iteration count restarted at deflation. ==== */ ndfl = 1; /* ==== ITMAX = iteration limit ==== */ /* Computing MAX */ i__1 = 10, i__2 = *ihi - *ilo + 1; itmax = max(i__1,i__2) * 30; /* ==== Last row and column in the active block ==== */ kbot = *ihi; /* ==== Main Loop ==== */ i__1 = itmax; for (it = 1; it <= i__1; ++it) { /* ==== Done when KBOT falls below ILO ==== */ if (kbot < *ilo) { goto L90; } /* ==== Locate active block ==== */ i__2 = *ilo + 1; for (k = kbot; k >= i__2; --k) { if (h__[k + (k - 1) * h_dim1] == 0.) { goto L20; } /* L10: */ } k = *ilo; L20: ktop = k; /* ==== Select deflation window size: */ /* . Typical Case: */ /* . If possible and advisable, nibble the entire */ /* . active block. If not, use size MIN(NWR,NWMAX) */ /* . or MIN(NWR+1,NWMAX) depending upon which has */ /* . the smaller corresponding subdiagonal entry */ /* . (a heuristic). */ /* . */ /* . Exceptional Case: */ /* . If there have been no deflations in KEXNW or */ /* . more iterations, then vary the deflation window */ /* . size. At first, because, larger windows are, */ /* . in general, more powerful than smaller ones, */ /* . rapidly increase the window to the maximum possible. */ /* . Then, gradually reduce the window size. ==== */ nh = kbot - ktop + 1; nwupbd = min(nh,nwmax); if (ndfl < 5) { nw = min(nwupbd,nwr); } else { /* Computing MIN */ i__2 = nwupbd, i__3 = nw << 1; nw = min(i__2,i__3); } if (nw < nwmax) { if (nw >= nh - 1) { nw = nh; } else { kwtop = kbot - nw + 1; if ((d__1 = h__[kwtop + (kwtop - 1) * h_dim1], abs(d__1)) > (d__2 = h__[kwtop - 1 + (kwtop - 2) * h_dim1], abs(d__2))) { ++nw; } } } if (ndfl < 5) { ndec = -1; } else if (ndec >= 0 || nw >= nwupbd) { ++ndec; if (nw - ndec < 2) { ndec = 0; } nw -= ndec; } /* ==== Aggressive early deflation: */ /* . split workspace under the subdiagonal into */ /* . - an nw-by-nw work array V in the lower */ /* . left-hand-corner, */ /* . - an NW-by-at-least-NW-but-more-is-better */ /* . (NW-by-NHO) horizontal work array along */ /* . the bottom edge, */ /* . - an at-least-NW-but-more-is-better (NHV-by-NW) */ /* . vertical work array along the left-hand-edge. */ /* . ==== */ kv = *n - nw + 1; kt = nw + 1; nho = *n - nw - 1 - kt + 1; kwv = nw + 2; nve = *n - nw - kwv + 1; /* ==== Aggressive early deflation ==== */ dlaqr2_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh, iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], &h__[kv + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1], ldh, &nve, &h__[kwv + h_dim1], ldh, &work[1], lwork); /* ==== Adjust KBOT accounting for new deflations. ==== */ kbot -= ld; /* ==== KS points to the shifts. ==== */ ks = kbot - ls + 1; /* ==== Skip an expensive QR sweep if there is a (partly */ /* . heuristic) reason to expect that many eigenvalues */ /* . will deflate without it. Here, the QR sweep is */ /* . skipped if many eigenvalues have just been deflated */ /* . or if the remaining active block is small. */ if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > min( nmin,nwmax)) { /* ==== NS = nominal number of simultaneous shifts. */ /* . This may be lowered (slightly) if DLAQR2 */ /* . did not provide that many shifts. ==== */ /* Computing MIN */ /* Computing MAX */ i__4 = 2, i__5 = kbot - ktop; i__2 = min(nsmax,nsr), i__3 = max(i__4,i__5); ns = min(i__2,i__3); ns -= ns % 2; /* ==== If there have been no deflations */ /* . in a multiple of KEXSH iterations, */ /* . then try exceptional shifts. */ /* . Otherwise use shifts provided by */ /* . DLAQR2 above or from the eigenvalues */ /* . of a trailing principal submatrix. ==== */ if (ndfl % 6 == 0) { ks = kbot - ns + 1; /* Computing MAX */ i__3 = ks + 1, i__4 = ktop + 2; i__2 = max(i__3,i__4); for (i__ = kbot; i__ >= i__2; i__ += -2) { ss = (d__1 = h__[i__ + (i__ - 1) * h_dim1], abs(d__1)) + (d__2 = h__[i__ - 1 + (i__ - 2) * h_dim1], abs(d__2)); aa = ss * .75 + h__[i__ + i__ * h_dim1]; bb = ss; cc = ss * -.4375; dd = aa; dlanv2_(&aa, &bb, &cc, &dd, &wr[i__ - 1], &wi[i__ - 1] , &wr[i__], &wi[i__], &cs, &sn); /* L30: */ } if (ks == ktop) { wr[ks + 1] = h__[ks + 1 + (ks + 1) * h_dim1]; wi[ks + 1] = 0.; wr[ks] = wr[ks + 1]; wi[ks] = wi[ks + 1]; } } else { /* ==== Got NS/2 or fewer shifts? Use DLAHQR */ /* . on a trailing principal submatrix to */ /* . get more. (Since NS.LE.NSMAX.LE.(N+6)/9, */ /* . there is enough space below the subdiagonal */ /* . to fit an NS-by-NS scratch array.) ==== */ if (kbot - ks + 1 <= ns / 2) { ks = kbot - ns + 1; kt = *n - ns + 1; dlacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, & h__[kt + h_dim1], ldh); dlahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[kt + h_dim1], ldh, &wr[ks], &wi[ks], &c__1, & c__1, zdum, &c__1, &inf); ks += inf; /* ==== In case of a rare QR failure use */ /* . eigenvalues of the trailing 2-by-2 */ /* . principal submatrix. ==== */ if (ks >= kbot) { aa = h__[kbot - 1 + (kbot - 1) * h_dim1]; cc = h__[kbot + (kbot - 1) * h_dim1]; bb = h__[kbot - 1 + kbot * h_dim1]; dd = h__[kbot + kbot * h_dim1]; dlanv2_(&aa, &bb, &cc, &dd, &wr[kbot - 1], &wi[ kbot - 1], &wr[kbot], &wi[kbot], &cs, &sn) ; ks = kbot - 1; } } if (kbot - ks + 1 > ns) { /* ==== Sort the shifts (Helps a little) */ /* . Bubble sort keeps complex conjugate */ /* . pairs together. ==== */ sorted = FALSE_; i__2 = ks + 1; for (k = kbot; k >= i__2; --k) { if (sorted) { goto L60; } sorted = TRUE_; i__3 = k - 1; for (i__ = ks; i__ <= i__3; ++i__) { if ((d__1 = wr[i__], abs(d__1)) + (d__2 = wi[ i__], abs(d__2)) < (d__3 = wr[i__ + 1] , abs(d__3)) + (d__4 = wi[i__ + 1], abs(d__4))) { sorted = FALSE_; swap = wr[i__]; wr[i__] = wr[i__ + 1]; wr[i__ + 1] = swap; swap = wi[i__]; wi[i__] = wi[i__ + 1]; wi[i__ + 1] = swap; } /* L40: */ } /* L50: */ } L60: ; } /* ==== Shuffle shifts into pairs of real shifts */ /* . and pairs of complex conjugate shifts */ /* . assuming complex conjugate shifts are */ /* . already adjacent to one another. (Yes, */ /* . they are.) ==== */ i__2 = ks + 2; for (i__ = kbot; i__ >= i__2; i__ += -2) { if (wi[i__] != -wi[i__ - 1]) { swap = wr[i__]; wr[i__] = wr[i__ - 1]; wr[i__ - 1] = wr[i__ - 2]; wr[i__ - 2] = swap; swap = wi[i__]; wi[i__] = wi[i__ - 1]; wi[i__ - 1] = wi[i__ - 2]; wi[i__ - 2] = swap; } /* L70: */ } } /* ==== If there are only two shifts and both are */ /* . real, then use only one. ==== */ if (kbot - ks + 1 == 2) { if (wi[kbot] == 0.) { if ((d__1 = wr[kbot] - h__[kbot + kbot * h_dim1], abs( d__1)) < (d__2 = wr[kbot - 1] - h__[kbot + kbot * h_dim1], abs(d__2))) { wr[kbot - 1] = wr[kbot]; } else { wr[kbot] = wr[kbot - 1]; } } } /* ==== Use up to NS of the the smallest magnatiude */ /* . shifts. If there aren't NS shifts available, */ /* . then use them all, possibly dropping one to */ /* . make the number of shifts even. ==== */ /* Computing MIN */ i__2 = ns, i__3 = kbot - ks + 1; ns = min(i__2,i__3); ns -= ns % 2; ks = kbot - ns + 1; /* ==== Small-bulge multi-shift QR sweep: */ /* . split workspace under the subdiagonal into */ /* . - a KDU-by-KDU work array U in the lower */ /* . left-hand-corner, */ /* . - a KDU-by-at-least-KDU-but-more-is-better */ /* . (KDU-by-NHo) horizontal work array WH along */ /* . the bottom edge, */ /* . - and an at-least-KDU-but-more-is-better-by-KDU */ /* . (NVE-by-KDU) vertical work WV arrow along */ /* . the left-hand-edge. ==== */ kdu = ns * 3 - 3; ku = *n - kdu + 1; kwh = kdu + 1; nho = *n - kdu - 3 - (kdu + 1) + 1; kwv = kdu + 4; nve = *n - kdu - kwv + 1; /* ==== Small-bulge multi-shift QR sweep ==== */ dlaqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &wr[ks], &wi[ks], &h__[h_offset], ldh, iloz, ihiz, &z__[ z_offset], ldz, &work[1], &c__3, &h__[ku + h_dim1], ldh, &nve, &h__[kwv + h_dim1], ldh, &nho, &h__[ku + kwh * h_dim1], ldh); } /* ==== Note progress (or the lack of it). ==== */ if (ld > 0) { ndfl = 1; } else { ++ndfl; } /* ==== End of main loop ==== */ /* L80: */ } /* ==== Iteration limit exceeded. Set INFO to show where */ /* . the problem occurred and exit. ==== */ *info = kbot; L90: ; } /* ==== Return the optimal value of LWORK. ==== */ work[1] = (doublereal) lwkopt; /* ==== End of DLAQR4 ==== */ return 0; } /* dlaqr4_ */