/* csptrs.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static complex c_b1 = {1.f,0.f};
static integer c__1 = 1;

/* Subroutine */ int csptrs_(char *uplo, integer *n, integer *nrhs, complex *
	ap, integer *ipiv, complex *b, integer *ldb, integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, i__1, i__2;
    complex q__1, q__2, q__3;

    /* Builtin functions */
    void c_div(complex *, complex *, complex *);

    /* Local variables */
    integer j, k;
    complex ak, bk;
    integer kc, kp;
    complex akm1, bkm1, akm1k;
    extern /* Subroutine */ int cscal_(integer *, complex *, complex *, 
	    integer *);
    extern logical lsame_(char *, char *);
    complex denom;
    extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
, complex *, integer *, complex *, integer *, complex *, complex *
, integer *), cgeru_(integer *, integer *, complex *, 
	    complex *, integer *, complex *, integer *, complex *, integer *),
	     cswap_(integer *, complex *, integer *, complex *, integer *);
    logical upper;
    extern /* Subroutine */ int xerbla_(char *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CSPTRS solves a system of linear equations A*X = B with a complex */
/*  symmetric matrix A stored in packed format using the factorization */
/*  A = U*D*U**T or A = L*D*L**T computed by CSPTRF. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the details of the factorization are stored */
/*          as an upper or lower triangular matrix. */
/*          = 'U':  Upper triangular, form is A = U*D*U**T; */
/*          = 'L':  Lower triangular, form is A = L*D*L**T. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  AP      (input) COMPLEX array, dimension (N*(N+1)/2) */
/*          The block diagonal matrix D and the multipliers used to */
/*          obtain the factor U or L as computed by CSPTRF, stored as a */
/*          packed triangular matrix. */

/*  IPIV    (input) INTEGER array, dimension (N) */
/*          Details of the interchanges and the block structure of D */
/*          as determined by CSPTRF. */

/*  B       (input/output) COMPLEX array, dimension (LDB,NRHS) */
/*          On entry, the right hand side matrix B. */
/*          On exit, the solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --ap;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CSPTRS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	return 0;
    }

    if (upper) {

/*        Solve A*X = B, where A = U*D*U'. */

/*        First solve U*D*X = B, overwriting B with X. */

/*        K is the main loop index, decreasing from N to 1 in steps of */
/*        1 or 2, depending on the size of the diagonal blocks. */

	k = *n;
	kc = *n * (*n + 1) / 2 + 1;
L10:

/*        If K < 1, exit from loop. */

	if (k < 1) {
	    goto L30;
	}

	kc -= k;
	if (ipiv[k] > 0) {

/*           1 x 1 diagonal block */

/*           Interchange rows K and IPIV(K). */

	    kp = ipiv[k];
	    if (kp != k) {
		cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
	    }

/*           Multiply by inv(U(K)), where U(K) is the transformation */
/*           stored in column K of A. */

	    i__1 = k - 1;
	    q__1.r = -1.f, q__1.i = -0.f;
	    cgeru_(&i__1, nrhs, &q__1, &ap[kc], &c__1, &b[k + b_dim1], ldb, &
		    b[b_dim1 + 1], ldb);

/*           Multiply by the inverse of the diagonal block. */

	    c_div(&q__1, &c_b1, &ap[kc + k - 1]);
	    cscal_(nrhs, &q__1, &b[k + b_dim1], ldb);
	    --k;
	} else {

/*           2 x 2 diagonal block */

/*           Interchange rows K-1 and -IPIV(K). */

	    kp = -ipiv[k];
	    if (kp != k - 1) {
		cswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
	    }

/*           Multiply by inv(U(K)), where U(K) is the transformation */
/*           stored in columns K-1 and K of A. */

	    i__1 = k - 2;
	    q__1.r = -1.f, q__1.i = -0.f;
	    cgeru_(&i__1, nrhs, &q__1, &ap[kc], &c__1, &b[k + b_dim1], ldb, &
		    b[b_dim1 + 1], ldb);
	    i__1 = k - 2;
	    q__1.r = -1.f, q__1.i = -0.f;
	    cgeru_(&i__1, nrhs, &q__1, &ap[kc - (k - 1)], &c__1, &b[k - 1 + 
		    b_dim1], ldb, &b[b_dim1 + 1], ldb);

/*           Multiply by the inverse of the diagonal block. */

	    i__1 = kc + k - 2;
	    akm1k.r = ap[i__1].r, akm1k.i = ap[i__1].i;
	    c_div(&q__1, &ap[kc - 1], &akm1k);
	    akm1.r = q__1.r, akm1.i = q__1.i;
	    c_div(&q__1, &ap[kc + k - 1], &akm1k);
	    ak.r = q__1.r, ak.i = q__1.i;
	    q__2.r = akm1.r * ak.r - akm1.i * ak.i, q__2.i = akm1.r * ak.i + 
		    akm1.i * ak.r;
	    q__1.r = q__2.r - 1.f, q__1.i = q__2.i - 0.f;
	    denom.r = q__1.r, denom.i = q__1.i;
	    i__1 = *nrhs;
	    for (j = 1; j <= i__1; ++j) {
		c_div(&q__1, &b[k - 1 + j * b_dim1], &akm1k);
		bkm1.r = q__1.r, bkm1.i = q__1.i;
		c_div(&q__1, &b[k + j * b_dim1], &akm1k);
		bk.r = q__1.r, bk.i = q__1.i;
		i__2 = k - 1 + j * b_dim1;
		q__3.r = ak.r * bkm1.r - ak.i * bkm1.i, q__3.i = ak.r * 
			bkm1.i + ak.i * bkm1.r;
		q__2.r = q__3.r - bk.r, q__2.i = q__3.i - bk.i;
		c_div(&q__1, &q__2, &denom);
		b[i__2].r = q__1.r, b[i__2].i = q__1.i;
		i__2 = k + j * b_dim1;
		q__3.r = akm1.r * bk.r - akm1.i * bk.i, q__3.i = akm1.r * 
			bk.i + akm1.i * bk.r;
		q__2.r = q__3.r - bkm1.r, q__2.i = q__3.i - bkm1.i;
		c_div(&q__1, &q__2, &denom);
		b[i__2].r = q__1.r, b[i__2].i = q__1.i;
/* L20: */
	    }
	    kc = kc - k + 1;
	    k += -2;
	}

	goto L10;
L30:

/*        Next solve U'*X = B, overwriting B with X. */

/*        K is the main loop index, increasing from 1 to N in steps of */
/*        1 or 2, depending on the size of the diagonal blocks. */

	k = 1;
	kc = 1;
L40:

/*        If K > N, exit from loop. */

	if (k > *n) {
	    goto L50;
	}

	if (ipiv[k] > 0) {

/*           1 x 1 diagonal block */

/*           Multiply by inv(U'(K)), where U(K) is the transformation */
/*           stored in column K of A. */

	    i__1 = k - 1;
	    q__1.r = -1.f, q__1.i = -0.f;
	    cgemv_("Transpose", &i__1, nrhs, &q__1, &b[b_offset], ldb, &ap[kc]
, &c__1, &c_b1, &b[k + b_dim1], ldb);

/*           Interchange rows K and IPIV(K). */

	    kp = ipiv[k];
	    if (kp != k) {
		cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
	    }
	    kc += k;
	    ++k;
	} else {

/*           2 x 2 diagonal block */

/*           Multiply by inv(U'(K+1)), where U(K+1) is the transformation */
/*           stored in columns K and K+1 of A. */

	    i__1 = k - 1;
	    q__1.r = -1.f, q__1.i = -0.f;
	    cgemv_("Transpose", &i__1, nrhs, &q__1, &b[b_offset], ldb, &ap[kc]
, &c__1, &c_b1, &b[k + b_dim1], ldb);
	    i__1 = k - 1;
	    q__1.r = -1.f, q__1.i = -0.f;
	    cgemv_("Transpose", &i__1, nrhs, &q__1, &b[b_offset], ldb, &ap[kc 
		    + k], &c__1, &c_b1, &b[k + 1 + b_dim1], ldb);

/*           Interchange rows K and -IPIV(K). */

	    kp = -ipiv[k];
	    if (kp != k) {
		cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
	    }
	    kc = kc + (k << 1) + 1;
	    k += 2;
	}

	goto L40;
L50:

	;
    } else {

/*        Solve A*X = B, where A = L*D*L'. */

/*        First solve L*D*X = B, overwriting B with X. */

/*        K is the main loop index, increasing from 1 to N in steps of */
/*        1 or 2, depending on the size of the diagonal blocks. */

	k = 1;
	kc = 1;
L60:

/*        If K > N, exit from loop. */

	if (k > *n) {
	    goto L80;
	}

	if (ipiv[k] > 0) {

/*           1 x 1 diagonal block */

/*           Interchange rows K and IPIV(K). */

	    kp = ipiv[k];
	    if (kp != k) {
		cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
	    }

/*           Multiply by inv(L(K)), where L(K) is the transformation */
/*           stored in column K of A. */

	    if (k < *n) {
		i__1 = *n - k;
		q__1.r = -1.f, q__1.i = -0.f;
		cgeru_(&i__1, nrhs, &q__1, &ap[kc + 1], &c__1, &b[k + b_dim1], 
			 ldb, &b[k + 1 + b_dim1], ldb);
	    }

/*           Multiply by the inverse of the diagonal block. */

	    c_div(&q__1, &c_b1, &ap[kc]);
	    cscal_(nrhs, &q__1, &b[k + b_dim1], ldb);
	    kc = kc + *n - k + 1;
	    ++k;
	} else {

/*           2 x 2 diagonal block */

/*           Interchange rows K+1 and -IPIV(K). */

	    kp = -ipiv[k];
	    if (kp != k + 1) {
		cswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
	    }

/*           Multiply by inv(L(K)), where L(K) is the transformation */
/*           stored in columns K and K+1 of A. */

	    if (k < *n - 1) {
		i__1 = *n - k - 1;
		q__1.r = -1.f, q__1.i = -0.f;
		cgeru_(&i__1, nrhs, &q__1, &ap[kc + 2], &c__1, &b[k + b_dim1], 
			 ldb, &b[k + 2 + b_dim1], ldb);
		i__1 = *n - k - 1;
		q__1.r = -1.f, q__1.i = -0.f;
		cgeru_(&i__1, nrhs, &q__1, &ap[kc + *n - k + 2], &c__1, &b[k 
			+ 1 + b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
	    }

/*           Multiply by the inverse of the diagonal block. */

	    i__1 = kc + 1;
	    akm1k.r = ap[i__1].r, akm1k.i = ap[i__1].i;
	    c_div(&q__1, &ap[kc], &akm1k);
	    akm1.r = q__1.r, akm1.i = q__1.i;
	    c_div(&q__1, &ap[kc + *n - k + 1], &akm1k);
	    ak.r = q__1.r, ak.i = q__1.i;
	    q__2.r = akm1.r * ak.r - akm1.i * ak.i, q__2.i = akm1.r * ak.i + 
		    akm1.i * ak.r;
	    q__1.r = q__2.r - 1.f, q__1.i = q__2.i - 0.f;
	    denom.r = q__1.r, denom.i = q__1.i;
	    i__1 = *nrhs;
	    for (j = 1; j <= i__1; ++j) {
		c_div(&q__1, &b[k + j * b_dim1], &akm1k);
		bkm1.r = q__1.r, bkm1.i = q__1.i;
		c_div(&q__1, &b[k + 1 + j * b_dim1], &akm1k);
		bk.r = q__1.r, bk.i = q__1.i;
		i__2 = k + j * b_dim1;
		q__3.r = ak.r * bkm1.r - ak.i * bkm1.i, q__3.i = ak.r * 
			bkm1.i + ak.i * bkm1.r;
		q__2.r = q__3.r - bk.r, q__2.i = q__3.i - bk.i;
		c_div(&q__1, &q__2, &denom);
		b[i__2].r = q__1.r, b[i__2].i = q__1.i;
		i__2 = k + 1 + j * b_dim1;
		q__3.r = akm1.r * bk.r - akm1.i * bk.i, q__3.i = akm1.r * 
			bk.i + akm1.i * bk.r;
		q__2.r = q__3.r - bkm1.r, q__2.i = q__3.i - bkm1.i;
		c_div(&q__1, &q__2, &denom);
		b[i__2].r = q__1.r, b[i__2].i = q__1.i;
/* L70: */
	    }
	    kc = kc + (*n - k << 1) + 1;
	    k += 2;
	}

	goto L60;
L80:

/*        Next solve L'*X = B, overwriting B with X. */

/*        K is the main loop index, decreasing from N to 1 in steps of */
/*        1 or 2, depending on the size of the diagonal blocks. */

	k = *n;
	kc = *n * (*n + 1) / 2 + 1;
L90:

/*        If K < 1, exit from loop. */

	if (k < 1) {
	    goto L100;
	}

	kc -= *n - k + 1;
	if (ipiv[k] > 0) {

/*           1 x 1 diagonal block */

/*           Multiply by inv(L'(K)), where L(K) is the transformation */
/*           stored in column K of A. */

	    if (k < *n) {
		i__1 = *n - k;
		q__1.r = -1.f, q__1.i = -0.f;
		cgemv_("Transpose", &i__1, nrhs, &q__1, &b[k + 1 + b_dim1], 
			ldb, &ap[kc + 1], &c__1, &c_b1, &b[k + b_dim1], ldb);
	    }

/*           Interchange rows K and IPIV(K). */

	    kp = ipiv[k];
	    if (kp != k) {
		cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
	    }
	    --k;
	} else {

/*           2 x 2 diagonal block */

/*           Multiply by inv(L'(K-1)), where L(K-1) is the transformation */
/*           stored in columns K-1 and K of A. */

	    if (k < *n) {
		i__1 = *n - k;
		q__1.r = -1.f, q__1.i = -0.f;
		cgemv_("Transpose", &i__1, nrhs, &q__1, &b[k + 1 + b_dim1], 
			ldb, &ap[kc + 1], &c__1, &c_b1, &b[k + b_dim1], ldb);
		i__1 = *n - k;
		q__1.r = -1.f, q__1.i = -0.f;
		cgemv_("Transpose", &i__1, nrhs, &q__1, &b[k + 1 + b_dim1], 
			ldb, &ap[kc - (*n - k)], &c__1, &c_b1, &b[k - 1 + 
			b_dim1], ldb);
	    }

/*           Interchange rows K and -IPIV(K). */

	    kp = -ipiv[k];
	    if (kp != k) {
		cswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
	    }
	    kc -= *n - k + 2;
	    k += -2;
	}

	goto L90;
L100:
	;
    }

    return 0;

/*     End of CSPTRS */

} /* csptrs_ */