/* clantb.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

doublereal clantb_(char *norm, char *uplo, char *diag, integer *n, integer *k, 
	 complex *ab, integer *ldab, real *work)
{
    /* System generated locals */
    integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5;
    real ret_val, r__1, r__2;

    /* Builtin functions */
    double c_abs(complex *), sqrt(doublereal);

    /* Local variables */
    integer i__, j, l;
    real sum, scale;
    logical udiag;
    extern logical lsame_(char *, char *);
    real value;
    extern /* Subroutine */ int classq_(integer *, complex *, integer *, real 
	    *, real *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CLANTB  returns the value of the one norm,  or the Frobenius norm, or */
/*  the  infinity norm,  or the element of  largest absolute value  of an */
/*  n by n triangular band matrix A,  with ( k + 1 ) diagonals. */

/*  Description */
/*  =========== */

/*  CLANTB returns the value */

/*     CLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/*              ( */
/*              ( norm1(A),         NORM = '1', 'O' or 'o' */
/*              ( */
/*              ( normI(A),         NORM = 'I' or 'i' */
/*              ( */
/*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */

/*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
/*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
/*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
/*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies the value to be returned in CLANTB as described */
/*          above. */

/*  UPLO    (input) CHARACTER*1 */
/*          Specifies whether the matrix A is upper or lower triangular. */
/*          = 'U':  Upper triangular */
/*          = 'L':  Lower triangular */

/*  DIAG    (input) CHARACTER*1 */
/*          Specifies whether or not the matrix A is unit triangular. */
/*          = 'N':  Non-unit triangular */
/*          = 'U':  Unit triangular */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0.  When N = 0, CLANTB is */
/*          set to zero. */

/*  K       (input) INTEGER */
/*          The number of super-diagonals of the matrix A if UPLO = 'U', */
/*          or the number of sub-diagonals of the matrix A if UPLO = 'L'. */
/*          K >= 0. */

/*  AB      (input) COMPLEX array, dimension (LDAB,N) */
/*          The upper or lower triangular band matrix A, stored in the */
/*          first k+1 rows of AB.  The j-th column of A is stored */
/*          in the j-th column of the array AB as follows: */
/*          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; */
/*          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k). */
/*          Note that when DIAG = 'U', the elements of the array AB */
/*          corresponding to the diagonal elements of the matrix A are */
/*          not referenced, but are assumed to be one. */

/*  LDAB    (input) INTEGER */
/*          The leading dimension of the array AB.  LDAB >= K+1. */

/*  WORK    (workspace) REAL array, dimension (MAX(1,LWORK)), */
/*          where LWORK >= N when NORM = 'I'; otherwise, WORK is not */
/*          referenced. */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    ab_dim1 = *ldab;
    ab_offset = 1 + ab_dim1;
    ab -= ab_offset;
    --work;

    /* Function Body */
    if (*n == 0) {
	value = 0.f;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	if (lsame_(diag, "U")) {
	    value = 1.f;
	    if (lsame_(uplo, "U")) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
		    i__2 = *k + 2 - j;
		    i__3 = *k;
		    for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
/* Computing MAX */
			r__1 = value, r__2 = c_abs(&ab[i__ + j * ab_dim1]);
			value = dmax(r__1,r__2);
/* L10: */
		    }
/* L20: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		    i__2 = *n + 1 - j, i__4 = *k + 1;
		    i__3 = min(i__2,i__4);
		    for (i__ = 2; i__ <= i__3; ++i__) {
/* Computing MAX */
			r__1 = value, r__2 = c_abs(&ab[i__ + j * ab_dim1]);
			value = dmax(r__1,r__2);
/* L30: */
		    }
/* L40: */
		}
	    }
	} else {
	    value = 0.f;
	    if (lsame_(uplo, "U")) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
		    i__3 = *k + 2 - j;
		    i__2 = *k + 1;
		    for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
/* Computing MAX */
			r__1 = value, r__2 = c_abs(&ab[i__ + j * ab_dim1]);
			value = dmax(r__1,r__2);
/* L50: */
		    }
/* L60: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		    i__3 = *n + 1 - j, i__4 = *k + 1;
		    i__2 = min(i__3,i__4);
		    for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
			r__1 = value, r__2 = c_abs(&ab[i__ + j * ab_dim1]);
			value = dmax(r__1,r__2);
/* L70: */
		    }
/* L80: */
		}
	    }
	}
    } else if (lsame_(norm, "O") || *(unsigned char *)
	    norm == '1') {

/*        Find norm1(A). */

	value = 0.f;
	udiag = lsame_(diag, "U");
	if (lsame_(uplo, "U")) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (udiag) {
		    sum = 1.f;
/* Computing MAX */
		    i__2 = *k + 2 - j;
		    i__3 = *k;
		    for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
			sum += c_abs(&ab[i__ + j * ab_dim1]);
/* L90: */
		    }
		} else {
		    sum = 0.f;
/* Computing MAX */
		    i__3 = *k + 2 - j;
		    i__2 = *k + 1;
		    for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
			sum += c_abs(&ab[i__ + j * ab_dim1]);
/* L100: */
		    }
		}
		value = dmax(value,sum);
/* L110: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (udiag) {
		    sum = 1.f;
/* Computing MIN */
		    i__3 = *n + 1 - j, i__4 = *k + 1;
		    i__2 = min(i__3,i__4);
		    for (i__ = 2; i__ <= i__2; ++i__) {
			sum += c_abs(&ab[i__ + j * ab_dim1]);
/* L120: */
		    }
		} else {
		    sum = 0.f;
/* Computing MIN */
		    i__3 = *n + 1 - j, i__4 = *k + 1;
		    i__2 = min(i__3,i__4);
		    for (i__ = 1; i__ <= i__2; ++i__) {
			sum += c_abs(&ab[i__ + j * ab_dim1]);
/* L130: */
		    }
		}
		value = dmax(value,sum);
/* L140: */
	    }
	}
    } else if (lsame_(norm, "I")) {

/*        Find normI(A). */

	value = 0.f;
	if (lsame_(uplo, "U")) {
	    if (lsame_(diag, "U")) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 1.f;
/* L150: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    l = *k + 1 - j;
/* Computing MAX */
		    i__2 = 1, i__3 = j - *k;
		    i__4 = j - 1;
		    for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
			work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]);
/* L160: */
		    }
/* L170: */
		}
	    } else {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 0.f;
/* L180: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    l = *k + 1 - j;
/* Computing MAX */
		    i__4 = 1, i__2 = j - *k;
		    i__3 = j;
		    for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
			work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]);
/* L190: */
		    }
/* L200: */
		}
	    }
	} else {
	    if (lsame_(diag, "U")) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 1.f;
/* L210: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    l = 1 - j;
/* Computing MIN */
		    i__4 = *n, i__2 = j + *k;
		    i__3 = min(i__4,i__2);
		    for (i__ = j + 1; i__ <= i__3; ++i__) {
			work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]);
/* L220: */
		    }
/* L230: */
		}
	    } else {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    work[i__] = 0.f;
/* L240: */
		}
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    l = 1 - j;
/* Computing MIN */
		    i__4 = *n, i__2 = j + *k;
		    i__3 = min(i__4,i__2);
		    for (i__ = j; i__ <= i__3; ++i__) {
			work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]);
/* L250: */
		    }
/* L260: */
		}
	    }
	}
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	    r__1 = value, r__2 = work[i__];
	    value = dmax(r__1,r__2);
/* L270: */
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	if (lsame_(uplo, "U")) {
	    if (lsame_(diag, "U")) {
		scale = 1.f;
		sum = (real) (*n);
		if (*k > 0) {
		    i__1 = *n;
		    for (j = 2; j <= i__1; ++j) {
/* Computing MIN */
			i__4 = j - 1;
			i__3 = min(i__4,*k);
/* Computing MAX */
			i__2 = *k + 2 - j;
			classq_(&i__3, &ab[max(i__2, 1)+ j * ab_dim1], &c__1, 
				&scale, &sum);
/* L280: */
		    }
		}
	    } else {
		scale = 0.f;
		sum = 1.f;
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		    i__4 = j, i__2 = *k + 1;
		    i__3 = min(i__4,i__2);
/* Computing MAX */
		    i__5 = *k + 2 - j;
		    classq_(&i__3, &ab[max(i__5, 1)+ j * ab_dim1], &c__1, &
			    scale, &sum);
/* L290: */
		}
	    }
	} else {
	    if (lsame_(diag, "U")) {
		scale = 1.f;
		sum = (real) (*n);
		if (*k > 0) {
		    i__1 = *n - 1;
		    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
			i__4 = *n - j;
			i__3 = min(i__4,*k);
			classq_(&i__3, &ab[j * ab_dim1 + 2], &c__1, &scale, &
				sum);
/* L300: */
		    }
		}
	    } else {
		scale = 0.f;
		sum = 1.f;
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		    i__4 = *n - j + 1, i__2 = *k + 1;
		    i__3 = min(i__4,i__2);
		    classq_(&i__3, &ab[j * ab_dim1 + 1], &c__1, &scale, &sum);
/* L310: */
		}
	    }
	}
	value = scale * sqrt(sum);
    }

    ret_val = value;
    return ret_val;

/*     End of CLANTB */

} /* clantb_ */