/* claev2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int claev2_(complex *a, complex *b, complex *c__, real *rt1, 
	real *rt2, real *cs1, complex *sn1)
{
    /* System generated locals */
    real r__1, r__2, r__3;
    complex q__1, q__2;

    /* Builtin functions */
    double c_abs(complex *);
    void r_cnjg(complex *, complex *);

    /* Local variables */
    real t;
    complex w;
    extern /* Subroutine */ int slaev2_(real *, real *, real *, real *, real *
, real *, real *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix */
/*     [  A         B  ] */
/*     [  CONJG(B)  C  ]. */
/*  On return, RT1 is the eigenvalue of larger absolute value, RT2 is the */
/*  eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right */
/*  eigenvector for RT1, giving the decomposition */

/*  [ CS1  CONJG(SN1) ] [    A     B ] [ CS1 -CONJG(SN1) ] = [ RT1  0  ] */
/*  [-SN1     CS1     ] [ CONJG(B) C ] [ SN1     CS1     ]   [  0  RT2 ]. */

/*  Arguments */
/*  ========= */

/*  A      (input) COMPLEX */
/*         The (1,1) element of the 2-by-2 matrix. */

/*  B      (input) COMPLEX */
/*         The (1,2) element and the conjugate of the (2,1) element of */
/*         the 2-by-2 matrix. */

/*  C      (input) COMPLEX */
/*         The (2,2) element of the 2-by-2 matrix. */

/*  RT1    (output) REAL */
/*         The eigenvalue of larger absolute value. */

/*  RT2    (output) REAL */
/*         The eigenvalue of smaller absolute value. */

/*  CS1    (output) REAL */
/*  SN1    (output) COMPLEX */
/*         The vector (CS1, SN1) is a unit right eigenvector for RT1. */

/*  Further Details */
/*  =============== */

/*  RT1 is accurate to a few ulps barring over/underflow. */

/*  RT2 may be inaccurate if there is massive cancellation in the */
/*  determinant A*C-B*B; higher precision or correctly rounded or */
/*  correctly truncated arithmetic would be needed to compute RT2 */
/*  accurately in all cases. */

/*  CS1 and SN1 are accurate to a few ulps barring over/underflow. */

/*  Overflow is possible only if RT1 is within a factor of 5 of overflow. */
/*  Underflow is harmless if the input data is 0 or exceeds */
/*     underflow_threshold / macheps. */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    if (c_abs(b) == 0.f) {
	w.r = 1.f, w.i = 0.f;
    } else {
	r_cnjg(&q__2, b);
	r__1 = c_abs(b);
	q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
	w.r = q__1.r, w.i = q__1.i;
    }
    r__1 = a->r;
    r__2 = c_abs(b);
    r__3 = c__->r;
    slaev2_(&r__1, &r__2, &r__3, rt1, rt2, cs1, &t);
    q__1.r = t * w.r, q__1.i = t * w.i;
    sn1->r = q__1.r, sn1->i = q__1.i;
    return 0;

/*     End of CLAEV2 */

} /* claev2_ */