/* claesy.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static complex c_b1 = {1.f,0.f};
static integer c__2 = 2;

/* Subroutine */ int claesy_(complex *a, complex *b, complex *c__, complex *
	rt1, complex *rt2, complex *evscal, complex *cs1, complex *sn1)
{
    /* System generated locals */
    real r__1, r__2;
    complex q__1, q__2, q__3, q__4, q__5, q__6, q__7;

    /* Builtin functions */
    double c_abs(complex *);
    void pow_ci(complex *, complex *, integer *), c_sqrt(complex *, complex *)
	    , c_div(complex *, complex *, complex *);

    /* Local variables */
    complex s, t;
    real z__;
    complex tmp;
    real babs, tabs, evnorm;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CLAESY computes the eigendecomposition of a 2-by-2 symmetric matrix */
/*     ( ( A, B );( B, C ) ) */
/*  provided the norm of the matrix of eigenvectors is larger than */
/*  some threshold value. */

/*  RT1 is the eigenvalue of larger absolute value, and RT2 of */
/*  smaller absolute value.  If the eigenvectors are computed, then */
/*  on return ( CS1, SN1 ) is the unit eigenvector for RT1, hence */

/*  [  CS1     SN1   ] . [ A  B ] . [ CS1    -SN1   ] = [ RT1  0  ] */
/*  [ -SN1     CS1   ]   [ B  C ]   [ SN1     CS1   ]   [  0  RT2 ] */

/*  Arguments */
/*  ========= */

/*  A       (input) COMPLEX */
/*          The ( 1, 1 ) element of input matrix. */

/*  B       (input) COMPLEX */
/*          The ( 1, 2 ) element of input matrix.  The ( 2, 1 ) element */
/*          is also given by B, since the 2-by-2 matrix is symmetric. */

/*  C       (input) COMPLEX */
/*          The ( 2, 2 ) element of input matrix. */

/*  RT1     (output) COMPLEX */
/*          The eigenvalue of larger modulus. */

/*  RT2     (output) COMPLEX */
/*          The eigenvalue of smaller modulus. */

/*  EVSCAL  (output) COMPLEX */
/*          The complex value by which the eigenvector matrix was scaled */
/*          to make it orthonormal.  If EVSCAL is zero, the eigenvectors */
/*          were not computed.  This means one of two things:  the 2-by-2 */
/*          matrix could not be diagonalized, or the norm of the matrix */
/*          of eigenvectors before scaling was larger than the threshold */
/*          value THRESH (set below). */

/*  CS1     (output) COMPLEX */
/*  SN1     (output) COMPLEX */
/*          If EVSCAL .NE. 0,  ( CS1, SN1 ) is the unit right eigenvector */
/*          for RT1. */

/* ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */


/*     Special case:  The matrix is actually diagonal. */
/*     To avoid divide by zero later, we treat this case separately. */

    if (c_abs(b) == 0.f) {
	rt1->r = a->r, rt1->i = a->i;
	rt2->r = c__->r, rt2->i = c__->i;
	if (c_abs(rt1) < c_abs(rt2)) {
	    tmp.r = rt1->r, tmp.i = rt1->i;
	    rt1->r = rt2->r, rt1->i = rt2->i;
	    rt2->r = tmp.r, rt2->i = tmp.i;
	    cs1->r = 0.f, cs1->i = 0.f;
	    sn1->r = 1.f, sn1->i = 0.f;
	} else {
	    cs1->r = 1.f, cs1->i = 0.f;
	    sn1->r = 0.f, sn1->i = 0.f;
	}
    } else {

/*        Compute the eigenvalues and eigenvectors. */
/*        The characteristic equation is */
/*           lambda **2 - (A+C) lambda + (A*C - B*B) */
/*        and we solve it using the quadratic formula. */

	q__2.r = a->r + c__->r, q__2.i = a->i + c__->i;
	q__1.r = q__2.r * .5f, q__1.i = q__2.i * .5f;
	s.r = q__1.r, s.i = q__1.i;
	q__2.r = a->r - c__->r, q__2.i = a->i - c__->i;
	q__1.r = q__2.r * .5f, q__1.i = q__2.i * .5f;
	t.r = q__1.r, t.i = q__1.i;

/*        Take the square root carefully to avoid over/under flow. */

	babs = c_abs(b);
	tabs = c_abs(&t);
	z__ = dmax(babs,tabs);
	if (z__ > 0.f) {
	    q__5.r = t.r / z__, q__5.i = t.i / z__;
	    pow_ci(&q__4, &q__5, &c__2);
	    q__7.r = b->r / z__, q__7.i = b->i / z__;
	    pow_ci(&q__6, &q__7, &c__2);
	    q__3.r = q__4.r + q__6.r, q__3.i = q__4.i + q__6.i;
	    c_sqrt(&q__2, &q__3);
	    q__1.r = z__ * q__2.r, q__1.i = z__ * q__2.i;
	    t.r = q__1.r, t.i = q__1.i;
	}

/*        Compute the two eigenvalues.  RT1 and RT2 are exchanged */
/*        if necessary so that RT1 will have the greater magnitude. */

	q__1.r = s.r + t.r, q__1.i = s.i + t.i;
	rt1->r = q__1.r, rt1->i = q__1.i;
	q__1.r = s.r - t.r, q__1.i = s.i - t.i;
	rt2->r = q__1.r, rt2->i = q__1.i;
	if (c_abs(rt1) < c_abs(rt2)) {
	    tmp.r = rt1->r, tmp.i = rt1->i;
	    rt1->r = rt2->r, rt1->i = rt2->i;
	    rt2->r = tmp.r, rt2->i = tmp.i;
	}

/*        Choose CS1 = 1 and SN1 to satisfy the first equation, then */
/*        scale the components of this eigenvector so that the matrix */
/*        of eigenvectors X satisfies  X * X' = I .  (No scaling is */
/*        done if the norm of the eigenvalue matrix is less than THRESH.) */

	q__2.r = rt1->r - a->r, q__2.i = rt1->i - a->i;
	c_div(&q__1, &q__2, b);
	sn1->r = q__1.r, sn1->i = q__1.i;
	tabs = c_abs(sn1);
	if (tabs > 1.f) {
/* Computing 2nd power */
	    r__2 = 1.f / tabs;
	    r__1 = r__2 * r__2;
	    q__5.r = sn1->r / tabs, q__5.i = sn1->i / tabs;
	    pow_ci(&q__4, &q__5, &c__2);
	    q__3.r = r__1 + q__4.r, q__3.i = q__4.i;
	    c_sqrt(&q__2, &q__3);
	    q__1.r = tabs * q__2.r, q__1.i = tabs * q__2.i;
	    t.r = q__1.r, t.i = q__1.i;
	} else {
	    q__3.r = sn1->r * sn1->r - sn1->i * sn1->i, q__3.i = sn1->r * 
		    sn1->i + sn1->i * sn1->r;
	    q__2.r = q__3.r + 1.f, q__2.i = q__3.i + 0.f;
	    c_sqrt(&q__1, &q__2);
	    t.r = q__1.r, t.i = q__1.i;
	}
	evnorm = c_abs(&t);
	if (evnorm >= .1f) {
	    c_div(&q__1, &c_b1, &t);
	    evscal->r = q__1.r, evscal->i = q__1.i;
	    cs1->r = evscal->r, cs1->i = evscal->i;
	    q__1.r = sn1->r * evscal->r - sn1->i * evscal->i, q__1.i = sn1->r 
		    * evscal->i + sn1->i * evscal->r;
	    sn1->r = q__1.r, sn1->i = q__1.i;
	} else {
	    evscal->r = 0.f, evscal->i = 0.f;
	}
    }
    return 0;

/*     End of CLAESY */

} /* claesy_ */