/* cggevx.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static complex c_b1 = {0.f,0.f};
static complex c_b2 = {1.f,0.f};
static integer c__1 = 1;
static integer c__0 = 0;

/* Subroutine */ int cggevx_(char *balanc, char *jobvl, char *jobvr, char *
	sense, integer *n, complex *a, integer *lda, complex *b, integer *ldb, 
	 complex *alpha, complex *beta, complex *vl, integer *ldvl, complex *
	vr, integer *ldvr, integer *ilo, integer *ihi, real *lscale, real *
	rscale, real *abnrm, real *bbnrm, real *rconde, real *rcondv, complex 
	*work, integer *lwork, real *rwork, integer *iwork, logical *bwork, 
	integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
	    vr_offset, i__1, i__2, i__3, i__4;
    real r__1, r__2, r__3, r__4;
    complex q__1;

    /* Builtin functions */
    double sqrt(doublereal), r_imag(complex *);

    /* Local variables */
    integer i__, j, m, jc, in, jr;
    real eps;
    logical ilv;
    real anrm, bnrm;
    integer ierr, itau;
    real temp;
    logical ilvl, ilvr;
    integer iwrk, iwrk1;
    extern logical lsame_(char *, char *);
    integer icols;
    logical noscl;
    integer irows;
    extern /* Subroutine */ int cggbak_(char *, char *, integer *, integer *, 
	    integer *, real *, real *, integer *, complex *, integer *, 
	    integer *), cggbal_(char *, integer *, complex *, 
	    integer *, complex *, integer *, integer *, integer *, real *, 
	    real *, real *, integer *), slabad_(real *, real *);
    extern doublereal clange_(char *, integer *, integer *, complex *, 
	    integer *, real *);
    extern /* Subroutine */ int cgghrd_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, integer *, complex *, 
	    integer *, complex *, integer *, integer *), 
	    clascl_(char *, integer *, integer *, real *, real *, integer *, 
	    integer *, complex *, integer *, integer *);
    logical ilascl, ilbscl;
    extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, 
	    integer *, complex *, complex *, integer *, integer *), clacpy_(
	    char *, integer *, integer *, complex *, integer *, complex *, 
	    integer *), claset_(char *, integer *, integer *, complex 
	    *, complex *, complex *, integer *), ctgevc_(char *, char 
	    *, logical *, integer *, complex *, integer *, complex *, integer 
	    *, complex *, integer *, complex *, integer *, integer *, integer 
	    *, complex *, real *, integer *);
    logical ldumma[1];
    char chtemp[1];
    real bignum;
    extern /* Subroutine */ int chgeqz_(char *, char *, char *, integer *, 
	    integer *, integer *, complex *, integer *, complex *, integer *, 
	    complex *, complex *, complex *, integer *, complex *, integer *, 
	    complex *, integer *, real *, integer *), 
	    ctgsna_(char *, char *, logical *, integer *, complex *, integer *
, complex *, integer *, complex *, integer *, complex *, integer *
, real *, real *, integer *, integer *, complex *, integer *, 
	    integer *, integer *);
    integer ijobvl;
    extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, real *, integer *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern doublereal slamch_(char *);
    integer ijobvr;
    logical wantsb;
    extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, 
	    complex *, integer *, complex *, complex *, integer *, integer *);
    real anrmto;
    logical wantse;
    real bnrmto;
    extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *);
    integer minwrk, maxwrk;
    logical wantsn;
    real smlnum;
    logical lquery, wantsv;


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CGGEVX computes for a pair of N-by-N complex nonsymmetric matrices */
/*  (A,B) the generalized eigenvalues, and optionally, the left and/or */
/*  right generalized eigenvectors. */

/*  Optionally, it also computes a balancing transformation to improve */
/*  the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
/*  LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for */
/*  the eigenvalues (RCONDE), and reciprocal condition numbers for the */
/*  right eigenvectors (RCONDV). */

/*  A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
/*  lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
/*  singular. It is usually represented as the pair (alpha,beta), as */
/*  there is a reasonable interpretation for beta=0, and even for both */
/*  being zero. */

/*  The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
/*  of (A,B) satisfies */
/*                   A * v(j) = lambda(j) * B * v(j) . */
/*  The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
/*  of (A,B) satisfies */
/*                   u(j)**H * A  = lambda(j) * u(j)**H * B. */
/*  where u(j)**H is the conjugate-transpose of u(j). */


/*  Arguments */
/*  ========= */

/*  BALANC  (input) CHARACTER*1 */
/*          Specifies the balance option to be performed: */
/*          = 'N':  do not diagonally scale or permute; */
/*          = 'P':  permute only; */
/*          = 'S':  scale only; */
/*          = 'B':  both permute and scale. */
/*          Computed reciprocal condition numbers will be for the */
/*          matrices after permuting and/or balancing. Permuting does */
/*          not change condition numbers (in exact arithmetic), but */
/*          balancing does. */

/*  JOBVL   (input) CHARACTER*1 */
/*          = 'N':  do not compute the left generalized eigenvectors; */
/*          = 'V':  compute the left generalized eigenvectors. */

/*  JOBVR   (input) CHARACTER*1 */
/*          = 'N':  do not compute the right generalized eigenvectors; */
/*          = 'V':  compute the right generalized eigenvectors. */

/*  SENSE   (input) CHARACTER*1 */
/*          Determines which reciprocal condition numbers are computed. */
/*          = 'N': none are computed; */
/*          = 'E': computed for eigenvalues only; */
/*          = 'V': computed for eigenvectors only; */
/*          = 'B': computed for eigenvalues and eigenvectors. */

/*  N       (input) INTEGER */
/*          The order of the matrices A, B, VL, and VR.  N >= 0. */

/*  A       (input/output) COMPLEX array, dimension (LDA, N) */
/*          On entry, the matrix A in the pair (A,B). */
/*          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' */
/*          or both, then A contains the first part of the complex Schur */
/*          form of the "balanced" versions of the input A and B. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of A.  LDA >= max(1,N). */

/*  B       (input/output) COMPLEX array, dimension (LDB, N) */
/*          On entry, the matrix B in the pair (A,B). */
/*          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' */
/*          or both, then B contains the second part of the complex */
/*          Schur form of the "balanced" versions of the input A and B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of B.  LDB >= max(1,N). */

/*  ALPHA   (output) COMPLEX array, dimension (N) */
/*  BETA    (output) COMPLEX array, dimension (N) */
/*          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized */
/*          eigenvalues. */

/*          Note: the quotient ALPHA(j)/BETA(j) ) may easily over- or */
/*          underflow, and BETA(j) may even be zero.  Thus, the user */
/*          should avoid naively computing the ratio ALPHA/BETA. */
/*          However, ALPHA will be always less than and usually */
/*          comparable with norm(A) in magnitude, and BETA always less */
/*          than and usually comparable with norm(B). */

/*  VL      (output) COMPLEX array, dimension (LDVL,N) */
/*          If JOBVL = 'V', the left generalized eigenvectors u(j) are */
/*          stored one after another in the columns of VL, in the same */
/*          order as their eigenvalues. */
/*          Each eigenvector will be scaled so the largest component */
/*          will have abs(real part) + abs(imag. part) = 1. */
/*          Not referenced if JOBVL = 'N'. */

/*  LDVL    (input) INTEGER */
/*          The leading dimension of the matrix VL. LDVL >= 1, and */
/*          if JOBVL = 'V', LDVL >= N. */

/*  VR      (output) COMPLEX array, dimension (LDVR,N) */
/*          If JOBVR = 'V', the right generalized eigenvectors v(j) are */
/*          stored one after another in the columns of VR, in the same */
/*          order as their eigenvalues. */
/*          Each eigenvector will be scaled so the largest component */
/*          will have abs(real part) + abs(imag. part) = 1. */
/*          Not referenced if JOBVR = 'N'. */

/*  LDVR    (input) INTEGER */
/*          The leading dimension of the matrix VR. LDVR >= 1, and */
/*          if JOBVR = 'V', LDVR >= N. */

/*  ILO     (output) INTEGER */
/*  IHI     (output) INTEGER */
/*          ILO and IHI are integer values such that on exit */
/*          A(i,j) = 0 and B(i,j) = 0 if i > j and */
/*          j = 1,...,ILO-1 or i = IHI+1,...,N. */
/*          If BALANC = 'N' or 'S', ILO = 1 and IHI = N. */

/*  LSCALE  (output) REAL array, dimension (N) */
/*          Details of the permutations and scaling factors applied */
/*          to the left side of A and B.  If PL(j) is the index of the */
/*          row interchanged with row j, and DL(j) is the scaling */
/*          factor applied to row j, then */
/*            LSCALE(j) = PL(j)  for j = 1,...,ILO-1 */
/*                      = DL(j)  for j = ILO,...,IHI */
/*                      = PL(j)  for j = IHI+1,...,N. */
/*          The order in which the interchanges are made is N to IHI+1, */
/*          then 1 to ILO-1. */

/*  RSCALE  (output) REAL array, dimension (N) */
/*          Details of the permutations and scaling factors applied */
/*          to the right side of A and B.  If PR(j) is the index of the */
/*          column interchanged with column j, and DR(j) is the scaling */
/*          factor applied to column j, then */
/*            RSCALE(j) = PR(j)  for j = 1,...,ILO-1 */
/*                      = DR(j)  for j = ILO,...,IHI */
/*                      = PR(j)  for j = IHI+1,...,N */
/*          The order in which the interchanges are made is N to IHI+1, */
/*          then 1 to ILO-1. */

/*  ABNRM   (output) REAL */
/*          The one-norm of the balanced matrix A. */

/*  BBNRM   (output) REAL */
/*          The one-norm of the balanced matrix B. */

/*  RCONDE  (output) REAL array, dimension (N) */
/*          If SENSE = 'E' or 'B', the reciprocal condition numbers of */
/*          the eigenvalues, stored in consecutive elements of the array. */
/*          If SENSE = 'N' or 'V', RCONDE is not referenced. */

/*  RCONDV  (output) REAL array, dimension (N) */
/*          If SENSE = 'V' or 'B', the estimated reciprocal condition */
/*          numbers of the eigenvectors, stored in consecutive elements */
/*          of the array. If the eigenvalues cannot be reordered to */
/*          compute RCONDV(j), RCONDV(j) is set to 0; this can only occur */
/*          when the true value would be very small anyway. */
/*          If SENSE = 'N' or 'E', RCONDV is not referenced. */

/*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. LWORK >= max(1,2*N). */
/*          If SENSE = 'E', LWORK >= max(1,4*N). */
/*          If SENSE = 'V' or 'B', LWORK >= max(1,2*N*N+2*N). */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  RWORK   (workspace) REAL array, dimension (lrwork) */
/*          lrwork must be at least max(1,6*N) if BALANC = 'S' or 'B', */
/*          and at least max(1,2*N) otherwise. */
/*          Real workspace. */

/*  IWORK   (workspace) INTEGER array, dimension (N+2) */
/*          If SENSE = 'E', IWORK is not referenced. */

/*  BWORK   (workspace) LOGICAL array, dimension (N) */
/*          If SENSE = 'N', BWORK is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
/*          = 1,...,N: */
/*                The QZ iteration failed.  No eigenvectors have been */
/*                calculated, but ALPHA(j) and BETA(j) should be correct */
/*                for j=INFO+1,...,N. */
/*          > N:  =N+1: other than QZ iteration failed in CHGEQZ. */
/*                =N+2: error return from CTGEVC. */

/*  Further Details */
/*  =============== */

/*  Balancing a matrix pair (A,B) includes, first, permuting rows and */
/*  columns to isolate eigenvalues, second, applying diagonal similarity */
/*  transformation to the rows and columns to make the rows and columns */
/*  as close in norm as possible. The computed reciprocal condition */
/*  numbers correspond to the balanced matrix. Permuting rows and columns */
/*  will not change the condition numbers (in exact arithmetic) but */
/*  diagonal scaling will.  For further explanation of balancing, see */
/*  section 4.11.1.2 of LAPACK Users' Guide. */

/*  An approximate error bound on the chordal distance between the i-th */
/*  computed generalized eigenvalue w and the corresponding exact */
/*  eigenvalue lambda is */

/*       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) */

/*  An approximate error bound for the angle between the i-th computed */
/*  eigenvector VL(i) or VR(i) is given by */

/*       EPS * norm(ABNRM, BBNRM) / DIF(i). */

/*  For further explanation of the reciprocal condition numbers RCONDE */
/*  and RCONDV, see section 4.11 of LAPACK User's Guide. */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Statement Functions .. */
/*     .. */
/*     .. Statement Function definitions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Decode the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --alpha;
    --beta;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --lscale;
    --rscale;
    --rconde;
    --rcondv;
    --work;
    --rwork;
    --iwork;
    --bwork;

    /* Function Body */
    if (lsame_(jobvl, "N")) {
	ijobvl = 1;
	ilvl = FALSE_;
    } else if (lsame_(jobvl, "V")) {
	ijobvl = 2;
	ilvl = TRUE_;
    } else {
	ijobvl = -1;
	ilvl = FALSE_;
    }

    if (lsame_(jobvr, "N")) {
	ijobvr = 1;
	ilvr = FALSE_;
    } else if (lsame_(jobvr, "V")) {
	ijobvr = 2;
	ilvr = TRUE_;
    } else {
	ijobvr = -1;
	ilvr = FALSE_;
    }
    ilv = ilvl || ilvr;

    noscl = lsame_(balanc, "N") || lsame_(balanc, "P");
    wantsn = lsame_(sense, "N");
    wantse = lsame_(sense, "E");
    wantsv = lsame_(sense, "V");
    wantsb = lsame_(sense, "B");

/*     Test the input arguments */

    *info = 0;
    lquery = *lwork == -1;
    if (! (noscl || lsame_(balanc, "S") || lsame_(
	    balanc, "B"))) {
	*info = -1;
    } else if (ijobvl <= 0) {
	*info = -2;
    } else if (ijobvr <= 0) {
	*info = -3;
    } else if (! (wantsn || wantse || wantsb || wantsv)) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,*n)) {
	*info = -7;
    } else if (*ldb < max(1,*n)) {
	*info = -9;
    } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
	*info = -13;
    } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
	*info = -15;
    }

/*     Compute workspace */
/*      (Note: Comments in the code beginning "Workspace:" describe the */
/*       minimal amount of workspace needed at that point in the code, */
/*       as well as the preferred amount for good performance. */
/*       NB refers to the optimal block size for the immediately */
/*       following subroutine, as returned by ILAENV. The workspace is */
/*       computed assuming ILO = 1 and IHI = N, the worst case.) */

    if (*info == 0) {
	if (*n == 0) {
	    minwrk = 1;
	    maxwrk = 1;
	} else {
	    minwrk = *n << 1;
	    if (wantse) {
		minwrk = *n << 2;
	    } else if (wantsv || wantsb) {
		minwrk = (*n << 1) * (*n + 1);
	    }
	    maxwrk = minwrk;
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", n, &
		    c__1, n, &c__0);
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CUNMQR", " ", n, &
		    c__1, n, &c__0);
	    maxwrk = max(i__1,i__2);
	    if (ilvl) {
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CUNGQR", 
			" ", n, &c__1, n, &c__0);
		maxwrk = max(i__1,i__2);
	    }
	}
	work[1].r = (real) maxwrk, work[1].i = 0.f;

	if (*lwork < minwrk && ! lquery) {
	    *info = -25;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGGEVX", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Get machine constants */

    eps = slamch_("P");
    smlnum = slamch_("S");
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1.f / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]);
    ilascl = FALSE_;
    if (anrm > 0.f && anrm < smlnum) {
	anrmto = smlnum;
	ilascl = TRUE_;
    } else if (anrm > bignum) {
	anrmto = bignum;
	ilascl = TRUE_;
    }
    if (ilascl) {
	clascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
		ierr);
    }

/*     Scale B if max element outside range [SMLNUM,BIGNUM] */

    bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
    ilbscl = FALSE_;
    if (bnrm > 0.f && bnrm < smlnum) {
	bnrmto = smlnum;
	ilbscl = TRUE_;
    } else if (bnrm > bignum) {
	bnrmto = bignum;
	ilbscl = TRUE_;
    }
    if (ilbscl) {
	clascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
		ierr);
    }

/*     Permute and/or balance the matrix pair (A,B) */
/*     (Real Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) */

    cggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, &
	    lscale[1], &rscale[1], &rwork[1], &ierr);

/*     Compute ABNRM and BBNRM */

    *abnrm = clange_("1", n, n, &a[a_offset], lda, &rwork[1]);
    if (ilascl) {
	rwork[1] = *abnrm;
	slascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &rwork[1], &
		c__1, &ierr);
	*abnrm = rwork[1];
    }

    *bbnrm = clange_("1", n, n, &b[b_offset], ldb, &rwork[1]);
    if (ilbscl) {
	rwork[1] = *bbnrm;
	slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &rwork[1], &
		c__1, &ierr);
	*bbnrm = rwork[1];
    }

/*     Reduce B to triangular form (QR decomposition of B) */
/*     (Complex Workspace: need N, prefer N*NB ) */

    irows = *ihi + 1 - *ilo;
    if (ilv || ! wantsn) {
	icols = *n + 1 - *ilo;
    } else {
	icols = irows;
    }
    itau = 1;
    iwrk = itau + irows;
    i__1 = *lwork + 1 - iwrk;
    cgeqrf_(&irows, &icols, &b[*ilo + *ilo * b_dim1], ldb, &work[itau], &work[
	    iwrk], &i__1, &ierr);

/*     Apply the unitary transformation to A */
/*     (Complex Workspace: need N, prefer N*NB) */

    i__1 = *lwork + 1 - iwrk;
    cunmqr_("L", "C", &irows, &icols, &irows, &b[*ilo + *ilo * b_dim1], ldb, &
	    work[itau], &a[*ilo + *ilo * a_dim1], lda, &work[iwrk], &i__1, &
	    ierr);

/*     Initialize VL and/or VR */
/*     (Workspace: need N, prefer N*NB) */

    if (ilvl) {
	claset_("Full", n, n, &c_b1, &c_b2, &vl[vl_offset], ldvl);
	if (irows > 1) {
	    i__1 = irows - 1;
	    i__2 = irows - 1;
	    clacpy_("L", &i__1, &i__2, &b[*ilo + 1 + *ilo * b_dim1], ldb, &vl[
		    *ilo + 1 + *ilo * vl_dim1], ldvl);
	}
	i__1 = *lwork + 1 - iwrk;
	cungqr_(&irows, &irows, &irows, &vl[*ilo + *ilo * vl_dim1], ldvl, &
		work[itau], &work[iwrk], &i__1, &ierr);
    }

    if (ilvr) {
	claset_("Full", n, n, &c_b1, &c_b2, &vr[vr_offset], ldvr);
    }

/*     Reduce to generalized Hessenberg form */
/*     (Workspace: none needed) */

    if (ilv || ! wantsn) {

/*        Eigenvectors requested -- work on whole matrix. */

	cgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset], 
		ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
    } else {
	cgghrd_("N", "N", &irows, &c__1, &irows, &a[*ilo + *ilo * a_dim1], 
		lda, &b[*ilo + *ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
		vr_offset], ldvr, &ierr);
    }

/*     Perform QZ algorithm (Compute eigenvalues, and optionally, the */
/*     Schur forms and Schur vectors) */
/*     (Complex Workspace: need N) */
/*     (Real Workspace: need N) */

    iwrk = itau;
    if (ilv || ! wantsn) {
	*(unsigned char *)chtemp = 'S';
    } else {
	*(unsigned char *)chtemp = 'E';
    }

    i__1 = *lwork + 1 - iwrk;
    chgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset]
, ldb, &alpha[1], &beta[1], &vl[vl_offset], ldvl, &vr[vr_offset], 
	    ldvr, &work[iwrk], &i__1, &rwork[1], &ierr);
    if (ierr != 0) {
	if (ierr > 0 && ierr <= *n) {
	    *info = ierr;
	} else if (ierr > *n && ierr <= *n << 1) {
	    *info = ierr - *n;
	} else {
	    *info = *n + 1;
	}
	goto L90;
    }

/*     Compute Eigenvectors and estimate condition numbers if desired */
/*     CTGEVC: (Complex Workspace: need 2*N ) */
/*             (Real Workspace:    need 2*N ) */
/*     CTGSNA: (Complex Workspace: need 2*N*N if SENSE='V' or 'B') */
/*             (Integer Workspace: need N+2 ) */

    if (ilv || ! wantsn) {
	if (ilv) {
	    if (ilvl) {
		if (ilvr) {
		    *(unsigned char *)chtemp = 'B';
		} else {
		    *(unsigned char *)chtemp = 'L';
		}
	    } else {
		*(unsigned char *)chtemp = 'R';
	    }

	    ctgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], 
		    ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &
		    work[iwrk], &rwork[1], &ierr);
	    if (ierr != 0) {
		*info = *n + 2;
		goto L90;
	    }
	}

	if (! wantsn) {

/*           compute eigenvectors (STGEVC) and estimate condition */
/*           numbers (STGSNA). Note that the definition of the condition */
/*           number is not invariant under transformation (u,v) to */
/*           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized */
/*           Schur form (S,T), Q and Z are orthogonal matrices. In order */
/*           to avoid using extra 2*N*N workspace, we have to */
/*           re-calculate eigenvectors and estimate the condition numbers */
/*           one at a time. */

	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {

		i__2 = *n;
		for (j = 1; j <= i__2; ++j) {
		    bwork[j] = FALSE_;
/* L10: */
		}
		bwork[i__] = TRUE_;

		iwrk = *n + 1;
		iwrk1 = iwrk + *n;

		if (wantse || wantsb) {
		    ctgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[
			    b_offset], ldb, &work[1], n, &work[iwrk], n, &
			    c__1, &m, &work[iwrk1], &rwork[1], &ierr);
		    if (ierr != 0) {
			*info = *n + 2;
			goto L90;
		    }
		}

		i__2 = *lwork - iwrk1 + 1;
		ctgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[
			b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[
			i__], &rcondv[i__], &c__1, &m, &work[iwrk1], &i__2, &
			iwork[1], &ierr);

/* L20: */
	    }
	}
    }

/*     Undo balancing on VL and VR and normalization */
/*     (Workspace: none needed) */

    if (ilvl) {
	cggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[
		vl_offset], ldvl, &ierr);

	i__1 = *n;
	for (jc = 1; jc <= i__1; ++jc) {
	    temp = 0.f;
	    i__2 = *n;
	    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
		i__3 = jr + jc * vl_dim1;
		r__3 = temp, r__4 = (r__1 = vl[i__3].r, dabs(r__1)) + (r__2 = 
			r_imag(&vl[jr + jc * vl_dim1]), dabs(r__2));
		temp = dmax(r__3,r__4);
/* L30: */
	    }
	    if (temp < smlnum) {
		goto L50;
	    }
	    temp = 1.f / temp;
	    i__2 = *n;
	    for (jr = 1; jr <= i__2; ++jr) {
		i__3 = jr + jc * vl_dim1;
		i__4 = jr + jc * vl_dim1;
		q__1.r = temp * vl[i__4].r, q__1.i = temp * vl[i__4].i;
		vl[i__3].r = q__1.r, vl[i__3].i = q__1.i;
/* L40: */
	    }
L50:
	    ;
	}
    }

    if (ilvr) {
	cggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[
		vr_offset], ldvr, &ierr);
	i__1 = *n;
	for (jc = 1; jc <= i__1; ++jc) {
	    temp = 0.f;
	    i__2 = *n;
	    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
		i__3 = jr + jc * vr_dim1;
		r__3 = temp, r__4 = (r__1 = vr[i__3].r, dabs(r__1)) + (r__2 = 
			r_imag(&vr[jr + jc * vr_dim1]), dabs(r__2));
		temp = dmax(r__3,r__4);
/* L60: */
	    }
	    if (temp < smlnum) {
		goto L80;
	    }
	    temp = 1.f / temp;
	    i__2 = *n;
	    for (jr = 1; jr <= i__2; ++jr) {
		i__3 = jr + jc * vr_dim1;
		i__4 = jr + jc * vr_dim1;
		q__1.r = temp * vr[i__4].r, q__1.i = temp * vr[i__4].i;
		vr[i__3].r = q__1.r, vr[i__3].i = q__1.i;
/* L70: */
	    }
L80:
	    ;
	}
    }

/*     Undo scaling if necessary */

    if (ilascl) {
	clascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, &
		ierr);
    }

    if (ilbscl) {
	clascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
		ierr);
    }

L90:
    work[1].r = (real) maxwrk, work[1].i = 0.f;

    return 0;

/*     End of CGGEVX */

} /* cggevx_ */