/* cgeru.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int cgeru_(integer *m, integer *n, complex *alpha, complex *
	x, integer *incx, complex *y, integer *incy, complex *a, integer *lda)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
    complex q__1, q__2;

    /* Local variables */
    integer i__, j, ix, jy, kx, info;
    complex temp;
    extern /* Subroutine */ int xerbla_(char *, integer *);

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CGERU  performs the rank 1 operation */

/*     A := alpha*x*y' + A, */

/*  where alpha is a scalar, x is an m element vector, y is an n element */
/*  vector and A is an m by n matrix. */

/*  Arguments */
/*  ========== */

/*  M      - INTEGER. */
/*           On entry, M specifies the number of rows of the matrix A. */
/*           M must be at least zero. */
/*           Unchanged on exit. */

/*  N      - INTEGER. */
/*           On entry, N specifies the number of columns of the matrix A. */
/*           N must be at least zero. */
/*           Unchanged on exit. */

/*  ALPHA  - COMPLEX         . */
/*           On entry, ALPHA specifies the scalar alpha. */
/*           Unchanged on exit. */

/*  X      - COMPLEX          array of dimension at least */
/*           ( 1 + ( m - 1 )*abs( INCX ) ). */
/*           Before entry, the incremented array X must contain the m */
/*           element vector x. */
/*           Unchanged on exit. */

/*  INCX   - INTEGER. */
/*           On entry, INCX specifies the increment for the elements of */
/*           X. INCX must not be zero. */
/*           Unchanged on exit. */

/*  Y      - COMPLEX          array of dimension at least */
/*           ( 1 + ( n - 1 )*abs( INCY ) ). */
/*           Before entry, the incremented array Y must contain the n */
/*           element vector y. */
/*           Unchanged on exit. */

/*  INCY   - INTEGER. */
/*           On entry, INCY specifies the increment for the elements of */
/*           Y. INCY must not be zero. */
/*           Unchanged on exit. */

/*  A      - COMPLEX          array of DIMENSION ( LDA, n ). */
/*           Before entry, the leading m by n part of the array A must */
/*           contain the matrix of coefficients. On exit, A is */
/*           overwritten by the updated matrix. */

/*  LDA    - INTEGER. */
/*           On entry, LDA specifies the first dimension of A as declared */
/*           in the calling (sub) program. LDA must be at least */
/*           max( 1, m ). */
/*           Unchanged on exit. */


/*  Level 2 Blas routine. */

/*  -- Written on 22-October-1986. */
/*     Jack Dongarra, Argonne National Lab. */
/*     Jeremy Du Croz, Nag Central Office. */
/*     Sven Hammarling, Nag Central Office. */
/*     Richard Hanson, Sandia National Labs. */


/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --x;
    --y;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;

    /* Function Body */
    info = 0;
    if (*m < 0) {
	info = 1;
    } else if (*n < 0) {
	info = 2;
    } else if (*incx == 0) {
	info = 5;
    } else if (*incy == 0) {
	info = 7;
    } else if (*lda < max(1,*m)) {
	info = 9;
    }
    if (info != 0) {
	xerbla_("CGERU ", &info);
	return 0;
    }

/*     Quick return if possible. */

    if (*m == 0 || *n == 0 || alpha->r == 0.f && alpha->i == 0.f) {
	return 0;
    }

/*     Start the operations. In this version the elements of A are */
/*     accessed sequentially with one pass through A. */

    if (*incy > 0) {
	jy = 1;
    } else {
	jy = 1 - (*n - 1) * *incy;
    }
    if (*incx == 1) {
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = jy;
	    if (y[i__2].r != 0.f || y[i__2].i != 0.f) {
		i__2 = jy;
		q__1.r = alpha->r * y[i__2].r - alpha->i * y[i__2].i, q__1.i =
			 alpha->r * y[i__2].i + alpha->i * y[i__2].r;
		temp.r = q__1.r, temp.i = q__1.i;
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__3 = i__ + j * a_dim1;
		    i__4 = i__ + j * a_dim1;
		    i__5 = i__;
		    q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, q__2.i =
			     x[i__5].r * temp.i + x[i__5].i * temp.r;
		    q__1.r = a[i__4].r + q__2.r, q__1.i = a[i__4].i + q__2.i;
		    a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L10: */
		}
	    }
	    jy += *incy;
/* L20: */
	}
    } else {
	if (*incx > 0) {
	    kx = 1;
	} else {
	    kx = 1 - (*m - 1) * *incx;
	}
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = jy;
	    if (y[i__2].r != 0.f || y[i__2].i != 0.f) {
		i__2 = jy;
		q__1.r = alpha->r * y[i__2].r - alpha->i * y[i__2].i, q__1.i =
			 alpha->r * y[i__2].i + alpha->i * y[i__2].r;
		temp.r = q__1.r, temp.i = q__1.i;
		ix = kx;
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__3 = i__ + j * a_dim1;
		    i__4 = i__ + j * a_dim1;
		    i__5 = ix;
		    q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, q__2.i =
			     x[i__5].r * temp.i + x[i__5].i * temp.r;
		    q__1.r = a[i__4].r + q__2.r, q__1.i = a[i__4].i + q__2.i;
		    a[i__3].r = q__1.r, a[i__3].i = q__1.i;
		    ix += *incx;
/* L30: */
		}
	    }
	    jy += *incy;
/* L40: */
	}
    }

    return 0;

/*     End of CGERU . */

} /* cgeru_ */