From 718c552901d703c502ccbefdfc3c9028d608b947 Mon Sep 17 00:00:00 2001
From: orivej <orivej@yandex-team.ru>
Date: Thu, 10 Feb 2022 16:44:49 +0300
Subject: Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 1
 of 2.

---
 contrib/tools/python3/src/Python/dtoa.c | 5644 +++++++++++++++----------------
 1 file changed, 2822 insertions(+), 2822 deletions(-)

(limited to 'contrib/tools/python3/src/Python/dtoa.c')

diff --git a/contrib/tools/python3/src/Python/dtoa.c b/contrib/tools/python3/src/Python/dtoa.c
index e629b29642..03d33752ca 100644
--- a/contrib/tools/python3/src/Python/dtoa.c
+++ b/contrib/tools/python3/src/Python/dtoa.c
@@ -1,2154 +1,2154 @@
-/****************************************************************
- *
- * The author of this software is David M. Gay.
- *
- * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose without fee is hereby granted, provided that this entire notice
- * is included in all copies of any software which is or includes a copy
- * or modification of this software and in all copies of the supporting
- * documentation for such software.
- *
- * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
- * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
- * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
- * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
- *
- ***************************************************************/
-
-/****************************************************************
- * This is dtoa.c by David M. Gay, downloaded from
- * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
- * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
- *
- * Please remember to check http://www.netlib.org/fp regularly (and especially
- * before any Python release) for bugfixes and updates.
- *
- * The major modifications from Gay's original code are as follows:
- *
- *  0. The original code has been specialized to Python's needs by removing
- *     many of the #ifdef'd sections.  In particular, code to support VAX and
- *     IBM floating-point formats, hex NaNs, hex floats, locale-aware
- *     treatment of the decimal point, and setting of the inexact flag have
- *     been removed.
- *
- *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
- *
- *  2. The public functions strtod, dtoa and freedtoa all now have
- *     a _Py_dg_ prefix.
- *
- *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread
- *     PyMem_Malloc failures through the code.  The functions
- *
- *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
- *
- *     of return type *Bigint all return NULL to indicate a malloc failure.
- *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
- *     failure.  bigcomp now has return type int (it used to be void) and
- *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL
- *     on failure.  _Py_dg_strtod indicates failure due to malloc failure
- *     by returning -1.0, setting errno=ENOMEM and *se to s00.
- *
- *  4. The static variable dtoa_result has been removed.  Callers of
- *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
- *     the memory allocated by _Py_dg_dtoa.
- *
- *  5. The code has been reformatted to better fit with Python's
- *     C style guide (PEP 7).
- *
- *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory
- *     that hasn't been MALLOC'ed, private_mem should only be used when k <=
- *     Kmax.
- *
- *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with
- *     leading whitespace.
- *
+/**************************************************************** 
+ * 
+ * The author of this software is David M. Gay. 
+ * 
+ * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. 
+ * 
+ * Permission to use, copy, modify, and distribute this software for any 
+ * purpose without fee is hereby granted, provided that this entire notice 
+ * is included in all copies of any software which is or includes a copy 
+ * or modification of this software and in all copies of the supporting 
+ * documentation for such software. 
+ * 
+ * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED 
+ * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY 
+ * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY 
+ * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. 
+ * 
+ ***************************************************************/ 
+ 
+/**************************************************************** 
+ * This is dtoa.c by David M. Gay, downloaded from 
+ * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for 
+ * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith. 
+ * 
+ * Please remember to check http://www.netlib.org/fp regularly (and especially 
+ * before any Python release) for bugfixes and updates. 
+ * 
+ * The major modifications from Gay's original code are as follows: 
+ * 
+ *  0. The original code has been specialized to Python's needs by removing 
+ *     many of the #ifdef'd sections.  In particular, code to support VAX and 
+ *     IBM floating-point formats, hex NaNs, hex floats, locale-aware 
+ *     treatment of the decimal point, and setting of the inexact flag have 
+ *     been removed. 
+ * 
+ *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free. 
+ * 
+ *  2. The public functions strtod, dtoa and freedtoa all now have 
+ *     a _Py_dg_ prefix. 
+ * 
+ *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread 
+ *     PyMem_Malloc failures through the code.  The functions 
+ * 
+ *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b 
+ * 
+ *     of return type *Bigint all return NULL to indicate a malloc failure. 
+ *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on 
+ *     failure.  bigcomp now has return type int (it used to be void) and 
+ *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL 
+ *     on failure.  _Py_dg_strtod indicates failure due to malloc failure 
+ *     by returning -1.0, setting errno=ENOMEM and *se to s00. 
+ * 
+ *  4. The static variable dtoa_result has been removed.  Callers of 
+ *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free 
+ *     the memory allocated by _Py_dg_dtoa. 
+ * 
+ *  5. The code has been reformatted to better fit with Python's 
+ *     C style guide (PEP 7). 
+ * 
+ *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory 
+ *     that hasn't been MALLOC'ed, private_mem should only be used when k <= 
+ *     Kmax. 
+ * 
+ *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with 
+ *     leading whitespace. 
+ * 
  *  8. A corner case where _Py_dg_dtoa didn't strip trailing zeros has been
  *     fixed. (bugs.python.org/issue40780)
  *
- ***************************************************************/
-
-/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
- * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
- * Please report bugs for this modified version using the Python issue tracker
- * (http://bugs.python.org). */
-
-/* On a machine with IEEE extended-precision registers, it is
- * necessary to specify double-precision (53-bit) rounding precision
- * before invoking strtod or dtoa.  If the machine uses (the equivalent
- * of) Intel 80x87 arithmetic, the call
- *      _control87(PC_53, MCW_PC);
- * does this with many compilers.  Whether this or another call is
- * appropriate depends on the compiler; for this to work, it may be
- * necessary to #include "float.h" or another system-dependent header
- * file.
- */
-
-/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
- *
- * This strtod returns a nearest machine number to the input decimal
- * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
- * broken by the IEEE round-even rule.  Otherwise ties are broken by
- * biased rounding (add half and chop).
- *
- * Inspired loosely by William D. Clinger's paper "How to Read Floating
- * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
- *
- * Modifications:
- *
- *      1. We only require IEEE, IBM, or VAX double-precision
- *              arithmetic (not IEEE double-extended).
- *      2. We get by with floating-point arithmetic in a case that
- *              Clinger missed -- when we're computing d * 10^n
- *              for a small integer d and the integer n is not too
- *              much larger than 22 (the maximum integer k for which
- *              we can represent 10^k exactly), we may be able to
- *              compute (d*10^k) * 10^(e-k) with just one roundoff.
- *      3. Rather than a bit-at-a-time adjustment of the binary
- *              result in the hard case, we use floating-point
- *              arithmetic to determine the adjustment to within
- *              one bit; only in really hard cases do we need to
- *              compute a second residual.
- *      4. Because of 3., we don't need a large table of powers of 10
- *              for ten-to-e (just some small tables, e.g. of 10^k
- *              for 0 <= k <= 22).
- */
-
-/* Linking of Python's #defines to Gay's #defines starts here. */
-
-#include "Python.h"
+ ***************************************************************/ 
+ 
+/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg 
+ * at acm dot org, with " at " changed at "@" and " dot " changed to "."). 
+ * Please report bugs for this modified version using the Python issue tracker 
+ * (http://bugs.python.org). */ 
+ 
+/* On a machine with IEEE extended-precision registers, it is 
+ * necessary to specify double-precision (53-bit) rounding precision 
+ * before invoking strtod or dtoa.  If the machine uses (the equivalent 
+ * of) Intel 80x87 arithmetic, the call 
+ *      _control87(PC_53, MCW_PC); 
+ * does this with many compilers.  Whether this or another call is 
+ * appropriate depends on the compiler; for this to work, it may be 
+ * necessary to #include "float.h" or another system-dependent header 
+ * file. 
+ */ 
+ 
+/* strtod for IEEE-, VAX-, and IBM-arithmetic machines. 
+ * 
+ * This strtod returns a nearest machine number to the input decimal 
+ * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are 
+ * broken by the IEEE round-even rule.  Otherwise ties are broken by 
+ * biased rounding (add half and chop). 
+ * 
+ * Inspired loosely by William D. Clinger's paper "How to Read Floating 
+ * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. 
+ * 
+ * Modifications: 
+ * 
+ *      1. We only require IEEE, IBM, or VAX double-precision 
+ *              arithmetic (not IEEE double-extended). 
+ *      2. We get by with floating-point arithmetic in a case that 
+ *              Clinger missed -- when we're computing d * 10^n 
+ *              for a small integer d and the integer n is not too 
+ *              much larger than 22 (the maximum integer k for which 
+ *              we can represent 10^k exactly), we may be able to 
+ *              compute (d*10^k) * 10^(e-k) with just one roundoff. 
+ *      3. Rather than a bit-at-a-time adjustment of the binary 
+ *              result in the hard case, we use floating-point 
+ *              arithmetic to determine the adjustment to within 
+ *              one bit; only in really hard cases do we need to 
+ *              compute a second residual. 
+ *      4. Because of 3., we don't need a large table of powers of 10 
+ *              for ten-to-e (just some small tables, e.g. of 10^k 
+ *              for 0 <= k <= 22). 
+ */ 
+ 
+/* Linking of Python's #defines to Gay's #defines starts here. */ 
+ 
+#include "Python.h" 
 #include "pycore_dtoa.h"
-
-/* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile
-   the following code */
-#ifndef PY_NO_SHORT_FLOAT_REPR
-
-#include "float.h"
-
-#define MALLOC PyMem_Malloc
-#define FREE PyMem_Free
-
-/* This code should also work for ARM mixed-endian format on little-endian
-   machines, where doubles have byte order 45670123 (in increasing address
-   order, 0 being the least significant byte). */
-#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
-#  define IEEE_8087
-#endif
-#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \
-  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
-#  define IEEE_MC68k
-#endif
-#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
-#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
-#endif
-
-/* The code below assumes that the endianness of integers matches the
-   endianness of the two 32-bit words of a double.  Check this. */
-#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
-                                 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
-#error "doubles and ints have incompatible endianness"
-#endif
-
-#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
-#error "doubles and ints have incompatible endianness"
-#endif
-
-
-typedef uint32_t ULong;
-typedef int32_t Long;
-typedef uint64_t ULLong;
-
-#undef DEBUG
-#ifdef Py_DEBUG
-#define DEBUG
-#endif
-
-/* End Python #define linking */
-
-#ifdef DEBUG
-#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
-#endif
-
-#ifndef PRIVATE_MEM
-#define PRIVATE_MEM 2304
-#endif
-#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
-static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-typedef union { double d; ULong L[2]; } U;
-
-#ifdef IEEE_8087
-#define word0(x) (x)->L[1]
-#define word1(x) (x)->L[0]
-#else
-#define word0(x) (x)->L[0]
-#define word1(x) (x)->L[1]
-#endif
-#define dval(x) (x)->d
-
-#ifndef STRTOD_DIGLIM
-#define STRTOD_DIGLIM 40
-#endif
-
-/* maximum permitted exponent value for strtod; exponents larger than
-   MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP
-   should fit into an int. */
-#ifndef MAX_ABS_EXP
-#define MAX_ABS_EXP 1100000000U
-#endif
-/* Bound on length of pieces of input strings in _Py_dg_strtod; specifically,
-   this is used to bound the total number of digits ignoring leading zeros and
-   the number of digits that follow the decimal point.  Ideally, MAX_DIGITS
-   should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the
-   exponent clipping in _Py_dg_strtod can't affect the value of the output. */
-#ifndef MAX_DIGITS
-#define MAX_DIGITS 1000000000U
-#endif
-
-/* Guard against trying to use the above values on unusual platforms with ints
- * of width less than 32 bits. */
-#if MAX_ABS_EXP > INT_MAX
-#error "MAX_ABS_EXP should fit in an int"
-#endif
-#if MAX_DIGITS > INT_MAX
-#error "MAX_DIGITS should fit in an int"
-#endif
-
-/* The following definition of Storeinc is appropriate for MIPS processors.
- * An alternative that might be better on some machines is
- * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
- */
-#if defined(IEEE_8087)
-#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \
-                         ((unsigned short *)a)[0] = (unsigned short)c, a++)
-#else
-#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \
-                         ((unsigned short *)a)[1] = (unsigned short)c, a++)
-#endif
-
-/* #define P DBL_MANT_DIG */
-/* Ten_pmax = floor(P*log(2)/log(5)) */
-/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
-/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
-/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
-
-#define Exp_shift  20
-#define Exp_shift1 20
-#define Exp_msk1    0x100000
-#define Exp_msk11   0x100000
-#define Exp_mask  0x7ff00000
-#define P 53
-#define Nbits 53
-#define Bias 1023
-#define Emax 1023
-#define Emin (-1022)
-#define Etiny (-1074)  /* smallest denormal is 2**Etiny */
-#define Exp_1  0x3ff00000
-#define Exp_11 0x3ff00000
-#define Ebits 11
-#define Frac_mask  0xfffff
-#define Frac_mask1 0xfffff
-#define Ten_pmax 22
-#define Bletch 0x10
-#define Bndry_mask  0xfffff
-#define Bndry_mask1 0xfffff
-#define Sign_bit 0x80000000
-#define Log2P 1
-#define Tiny0 0
-#define Tiny1 1
-#define Quick_max 14
-#define Int_max 14
-
-#ifndef Flt_Rounds
-#ifdef FLT_ROUNDS
-#define Flt_Rounds FLT_ROUNDS
-#else
-#define Flt_Rounds 1
-#endif
-#endif /*Flt_Rounds*/
-
-#define Rounding Flt_Rounds
-
-#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
-#define Big1 0xffffffff
-
-/* Standard NaN used by _Py_dg_stdnan. */
-
-#define NAN_WORD0 0x7ff80000
-#define NAN_WORD1 0
-
-/* Bits of the representation of positive infinity. */
-
-#define POSINF_WORD0 0x7ff00000
-#define POSINF_WORD1 0
-
-/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
-
-typedef struct BCinfo BCinfo;
-struct
-BCinfo {
-    int e0, nd, nd0, scale;
-};
-
-#define FFFFFFFF 0xffffffffUL
-
-#define Kmax 7
-
-/* struct Bigint is used to represent arbitrary-precision integers.  These
-   integers are stored in sign-magnitude format, with the magnitude stored as
-   an array of base 2**32 digits.  Bigints are always normalized: if x is a
-   Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
-
-   The Bigint fields are as follows:
-
-     - next is a header used by Balloc and Bfree to keep track of lists
-         of freed Bigints;  it's also used for the linked list of
-         powers of 5 of the form 5**2**i used by pow5mult.
-     - k indicates which pool this Bigint was allocated from
-     - maxwds is the maximum number of words space was allocated for
-       (usually maxwds == 2**k)
-     - sign is 1 for negative Bigints, 0 for positive.  The sign is unused
-       (ignored on inputs, set to 0 on outputs) in almost all operations
-       involving Bigints: a notable exception is the diff function, which
-       ignores signs on inputs but sets the sign of the output correctly.
-     - wds is the actual number of significant words
-     - x contains the vector of words (digits) for this Bigint, from least
-       significant (x[0]) to most significant (x[wds-1]).
-*/
-
-struct
-Bigint {
-    struct Bigint *next;
-    int k, maxwds, sign, wds;
-    ULong x[1];
-};
-
-typedef struct Bigint Bigint;
-
-#ifndef Py_USING_MEMORY_DEBUGGER
-
-/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
-   of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
-   1 << k.  These pools are maintained as linked lists, with freelist[k]
-   pointing to the head of the list for pool k.
-
-   On allocation, if there's no free slot in the appropriate pool, MALLOC is
-   called to get more memory.  This memory is not returned to the system until
-   Python quits.  There's also a private memory pool that's allocated from
-   in preference to using MALLOC.
-
-   For Bigints with more than (1 << Kmax) digits (which implies at least 1233
-   decimal digits), memory is directly allocated using MALLOC, and freed using
-   FREE.
-
-   XXX: it would be easy to bypass this memory-management system and
-   translate each call to Balloc into a call to PyMem_Malloc, and each
-   Bfree to PyMem_Free.  Investigate whether this has any significant
-   performance on impact. */
-
-static Bigint *freelist[Kmax+1];
-
-/* Allocate space for a Bigint with up to 1<<k digits */
-
-static Bigint *
-Balloc(int k)
-{
-    int x;
-    Bigint *rv;
-    unsigned int len;
-
-    if (k <= Kmax && (rv = freelist[k]))
-        freelist[k] = rv->next;
-    else {
-        x = 1 << k;
-        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
-            /sizeof(double);
-        if (k <= Kmax && pmem_next - private_mem + len <= (Py_ssize_t)PRIVATE_mem) {
-            rv = (Bigint*)pmem_next;
-            pmem_next += len;
-        }
-        else {
-            rv = (Bigint*)MALLOC(len*sizeof(double));
-            if (rv == NULL)
-                return NULL;
-        }
-        rv->k = k;
-        rv->maxwds = x;
-    }
-    rv->sign = rv->wds = 0;
-    return rv;
-}
-
-/* Free a Bigint allocated with Balloc */
-
-static void
-Bfree(Bigint *v)
-{
-    if (v) {
-        if (v->k > Kmax)
-            FREE((void*)v);
-        else {
-            v->next = freelist[v->k];
-            freelist[v->k] = v;
-        }
-    }
-}
-
-#else
-
-/* Alternative versions of Balloc and Bfree that use PyMem_Malloc and
-   PyMem_Free directly in place of the custom memory allocation scheme above.
-   These are provided for the benefit of memory debugging tools like
-   Valgrind. */
-
-/* Allocate space for a Bigint with up to 1<<k digits */
-
-static Bigint *
-Balloc(int k)
-{
-    int x;
-    Bigint *rv;
-    unsigned int len;
-
-    x = 1 << k;
-    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
-        /sizeof(double);
-
-    rv = (Bigint*)MALLOC(len*sizeof(double));
-    if (rv == NULL)
-        return NULL;
-
-    rv->k = k;
-    rv->maxwds = x;
-    rv->sign = rv->wds = 0;
-    return rv;
-}
-
-/* Free a Bigint allocated with Balloc */
-
-static void
-Bfree(Bigint *v)
-{
-    if (v) {
-        FREE((void*)v);
-    }
-}
-
-#endif /* Py_USING_MEMORY_DEBUGGER */
-
-#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \
-                          y->wds*sizeof(Long) + 2*sizeof(int))
-
-/* Multiply a Bigint b by m and add a.  Either modifies b in place and returns
-   a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
-   On failure, return NULL.  In this case, b will have been already freed. */
-
-static Bigint *
-multadd(Bigint *b, int m, int a)       /* multiply by m and add a */
-{
-    int i, wds;
-    ULong *x;
-    ULLong carry, y;
-    Bigint *b1;
-
-    wds = b->wds;
-    x = b->x;
-    i = 0;
-    carry = a;
-    do {
-        y = *x * (ULLong)m + carry;
-        carry = y >> 32;
-        *x++ = (ULong)(y & FFFFFFFF);
-    }
-    while(++i < wds);
-    if (carry) {
-        if (wds >= b->maxwds) {
-            b1 = Balloc(b->k+1);
-            if (b1 == NULL){
-                Bfree(b);
-                return NULL;
-            }
-            Bcopy(b1, b);
-            Bfree(b);
-            b = b1;
-        }
-        b->x[wds++] = (ULong)carry;
-        b->wds = wds;
-    }
-    return b;
-}
-
-/* convert a string s containing nd decimal digits (possibly containing a
-   decimal separator at position nd0, which is ignored) to a Bigint.  This
-   function carries on where the parsing code in _Py_dg_strtod leaves off: on
-   entry, y9 contains the result of converting the first 9 digits.  Returns
-   NULL on failure. */
-
-static Bigint *
-s2b(const char *s, int nd0, int nd, ULong y9)
-{
-    Bigint *b;
-    int i, k;
-    Long x, y;
-
-    x = (nd + 8) / 9;
-    for(k = 0, y = 1; x > y; y <<= 1, k++) ;
-    b = Balloc(k);
-    if (b == NULL)
-        return NULL;
-    b->x[0] = y9;
-    b->wds = 1;
-
-    if (nd <= 9)
-      return b;
-
-    s += 9;
-    for (i = 9; i < nd0; i++) {
-        b = multadd(b, 10, *s++ - '0');
-        if (b == NULL)
-            return NULL;
-    }
-    s++;
-    for(; i < nd; i++) {
-        b = multadd(b, 10, *s++ - '0');
-        if (b == NULL)
-            return NULL;
-    }
-    return b;
-}
-
-/* count leading 0 bits in the 32-bit integer x. */
-
-static int
-hi0bits(ULong x)
-{
-    int k = 0;
-
-    if (!(x & 0xffff0000)) {
-        k = 16;
-        x <<= 16;
-    }
-    if (!(x & 0xff000000)) {
-        k += 8;
-        x <<= 8;
-    }
-    if (!(x & 0xf0000000)) {
-        k += 4;
-        x <<= 4;
-    }
-    if (!(x & 0xc0000000)) {
-        k += 2;
-        x <<= 2;
-    }
-    if (!(x & 0x80000000)) {
-        k++;
-        if (!(x & 0x40000000))
-            return 32;
-    }
-    return k;
-}
-
-/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
-   number of bits. */
-
-static int
-lo0bits(ULong *y)
-{
-    int k;
-    ULong x = *y;
-
-    if (x & 7) {
-        if (x & 1)
-            return 0;
-        if (x & 2) {
-            *y = x >> 1;
-            return 1;
-        }
-        *y = x >> 2;
-        return 2;
-    }
-    k = 0;
-    if (!(x & 0xffff)) {
-        k = 16;
-        x >>= 16;
-    }
-    if (!(x & 0xff)) {
-        k += 8;
-        x >>= 8;
-    }
-    if (!(x & 0xf)) {
-        k += 4;
-        x >>= 4;
-    }
-    if (!(x & 0x3)) {
-        k += 2;
-        x >>= 2;
-    }
-    if (!(x & 1)) {
-        k++;
-        x >>= 1;
-        if (!x)
-            return 32;
-    }
-    *y = x;
-    return k;
-}
-
-/* convert a small nonnegative integer to a Bigint */
-
-static Bigint *
-i2b(int i)
-{
-    Bigint *b;
-
-    b = Balloc(1);
-    if (b == NULL)
-        return NULL;
-    b->x[0] = i;
-    b->wds = 1;
-    return b;
-}
-
-/* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores
-   the signs of a and b. */
-
-static Bigint *
-mult(Bigint *a, Bigint *b)
-{
-    Bigint *c;
-    int k, wa, wb, wc;
-    ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
-    ULong y;
-    ULLong carry, z;
-
-    if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) {
-        c = Balloc(0);
-        if (c == NULL)
-            return NULL;
-        c->wds = 1;
-        c->x[0] = 0;
-        return c;
-    }
-
-    if (a->wds < b->wds) {
-        c = a;
-        a = b;
-        b = c;
-    }
-    k = a->k;
-    wa = a->wds;
-    wb = b->wds;
-    wc = wa + wb;
-    if (wc > a->maxwds)
-        k++;
-    c = Balloc(k);
-    if (c == NULL)
-        return NULL;
-    for(x = c->x, xa = x + wc; x < xa; x++)
-        *x = 0;
-    xa = a->x;
-    xae = xa + wa;
-    xb = b->x;
-    xbe = xb + wb;
-    xc0 = c->x;
-    for(; xb < xbe; xc0++) {
-        if ((y = *xb++)) {
-            x = xa;
-            xc = xc0;
-            carry = 0;
-            do {
-                z = *x++ * (ULLong)y + *xc + carry;
-                carry = z >> 32;
-                *xc++ = (ULong)(z & FFFFFFFF);
-            }
-            while(x < xae);
-            *xc = (ULong)carry;
-        }
-    }
-    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
-    c->wds = wc;
-    return c;
-}
-
-#ifndef Py_USING_MEMORY_DEBUGGER
-
-/* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */
-
-static Bigint *p5s;
-
-/* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on
-   failure; if the returned pointer is distinct from b then the original
-   Bigint b will have been Bfree'd.   Ignores the sign of b. */
-
-static Bigint *
-pow5mult(Bigint *b, int k)
-{
-    Bigint *b1, *p5, *p51;
-    int i;
-    static const int p05[3] = { 5, 25, 125 };
-
-    if ((i = k & 3)) {
-        b = multadd(b, p05[i-1], 0);
-        if (b == NULL)
-            return NULL;
-    }
-
-    if (!(k >>= 2))
-        return b;
-    p5 = p5s;
-    if (!p5) {
-        /* first time */
-        p5 = i2b(625);
-        if (p5 == NULL) {
-            Bfree(b);
-            return NULL;
-        }
-        p5s = p5;
-        p5->next = 0;
-    }
-    for(;;) {
-        if (k & 1) {
-            b1 = mult(b, p5);
-            Bfree(b);
-            b = b1;
-            if (b == NULL)
-                return NULL;
-        }
-        if (!(k >>= 1))
-            break;
-        p51 = p5->next;
-        if (!p51) {
-            p51 = mult(p5,p5);
-            if (p51 == NULL) {
-                Bfree(b);
-                return NULL;
-            }
-            p51->next = 0;
-            p5->next = p51;
-        }
-        p5 = p51;
-    }
-    return b;
-}
-
-#else
-
-/* Version of pow5mult that doesn't cache powers of 5. Provided for
-   the benefit of memory debugging tools like Valgrind. */
-
-static Bigint *
-pow5mult(Bigint *b, int k)
-{
-    Bigint *b1, *p5, *p51;
-    int i;
-    static const int p05[3] = { 5, 25, 125 };
-
-    if ((i = k & 3)) {
-        b = multadd(b, p05[i-1], 0);
-        if (b == NULL)
-            return NULL;
-    }
-
-    if (!(k >>= 2))
-        return b;
-    p5 = i2b(625);
-    if (p5 == NULL) {
-        Bfree(b);
-        return NULL;
-    }
-
-    for(;;) {
-        if (k & 1) {
-            b1 = mult(b, p5);
-            Bfree(b);
-            b = b1;
-            if (b == NULL) {
-                Bfree(p5);
-                return NULL;
-            }
-        }
-        if (!(k >>= 1))
-            break;
-        p51 = mult(p5, p5);
-        Bfree(p5);
-        p5 = p51;
-        if (p5 == NULL) {
-            Bfree(b);
-            return NULL;
-        }
-    }
-    Bfree(p5);
-    return b;
-}
-
-#endif /* Py_USING_MEMORY_DEBUGGER */
-
-/* shift a Bigint b left by k bits.  Return a pointer to the shifted result,
-   or NULL on failure.  If the returned pointer is distinct from b then the
-   original b will have been Bfree'd.   Ignores the sign of b. */
-
-static Bigint *
-lshift(Bigint *b, int k)
-{
-    int i, k1, n, n1;
-    Bigint *b1;
-    ULong *x, *x1, *xe, z;
-
-    if (!k || (!b->x[0] && b->wds == 1))
-        return b;
-
-    n = k >> 5;
-    k1 = b->k;
-    n1 = n + b->wds + 1;
-    for(i = b->maxwds; n1 > i; i <<= 1)
-        k1++;
-    b1 = Balloc(k1);
-    if (b1 == NULL) {
-        Bfree(b);
-        return NULL;
-    }
-    x1 = b1->x;
-    for(i = 0; i < n; i++)
-        *x1++ = 0;
-    x = b->x;
-    xe = x + b->wds;
-    if (k &= 0x1f) {
-        k1 = 32 - k;
-        z = 0;
-        do {
-            *x1++ = *x << k | z;
-            z = *x++ >> k1;
-        }
-        while(x < xe);
-        if ((*x1 = z))
-            ++n1;
-    }
-    else do
-             *x1++ = *x++;
-        while(x < xe);
-    b1->wds = n1 - 1;
-    Bfree(b);
-    return b1;
-}
-
-/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
-   1 if a > b.  Ignores signs of a and b. */
-
-static int
-cmp(Bigint *a, Bigint *b)
-{
-    ULong *xa, *xa0, *xb, *xb0;
-    int i, j;
-
-    i = a->wds;
-    j = b->wds;
-#ifdef DEBUG
-    if (i > 1 && !a->x[i-1])
-        Bug("cmp called with a->x[a->wds-1] == 0");
-    if (j > 1 && !b->x[j-1])
-        Bug("cmp called with b->x[b->wds-1] == 0");
-#endif
-    if (i -= j)
-        return i;
-    xa0 = a->x;
-    xa = xa0 + j;
-    xb0 = b->x;
-    xb = xb0 + j;
-    for(;;) {
-        if (*--xa != *--xb)
-            return *xa < *xb ? -1 : 1;
-        if (xa <= xa0)
-            break;
-    }
-    return 0;
-}
-
-/* Take the difference of Bigints a and b, returning a new Bigint.  Returns
-   NULL on failure.  The signs of a and b are ignored, but the sign of the
-   result is set appropriately. */
-
-static Bigint *
-diff(Bigint *a, Bigint *b)
-{
-    Bigint *c;
-    int i, wa, wb;
-    ULong *xa, *xae, *xb, *xbe, *xc;
-    ULLong borrow, y;
-
-    i = cmp(a,b);
-    if (!i) {
-        c = Balloc(0);
-        if (c == NULL)
-            return NULL;
-        c->wds = 1;
-        c->x[0] = 0;
-        return c;
-    }
-    if (i < 0) {
-        c = a;
-        a = b;
-        b = c;
-        i = 1;
-    }
-    else
-        i = 0;
-    c = Balloc(a->k);
-    if (c == NULL)
-        return NULL;
-    c->sign = i;
-    wa = a->wds;
-    xa = a->x;
-    xae = xa + wa;
-    wb = b->wds;
-    xb = b->x;
-    xbe = xb + wb;
-    xc = c->x;
-    borrow = 0;
-    do {
-        y = (ULLong)*xa++ - *xb++ - borrow;
-        borrow = y >> 32 & (ULong)1;
-        *xc++ = (ULong)(y & FFFFFFFF);
-    }
-    while(xb < xbe);
-    while(xa < xae) {
-        y = *xa++ - borrow;
-        borrow = y >> 32 & (ULong)1;
-        *xc++ = (ULong)(y & FFFFFFFF);
-    }
-    while(!*--xc)
-        wa--;
-    c->wds = wa;
-    return c;
-}
-
-/* Given a positive normal double x, return the difference between x and the
-   next double up.  Doesn't give correct results for subnormals. */
-
-static double
-ulp(U *x)
-{
-    Long L;
-    U u;
-
-    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
-    word0(&u) = L;
-    word1(&u) = 0;
-    return dval(&u);
-}
-
-/* Convert a Bigint to a double plus an exponent */
-
-static double
-b2d(Bigint *a, int *e)
-{
-    ULong *xa, *xa0, w, y, z;
-    int k;
-    U d;
-
-    xa0 = a->x;
-    xa = xa0 + a->wds;
-    y = *--xa;
-#ifdef DEBUG
-    if (!y) Bug("zero y in b2d");
-#endif
-    k = hi0bits(y);
-    *e = 32 - k;
-    if (k < Ebits) {
-        word0(&d) = Exp_1 | y >> (Ebits - k);
-        w = xa > xa0 ? *--xa : 0;
-        word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
-        goto ret_d;
-    }
-    z = xa > xa0 ? *--xa : 0;
-    if (k -= Ebits) {
-        word0(&d) = Exp_1 | y << k | z >> (32 - k);
-        y = xa > xa0 ? *--xa : 0;
-        word1(&d) = z << k | y >> (32 - k);
-    }
-    else {
-        word0(&d) = Exp_1 | y;
-        word1(&d) = z;
-    }
-  ret_d:
-    return dval(&d);
-}
-
-/* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b,
-   except that it accepts the scale parameter used in _Py_dg_strtod (which
-   should be either 0 or 2*P), and the normalization for the return value is
-   different (see below).  On input, d should be finite and nonnegative, and d
-   / 2**scale should be exactly representable as an IEEE 754 double.
-
-   Returns a Bigint b and an integer e such that
-
-     dval(d) / 2**scale = b * 2**e.
-
-   Unlike d2b, b is not necessarily odd: b and e are normalized so
-   that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P
-   and e == Etiny.  This applies equally to an input of 0.0: in that
-   case the return values are b = 0 and e = Etiny.
-
-   The above normalization ensures that for all possible inputs d,
-   2**e gives ulp(d/2**scale).
-
-   Returns NULL on failure.
-*/
-
-static Bigint *
-sd2b(U *d, int scale, int *e)
-{
-    Bigint *b;
-
-    b = Balloc(1);
-    if (b == NULL)
-        return NULL;
-
-    /* First construct b and e assuming that scale == 0. */
-    b->wds = 2;
-    b->x[0] = word1(d);
-    b->x[1] = word0(d) & Frac_mask;
-    *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift);
-    if (*e < Etiny)
-        *e = Etiny;
-    else
-        b->x[1] |= Exp_msk1;
-
-    /* Now adjust for scale, provided that b != 0. */
-    if (scale && (b->x[0] || b->x[1])) {
-        *e -= scale;
-        if (*e < Etiny) {
-            scale = Etiny - *e;
-            *e = Etiny;
-            /* We can't shift more than P-1 bits without shifting out a 1. */
-            assert(0 < scale && scale <= P - 1);
-            if (scale >= 32) {
-                /* The bits shifted out should all be zero. */
-                assert(b->x[0] == 0);
-                b->x[0] = b->x[1];
-                b->x[1] = 0;
-                scale -= 32;
-            }
-            if (scale) {
-                /* The bits shifted out should all be zero. */
-                assert(b->x[0] << (32 - scale) == 0);
-                b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale));
-                b->x[1] >>= scale;
-            }
-        }
-    }
-    /* Ensure b is normalized. */
-    if (!b->x[1])
-        b->wds = 1;
-
-    return b;
-}
-
-/* Convert a double to a Bigint plus an exponent.  Return NULL on failure.
-
-   Given a finite nonzero double d, return an odd Bigint b and exponent *e
-   such that fabs(d) = b * 2**e.  On return, *bbits gives the number of
-   significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
-
-   If d is zero, then b == 0, *e == -1010, *bbits = 0.
- */
-
-static Bigint *
-d2b(U *d, int *e, int *bits)
-{
-    Bigint *b;
-    int de, k;
-    ULong *x, y, z;
-    int i;
-
-    b = Balloc(1);
-    if (b == NULL)
-        return NULL;
-    x = b->x;
-
-    z = word0(d) & Frac_mask;
-    word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */
-    if ((de = (int)(word0(d) >> Exp_shift)))
-        z |= Exp_msk1;
-    if ((y = word1(d))) {
-        if ((k = lo0bits(&y))) {
-            x[0] = y | z << (32 - k);
-            z >>= k;
-        }
-        else
-            x[0] = y;
-        i =
-            b->wds = (x[1] = z) ? 2 : 1;
-    }
-    else {
-        k = lo0bits(&z);
-        x[0] = z;
-        i =
-            b->wds = 1;
-        k += 32;
-    }
-    if (de) {
-        *e = de - Bias - (P-1) + k;
-        *bits = P - k;
-    }
-    else {
-        *e = de - Bias - (P-1) + 1 + k;
-        *bits = 32*i - hi0bits(x[i-1]);
-    }
-    return b;
-}
-
-/* Compute the ratio of two Bigints, as a double.  The result may have an
-   error of up to 2.5 ulps. */
-
-static double
-ratio(Bigint *a, Bigint *b)
-{
-    U da, db;
-    int k, ka, kb;
-
-    dval(&da) = b2d(a, &ka);
-    dval(&db) = b2d(b, &kb);
-    k = ka - kb + 32*(a->wds - b->wds);
-    if (k > 0)
-        word0(&da) += k*Exp_msk1;
-    else {
-        k = -k;
-        word0(&db) += k*Exp_msk1;
-    }
-    return dval(&da) / dval(&db);
-}
-
-static const double
-tens[] = {
-    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
-    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
-    1e20, 1e21, 1e22
-};
-
-static const double
-bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
-static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
-                                   9007199254740992.*9007199254740992.e-256
-                                   /* = 2^106 * 1e-256 */
-};
-/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
-/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
-#define Scale_Bit 0x10
-#define n_bigtens 5
-
-#define ULbits 32
-#define kshift 5
-#define kmask 31
-
-
-static int
-dshift(Bigint *b, int p2)
-{
-    int rv = hi0bits(b->x[b->wds-1]) - 4;
-    if (p2 > 0)
-        rv -= p2;
-    return rv & kmask;
-}
-
-/* special case of Bigint division.  The quotient is always in the range 0 <=
-   quotient < 10, and on entry the divisor S is normalized so that its top 4
-   bits (28--31) are zero and bit 27 is set. */
-
-static int
-quorem(Bigint *b, Bigint *S)
-{
-    int n;
-    ULong *bx, *bxe, q, *sx, *sxe;
-    ULLong borrow, carry, y, ys;
-
-    n = S->wds;
-#ifdef DEBUG
-    /*debug*/ if (b->wds > n)
-        /*debug*/       Bug("oversize b in quorem");
-#endif
-    if (b->wds < n)
-        return 0;
-    sx = S->x;
-    sxe = sx + --n;
-    bx = b->x;
-    bxe = bx + n;
-    q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */
-#ifdef DEBUG
-    /*debug*/ if (q > 9)
-        /*debug*/       Bug("oversized quotient in quorem");
-#endif
-    if (q) {
-        borrow = 0;
-        carry = 0;
-        do {
-            ys = *sx++ * (ULLong)q + carry;
-            carry = ys >> 32;
-            y = *bx - (ys & FFFFFFFF) - borrow;
-            borrow = y >> 32 & (ULong)1;
-            *bx++ = (ULong)(y & FFFFFFFF);
-        }
-        while(sx <= sxe);
-        if (!*bxe) {
-            bx = b->x;
-            while(--bxe > bx && !*bxe)
-                --n;
-            b->wds = n;
-        }
-    }
-    if (cmp(b, S) >= 0) {
-        q++;
-        borrow = 0;
-        carry = 0;
-        bx = b->x;
-        sx = S->x;
-        do {
-            ys = *sx++ + carry;
-            carry = ys >> 32;
-            y = *bx - (ys & FFFFFFFF) - borrow;
-            borrow = y >> 32 & (ULong)1;
-            *bx++ = (ULong)(y & FFFFFFFF);
-        }
-        while(sx <= sxe);
-        bx = b->x;
-        bxe = bx + n;
-        if (!*bxe) {
-            while(--bxe > bx && !*bxe)
-                --n;
-            b->wds = n;
-        }
-    }
-    return q;
-}
-
-/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
-
-   Assuming that x is finite and nonnegative (positive zero is fine
-   here) and x / 2^bc.scale is exactly representable as a double,
-   sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
-
-static double
-sulp(U *x, BCinfo *bc)
-{
-    U u;
-
-    if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
-        /* rv/2^bc->scale is subnormal */
-        word0(&u) = (P+2)*Exp_msk1;
-        word1(&u) = 0;
-        return u.d;
-    }
-    else {
-        assert(word0(x) || word1(x)); /* x != 0.0 */
-        return ulp(x);
-    }
-}
-
-/* The bigcomp function handles some hard cases for strtod, for inputs
-   with more than STRTOD_DIGLIM digits.  It's called once an initial
-   estimate for the double corresponding to the input string has
-   already been obtained by the code in _Py_dg_strtod.
-
-   The bigcomp function is only called after _Py_dg_strtod has found a
-   double value rv such that either rv or rv + 1ulp represents the
-   correctly rounded value corresponding to the original string.  It
-   determines which of these two values is the correct one by
-   computing the decimal digits of rv + 0.5ulp and comparing them with
-   the corresponding digits of s0.
-
-   In the following, write dv for the absolute value of the number represented
-   by the input string.
-
-   Inputs:
-
-     s0 points to the first significant digit of the input string.
-
-     rv is a (possibly scaled) estimate for the closest double value to the
-        value represented by the original input to _Py_dg_strtod.  If
-        bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
-        the input value.
-
-     bc is a struct containing information gathered during the parsing and
-        estimation steps of _Py_dg_strtod.  Description of fields follows:
-
-        bc->e0 gives the exponent of the input value, such that dv = (integer
-           given by the bd->nd digits of s0) * 10**e0
-
-        bc->nd gives the total number of significant digits of s0.  It will
-           be at least 1.
-
-        bc->nd0 gives the number of significant digits of s0 before the
-           decimal separator.  If there's no decimal separator, bc->nd0 ==
-           bc->nd.
-
-        bc->scale is the value used to scale rv to avoid doing arithmetic with
-           subnormal values.  It's either 0 or 2*P (=106).
-
-   Outputs:
-
-     On successful exit, rv/2^(bc->scale) is the closest double to dv.
-
-     Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
-
-static int
-bigcomp(U *rv, const char *s0, BCinfo *bc)
-{
-    Bigint *b, *d;
-    int b2, d2, dd, i, nd, nd0, odd, p2, p5;
-
-    nd = bc->nd;
-    nd0 = bc->nd0;
-    p5 = nd + bc->e0;
-    b = sd2b(rv, bc->scale, &p2);
-    if (b == NULL)
-        return -1;
-
-    /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway
-       case, this is used for round to even. */
-    odd = b->x[0] & 1;
-
-    /* left shift b by 1 bit and or a 1 into the least significant bit;
-       this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */
-    b = lshift(b, 1);
-    if (b == NULL)
-        return -1;
-    b->x[0] |= 1;
-    p2--;
-
-    p2 -= p5;
-    d = i2b(1);
-    if (d == NULL) {
-        Bfree(b);
-        return -1;
-    }
-    /* Arrange for convenient computation of quotients:
-     * shift left if necessary so divisor has 4 leading 0 bits.
-     */
-    if (p5 > 0) {
-        d = pow5mult(d, p5);
-        if (d == NULL) {
-            Bfree(b);
-            return -1;
-        }
-    }
-    else if (p5 < 0) {
-        b = pow5mult(b, -p5);
-        if (b == NULL) {
-            Bfree(d);
-            return -1;
-        }
-    }
-    if (p2 > 0) {
-        b2 = p2;
-        d2 = 0;
-    }
-    else {
-        b2 = 0;
-        d2 = -p2;
-    }
-    i = dshift(d, d2);
-    if ((b2 += i) > 0) {
-        b = lshift(b, b2);
-        if (b == NULL) {
-            Bfree(d);
-            return -1;
-        }
-    }
-    if ((d2 += i) > 0) {
-        d = lshift(d, d2);
-        if (d == NULL) {
-            Bfree(b);
-            return -1;
-        }
-    }
-
-    /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==
-     * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing
-     * a number in the range [0.1, 1). */
-    if (cmp(b, d) >= 0)
-        /* b/d >= 1 */
-        dd = -1;
-    else {
-        i = 0;
-        for(;;) {
-            b = multadd(b, 10, 0);
-            if (b == NULL) {
-                Bfree(d);
-                return -1;
-            }
-            dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);
-            i++;
-
-            if (dd)
-                break;
-            if (!b->x[0] && b->wds == 1) {
-                /* b/d == 0 */
-                dd = i < nd;
-                break;
-            }
-            if (!(i < nd)) {
-                /* b/d != 0, but digits of s0 exhausted */
-                dd = -1;
-                break;
-            }
-        }
-    }
-    Bfree(b);
-    Bfree(d);
-    if (dd > 0 || (dd == 0 && odd))
-        dval(rv) += sulp(rv, bc);
-    return 0;
-}
-
-/* Return a 'standard' NaN value.
-
-   There are exactly two quiet NaNs that don't arise by 'quieting' signaling
-   NaNs (see IEEE 754-2008, section 6.2.1).  If sign == 0, return the one whose
-   sign bit is cleared.  Otherwise, return the one whose sign bit is set.
-*/
-
-double
-_Py_dg_stdnan(int sign)
-{
-    U rv;
-    word0(&rv) = NAN_WORD0;
-    word1(&rv) = NAN_WORD1;
-    if (sign)
-        word0(&rv) |= Sign_bit;
-    return dval(&rv);
-}
-
-/* Return positive or negative infinity, according to the given sign (0 for
- * positive infinity, 1 for negative infinity). */
-
-double
-_Py_dg_infinity(int sign)
-{
-    U rv;
-    word0(&rv) = POSINF_WORD0;
-    word1(&rv) = POSINF_WORD1;
-    return sign ? -dval(&rv) : dval(&rv);
-}
-
-double
-_Py_dg_strtod(const char *s00, char **se)
-{
-    int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error;
-    int esign, i, j, k, lz, nd, nd0, odd, sign;
-    const char *s, *s0, *s1;
-    double aadj, aadj1;
-    U aadj2, adj, rv, rv0;
-    ULong y, z, abs_exp;
-    Long L;
-    BCinfo bc;
+ 
+/* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile 
+   the following code */ 
+#ifndef PY_NO_SHORT_FLOAT_REPR 
+ 
+#include "float.h" 
+ 
+#define MALLOC PyMem_Malloc 
+#define FREE PyMem_Free 
+ 
+/* This code should also work for ARM mixed-endian format on little-endian 
+   machines, where doubles have byte order 45670123 (in increasing address 
+   order, 0 being the least significant byte). */ 
+#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754 
+#  define IEEE_8087 
+#endif 
+#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \ 
+  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754) 
+#  define IEEE_MC68k 
+#endif 
+#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1 
+#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined." 
+#endif 
+ 
+/* The code below assumes that the endianness of integers matches the 
+   endianness of the two 32-bit words of a double.  Check this. */ 
+#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \ 
+                                 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)) 
+#error "doubles and ints have incompatible endianness" 
+#endif 
+ 
+#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) 
+#error "doubles and ints have incompatible endianness" 
+#endif 
+ 
+ 
+typedef uint32_t ULong; 
+typedef int32_t Long; 
+typedef uint64_t ULLong; 
+ 
+#undef DEBUG 
+#ifdef Py_DEBUG 
+#define DEBUG 
+#endif 
+ 
+/* End Python #define linking */ 
+ 
+#ifdef DEBUG 
+#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} 
+#endif 
+ 
+#ifndef PRIVATE_MEM 
+#define PRIVATE_MEM 2304 
+#endif 
+#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) 
+static double private_mem[PRIVATE_mem], *pmem_next = private_mem; 
+ 
+#ifdef __cplusplus 
+extern "C" { 
+#endif 
+ 
+typedef union { double d; ULong L[2]; } U; 
+ 
+#ifdef IEEE_8087 
+#define word0(x) (x)->L[1] 
+#define word1(x) (x)->L[0] 
+#else 
+#define word0(x) (x)->L[0] 
+#define word1(x) (x)->L[1] 
+#endif 
+#define dval(x) (x)->d 
+ 
+#ifndef STRTOD_DIGLIM 
+#define STRTOD_DIGLIM 40 
+#endif 
+ 
+/* maximum permitted exponent value for strtod; exponents larger than 
+   MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP 
+   should fit into an int. */ 
+#ifndef MAX_ABS_EXP 
+#define MAX_ABS_EXP 1100000000U 
+#endif 
+/* Bound on length of pieces of input strings in _Py_dg_strtod; specifically, 
+   this is used to bound the total number of digits ignoring leading zeros and 
+   the number of digits that follow the decimal point.  Ideally, MAX_DIGITS 
+   should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the 
+   exponent clipping in _Py_dg_strtod can't affect the value of the output. */ 
+#ifndef MAX_DIGITS 
+#define MAX_DIGITS 1000000000U 
+#endif 
+ 
+/* Guard against trying to use the above values on unusual platforms with ints 
+ * of width less than 32 bits. */ 
+#if MAX_ABS_EXP > INT_MAX 
+#error "MAX_ABS_EXP should fit in an int" 
+#endif 
+#if MAX_DIGITS > INT_MAX 
+#error "MAX_DIGITS should fit in an int" 
+#endif 
+ 
+/* The following definition of Storeinc is appropriate for MIPS processors. 
+ * An alternative that might be better on some machines is 
+ * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) 
+ */ 
+#if defined(IEEE_8087) 
+#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \ 
+                         ((unsigned short *)a)[0] = (unsigned short)c, a++) 
+#else 
+#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \ 
+                         ((unsigned short *)a)[1] = (unsigned short)c, a++) 
+#endif 
+ 
+/* #define P DBL_MANT_DIG */ 
+/* Ten_pmax = floor(P*log(2)/log(5)) */ 
+/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ 
+/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ 
+/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ 
+ 
+#define Exp_shift  20 
+#define Exp_shift1 20 
+#define Exp_msk1    0x100000 
+#define Exp_msk11   0x100000 
+#define Exp_mask  0x7ff00000 
+#define P 53 
+#define Nbits 53 
+#define Bias 1023 
+#define Emax 1023 
+#define Emin (-1022) 
+#define Etiny (-1074)  /* smallest denormal is 2**Etiny */ 
+#define Exp_1  0x3ff00000 
+#define Exp_11 0x3ff00000 
+#define Ebits 11 
+#define Frac_mask  0xfffff 
+#define Frac_mask1 0xfffff 
+#define Ten_pmax 22 
+#define Bletch 0x10 
+#define Bndry_mask  0xfffff 
+#define Bndry_mask1 0xfffff 
+#define Sign_bit 0x80000000 
+#define Log2P 1 
+#define Tiny0 0 
+#define Tiny1 1 
+#define Quick_max 14 
+#define Int_max 14 
+ 
+#ifndef Flt_Rounds 
+#ifdef FLT_ROUNDS 
+#define Flt_Rounds FLT_ROUNDS 
+#else 
+#define Flt_Rounds 1 
+#endif 
+#endif /*Flt_Rounds*/ 
+ 
+#define Rounding Flt_Rounds 
+ 
+#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) 
+#define Big1 0xffffffff 
+ 
+/* Standard NaN used by _Py_dg_stdnan. */ 
+ 
+#define NAN_WORD0 0x7ff80000 
+#define NAN_WORD1 0 
+ 
+/* Bits of the representation of positive infinity. */ 
+ 
+#define POSINF_WORD0 0x7ff00000 
+#define POSINF_WORD1 0 
+ 
+/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */ 
+ 
+typedef struct BCinfo BCinfo; 
+struct 
+BCinfo { 
+    int e0, nd, nd0, scale; 
+}; 
+ 
+#define FFFFFFFF 0xffffffffUL 
+ 
+#define Kmax 7 
+ 
+/* struct Bigint is used to represent arbitrary-precision integers.  These 
+   integers are stored in sign-magnitude format, with the magnitude stored as 
+   an array of base 2**32 digits.  Bigints are always normalized: if x is a 
+   Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero. 
+ 
+   The Bigint fields are as follows: 
+ 
+     - next is a header used by Balloc and Bfree to keep track of lists 
+         of freed Bigints;  it's also used for the linked list of 
+         powers of 5 of the form 5**2**i used by pow5mult. 
+     - k indicates which pool this Bigint was allocated from 
+     - maxwds is the maximum number of words space was allocated for 
+       (usually maxwds == 2**k) 
+     - sign is 1 for negative Bigints, 0 for positive.  The sign is unused 
+       (ignored on inputs, set to 0 on outputs) in almost all operations 
+       involving Bigints: a notable exception is the diff function, which 
+       ignores signs on inputs but sets the sign of the output correctly. 
+     - wds is the actual number of significant words 
+     - x contains the vector of words (digits) for this Bigint, from least 
+       significant (x[0]) to most significant (x[wds-1]). 
+*/ 
+ 
+struct 
+Bigint { 
+    struct Bigint *next; 
+    int k, maxwds, sign, wds; 
+    ULong x[1]; 
+}; 
+ 
+typedef struct Bigint Bigint; 
+ 
+#ifndef Py_USING_MEMORY_DEBUGGER 
+ 
+/* Memory management: memory is allocated from, and returned to, Kmax+1 pools 
+   of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds == 
+   1 << k.  These pools are maintained as linked lists, with freelist[k] 
+   pointing to the head of the list for pool k. 
+ 
+   On allocation, if there's no free slot in the appropriate pool, MALLOC is 
+   called to get more memory.  This memory is not returned to the system until 
+   Python quits.  There's also a private memory pool that's allocated from 
+   in preference to using MALLOC. 
+ 
+   For Bigints with more than (1 << Kmax) digits (which implies at least 1233 
+   decimal digits), memory is directly allocated using MALLOC, and freed using 
+   FREE. 
+ 
+   XXX: it would be easy to bypass this memory-management system and 
+   translate each call to Balloc into a call to PyMem_Malloc, and each 
+   Bfree to PyMem_Free.  Investigate whether this has any significant 
+   performance on impact. */ 
+ 
+static Bigint *freelist[Kmax+1]; 
+ 
+/* Allocate space for a Bigint with up to 1<<k digits */ 
+ 
+static Bigint * 
+Balloc(int k) 
+{ 
+    int x; 
+    Bigint *rv; 
+    unsigned int len; 
+ 
+    if (k <= Kmax && (rv = freelist[k])) 
+        freelist[k] = rv->next; 
+    else { 
+        x = 1 << k; 
+        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) 
+            /sizeof(double); 
+        if (k <= Kmax && pmem_next - private_mem + len <= (Py_ssize_t)PRIVATE_mem) { 
+            rv = (Bigint*)pmem_next; 
+            pmem_next += len; 
+        } 
+        else { 
+            rv = (Bigint*)MALLOC(len*sizeof(double)); 
+            if (rv == NULL) 
+                return NULL; 
+        } 
+        rv->k = k; 
+        rv->maxwds = x; 
+    } 
+    rv->sign = rv->wds = 0; 
+    return rv; 
+} 
+ 
+/* Free a Bigint allocated with Balloc */ 
+ 
+static void 
+Bfree(Bigint *v) 
+{ 
+    if (v) { 
+        if (v->k > Kmax) 
+            FREE((void*)v); 
+        else { 
+            v->next = freelist[v->k]; 
+            freelist[v->k] = v; 
+        } 
+    } 
+} 
+ 
+#else 
+ 
+/* Alternative versions of Balloc and Bfree that use PyMem_Malloc and 
+   PyMem_Free directly in place of the custom memory allocation scheme above. 
+   These are provided for the benefit of memory debugging tools like 
+   Valgrind. */ 
+ 
+/* Allocate space for a Bigint with up to 1<<k digits */ 
+ 
+static Bigint * 
+Balloc(int k) 
+{ 
+    int x; 
+    Bigint *rv; 
+    unsigned int len; 
+ 
+    x = 1 << k; 
+    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) 
+        /sizeof(double); 
+ 
+    rv = (Bigint*)MALLOC(len*sizeof(double)); 
+    if (rv == NULL) 
+        return NULL; 
+ 
+    rv->k = k; 
+    rv->maxwds = x; 
+    rv->sign = rv->wds = 0; 
+    return rv; 
+} 
+ 
+/* Free a Bigint allocated with Balloc */ 
+ 
+static void 
+Bfree(Bigint *v) 
+{ 
+    if (v) { 
+        FREE((void*)v); 
+    } 
+} 
+ 
+#endif /* Py_USING_MEMORY_DEBUGGER */ 
+ 
+#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \ 
+                          y->wds*sizeof(Long) + 2*sizeof(int)) 
+ 
+/* Multiply a Bigint b by m and add a.  Either modifies b in place and returns 
+   a pointer to the modified b, or Bfrees b and returns a pointer to a copy. 
+   On failure, return NULL.  In this case, b will have been already freed. */ 
+ 
+static Bigint * 
+multadd(Bigint *b, int m, int a)       /* multiply by m and add a */ 
+{ 
+    int i, wds; 
+    ULong *x; 
+    ULLong carry, y; 
+    Bigint *b1; 
+ 
+    wds = b->wds; 
+    x = b->x; 
+    i = 0; 
+    carry = a; 
+    do { 
+        y = *x * (ULLong)m + carry; 
+        carry = y >> 32; 
+        *x++ = (ULong)(y & FFFFFFFF); 
+    } 
+    while(++i < wds); 
+    if (carry) { 
+        if (wds >= b->maxwds) { 
+            b1 = Balloc(b->k+1); 
+            if (b1 == NULL){ 
+                Bfree(b); 
+                return NULL; 
+            } 
+            Bcopy(b1, b); 
+            Bfree(b); 
+            b = b1; 
+        } 
+        b->x[wds++] = (ULong)carry; 
+        b->wds = wds; 
+    } 
+    return b; 
+} 
+ 
+/* convert a string s containing nd decimal digits (possibly containing a 
+   decimal separator at position nd0, which is ignored) to a Bigint.  This 
+   function carries on where the parsing code in _Py_dg_strtod leaves off: on 
+   entry, y9 contains the result of converting the first 9 digits.  Returns 
+   NULL on failure. */ 
+ 
+static Bigint * 
+s2b(const char *s, int nd0, int nd, ULong y9) 
+{ 
+    Bigint *b; 
+    int i, k; 
+    Long x, y; 
+ 
+    x = (nd + 8) / 9; 
+    for(k = 0, y = 1; x > y; y <<= 1, k++) ; 
+    b = Balloc(k); 
+    if (b == NULL) 
+        return NULL; 
+    b->x[0] = y9; 
+    b->wds = 1; 
+ 
+    if (nd <= 9) 
+      return b; 
+ 
+    s += 9; 
+    for (i = 9; i < nd0; i++) { 
+        b = multadd(b, 10, *s++ - '0'); 
+        if (b == NULL) 
+            return NULL; 
+    } 
+    s++; 
+    for(; i < nd; i++) { 
+        b = multadd(b, 10, *s++ - '0'); 
+        if (b == NULL) 
+            return NULL; 
+    } 
+    return b; 
+} 
+ 
+/* count leading 0 bits in the 32-bit integer x. */ 
+ 
+static int 
+hi0bits(ULong x) 
+{ 
+    int k = 0; 
+ 
+    if (!(x & 0xffff0000)) { 
+        k = 16; 
+        x <<= 16; 
+    } 
+    if (!(x & 0xff000000)) { 
+        k += 8; 
+        x <<= 8; 
+    } 
+    if (!(x & 0xf0000000)) { 
+        k += 4; 
+        x <<= 4; 
+    } 
+    if (!(x & 0xc0000000)) { 
+        k += 2; 
+        x <<= 2; 
+    } 
+    if (!(x & 0x80000000)) { 
+        k++; 
+        if (!(x & 0x40000000)) 
+            return 32; 
+    } 
+    return k; 
+} 
+ 
+/* count trailing 0 bits in the 32-bit integer y, and shift y right by that 
+   number of bits. */ 
+ 
+static int 
+lo0bits(ULong *y) 
+{ 
+    int k; 
+    ULong x = *y; 
+ 
+    if (x & 7) { 
+        if (x & 1) 
+            return 0; 
+        if (x & 2) { 
+            *y = x >> 1; 
+            return 1; 
+        } 
+        *y = x >> 2; 
+        return 2; 
+    } 
+    k = 0; 
+    if (!(x & 0xffff)) { 
+        k = 16; 
+        x >>= 16; 
+    } 
+    if (!(x & 0xff)) { 
+        k += 8; 
+        x >>= 8; 
+    } 
+    if (!(x & 0xf)) { 
+        k += 4; 
+        x >>= 4; 
+    } 
+    if (!(x & 0x3)) { 
+        k += 2; 
+        x >>= 2; 
+    } 
+    if (!(x & 1)) { 
+        k++; 
+        x >>= 1; 
+        if (!x) 
+            return 32; 
+    } 
+    *y = x; 
+    return k; 
+} 
+ 
+/* convert a small nonnegative integer to a Bigint */ 
+ 
+static Bigint * 
+i2b(int i) 
+{ 
+    Bigint *b; 
+ 
+    b = Balloc(1); 
+    if (b == NULL) 
+        return NULL; 
+    b->x[0] = i; 
+    b->wds = 1; 
+    return b; 
+} 
+ 
+/* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores 
+   the signs of a and b. */ 
+ 
+static Bigint * 
+mult(Bigint *a, Bigint *b) 
+{ 
+    Bigint *c; 
+    int k, wa, wb, wc; 
+    ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; 
+    ULong y; 
+    ULLong carry, z; 
+ 
+    if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) { 
+        c = Balloc(0); 
+        if (c == NULL) 
+            return NULL; 
+        c->wds = 1; 
+        c->x[0] = 0; 
+        return c; 
+    } 
+ 
+    if (a->wds < b->wds) { 
+        c = a; 
+        a = b; 
+        b = c; 
+    } 
+    k = a->k; 
+    wa = a->wds; 
+    wb = b->wds; 
+    wc = wa + wb; 
+    if (wc > a->maxwds) 
+        k++; 
+    c = Balloc(k); 
+    if (c == NULL) 
+        return NULL; 
+    for(x = c->x, xa = x + wc; x < xa; x++) 
+        *x = 0; 
+    xa = a->x; 
+    xae = xa + wa; 
+    xb = b->x; 
+    xbe = xb + wb; 
+    xc0 = c->x; 
+    for(; xb < xbe; xc0++) { 
+        if ((y = *xb++)) { 
+            x = xa; 
+            xc = xc0; 
+            carry = 0; 
+            do { 
+                z = *x++ * (ULLong)y + *xc + carry; 
+                carry = z >> 32; 
+                *xc++ = (ULong)(z & FFFFFFFF); 
+            } 
+            while(x < xae); 
+            *xc = (ULong)carry; 
+        } 
+    } 
+    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; 
+    c->wds = wc; 
+    return c; 
+} 
+ 
+#ifndef Py_USING_MEMORY_DEBUGGER 
+ 
+/* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */ 
+ 
+static Bigint *p5s; 
+ 
+/* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on 
+   failure; if the returned pointer is distinct from b then the original 
+   Bigint b will have been Bfree'd.   Ignores the sign of b. */ 
+ 
+static Bigint * 
+pow5mult(Bigint *b, int k) 
+{ 
+    Bigint *b1, *p5, *p51; 
+    int i; 
+    static const int p05[3] = { 5, 25, 125 }; 
+ 
+    if ((i = k & 3)) { 
+        b = multadd(b, p05[i-1], 0); 
+        if (b == NULL) 
+            return NULL; 
+    } 
+ 
+    if (!(k >>= 2)) 
+        return b; 
+    p5 = p5s; 
+    if (!p5) { 
+        /* first time */ 
+        p5 = i2b(625); 
+        if (p5 == NULL) { 
+            Bfree(b); 
+            return NULL; 
+        } 
+        p5s = p5; 
+        p5->next = 0; 
+    } 
+    for(;;) { 
+        if (k & 1) { 
+            b1 = mult(b, p5); 
+            Bfree(b); 
+            b = b1; 
+            if (b == NULL) 
+                return NULL; 
+        } 
+        if (!(k >>= 1)) 
+            break; 
+        p51 = p5->next; 
+        if (!p51) { 
+            p51 = mult(p5,p5); 
+            if (p51 == NULL) { 
+                Bfree(b); 
+                return NULL; 
+            } 
+            p51->next = 0; 
+            p5->next = p51; 
+        } 
+        p5 = p51; 
+    } 
+    return b; 
+} 
+ 
+#else 
+ 
+/* Version of pow5mult that doesn't cache powers of 5. Provided for 
+   the benefit of memory debugging tools like Valgrind. */ 
+ 
+static Bigint * 
+pow5mult(Bigint *b, int k) 
+{ 
+    Bigint *b1, *p5, *p51; 
+    int i; 
+    static const int p05[3] = { 5, 25, 125 }; 
+ 
+    if ((i = k & 3)) { 
+        b = multadd(b, p05[i-1], 0); 
+        if (b == NULL) 
+            return NULL; 
+    } 
+ 
+    if (!(k >>= 2)) 
+        return b; 
+    p5 = i2b(625); 
+    if (p5 == NULL) { 
+        Bfree(b); 
+        return NULL; 
+    } 
+ 
+    for(;;) { 
+        if (k & 1) { 
+            b1 = mult(b, p5); 
+            Bfree(b); 
+            b = b1; 
+            if (b == NULL) { 
+                Bfree(p5); 
+                return NULL; 
+            } 
+        } 
+        if (!(k >>= 1)) 
+            break; 
+        p51 = mult(p5, p5); 
+        Bfree(p5); 
+        p5 = p51; 
+        if (p5 == NULL) { 
+            Bfree(b); 
+            return NULL; 
+        } 
+    } 
+    Bfree(p5); 
+    return b; 
+} 
+ 
+#endif /* Py_USING_MEMORY_DEBUGGER */ 
+ 
+/* shift a Bigint b left by k bits.  Return a pointer to the shifted result, 
+   or NULL on failure.  If the returned pointer is distinct from b then the 
+   original b will have been Bfree'd.   Ignores the sign of b. */ 
+ 
+static Bigint * 
+lshift(Bigint *b, int k) 
+{ 
+    int i, k1, n, n1; 
+    Bigint *b1; 
+    ULong *x, *x1, *xe, z; 
+ 
+    if (!k || (!b->x[0] && b->wds == 1)) 
+        return b; 
+ 
+    n = k >> 5; 
+    k1 = b->k; 
+    n1 = n + b->wds + 1; 
+    for(i = b->maxwds; n1 > i; i <<= 1) 
+        k1++; 
+    b1 = Balloc(k1); 
+    if (b1 == NULL) { 
+        Bfree(b); 
+        return NULL; 
+    } 
+    x1 = b1->x; 
+    for(i = 0; i < n; i++) 
+        *x1++ = 0; 
+    x = b->x; 
+    xe = x + b->wds; 
+    if (k &= 0x1f) { 
+        k1 = 32 - k; 
+        z = 0; 
+        do { 
+            *x1++ = *x << k | z; 
+            z = *x++ >> k1; 
+        } 
+        while(x < xe); 
+        if ((*x1 = z)) 
+            ++n1; 
+    } 
+    else do 
+             *x1++ = *x++; 
+        while(x < xe); 
+    b1->wds = n1 - 1; 
+    Bfree(b); 
+    return b1; 
+} 
+ 
+/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and 
+   1 if a > b.  Ignores signs of a and b. */ 
+ 
+static int 
+cmp(Bigint *a, Bigint *b) 
+{ 
+    ULong *xa, *xa0, *xb, *xb0; 
+    int i, j; 
+ 
+    i = a->wds; 
+    j = b->wds; 
+#ifdef DEBUG 
+    if (i > 1 && !a->x[i-1]) 
+        Bug("cmp called with a->x[a->wds-1] == 0"); 
+    if (j > 1 && !b->x[j-1]) 
+        Bug("cmp called with b->x[b->wds-1] == 0"); 
+#endif 
+    if (i -= j) 
+        return i; 
+    xa0 = a->x; 
+    xa = xa0 + j; 
+    xb0 = b->x; 
+    xb = xb0 + j; 
+    for(;;) { 
+        if (*--xa != *--xb) 
+            return *xa < *xb ? -1 : 1; 
+        if (xa <= xa0) 
+            break; 
+    } 
+    return 0; 
+} 
+ 
+/* Take the difference of Bigints a and b, returning a new Bigint.  Returns 
+   NULL on failure.  The signs of a and b are ignored, but the sign of the 
+   result is set appropriately. */ 
+ 
+static Bigint * 
+diff(Bigint *a, Bigint *b) 
+{ 
+    Bigint *c; 
+    int i, wa, wb; 
+    ULong *xa, *xae, *xb, *xbe, *xc; 
+    ULLong borrow, y; 
+ 
+    i = cmp(a,b); 
+    if (!i) { 
+        c = Balloc(0); 
+        if (c == NULL) 
+            return NULL; 
+        c->wds = 1; 
+        c->x[0] = 0; 
+        return c; 
+    } 
+    if (i < 0) { 
+        c = a; 
+        a = b; 
+        b = c; 
+        i = 1; 
+    } 
+    else 
+        i = 0; 
+    c = Balloc(a->k); 
+    if (c == NULL) 
+        return NULL; 
+    c->sign = i; 
+    wa = a->wds; 
+    xa = a->x; 
+    xae = xa + wa; 
+    wb = b->wds; 
+    xb = b->x; 
+    xbe = xb + wb; 
+    xc = c->x; 
+    borrow = 0; 
+    do { 
+        y = (ULLong)*xa++ - *xb++ - borrow; 
+        borrow = y >> 32 & (ULong)1; 
+        *xc++ = (ULong)(y & FFFFFFFF); 
+    } 
+    while(xb < xbe); 
+    while(xa < xae) { 
+        y = *xa++ - borrow; 
+        borrow = y >> 32 & (ULong)1; 
+        *xc++ = (ULong)(y & FFFFFFFF); 
+    } 
+    while(!*--xc) 
+        wa--; 
+    c->wds = wa; 
+    return c; 
+} 
+ 
+/* Given a positive normal double x, return the difference between x and the 
+   next double up.  Doesn't give correct results for subnormals. */ 
+ 
+static double 
+ulp(U *x) 
+{ 
+    Long L; 
+    U u; 
+ 
+    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; 
+    word0(&u) = L; 
+    word1(&u) = 0; 
+    return dval(&u); 
+} 
+ 
+/* Convert a Bigint to a double plus an exponent */ 
+ 
+static double 
+b2d(Bigint *a, int *e) 
+{ 
+    ULong *xa, *xa0, w, y, z; 
+    int k; 
+    U d; 
+ 
+    xa0 = a->x; 
+    xa = xa0 + a->wds; 
+    y = *--xa; 
+#ifdef DEBUG 
+    if (!y) Bug("zero y in b2d"); 
+#endif 
+    k = hi0bits(y); 
+    *e = 32 - k; 
+    if (k < Ebits) { 
+        word0(&d) = Exp_1 | y >> (Ebits - k); 
+        w = xa > xa0 ? *--xa : 0; 
+        word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k); 
+        goto ret_d; 
+    } 
+    z = xa > xa0 ? *--xa : 0; 
+    if (k -= Ebits) { 
+        word0(&d) = Exp_1 | y << k | z >> (32 - k); 
+        y = xa > xa0 ? *--xa : 0; 
+        word1(&d) = z << k | y >> (32 - k); 
+    } 
+    else { 
+        word0(&d) = Exp_1 | y; 
+        word1(&d) = z; 
+    } 
+  ret_d: 
+    return dval(&d); 
+} 
+ 
+/* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b, 
+   except that it accepts the scale parameter used in _Py_dg_strtod (which 
+   should be either 0 or 2*P), and the normalization for the return value is 
+   different (see below).  On input, d should be finite and nonnegative, and d 
+   / 2**scale should be exactly representable as an IEEE 754 double. 
+ 
+   Returns a Bigint b and an integer e such that 
+ 
+     dval(d) / 2**scale = b * 2**e. 
+ 
+   Unlike d2b, b is not necessarily odd: b and e are normalized so 
+   that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P 
+   and e == Etiny.  This applies equally to an input of 0.0: in that 
+   case the return values are b = 0 and e = Etiny. 
+ 
+   The above normalization ensures that for all possible inputs d, 
+   2**e gives ulp(d/2**scale). 
+ 
+   Returns NULL on failure. 
+*/ 
+ 
+static Bigint * 
+sd2b(U *d, int scale, int *e) 
+{ 
+    Bigint *b; 
+ 
+    b = Balloc(1); 
+    if (b == NULL) 
+        return NULL; 
+ 
+    /* First construct b and e assuming that scale == 0. */ 
+    b->wds = 2; 
+    b->x[0] = word1(d); 
+    b->x[1] = word0(d) & Frac_mask; 
+    *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift); 
+    if (*e < Etiny) 
+        *e = Etiny; 
+    else 
+        b->x[1] |= Exp_msk1; 
+ 
+    /* Now adjust for scale, provided that b != 0. */ 
+    if (scale && (b->x[0] || b->x[1])) { 
+        *e -= scale; 
+        if (*e < Etiny) { 
+            scale = Etiny - *e; 
+            *e = Etiny; 
+            /* We can't shift more than P-1 bits without shifting out a 1. */ 
+            assert(0 < scale && scale <= P - 1); 
+            if (scale >= 32) { 
+                /* The bits shifted out should all be zero. */ 
+                assert(b->x[0] == 0); 
+                b->x[0] = b->x[1]; 
+                b->x[1] = 0; 
+                scale -= 32; 
+            } 
+            if (scale) { 
+                /* The bits shifted out should all be zero. */ 
+                assert(b->x[0] << (32 - scale) == 0); 
+                b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale)); 
+                b->x[1] >>= scale; 
+            } 
+        } 
+    } 
+    /* Ensure b is normalized. */ 
+    if (!b->x[1]) 
+        b->wds = 1; 
+ 
+    return b; 
+} 
+ 
+/* Convert a double to a Bigint plus an exponent.  Return NULL on failure. 
+ 
+   Given a finite nonzero double d, return an odd Bigint b and exponent *e 
+   such that fabs(d) = b * 2**e.  On return, *bbits gives the number of 
+   significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits). 
+ 
+   If d is zero, then b == 0, *e == -1010, *bbits = 0. 
+ */ 
+ 
+static Bigint * 
+d2b(U *d, int *e, int *bits) 
+{ 
+    Bigint *b; 
+    int de, k; 
+    ULong *x, y, z; 
+    int i; 
+ 
+    b = Balloc(1); 
+    if (b == NULL) 
+        return NULL; 
+    x = b->x; 
+ 
+    z = word0(d) & Frac_mask; 
+    word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */ 
+    if ((de = (int)(word0(d) >> Exp_shift))) 
+        z |= Exp_msk1; 
+    if ((y = word1(d))) { 
+        if ((k = lo0bits(&y))) { 
+            x[0] = y | z << (32 - k); 
+            z >>= k; 
+        } 
+        else 
+            x[0] = y; 
+        i = 
+            b->wds = (x[1] = z) ? 2 : 1; 
+    } 
+    else { 
+        k = lo0bits(&z); 
+        x[0] = z; 
+        i = 
+            b->wds = 1; 
+        k += 32; 
+    } 
+    if (de) { 
+        *e = de - Bias - (P-1) + k; 
+        *bits = P - k; 
+    } 
+    else { 
+        *e = de - Bias - (P-1) + 1 + k; 
+        *bits = 32*i - hi0bits(x[i-1]); 
+    } 
+    return b; 
+} 
+ 
+/* Compute the ratio of two Bigints, as a double.  The result may have an 
+   error of up to 2.5 ulps. */ 
+ 
+static double 
+ratio(Bigint *a, Bigint *b) 
+{ 
+    U da, db; 
+    int k, ka, kb; 
+ 
+    dval(&da) = b2d(a, &ka); 
+    dval(&db) = b2d(b, &kb); 
+    k = ka - kb + 32*(a->wds - b->wds); 
+    if (k > 0) 
+        word0(&da) += k*Exp_msk1; 
+    else { 
+        k = -k; 
+        word0(&db) += k*Exp_msk1; 
+    } 
+    return dval(&da) / dval(&db); 
+} 
+ 
+static const double 
+tens[] = { 
+    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 
+    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 
+    1e20, 1e21, 1e22 
+}; 
+ 
+static const double 
+bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; 
+static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 
+                                   9007199254740992.*9007199254740992.e-256 
+                                   /* = 2^106 * 1e-256 */ 
+}; 
+/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ 
+/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */ 
+#define Scale_Bit 0x10 
+#define n_bigtens 5 
+ 
+#define ULbits 32 
+#define kshift 5 
+#define kmask 31 
+ 
+ 
+static int 
+dshift(Bigint *b, int p2) 
+{ 
+    int rv = hi0bits(b->x[b->wds-1]) - 4; 
+    if (p2 > 0) 
+        rv -= p2; 
+    return rv & kmask; 
+} 
+ 
+/* special case of Bigint division.  The quotient is always in the range 0 <= 
+   quotient < 10, and on entry the divisor S is normalized so that its top 4 
+   bits (28--31) are zero and bit 27 is set. */ 
+ 
+static int 
+quorem(Bigint *b, Bigint *S) 
+{ 
+    int n; 
+    ULong *bx, *bxe, q, *sx, *sxe; 
+    ULLong borrow, carry, y, ys; 
+ 
+    n = S->wds; 
+#ifdef DEBUG 
+    /*debug*/ if (b->wds > n) 
+        /*debug*/       Bug("oversize b in quorem"); 
+#endif 
+    if (b->wds < n) 
+        return 0; 
+    sx = S->x; 
+    sxe = sx + --n; 
+    bx = b->x; 
+    bxe = bx + n; 
+    q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */ 
+#ifdef DEBUG 
+    /*debug*/ if (q > 9) 
+        /*debug*/       Bug("oversized quotient in quorem"); 
+#endif 
+    if (q) { 
+        borrow = 0; 
+        carry = 0; 
+        do { 
+            ys = *sx++ * (ULLong)q + carry; 
+            carry = ys >> 32; 
+            y = *bx - (ys & FFFFFFFF) - borrow; 
+            borrow = y >> 32 & (ULong)1; 
+            *bx++ = (ULong)(y & FFFFFFFF); 
+        } 
+        while(sx <= sxe); 
+        if (!*bxe) { 
+            bx = b->x; 
+            while(--bxe > bx && !*bxe) 
+                --n; 
+            b->wds = n; 
+        } 
+    } 
+    if (cmp(b, S) >= 0) { 
+        q++; 
+        borrow = 0; 
+        carry = 0; 
+        bx = b->x; 
+        sx = S->x; 
+        do { 
+            ys = *sx++ + carry; 
+            carry = ys >> 32; 
+            y = *bx - (ys & FFFFFFFF) - borrow; 
+            borrow = y >> 32 & (ULong)1; 
+            *bx++ = (ULong)(y & FFFFFFFF); 
+        } 
+        while(sx <= sxe); 
+        bx = b->x; 
+        bxe = bx + n; 
+        if (!*bxe) { 
+            while(--bxe > bx && !*bxe) 
+                --n; 
+            b->wds = n; 
+        } 
+    } 
+    return q; 
+} 
+ 
+/* sulp(x) is a version of ulp(x) that takes bc.scale into account. 
+ 
+   Assuming that x is finite and nonnegative (positive zero is fine 
+   here) and x / 2^bc.scale is exactly representable as a double, 
+   sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */ 
+ 
+static double 
+sulp(U *x, BCinfo *bc) 
+{ 
+    U u; 
+ 
+    if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) { 
+        /* rv/2^bc->scale is subnormal */ 
+        word0(&u) = (P+2)*Exp_msk1; 
+        word1(&u) = 0; 
+        return u.d; 
+    } 
+    else { 
+        assert(word0(x) || word1(x)); /* x != 0.0 */ 
+        return ulp(x); 
+    } 
+} 
+ 
+/* The bigcomp function handles some hard cases for strtod, for inputs 
+   with more than STRTOD_DIGLIM digits.  It's called once an initial 
+   estimate for the double corresponding to the input string has 
+   already been obtained by the code in _Py_dg_strtod. 
+ 
+   The bigcomp function is only called after _Py_dg_strtod has found a 
+   double value rv such that either rv or rv + 1ulp represents the 
+   correctly rounded value corresponding to the original string.  It 
+   determines which of these two values is the correct one by 
+   computing the decimal digits of rv + 0.5ulp and comparing them with 
+   the corresponding digits of s0. 
+ 
+   In the following, write dv for the absolute value of the number represented 
+   by the input string. 
+ 
+   Inputs: 
+ 
+     s0 points to the first significant digit of the input string. 
+ 
+     rv is a (possibly scaled) estimate for the closest double value to the 
+        value represented by the original input to _Py_dg_strtod.  If 
+        bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to 
+        the input value. 
+ 
+     bc is a struct containing information gathered during the parsing and 
+        estimation steps of _Py_dg_strtod.  Description of fields follows: 
+ 
+        bc->e0 gives the exponent of the input value, such that dv = (integer 
+           given by the bd->nd digits of s0) * 10**e0 
+ 
+        bc->nd gives the total number of significant digits of s0.  It will 
+           be at least 1. 
+ 
+        bc->nd0 gives the number of significant digits of s0 before the 
+           decimal separator.  If there's no decimal separator, bc->nd0 == 
+           bc->nd. 
+ 
+        bc->scale is the value used to scale rv to avoid doing arithmetic with 
+           subnormal values.  It's either 0 or 2*P (=106). 
+ 
+   Outputs: 
+ 
+     On successful exit, rv/2^(bc->scale) is the closest double to dv. 
+ 
+     Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */ 
+ 
+static int 
+bigcomp(U *rv, const char *s0, BCinfo *bc) 
+{ 
+    Bigint *b, *d; 
+    int b2, d2, dd, i, nd, nd0, odd, p2, p5; 
+ 
+    nd = bc->nd; 
+    nd0 = bc->nd0; 
+    p5 = nd + bc->e0; 
+    b = sd2b(rv, bc->scale, &p2); 
+    if (b == NULL) 
+        return -1; 
+ 
+    /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway 
+       case, this is used for round to even. */ 
+    odd = b->x[0] & 1; 
+ 
+    /* left shift b by 1 bit and or a 1 into the least significant bit; 
+       this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */ 
+    b = lshift(b, 1); 
+    if (b == NULL) 
+        return -1; 
+    b->x[0] |= 1; 
+    p2--; 
+ 
+    p2 -= p5; 
+    d = i2b(1); 
+    if (d == NULL) { 
+        Bfree(b); 
+        return -1; 
+    } 
+    /* Arrange for convenient computation of quotients: 
+     * shift left if necessary so divisor has 4 leading 0 bits. 
+     */ 
+    if (p5 > 0) { 
+        d = pow5mult(d, p5); 
+        if (d == NULL) { 
+            Bfree(b); 
+            return -1; 
+        } 
+    } 
+    else if (p5 < 0) { 
+        b = pow5mult(b, -p5); 
+        if (b == NULL) { 
+            Bfree(d); 
+            return -1; 
+        } 
+    } 
+    if (p2 > 0) { 
+        b2 = p2; 
+        d2 = 0; 
+    } 
+    else { 
+        b2 = 0; 
+        d2 = -p2; 
+    } 
+    i = dshift(d, d2); 
+    if ((b2 += i) > 0) { 
+        b = lshift(b, b2); 
+        if (b == NULL) { 
+            Bfree(d); 
+            return -1; 
+        } 
+    } 
+    if ((d2 += i) > 0) { 
+        d = lshift(d, d2); 
+        if (d == NULL) { 
+            Bfree(b); 
+            return -1; 
+        } 
+    } 
+ 
+    /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 == 
+     * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing 
+     * a number in the range [0.1, 1). */ 
+    if (cmp(b, d) >= 0) 
+        /* b/d >= 1 */ 
+        dd = -1; 
+    else { 
+        i = 0; 
+        for(;;) { 
+            b = multadd(b, 10, 0); 
+            if (b == NULL) { 
+                Bfree(d); 
+                return -1; 
+            } 
+            dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d); 
+            i++; 
+ 
+            if (dd) 
+                break; 
+            if (!b->x[0] && b->wds == 1) { 
+                /* b/d == 0 */ 
+                dd = i < nd; 
+                break; 
+            } 
+            if (!(i < nd)) { 
+                /* b/d != 0, but digits of s0 exhausted */ 
+                dd = -1; 
+                break; 
+            } 
+        } 
+    } 
+    Bfree(b); 
+    Bfree(d); 
+    if (dd > 0 || (dd == 0 && odd)) 
+        dval(rv) += sulp(rv, bc); 
+    return 0; 
+} 
+ 
+/* Return a 'standard' NaN value. 
+ 
+   There are exactly two quiet NaNs that don't arise by 'quieting' signaling 
+   NaNs (see IEEE 754-2008, section 6.2.1).  If sign == 0, return the one whose 
+   sign bit is cleared.  Otherwise, return the one whose sign bit is set. 
+*/ 
+ 
+double 
+_Py_dg_stdnan(int sign) 
+{ 
+    U rv; 
+    word0(&rv) = NAN_WORD0; 
+    word1(&rv) = NAN_WORD1; 
+    if (sign) 
+        word0(&rv) |= Sign_bit; 
+    return dval(&rv); 
+} 
+ 
+/* Return positive or negative infinity, according to the given sign (0 for 
+ * positive infinity, 1 for negative infinity). */ 
+ 
+double 
+_Py_dg_infinity(int sign) 
+{ 
+    U rv; 
+    word0(&rv) = POSINF_WORD0; 
+    word1(&rv) = POSINF_WORD1; 
+    return sign ? -dval(&rv) : dval(&rv); 
+} 
+ 
+double 
+_Py_dg_strtod(const char *s00, char **se) 
+{ 
+    int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error; 
+    int esign, i, j, k, lz, nd, nd0, odd, sign; 
+    const char *s, *s0, *s1; 
+    double aadj, aadj1; 
+    U aadj2, adj, rv, rv0; 
+    ULong y, z, abs_exp; 
+    Long L; 
+    BCinfo bc; 
     Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL;
-    size_t ndigits, fraclen;
+    size_t ndigits, fraclen; 
     double result;
-
-    dval(&rv) = 0.;
-
-    /* Start parsing. */
-    c = *(s = s00);
-
-    /* Parse optional sign, if present. */
-    sign = 0;
-    switch (c) {
-    case '-':
-        sign = 1;
-        /* fall through */
-    case '+':
-        c = *++s;
-    }
-
-    /* Skip leading zeros: lz is true iff there were leading zeros. */
-    s1 = s;
-    while (c == '0')
-        c = *++s;
-    lz = s != s1;
-
-    /* Point s0 at the first nonzero digit (if any).  fraclen will be the
-       number of digits between the decimal point and the end of the
-       digit string.  ndigits will be the total number of digits ignoring
-       leading zeros. */
-    s0 = s1 = s;
-    while ('0' <= c && c <= '9')
-        c = *++s;
-    ndigits = s - s1;
-    fraclen = 0;
-
-    /* Parse decimal point and following digits. */
-    if (c == '.') {
-        c = *++s;
-        if (!ndigits) {
-            s1 = s;
-            while (c == '0')
-                c = *++s;
-            lz = lz || s != s1;
-            fraclen += (s - s1);
-            s0 = s;
-        }
-        s1 = s;
-        while ('0' <= c && c <= '9')
-            c = *++s;
-        ndigits += s - s1;
-        fraclen += s - s1;
-    }
-
-    /* Now lz is true if and only if there were leading zero digits, and
-       ndigits gives the total number of digits ignoring leading zeros.  A
-       valid input must have at least one digit. */
-    if (!ndigits && !lz) {
-        if (se)
-            *se = (char *)s00;
-        goto parse_error;
-    }
-
-    /* Range check ndigits and fraclen to make sure that they, and values
-       computed with them, can safely fit in an int. */
-    if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) {
-        if (se)
-            *se = (char *)s00;
-        goto parse_error;
-    }
-    nd = (int)ndigits;
-    nd0 = (int)ndigits - (int)fraclen;
-
-    /* Parse exponent. */
-    e = 0;
-    if (c == 'e' || c == 'E') {
-        s00 = s;
-        c = *++s;
-
-        /* Exponent sign. */
-        esign = 0;
-        switch (c) {
-        case '-':
-            esign = 1;
-            /* fall through */
-        case '+':
-            c = *++s;
-        }
-
-        /* Skip zeros.  lz is true iff there are leading zeros. */
-        s1 = s;
-        while (c == '0')
-            c = *++s;
-        lz = s != s1;
-
-        /* Get absolute value of the exponent. */
-        s1 = s;
-        abs_exp = 0;
-        while ('0' <= c && c <= '9') {
-            abs_exp = 10*abs_exp + (c - '0');
-            c = *++s;
-        }
-
-        /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if
-           there are at most 9 significant exponent digits then overflow is
-           impossible. */
-        if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)
-            e = (int)MAX_ABS_EXP;
-        else
-            e = (int)abs_exp;
-        if (esign)
-            e = -e;
-
-        /* A valid exponent must have at least one digit. */
-        if (s == s1 && !lz)
-            s = s00;
-    }
-
-    /* Adjust exponent to take into account position of the point. */
-    e -= nd - nd0;
-    if (nd0 <= 0)
-        nd0 = nd;
-
-    /* Finished parsing.  Set se to indicate how far we parsed */
-    if (se)
-        *se = (char *)s;
-
-    /* If all digits were zero, exit with return value +-0.0.  Otherwise,
-       strip trailing zeros: scan back until we hit a nonzero digit. */
-    if (!nd)
-        goto ret;
-    for (i = nd; i > 0; ) {
-        --i;
-        if (s0[i < nd0 ? i : i+1] != '0') {
-            ++i;
-            break;
-        }
-    }
-    e += nd - i;
-    nd = i;
-    if (nd0 > nd)
-        nd0 = nd;
-
-    /* Summary of parsing results.  After parsing, and dealing with zero
-     * inputs, we have values s0, nd0, nd, e, sign, where:
-     *
-     *  - s0 points to the first significant digit of the input string
-     *
-     *  - nd is the total number of significant digits (here, and
-     *    below, 'significant digits' means the set of digits of the
-     *    significand of the input that remain after ignoring leading
-     *    and trailing zeros).
-     *
-     *  - nd0 indicates the position of the decimal point, if present; it
-     *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in
-     *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice
-     *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if
-     *    nd0 == nd, then s0[nd0] could be any non-digit character.)
-     *
-     *  - e is the adjusted exponent: the absolute value of the number
-     *    represented by the original input string is n * 10**e, where
-     *    n is the integer represented by the concatenation of
-     *    s0[0:nd0] and s0[nd0+1:nd+1]
-     *
-     *  - sign gives the sign of the input:  1 for negative, 0 for positive
-     *
-     *  - the first and last significant digits are nonzero
-     */
-
-    /* put first DBL_DIG+1 digits into integer y and z.
-     *
-     *  - y contains the value represented by the first min(9, nd)
-     *    significant digits
-     *
-     *  - if nd > 9, z contains the value represented by significant digits
-     *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z
-     *    gives the value represented by the first min(16, nd) sig. digits.
-     */
-
-    bc.e0 = e1 = e;
-    y = z = 0;
-    for (i = 0; i < nd; i++) {
-        if (i < 9)
-            y = 10*y + s0[i < nd0 ? i : i+1] - '0';
-        else if (i < DBL_DIG+1)
-            z = 10*z + s0[i < nd0 ? i : i+1] - '0';
-        else
-            break;
-    }
-
-    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
-    dval(&rv) = y;
-    if (k > 9) {
-        dval(&rv) = tens[k - 9] * dval(&rv) + z;
-    }
-    if (nd <= DBL_DIG
-        && Flt_Rounds == 1
-        ) {
-        if (!e)
-            goto ret;
-        if (e > 0) {
-            if (e <= Ten_pmax) {
-                dval(&rv) *= tens[e];
-                goto ret;
-            }
-            i = DBL_DIG - nd;
-            if (e <= Ten_pmax + i) {
-                /* A fancier test would sometimes let us do
-                 * this for larger i values.
-                 */
-                e -= i;
-                dval(&rv) *= tens[i];
-                dval(&rv) *= tens[e];
-                goto ret;
-            }
-        }
-        else if (e >= -Ten_pmax) {
-            dval(&rv) /= tens[-e];
-            goto ret;
-        }
-    }
-    e1 += nd - k;
-
-    bc.scale = 0;
-
-    /* Get starting approximation = rv * 10**e1 */
-
-    if (e1 > 0) {
-        if ((i = e1 & 15))
-            dval(&rv) *= tens[i];
-        if (e1 &= ~15) {
-            if (e1 > DBL_MAX_10_EXP)
-                goto ovfl;
-            e1 >>= 4;
-            for(j = 0; e1 > 1; j++, e1 >>= 1)
-                if (e1 & 1)
-                    dval(&rv) *= bigtens[j];
-            /* The last multiplication could overflow. */
-            word0(&rv) -= P*Exp_msk1;
-            dval(&rv) *= bigtens[j];
-            if ((z = word0(&rv) & Exp_mask)
-                > Exp_msk1*(DBL_MAX_EXP+Bias-P))
-                goto ovfl;
-            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
-                /* set to largest number */
-                /* (Can't trust DBL_MAX) */
-                word0(&rv) = Big0;
-                word1(&rv) = Big1;
-            }
-            else
-                word0(&rv) += P*Exp_msk1;
-        }
-    }
-    else if (e1 < 0) {
-        /* The input decimal value lies in [10**e1, 10**(e1+16)).
-
-           If e1 <= -512, underflow immediately.
-           If e1 <= -256, set bc.scale to 2*P.
-
-           So for input value < 1e-256, bc.scale is always set;
-           for input value >= 1e-240, bc.scale is never set.
-           For input values in [1e-256, 1e-240), bc.scale may or may
-           not be set. */
-
-        e1 = -e1;
-        if ((i = e1 & 15))
-            dval(&rv) /= tens[i];
-        if (e1 >>= 4) {
-            if (e1 >= 1 << n_bigtens)
-                goto undfl;
-            if (e1 & Scale_Bit)
-                bc.scale = 2*P;
-            for(j = 0; e1 > 0; j++, e1 >>= 1)
-                if (e1 & 1)
-                    dval(&rv) *= tinytens[j];
-            if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
-                                            >> Exp_shift)) > 0) {
-                /* scaled rv is denormal; clear j low bits */
-                if (j >= 32) {
-                    word1(&rv) = 0;
-                    if (j >= 53)
-                        word0(&rv) = (P+2)*Exp_msk1;
-                    else
-                        word0(&rv) &= 0xffffffff << (j-32);
-                }
-                else
-                    word1(&rv) &= 0xffffffff << j;
-            }
-            if (!dval(&rv))
-                goto undfl;
-        }
-    }
-
-    /* Now the hard part -- adjusting rv to the correct value.*/
-
-    /* Put digits into bd: true value = bd * 10^e */
-
-    bc.nd = nd;
-    bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */
-                        /* to silence an erroneous warning about bc.nd0 */
-                        /* possibly not being initialized. */
-    if (nd > STRTOD_DIGLIM) {
-        /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
-        /* minimum number of decimal digits to distinguish double values */
-        /* in IEEE arithmetic. */
-
-        /* Truncate input to 18 significant digits, then discard any trailing
-           zeros on the result by updating nd, nd0, e and y suitably. (There's
-           no need to update z; it's not reused beyond this point.) */
-        for (i = 18; i > 0; ) {
-            /* scan back until we hit a nonzero digit.  significant digit 'i'
-            is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
-            --i;
-            if (s0[i < nd0 ? i : i+1] != '0') {
-                ++i;
-                break;
-            }
-        }
-        e += nd - i;
-        nd = i;
-        if (nd0 > nd)
-            nd0 = nd;
-        if (nd < 9) { /* must recompute y */
-            y = 0;
-            for(i = 0; i < nd0; ++i)
-                y = 10*y + s0[i] - '0';
-            for(; i < nd; ++i)
-                y = 10*y + s0[i+1] - '0';
-        }
-    }
-    bd0 = s2b(s0, nd0, nd, y);
-    if (bd0 == NULL)
-        goto failed_malloc;
-
-    /* Notation for the comments below.  Write:
-
-         - dv for the absolute value of the number represented by the original
-           decimal input string.
-
-         - if we've truncated dv, write tdv for the truncated value.
-           Otherwise, set tdv == dv.
-
-         - srv for the quantity rv/2^bc.scale; so srv is the current binary
-           approximation to tdv (and dv).  It should be exactly representable
-           in an IEEE 754 double.
-    */
-
-    for(;;) {
-
-        /* This is the main correction loop for _Py_dg_strtod.
-
-           We've got a decimal value tdv, and a floating-point approximation
-           srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is
-           close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
-           approximation if not.
-
-           To determine whether srv is close enough to tdv, compute integers
-           bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
-           respectively, and then use integer arithmetic to determine whether
-           |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
-        */
-
-        bd = Balloc(bd0->k);
-        if (bd == NULL) {
-            goto failed_malloc;
-        }
-        Bcopy(bd, bd0);
-        bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */
-        if (bb == NULL) {
-            goto failed_malloc;
-        }
-        /* Record whether lsb of bb is odd, in case we need this
-           for the round-to-even step later. */
-        odd = bb->x[0] & 1;
-
-        /* tdv = bd * 10**e;  srv = bb * 2**bbe */
-        bs = i2b(1);
-        if (bs == NULL) {
-            goto failed_malloc;
-        }
-
-        if (e >= 0) {
-            bb2 = bb5 = 0;
-            bd2 = bd5 = e;
-        }
-        else {
-            bb2 = bb5 = -e;
-            bd2 = bd5 = 0;
-        }
-        if (bbe >= 0)
-            bb2 += bbe;
-        else
-            bd2 -= bbe;
-        bs2 = bb2;
-        bb2++;
-        bd2++;
-
-        /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1,
-           and bs == 1, so:
-
-              tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5)
-              srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2)
-              0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2)
-
-           It follows that:
-
-              M * tdv = bd * 2**bd2 * 5**bd5
-              M * srv = bb * 2**bb2 * 5**bb5
-              M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5
-
-           for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but
-           this fact is not needed below.)
-        */
-
-        /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */
-        i = bb2 < bd2 ? bb2 : bd2;
-        if (i > bs2)
-            i = bs2;
-        if (i > 0) {
-            bb2 -= i;
-            bd2 -= i;
-            bs2 -= i;
-        }
-
-        /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
-        if (bb5 > 0) {
-            bs = pow5mult(bs, bb5);
-            if (bs == NULL) {
-                goto failed_malloc;
-            }
+ 
+    dval(&rv) = 0.; 
+ 
+    /* Start parsing. */ 
+    c = *(s = s00); 
+ 
+    /* Parse optional sign, if present. */ 
+    sign = 0; 
+    switch (c) { 
+    case '-': 
+        sign = 1; 
+        /* fall through */ 
+    case '+': 
+        c = *++s; 
+    } 
+ 
+    /* Skip leading zeros: lz is true iff there were leading zeros. */ 
+    s1 = s; 
+    while (c == '0') 
+        c = *++s; 
+    lz = s != s1; 
+ 
+    /* Point s0 at the first nonzero digit (if any).  fraclen will be the 
+       number of digits between the decimal point and the end of the 
+       digit string.  ndigits will be the total number of digits ignoring 
+       leading zeros. */ 
+    s0 = s1 = s; 
+    while ('0' <= c && c <= '9') 
+        c = *++s; 
+    ndigits = s - s1; 
+    fraclen = 0; 
+ 
+    /* Parse decimal point and following digits. */ 
+    if (c == '.') { 
+        c = *++s; 
+        if (!ndigits) { 
+            s1 = s; 
+            while (c == '0') 
+                c = *++s; 
+            lz = lz || s != s1; 
+            fraclen += (s - s1); 
+            s0 = s; 
+        } 
+        s1 = s; 
+        while ('0' <= c && c <= '9') 
+            c = *++s; 
+        ndigits += s - s1; 
+        fraclen += s - s1; 
+    } 
+ 
+    /* Now lz is true if and only if there were leading zero digits, and 
+       ndigits gives the total number of digits ignoring leading zeros.  A 
+       valid input must have at least one digit. */ 
+    if (!ndigits && !lz) { 
+        if (se) 
+            *se = (char *)s00; 
+        goto parse_error; 
+    } 
+ 
+    /* Range check ndigits and fraclen to make sure that they, and values 
+       computed with them, can safely fit in an int. */ 
+    if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) { 
+        if (se) 
+            *se = (char *)s00; 
+        goto parse_error; 
+    } 
+    nd = (int)ndigits; 
+    nd0 = (int)ndigits - (int)fraclen; 
+ 
+    /* Parse exponent. */ 
+    e = 0; 
+    if (c == 'e' || c == 'E') { 
+        s00 = s; 
+        c = *++s; 
+ 
+        /* Exponent sign. */ 
+        esign = 0; 
+        switch (c) { 
+        case '-': 
+            esign = 1; 
+            /* fall through */ 
+        case '+': 
+            c = *++s; 
+        } 
+ 
+        /* Skip zeros.  lz is true iff there are leading zeros. */ 
+        s1 = s; 
+        while (c == '0') 
+            c = *++s; 
+        lz = s != s1; 
+ 
+        /* Get absolute value of the exponent. */ 
+        s1 = s; 
+        abs_exp = 0; 
+        while ('0' <= c && c <= '9') { 
+            abs_exp = 10*abs_exp + (c - '0'); 
+            c = *++s; 
+        } 
+ 
+        /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if 
+           there are at most 9 significant exponent digits then overflow is 
+           impossible. */ 
+        if (s - s1 > 9 || abs_exp > MAX_ABS_EXP) 
+            e = (int)MAX_ABS_EXP; 
+        else 
+            e = (int)abs_exp; 
+        if (esign) 
+            e = -e; 
+ 
+        /* A valid exponent must have at least one digit. */ 
+        if (s == s1 && !lz) 
+            s = s00; 
+    } 
+ 
+    /* Adjust exponent to take into account position of the point. */ 
+    e -= nd - nd0; 
+    if (nd0 <= 0) 
+        nd0 = nd; 
+ 
+    /* Finished parsing.  Set se to indicate how far we parsed */ 
+    if (se) 
+        *se = (char *)s; 
+ 
+    /* If all digits were zero, exit with return value +-0.0.  Otherwise, 
+       strip trailing zeros: scan back until we hit a nonzero digit. */ 
+    if (!nd) 
+        goto ret; 
+    for (i = nd; i > 0; ) { 
+        --i; 
+        if (s0[i < nd0 ? i : i+1] != '0') { 
+            ++i; 
+            break; 
+        } 
+    } 
+    e += nd - i; 
+    nd = i; 
+    if (nd0 > nd) 
+        nd0 = nd; 
+ 
+    /* Summary of parsing results.  After parsing, and dealing with zero 
+     * inputs, we have values s0, nd0, nd, e, sign, where: 
+     * 
+     *  - s0 points to the first significant digit of the input string 
+     * 
+     *  - nd is the total number of significant digits (here, and 
+     *    below, 'significant digits' means the set of digits of the 
+     *    significand of the input that remain after ignoring leading 
+     *    and trailing zeros). 
+     * 
+     *  - nd0 indicates the position of the decimal point, if present; it 
+     *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in 
+     *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice 
+     *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if 
+     *    nd0 == nd, then s0[nd0] could be any non-digit character.) 
+     * 
+     *  - e is the adjusted exponent: the absolute value of the number 
+     *    represented by the original input string is n * 10**e, where 
+     *    n is the integer represented by the concatenation of 
+     *    s0[0:nd0] and s0[nd0+1:nd+1] 
+     * 
+     *  - sign gives the sign of the input:  1 for negative, 0 for positive 
+     * 
+     *  - the first and last significant digits are nonzero 
+     */ 
+ 
+    /* put first DBL_DIG+1 digits into integer y and z. 
+     * 
+     *  - y contains the value represented by the first min(9, nd) 
+     *    significant digits 
+     * 
+     *  - if nd > 9, z contains the value represented by significant digits 
+     *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z 
+     *    gives the value represented by the first min(16, nd) sig. digits. 
+     */ 
+ 
+    bc.e0 = e1 = e; 
+    y = z = 0; 
+    for (i = 0; i < nd; i++) { 
+        if (i < 9) 
+            y = 10*y + s0[i < nd0 ? i : i+1] - '0'; 
+        else if (i < DBL_DIG+1) 
+            z = 10*z + s0[i < nd0 ? i : i+1] - '0'; 
+        else 
+            break; 
+    } 
+ 
+    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; 
+    dval(&rv) = y; 
+    if (k > 9) { 
+        dval(&rv) = tens[k - 9] * dval(&rv) + z; 
+    } 
+    if (nd <= DBL_DIG 
+        && Flt_Rounds == 1 
+        ) { 
+        if (!e) 
+            goto ret; 
+        if (e > 0) { 
+            if (e <= Ten_pmax) { 
+                dval(&rv) *= tens[e]; 
+                goto ret; 
+            } 
+            i = DBL_DIG - nd; 
+            if (e <= Ten_pmax + i) { 
+                /* A fancier test would sometimes let us do 
+                 * this for larger i values. 
+                 */ 
+                e -= i; 
+                dval(&rv) *= tens[i]; 
+                dval(&rv) *= tens[e]; 
+                goto ret; 
+            } 
+        } 
+        else if (e >= -Ten_pmax) { 
+            dval(&rv) /= tens[-e]; 
+            goto ret; 
+        } 
+    } 
+    e1 += nd - k; 
+ 
+    bc.scale = 0; 
+ 
+    /* Get starting approximation = rv * 10**e1 */ 
+ 
+    if (e1 > 0) { 
+        if ((i = e1 & 15)) 
+            dval(&rv) *= tens[i]; 
+        if (e1 &= ~15) { 
+            if (e1 > DBL_MAX_10_EXP) 
+                goto ovfl; 
+            e1 >>= 4; 
+            for(j = 0; e1 > 1; j++, e1 >>= 1) 
+                if (e1 & 1) 
+                    dval(&rv) *= bigtens[j]; 
+            /* The last multiplication could overflow. */ 
+            word0(&rv) -= P*Exp_msk1; 
+            dval(&rv) *= bigtens[j]; 
+            if ((z = word0(&rv) & Exp_mask) 
+                > Exp_msk1*(DBL_MAX_EXP+Bias-P)) 
+                goto ovfl; 
+            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { 
+                /* set to largest number */ 
+                /* (Can't trust DBL_MAX) */ 
+                word0(&rv) = Big0; 
+                word1(&rv) = Big1; 
+            } 
+            else 
+                word0(&rv) += P*Exp_msk1; 
+        } 
+    } 
+    else if (e1 < 0) { 
+        /* The input decimal value lies in [10**e1, 10**(e1+16)). 
+ 
+           If e1 <= -512, underflow immediately. 
+           If e1 <= -256, set bc.scale to 2*P. 
+ 
+           So for input value < 1e-256, bc.scale is always set; 
+           for input value >= 1e-240, bc.scale is never set. 
+           For input values in [1e-256, 1e-240), bc.scale may or may 
+           not be set. */ 
+ 
+        e1 = -e1; 
+        if ((i = e1 & 15)) 
+            dval(&rv) /= tens[i]; 
+        if (e1 >>= 4) { 
+            if (e1 >= 1 << n_bigtens) 
+                goto undfl; 
+            if (e1 & Scale_Bit) 
+                bc.scale = 2*P; 
+            for(j = 0; e1 > 0; j++, e1 >>= 1) 
+                if (e1 & 1) 
+                    dval(&rv) *= tinytens[j]; 
+            if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask) 
+                                            >> Exp_shift)) > 0) { 
+                /* scaled rv is denormal; clear j low bits */ 
+                if (j >= 32) { 
+                    word1(&rv) = 0; 
+                    if (j >= 53) 
+                        word0(&rv) = (P+2)*Exp_msk1; 
+                    else 
+                        word0(&rv) &= 0xffffffff << (j-32); 
+                } 
+                else 
+                    word1(&rv) &= 0xffffffff << j; 
+            } 
+            if (!dval(&rv)) 
+                goto undfl; 
+        } 
+    } 
+ 
+    /* Now the hard part -- adjusting rv to the correct value.*/ 
+ 
+    /* Put digits into bd: true value = bd * 10^e */ 
+ 
+    bc.nd = nd; 
+    bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */ 
+                        /* to silence an erroneous warning about bc.nd0 */ 
+                        /* possibly not being initialized. */ 
+    if (nd > STRTOD_DIGLIM) { 
+        /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */ 
+        /* minimum number of decimal digits to distinguish double values */ 
+        /* in IEEE arithmetic. */ 
+ 
+        /* Truncate input to 18 significant digits, then discard any trailing 
+           zeros on the result by updating nd, nd0, e and y suitably. (There's 
+           no need to update z; it's not reused beyond this point.) */ 
+        for (i = 18; i > 0; ) { 
+            /* scan back until we hit a nonzero digit.  significant digit 'i' 
+            is s0[i] if i < nd0, s0[i+1] if i >= nd0. */ 
+            --i; 
+            if (s0[i < nd0 ? i : i+1] != '0') { 
+                ++i; 
+                break; 
+            } 
+        } 
+        e += nd - i; 
+        nd = i; 
+        if (nd0 > nd) 
+            nd0 = nd; 
+        if (nd < 9) { /* must recompute y */ 
+            y = 0; 
+            for(i = 0; i < nd0; ++i) 
+                y = 10*y + s0[i] - '0'; 
+            for(; i < nd; ++i) 
+                y = 10*y + s0[i+1] - '0'; 
+        } 
+    } 
+    bd0 = s2b(s0, nd0, nd, y); 
+    if (bd0 == NULL) 
+        goto failed_malloc; 
+ 
+    /* Notation for the comments below.  Write: 
+ 
+         - dv for the absolute value of the number represented by the original 
+           decimal input string. 
+ 
+         - if we've truncated dv, write tdv for the truncated value. 
+           Otherwise, set tdv == dv. 
+ 
+         - srv for the quantity rv/2^bc.scale; so srv is the current binary 
+           approximation to tdv (and dv).  It should be exactly representable 
+           in an IEEE 754 double. 
+    */ 
+ 
+    for(;;) { 
+ 
+        /* This is the main correction loop for _Py_dg_strtod. 
+ 
+           We've got a decimal value tdv, and a floating-point approximation 
+           srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is 
+           close enough (i.e., within 0.5 ulps) to tdv, and to compute a new 
+           approximation if not. 
+ 
+           To determine whether srv is close enough to tdv, compute integers 
+           bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv) 
+           respectively, and then use integer arithmetic to determine whether 
+           |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv). 
+        */ 
+ 
+        bd = Balloc(bd0->k); 
+        if (bd == NULL) { 
+            goto failed_malloc; 
+        } 
+        Bcopy(bd, bd0); 
+        bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */ 
+        if (bb == NULL) { 
+            goto failed_malloc; 
+        } 
+        /* Record whether lsb of bb is odd, in case we need this 
+           for the round-to-even step later. */ 
+        odd = bb->x[0] & 1; 
+ 
+        /* tdv = bd * 10**e;  srv = bb * 2**bbe */ 
+        bs = i2b(1); 
+        if (bs == NULL) { 
+            goto failed_malloc; 
+        } 
+ 
+        if (e >= 0) { 
+            bb2 = bb5 = 0; 
+            bd2 = bd5 = e; 
+        } 
+        else { 
+            bb2 = bb5 = -e; 
+            bd2 = bd5 = 0; 
+        } 
+        if (bbe >= 0) 
+            bb2 += bbe; 
+        else 
+            bd2 -= bbe; 
+        bs2 = bb2; 
+        bb2++; 
+        bd2++; 
+ 
+        /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1, 
+           and bs == 1, so: 
+ 
+              tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5) 
+              srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2) 
+              0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2) 
+ 
+           It follows that: 
+ 
+              M * tdv = bd * 2**bd2 * 5**bd5 
+              M * srv = bb * 2**bb2 * 5**bb5 
+              M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5 
+ 
+           for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but 
+           this fact is not needed below.) 
+        */ 
+ 
+        /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */ 
+        i = bb2 < bd2 ? bb2 : bd2; 
+        if (i > bs2) 
+            i = bs2; 
+        if (i > 0) { 
+            bb2 -= i; 
+            bd2 -= i; 
+            bs2 -= i; 
+        } 
+ 
+        /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */ 
+        if (bb5 > 0) { 
+            bs = pow5mult(bs, bb5); 
+            if (bs == NULL) { 
+                goto failed_malloc; 
+            } 
             Bigint *bb1 = mult(bs, bb);
-            Bfree(bb);
-            bb = bb1;
-            if (bb == NULL) {
-                goto failed_malloc;
-            }
-        }
-        if (bb2 > 0) {
-            bb = lshift(bb, bb2);
-            if (bb == NULL) {
-                goto failed_malloc;
-            }
-        }
-        if (bd5 > 0) {
-            bd = pow5mult(bd, bd5);
-            if (bd == NULL) {
-                goto failed_malloc;
-            }
-        }
-        if (bd2 > 0) {
-            bd = lshift(bd, bd2);
-            if (bd == NULL) {
-                goto failed_malloc;
-            }
-        }
-        if (bs2 > 0) {
-            bs = lshift(bs, bs2);
-            if (bs == NULL) {
-                goto failed_malloc;
-            }
-        }
-
-        /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
-           respectively.  Compute the difference |tdv - srv|, and compare
-           with 0.5 ulp(srv). */
-
-        delta = diff(bb, bd);
-        if (delta == NULL) {
-            goto failed_malloc;
-        }
-        dsign = delta->sign;
-        delta->sign = 0;
-        i = cmp(delta, bs);
-        if (bc.nd > nd && i <= 0) {
-            if (dsign)
-                break;  /* Must use bigcomp(). */
-
-            /* Here rv overestimates the truncated decimal value by at most
-               0.5 ulp(rv).  Hence rv either overestimates the true decimal
-               value by <= 0.5 ulp(rv), or underestimates it by some small
-               amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
-               the true decimal value, so it's possible to exit.
-
-               Exception: if scaled rv is a normal exact power of 2, but not
-               DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
-               next double, so the correctly rounded result is either rv - 0.5
-               ulp(rv) or rv; in this case, use bigcomp to distinguish. */
-
-            if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
-                /* rv can't be 0, since it's an overestimate for some
-                   nonzero value.  So rv is a normal power of 2. */
-                j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
-                /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
-                   rv / 2^bc.scale >= 2^-1021. */
-                if (j - bc.scale >= 2) {
-                    dval(&rv) -= 0.5 * sulp(&rv, &bc);
-                    break; /* Use bigcomp. */
-                }
-            }
-
-            {
-                bc.nd = nd;
-                i = -1; /* Discarded digits make delta smaller. */
-            }
-        }
-
-        if (i < 0) {
-            /* Error is less than half an ulp -- check for
-             * special case of mantissa a power of two.
-             */
-            if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
-                || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
-                ) {
-                break;
-            }
-            if (!delta->x[0] && delta->wds <= 1) {
-                /* exact result */
-                break;
-            }
-            delta = lshift(delta,Log2P);
-            if (delta == NULL) {
-                goto failed_malloc;
-            }
-            if (cmp(delta, bs) > 0)
-                goto drop_down;
-            break;
-        }
-        if (i == 0) {
-            /* exactly half-way between */
-            if (dsign) {
-                if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
-                    &&  word1(&rv) == (
-                        (bc.scale &&
-                         (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
-                        (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
-                        0xffffffff)) {
-                    /*boundary case -- increment exponent*/
-                    word0(&rv) = (word0(&rv) & Exp_mask)
-                        + Exp_msk1
-                        ;
-                    word1(&rv) = 0;
-                    /* dsign = 0; */
-                    break;
-                }
-            }
-            else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
-              drop_down:
-                /* boundary case -- decrement exponent */
-                if (bc.scale) {
-                    L = word0(&rv) & Exp_mask;
-                    if (L <= (2*P+1)*Exp_msk1) {
-                        if (L > (P+2)*Exp_msk1)
-                            /* round even ==> */
-                            /* accept rv */
-                            break;
-                        /* rv = smallest denormal */
-                        if (bc.nd > nd)
-                            break;
-                        goto undfl;
-                    }
-                }
-                L = (word0(&rv) & Exp_mask) - Exp_msk1;
-                word0(&rv) = L | Bndry_mask1;
-                word1(&rv) = 0xffffffff;
-                break;
-            }
-            if (!odd)
-                break;
-            if (dsign)
-                dval(&rv) += sulp(&rv, &bc);
-            else {
-                dval(&rv) -= sulp(&rv, &bc);
-                if (!dval(&rv)) {
-                    if (bc.nd >nd)
-                        break;
-                    goto undfl;
-                }
-            }
-            /* dsign = 1 - dsign; */
-            break;
-        }
-        if ((aadj = ratio(delta, bs)) <= 2.) {
-            if (dsign)
-                aadj = aadj1 = 1.;
-            else if (word1(&rv) || word0(&rv) & Bndry_mask) {
-                if (word1(&rv) == Tiny1 && !word0(&rv)) {
-                    if (bc.nd >nd)
-                        break;
-                    goto undfl;
-                }
-                aadj = 1.;
-                aadj1 = -1.;
-            }
-            else {
-                /* special case -- power of FLT_RADIX to be */
-                /* rounded down... */
-
-                if (aadj < 2./FLT_RADIX)
-                    aadj = 1./FLT_RADIX;
-                else
-                    aadj *= 0.5;
-                aadj1 = -aadj;
-            }
-        }
-        else {
-            aadj *= 0.5;
-            aadj1 = dsign ? aadj : -aadj;
-            if (Flt_Rounds == 0)
-                aadj1 += 0.5;
-        }
-        y = word0(&rv) & Exp_mask;
-
-        /* Check for overflow */
-
-        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
-            dval(&rv0) = dval(&rv);
-            word0(&rv) -= P*Exp_msk1;
-            adj.d = aadj1 * ulp(&rv);
-            dval(&rv) += adj.d;
-            if ((word0(&rv) & Exp_mask) >=
-                Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
-                if (word0(&rv0) == Big0 && word1(&rv0) == Big1) {
-                    goto ovfl;
-                }
-                word0(&rv) = Big0;
-                word1(&rv) = Big1;
-                goto cont;
-            }
-            else
-                word0(&rv) += P*Exp_msk1;
-        }
-        else {
-            if (bc.scale && y <= 2*P*Exp_msk1) {
-                if (aadj <= 0x7fffffff) {
-                    if ((z = (ULong)aadj) <= 0)
-                        z = 1;
-                    aadj = z;
-                    aadj1 = dsign ? aadj : -aadj;
-                }
-                dval(&aadj2) = aadj1;
-                word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
-                aadj1 = dval(&aadj2);
-            }
-            adj.d = aadj1 * ulp(&rv);
-            dval(&rv) += adj.d;
-        }
-        z = word0(&rv) & Exp_mask;
-        if (bc.nd == nd) {
-            if (!bc.scale)
-                if (y == z) {
-                    /* Can we stop now? */
-                    L = (Long)aadj;
-                    aadj -= L;
-                    /* The tolerances below are conservative. */
-                    if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
-                        if (aadj < .4999999 || aadj > .5000001)
-                            break;
-                    }
-                    else if (aadj < .4999999/FLT_RADIX)
-                        break;
-                }
-        }
-      cont:
+            Bfree(bb); 
+            bb = bb1; 
+            if (bb == NULL) { 
+                goto failed_malloc; 
+            } 
+        } 
+        if (bb2 > 0) { 
+            bb = lshift(bb, bb2); 
+            if (bb == NULL) { 
+                goto failed_malloc; 
+            } 
+        } 
+        if (bd5 > 0) { 
+            bd = pow5mult(bd, bd5); 
+            if (bd == NULL) { 
+                goto failed_malloc; 
+            } 
+        } 
+        if (bd2 > 0) { 
+            bd = lshift(bd, bd2); 
+            if (bd == NULL) { 
+                goto failed_malloc; 
+            } 
+        } 
+        if (bs2 > 0) { 
+            bs = lshift(bs, bs2); 
+            if (bs == NULL) { 
+                goto failed_malloc; 
+            } 
+        } 
+ 
+        /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv), 
+           respectively.  Compute the difference |tdv - srv|, and compare 
+           with 0.5 ulp(srv). */ 
+ 
+        delta = diff(bb, bd); 
+        if (delta == NULL) { 
+            goto failed_malloc; 
+        } 
+        dsign = delta->sign; 
+        delta->sign = 0; 
+        i = cmp(delta, bs); 
+        if (bc.nd > nd && i <= 0) { 
+            if (dsign) 
+                break;  /* Must use bigcomp(). */ 
+ 
+            /* Here rv overestimates the truncated decimal value by at most 
+               0.5 ulp(rv).  Hence rv either overestimates the true decimal 
+               value by <= 0.5 ulp(rv), or underestimates it by some small 
+               amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of 
+               the true decimal value, so it's possible to exit. 
+ 
+               Exception: if scaled rv is a normal exact power of 2, but not 
+               DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the 
+               next double, so the correctly rounded result is either rv - 0.5 
+               ulp(rv) or rv; in this case, use bigcomp to distinguish. */ 
+ 
+            if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) { 
+                /* rv can't be 0, since it's an overestimate for some 
+                   nonzero value.  So rv is a normal power of 2. */ 
+                j = (int)(word0(&rv) & Exp_mask) >> Exp_shift; 
+                /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if 
+                   rv / 2^bc.scale >= 2^-1021. */ 
+                if (j - bc.scale >= 2) { 
+                    dval(&rv) -= 0.5 * sulp(&rv, &bc); 
+                    break; /* Use bigcomp. */ 
+                } 
+            } 
+ 
+            { 
+                bc.nd = nd; 
+                i = -1; /* Discarded digits make delta smaller. */ 
+            } 
+        } 
+ 
+        if (i < 0) { 
+            /* Error is less than half an ulp -- check for 
+             * special case of mantissa a power of two. 
+             */ 
+            if (dsign || word1(&rv) || word0(&rv) & Bndry_mask 
+                || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1 
+                ) { 
+                break; 
+            } 
+            if (!delta->x[0] && delta->wds <= 1) { 
+                /* exact result */ 
+                break; 
+            } 
+            delta = lshift(delta,Log2P); 
+            if (delta == NULL) { 
+                goto failed_malloc; 
+            } 
+            if (cmp(delta, bs) > 0) 
+                goto drop_down; 
+            break; 
+        } 
+        if (i == 0) { 
+            /* exactly half-way between */ 
+            if (dsign) { 
+                if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 
+                    &&  word1(&rv) == ( 
+                        (bc.scale && 
+                         (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ? 
+                        (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : 
+                        0xffffffff)) { 
+                    /*boundary case -- increment exponent*/ 
+                    word0(&rv) = (word0(&rv) & Exp_mask) 
+                        + Exp_msk1 
+                        ; 
+                    word1(&rv) = 0; 
+                    /* dsign = 0; */ 
+                    break; 
+                } 
+            } 
+            else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { 
+              drop_down: 
+                /* boundary case -- decrement exponent */ 
+                if (bc.scale) { 
+                    L = word0(&rv) & Exp_mask; 
+                    if (L <= (2*P+1)*Exp_msk1) { 
+                        if (L > (P+2)*Exp_msk1) 
+                            /* round even ==> */ 
+                            /* accept rv */ 
+                            break; 
+                        /* rv = smallest denormal */ 
+                        if (bc.nd > nd) 
+                            break; 
+                        goto undfl; 
+                    } 
+                } 
+                L = (word0(&rv) & Exp_mask) - Exp_msk1; 
+                word0(&rv) = L | Bndry_mask1; 
+                word1(&rv) = 0xffffffff; 
+                break; 
+            } 
+            if (!odd) 
+                break; 
+            if (dsign) 
+                dval(&rv) += sulp(&rv, &bc); 
+            else { 
+                dval(&rv) -= sulp(&rv, &bc); 
+                if (!dval(&rv)) { 
+                    if (bc.nd >nd) 
+                        break; 
+                    goto undfl; 
+                } 
+            } 
+            /* dsign = 1 - dsign; */ 
+            break; 
+        } 
+        if ((aadj = ratio(delta, bs)) <= 2.) { 
+            if (dsign) 
+                aadj = aadj1 = 1.; 
+            else if (word1(&rv) || word0(&rv) & Bndry_mask) { 
+                if (word1(&rv) == Tiny1 && !word0(&rv)) { 
+                    if (bc.nd >nd) 
+                        break; 
+                    goto undfl; 
+                } 
+                aadj = 1.; 
+                aadj1 = -1.; 
+            } 
+            else { 
+                /* special case -- power of FLT_RADIX to be */ 
+                /* rounded down... */ 
+ 
+                if (aadj < 2./FLT_RADIX) 
+                    aadj = 1./FLT_RADIX; 
+                else 
+                    aadj *= 0.5; 
+                aadj1 = -aadj; 
+            } 
+        } 
+        else { 
+            aadj *= 0.5; 
+            aadj1 = dsign ? aadj : -aadj; 
+            if (Flt_Rounds == 0) 
+                aadj1 += 0.5; 
+        } 
+        y = word0(&rv) & Exp_mask; 
+ 
+        /* Check for overflow */ 
+ 
+        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { 
+            dval(&rv0) = dval(&rv); 
+            word0(&rv) -= P*Exp_msk1; 
+            adj.d = aadj1 * ulp(&rv); 
+            dval(&rv) += adj.d; 
+            if ((word0(&rv) & Exp_mask) >= 
+                Exp_msk1*(DBL_MAX_EXP+Bias-P)) { 
+                if (word0(&rv0) == Big0 && word1(&rv0) == Big1) { 
+                    goto ovfl; 
+                } 
+                word0(&rv) = Big0; 
+                word1(&rv) = Big1; 
+                goto cont; 
+            } 
+            else 
+                word0(&rv) += P*Exp_msk1; 
+        } 
+        else { 
+            if (bc.scale && y <= 2*P*Exp_msk1) { 
+                if (aadj <= 0x7fffffff) { 
+                    if ((z = (ULong)aadj) <= 0) 
+                        z = 1; 
+                    aadj = z; 
+                    aadj1 = dsign ? aadj : -aadj; 
+                } 
+                dval(&aadj2) = aadj1; 
+                word0(&aadj2) += (2*P+1)*Exp_msk1 - y; 
+                aadj1 = dval(&aadj2); 
+            } 
+            adj.d = aadj1 * ulp(&rv); 
+            dval(&rv) += adj.d; 
+        } 
+        z = word0(&rv) & Exp_mask; 
+        if (bc.nd == nd) { 
+            if (!bc.scale) 
+                if (y == z) { 
+                    /* Can we stop now? */ 
+                    L = (Long)aadj; 
+                    aadj -= L; 
+                    /* The tolerances below are conservative. */ 
+                    if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { 
+                        if (aadj < .4999999 || aadj > .5000001) 
+                            break; 
+                    } 
+                    else if (aadj < .4999999/FLT_RADIX) 
+                        break; 
+                } 
+        } 
+      cont: 
         Bfree(bb); bb = NULL;
         Bfree(bd); bd = NULL;
         Bfree(bs); bs = NULL;
         Bfree(delta); delta = NULL;
-    }
-    if (bc.nd > nd) {
-        error = bigcomp(&rv, s0, &bc);
-        if (error)
-            goto failed_malloc;
-    }
-
-    if (bc.scale) {
-        word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
-        word1(&rv0) = 0;
-        dval(&rv) *= dval(&rv0);
-    }
-
-  ret:
+    } 
+    if (bc.nd > nd) { 
+        error = bigcomp(&rv, s0, &bc); 
+        if (error) 
+            goto failed_malloc; 
+    } 
+ 
+    if (bc.scale) { 
+        word0(&rv0) = Exp_1 - 2*P*Exp_msk1; 
+        word1(&rv0) = 0; 
+        dval(&rv) *= dval(&rv0); 
+    } 
+ 
+  ret: 
     result = sign ? -dval(&rv) : dval(&rv);
     goto done;
-
-  parse_error:
+ 
+  parse_error: 
     result = 0.0;
     goto done;
-
-  failed_malloc:
-    errno = ENOMEM;
+ 
+  failed_malloc: 
+    errno = ENOMEM; 
     result = -1.0;
     goto done;
-
-  undfl:
+ 
+  undfl: 
     result = sign ? -0.0 : 0.0;
     goto done;
-
-  ovfl:
-    errno = ERANGE;
-    /* Can't trust HUGE_VAL */
-    word0(&rv) = Exp_mask;
-    word1(&rv) = 0;
+ 
+  ovfl: 
+    errno = ERANGE; 
+    /* Can't trust HUGE_VAL */ 
+    word0(&rv) = Exp_mask; 
+    word1(&rv) = 0; 
     result = sign ? -dval(&rv) : dval(&rv);
     goto done;
-
+ 
   done:
     Bfree(bb);
     Bfree(bd);
@@ -2157,415 +2157,415 @@ _Py_dg_strtod(const char *s00, char **se)
     Bfree(delta);
     return result;
 
-}
-
-static char *
-rv_alloc(int i)
-{
-    int j, k, *r;
-
-    j = sizeof(ULong);
-    for(k = 0;
-        sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
-        j <<= 1)
-        k++;
-    r = (int*)Balloc(k);
-    if (r == NULL)
-        return NULL;
-    *r = k;
-    return (char *)(r+1);
-}
-
-static char *
-nrv_alloc(const char *s, char **rve, int n)
-{
-    char *rv, *t;
-
-    rv = rv_alloc(n);
-    if (rv == NULL)
-        return NULL;
-    t = rv;
-    while((*t = *s++)) t++;
-    if (rve)
-        *rve = t;
-    return rv;
-}
-
-/* freedtoa(s) must be used to free values s returned by dtoa
- * when MULTIPLE_THREADS is #defined.  It should be used in all cases,
- * but for consistency with earlier versions of dtoa, it is optional
- * when MULTIPLE_THREADS is not defined.
- */
-
-void
-_Py_dg_freedtoa(char *s)
-{
-    Bigint *b = (Bigint *)((int *)s - 1);
-    b->maxwds = 1 << (b->k = *(int*)b);
-    Bfree(b);
-}
-
-/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
- *
- * Inspired by "How to Print Floating-Point Numbers Accurately" by
- * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
- *
- * Modifications:
- *      1. Rather than iterating, we use a simple numeric overestimate
- *         to determine k = floor(log10(d)).  We scale relevant
- *         quantities using O(log2(k)) rather than O(k) multiplications.
- *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
- *         try to generate digits strictly left to right.  Instead, we
- *         compute with fewer bits and propagate the carry if necessary
- *         when rounding the final digit up.  This is often faster.
- *      3. Under the assumption that input will be rounded nearest,
- *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
- *         That is, we allow equality in stopping tests when the
- *         round-nearest rule will give the same floating-point value
- *         as would satisfaction of the stopping test with strict
- *         inequality.
- *      4. We remove common factors of powers of 2 from relevant
- *         quantities.
- *      5. When converting floating-point integers less than 1e16,
- *         we use floating-point arithmetic rather than resorting
- *         to multiple-precision integers.
- *      6. When asked to produce fewer than 15 digits, we first try
- *         to get by with floating-point arithmetic; we resort to
- *         multiple-precision integer arithmetic only if we cannot
- *         guarantee that the floating-point calculation has given
- *         the correctly rounded result.  For k requested digits and
- *         "uniformly" distributed input, the probability is
- *         something like 10^(k-15) that we must resort to the Long
- *         calculation.
- */
-
-/* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory
-   leakage, a successful call to _Py_dg_dtoa should always be matched by a
-   call to _Py_dg_freedtoa. */
-
-char *
-_Py_dg_dtoa(double dd, int mode, int ndigits,
-            int *decpt, int *sign, char **rve)
-{
-    /*  Arguments ndigits, decpt, sign are similar to those
-        of ecvt and fcvt; trailing zeros are suppressed from
-        the returned string.  If not null, *rve is set to point
-        to the end of the return value.  If d is +-Infinity or NaN,
-        then *decpt is set to 9999.
-
-        mode:
-        0 ==> shortest string that yields d when read in
-        and rounded to nearest.
-        1 ==> like 0, but with Steele & White stopping rule;
-        e.g. with IEEE P754 arithmetic , mode 0 gives
-        1e23 whereas mode 1 gives 9.999999999999999e22.
-        2 ==> max(1,ndigits) significant digits.  This gives a
-        return value similar to that of ecvt, except
-        that trailing zeros are suppressed.
-        3 ==> through ndigits past the decimal point.  This
-        gives a return value similar to that from fcvt,
-        except that trailing zeros are suppressed, and
-        ndigits can be negative.
-        4,5 ==> similar to 2 and 3, respectively, but (in
-        round-nearest mode) with the tests of mode 0 to
-        possibly return a shorter string that rounds to d.
-        With IEEE arithmetic and compilation with
-        -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
-        as modes 2 and 3 when FLT_ROUNDS != 1.
-        6-9 ==> Debugging modes similar to mode - 4:  don't try
-        fast floating-point estimate (if applicable).
-
-        Values of mode other than 0-9 are treated as mode 0.
-
-        Sufficient space is allocated to the return value
-        to hold the suppressed trailing zeros.
-    */
-
-    int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
-        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
-        spec_case, try_quick;
-    Long L;
-    int denorm;
-    ULong x;
-    Bigint *b, *b1, *delta, *mlo, *mhi, *S;
-    U d2, eps, u;
-    double ds;
-    char *s, *s0;
-
-    /* set pointers to NULL, to silence gcc compiler warnings and make
-       cleanup easier on error */
-    mlo = mhi = S = 0;
-    s0 = 0;
-
-    u.d = dd;
-    if (word0(&u) & Sign_bit) {
-        /* set sign for everything, including 0's and NaNs */
-        *sign = 1;
-        word0(&u) &= ~Sign_bit; /* clear sign bit */
-    }
-    else
-        *sign = 0;
-
-    /* quick return for Infinities, NaNs and zeros */
-    if ((word0(&u) & Exp_mask) == Exp_mask)
-    {
-        /* Infinity or NaN */
-        *decpt = 9999;
-        if (!word1(&u) && !(word0(&u) & 0xfffff))
-            return nrv_alloc("Infinity", rve, 8);
-        return nrv_alloc("NaN", rve, 3);
-    }
-    if (!dval(&u)) {
-        *decpt = 1;
-        return nrv_alloc("0", rve, 1);
-    }
-
-    /* compute k = floor(log10(d)).  The computation may leave k
-       one too large, but should never leave k too small. */
-    b = d2b(&u, &be, &bbits);
-    if (b == NULL)
-        goto failed_malloc;
-    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
-        dval(&d2) = dval(&u);
-        word0(&d2) &= Frac_mask1;
-        word0(&d2) |= Exp_11;
-
-        /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5
-         * log10(x)      =  log(x) / log(10)
-         *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
-         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
-         *
-         * This suggests computing an approximation k to log10(d) by
-         *
-         * k = (i - Bias)*0.301029995663981
-         *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
-         *
-         * We want k to be too large rather than too small.
-         * The error in the first-order Taylor series approximation
-         * is in our favor, so we just round up the constant enough
-         * to compensate for any error in the multiplication of
-         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
-         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
-         * adding 1e-13 to the constant term more than suffices.
-         * Hence we adjust the constant term to 0.1760912590558.
-         * (We could get a more accurate k by invoking log10,
-         *  but this is probably not worthwhile.)
-         */
-
-        i -= Bias;
-        denorm = 0;
-    }
-    else {
-        /* d is denormalized */
-
-        i = bbits + be + (Bias + (P-1) - 1);
-        x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
-            : word1(&u) << (32 - i);
-        dval(&d2) = x;
-        word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
-        i -= (Bias + (P-1) - 1) + 1;
-        denorm = 1;
-    }
-    ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
-        i*0.301029995663981;
-    k = (int)ds;
-    if (ds < 0. && ds != k)
-        k--;    /* want k = floor(ds) */
-    k_check = 1;
-    if (k >= 0 && k <= Ten_pmax) {
-        if (dval(&u) < tens[k])
-            k--;
-        k_check = 0;
-    }
-    j = bbits - i - 1;
-    if (j >= 0) {
-        b2 = 0;
-        s2 = j;
-    }
-    else {
-        b2 = -j;
-        s2 = 0;
-    }
-    if (k >= 0) {
-        b5 = 0;
-        s5 = k;
-        s2 += k;
-    }
-    else {
-        b2 -= k;
-        b5 = -k;
-        s5 = 0;
-    }
-    if (mode < 0 || mode > 9)
-        mode = 0;
-
-    try_quick = 1;
-
-    if (mode > 5) {
-        mode -= 4;
-        try_quick = 0;
-    }
-    leftright = 1;
-    ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */
-    /* silence erroneous "gcc -Wall" warning. */
-    switch(mode) {
-    case 0:
-    case 1:
-        i = 18;
-        ndigits = 0;
-        break;
-    case 2:
-        leftright = 0;
-        /* fall through */
-    case 4:
-        if (ndigits <= 0)
-            ndigits = 1;
-        ilim = ilim1 = i = ndigits;
-        break;
-    case 3:
-        leftright = 0;
-        /* fall through */
-    case 5:
-        i = ndigits + k + 1;
-        ilim = i;
-        ilim1 = i - 1;
-        if (i <= 0)
-            i = 1;
-    }
-    s0 = rv_alloc(i);
-    if (s0 == NULL)
-        goto failed_malloc;
-    s = s0;
-
-
-    if (ilim >= 0 && ilim <= Quick_max && try_quick) {
-
-        /* Try to get by with floating-point arithmetic. */
-
-        i = 0;
-        dval(&d2) = dval(&u);
-        k0 = k;
-        ilim0 = ilim;
-        ieps = 2; /* conservative */
-        if (k > 0) {
-            ds = tens[k&0xf];
-            j = k >> 4;
-            if (j & Bletch) {
-                /* prevent overflows */
-                j &= Bletch - 1;
-                dval(&u) /= bigtens[n_bigtens-1];
-                ieps++;
-            }
-            for(; j; j >>= 1, i++)
-                if (j & 1) {
-                    ieps++;
-                    ds *= bigtens[i];
-                }
-            dval(&u) /= ds;
-        }
-        else if ((j1 = -k)) {
-            dval(&u) *= tens[j1 & 0xf];
-            for(j = j1 >> 4; j; j >>= 1, i++)
-                if (j & 1) {
-                    ieps++;
-                    dval(&u) *= bigtens[i];
-                }
-        }
-        if (k_check && dval(&u) < 1. && ilim > 0) {
-            if (ilim1 <= 0)
-                goto fast_failed;
-            ilim = ilim1;
-            k--;
-            dval(&u) *= 10.;
-            ieps++;
-        }
-        dval(&eps) = ieps*dval(&u) + 7.;
-        word0(&eps) -= (P-1)*Exp_msk1;
-        if (ilim == 0) {
-            S = mhi = 0;
-            dval(&u) -= 5.;
-            if (dval(&u) > dval(&eps))
-                goto one_digit;
-            if (dval(&u) < -dval(&eps))
-                goto no_digits;
-            goto fast_failed;
-        }
-        if (leftright) {
-            /* Use Steele & White method of only
-             * generating digits needed.
-             */
-            dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
-            for(i = 0;;) {
-                L = (Long)dval(&u);
-                dval(&u) -= L;
-                *s++ = '0' + (int)L;
-                if (dval(&u) < dval(&eps))
-                    goto ret1;
-                if (1. - dval(&u) < dval(&eps))
-                    goto bump_up;
-                if (++i >= ilim)
-                    break;
-                dval(&eps) *= 10.;
-                dval(&u) *= 10.;
-            }
-        }
-        else {
-            /* Generate ilim digits, then fix them up. */
-            dval(&eps) *= tens[ilim-1];
-            for(i = 1;; i++, dval(&u) *= 10.) {
-                L = (Long)(dval(&u));
-                if (!(dval(&u) -= L))
-                    ilim = i;
-                *s++ = '0' + (int)L;
-                if (i == ilim) {
-                    if (dval(&u) > 0.5 + dval(&eps))
-                        goto bump_up;
-                    else if (dval(&u) < 0.5 - dval(&eps)) {
-                        while(*--s == '0');
-                        s++;
-                        goto ret1;
-                    }
-                    break;
-                }
-            }
-        }
-      fast_failed:
-        s = s0;
-        dval(&u) = dval(&d2);
-        k = k0;
-        ilim = ilim0;
-    }
-
-    /* Do we have a "small" integer? */
-
-    if (be >= 0 && k <= Int_max) {
-        /* Yes. */
-        ds = tens[k];
-        if (ndigits < 0 && ilim <= 0) {
-            S = mhi = 0;
-            if (ilim < 0 || dval(&u) <= 5*ds)
-                goto no_digits;
-            goto one_digit;
-        }
-        for(i = 1;; i++, dval(&u) *= 10.) {
-            L = (Long)(dval(&u) / ds);
-            dval(&u) -= L*ds;
-            *s++ = '0' + (int)L;
-            if (!dval(&u)) {
-                break;
-            }
-            if (i == ilim) {
-                dval(&u) += dval(&u);
-                if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
-                  bump_up:
-                    while(*--s == '9')
-                        if (s == s0) {
-                            k++;
-                            *s = '0';
-                            break;
-                        }
-                    ++*s++;
-                }
+} 
+ 
+static char * 
+rv_alloc(int i) 
+{ 
+    int j, k, *r; 
+ 
+    j = sizeof(ULong); 
+    for(k = 0; 
+        sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i; 
+        j <<= 1) 
+        k++; 
+    r = (int*)Balloc(k); 
+    if (r == NULL) 
+        return NULL; 
+    *r = k; 
+    return (char *)(r+1); 
+} 
+ 
+static char * 
+nrv_alloc(const char *s, char **rve, int n) 
+{ 
+    char *rv, *t; 
+ 
+    rv = rv_alloc(n); 
+    if (rv == NULL) 
+        return NULL; 
+    t = rv; 
+    while((*t = *s++)) t++; 
+    if (rve) 
+        *rve = t; 
+    return rv; 
+} 
+ 
+/* freedtoa(s) must be used to free values s returned by dtoa 
+ * when MULTIPLE_THREADS is #defined.  It should be used in all cases, 
+ * but for consistency with earlier versions of dtoa, it is optional 
+ * when MULTIPLE_THREADS is not defined. 
+ */ 
+ 
+void 
+_Py_dg_freedtoa(char *s) 
+{ 
+    Bigint *b = (Bigint *)((int *)s - 1); 
+    b->maxwds = 1 << (b->k = *(int*)b); 
+    Bfree(b); 
+} 
+ 
+/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. 
+ * 
+ * Inspired by "How to Print Floating-Point Numbers Accurately" by 
+ * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. 
+ * 
+ * Modifications: 
+ *      1. Rather than iterating, we use a simple numeric overestimate 
+ *         to determine k = floor(log10(d)).  We scale relevant 
+ *         quantities using O(log2(k)) rather than O(k) multiplications. 
+ *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't 
+ *         try to generate digits strictly left to right.  Instead, we 
+ *         compute with fewer bits and propagate the carry if necessary 
+ *         when rounding the final digit up.  This is often faster. 
+ *      3. Under the assumption that input will be rounded nearest, 
+ *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. 
+ *         That is, we allow equality in stopping tests when the 
+ *         round-nearest rule will give the same floating-point value 
+ *         as would satisfaction of the stopping test with strict 
+ *         inequality. 
+ *      4. We remove common factors of powers of 2 from relevant 
+ *         quantities. 
+ *      5. When converting floating-point integers less than 1e16, 
+ *         we use floating-point arithmetic rather than resorting 
+ *         to multiple-precision integers. 
+ *      6. When asked to produce fewer than 15 digits, we first try 
+ *         to get by with floating-point arithmetic; we resort to 
+ *         multiple-precision integer arithmetic only if we cannot 
+ *         guarantee that the floating-point calculation has given 
+ *         the correctly rounded result.  For k requested digits and 
+ *         "uniformly" distributed input, the probability is 
+ *         something like 10^(k-15) that we must resort to the Long 
+ *         calculation. 
+ */ 
+ 
+/* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory 
+   leakage, a successful call to _Py_dg_dtoa should always be matched by a 
+   call to _Py_dg_freedtoa. */ 
+ 
+char * 
+_Py_dg_dtoa(double dd, int mode, int ndigits, 
+            int *decpt, int *sign, char **rve) 
+{ 
+    /*  Arguments ndigits, decpt, sign are similar to those 
+        of ecvt and fcvt; trailing zeros are suppressed from 
+        the returned string.  If not null, *rve is set to point 
+        to the end of the return value.  If d is +-Infinity or NaN, 
+        then *decpt is set to 9999. 
+ 
+        mode: 
+        0 ==> shortest string that yields d when read in 
+        and rounded to nearest. 
+        1 ==> like 0, but with Steele & White stopping rule; 
+        e.g. with IEEE P754 arithmetic , mode 0 gives 
+        1e23 whereas mode 1 gives 9.999999999999999e22. 
+        2 ==> max(1,ndigits) significant digits.  This gives a 
+        return value similar to that of ecvt, except 
+        that trailing zeros are suppressed. 
+        3 ==> through ndigits past the decimal point.  This 
+        gives a return value similar to that from fcvt, 
+        except that trailing zeros are suppressed, and 
+        ndigits can be negative. 
+        4,5 ==> similar to 2 and 3, respectively, but (in 
+        round-nearest mode) with the tests of mode 0 to 
+        possibly return a shorter string that rounds to d. 
+        With IEEE arithmetic and compilation with 
+        -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same 
+        as modes 2 and 3 when FLT_ROUNDS != 1. 
+        6-9 ==> Debugging modes similar to mode - 4:  don't try 
+        fast floating-point estimate (if applicable). 
+ 
+        Values of mode other than 0-9 are treated as mode 0. 
+ 
+        Sufficient space is allocated to the return value 
+        to hold the suppressed trailing zeros. 
+    */ 
+ 
+    int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, 
+        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, 
+        spec_case, try_quick; 
+    Long L; 
+    int denorm; 
+    ULong x; 
+    Bigint *b, *b1, *delta, *mlo, *mhi, *S; 
+    U d2, eps, u; 
+    double ds; 
+    char *s, *s0; 
+ 
+    /* set pointers to NULL, to silence gcc compiler warnings and make 
+       cleanup easier on error */ 
+    mlo = mhi = S = 0; 
+    s0 = 0; 
+ 
+    u.d = dd; 
+    if (word0(&u) & Sign_bit) { 
+        /* set sign for everything, including 0's and NaNs */ 
+        *sign = 1; 
+        word0(&u) &= ~Sign_bit; /* clear sign bit */ 
+    } 
+    else 
+        *sign = 0; 
+ 
+    /* quick return for Infinities, NaNs and zeros */ 
+    if ((word0(&u) & Exp_mask) == Exp_mask) 
+    { 
+        /* Infinity or NaN */ 
+        *decpt = 9999; 
+        if (!word1(&u) && !(word0(&u) & 0xfffff)) 
+            return nrv_alloc("Infinity", rve, 8); 
+        return nrv_alloc("NaN", rve, 3); 
+    } 
+    if (!dval(&u)) { 
+        *decpt = 1; 
+        return nrv_alloc("0", rve, 1); 
+    } 
+ 
+    /* compute k = floor(log10(d)).  The computation may leave k 
+       one too large, but should never leave k too small. */ 
+    b = d2b(&u, &be, &bbits); 
+    if (b == NULL) 
+        goto failed_malloc; 
+    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { 
+        dval(&d2) = dval(&u); 
+        word0(&d2) &= Frac_mask1; 
+        word0(&d2) |= Exp_11; 
+ 
+        /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5 
+         * log10(x)      =  log(x) / log(10) 
+         *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) 
+         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) 
+         * 
+         * This suggests computing an approximation k to log10(d) by 
+         * 
+         * k = (i - Bias)*0.301029995663981 
+         *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); 
+         * 
+         * We want k to be too large rather than too small. 
+         * The error in the first-order Taylor series approximation 
+         * is in our favor, so we just round up the constant enough 
+         * to compensate for any error in the multiplication of 
+         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, 
+         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, 
+         * adding 1e-13 to the constant term more than suffices. 
+         * Hence we adjust the constant term to 0.1760912590558. 
+         * (We could get a more accurate k by invoking log10, 
+         *  but this is probably not worthwhile.) 
+         */ 
+ 
+        i -= Bias; 
+        denorm = 0; 
+    } 
+    else { 
+        /* d is denormalized */ 
+ 
+        i = bbits + be + (Bias + (P-1) - 1); 
+        x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) 
+            : word1(&u) << (32 - i); 
+        dval(&d2) = x; 
+        word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ 
+        i -= (Bias + (P-1) - 1) + 1; 
+        denorm = 1; 
+    } 
+    ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + 
+        i*0.301029995663981; 
+    k = (int)ds; 
+    if (ds < 0. && ds != k) 
+        k--;    /* want k = floor(ds) */ 
+    k_check = 1; 
+    if (k >= 0 && k <= Ten_pmax) { 
+        if (dval(&u) < tens[k]) 
+            k--; 
+        k_check = 0; 
+    } 
+    j = bbits - i - 1; 
+    if (j >= 0) { 
+        b2 = 0; 
+        s2 = j; 
+    } 
+    else { 
+        b2 = -j; 
+        s2 = 0; 
+    } 
+    if (k >= 0) { 
+        b5 = 0; 
+        s5 = k; 
+        s2 += k; 
+    } 
+    else { 
+        b2 -= k; 
+        b5 = -k; 
+        s5 = 0; 
+    } 
+    if (mode < 0 || mode > 9) 
+        mode = 0; 
+ 
+    try_quick = 1; 
+ 
+    if (mode > 5) { 
+        mode -= 4; 
+        try_quick = 0; 
+    } 
+    leftright = 1; 
+    ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */ 
+    /* silence erroneous "gcc -Wall" warning. */ 
+    switch(mode) { 
+    case 0: 
+    case 1: 
+        i = 18; 
+        ndigits = 0; 
+        break; 
+    case 2: 
+        leftright = 0; 
+        /* fall through */ 
+    case 4: 
+        if (ndigits <= 0) 
+            ndigits = 1; 
+        ilim = ilim1 = i = ndigits; 
+        break; 
+    case 3: 
+        leftright = 0; 
+        /* fall through */ 
+    case 5: 
+        i = ndigits + k + 1; 
+        ilim = i; 
+        ilim1 = i - 1; 
+        if (i <= 0) 
+            i = 1; 
+    } 
+    s0 = rv_alloc(i); 
+    if (s0 == NULL) 
+        goto failed_malloc; 
+    s = s0; 
+ 
+ 
+    if (ilim >= 0 && ilim <= Quick_max && try_quick) { 
+ 
+        /* Try to get by with floating-point arithmetic. */ 
+ 
+        i = 0; 
+        dval(&d2) = dval(&u); 
+        k0 = k; 
+        ilim0 = ilim; 
+        ieps = 2; /* conservative */ 
+        if (k > 0) { 
+            ds = tens[k&0xf]; 
+            j = k >> 4; 
+            if (j & Bletch) { 
+                /* prevent overflows */ 
+                j &= Bletch - 1; 
+                dval(&u) /= bigtens[n_bigtens-1]; 
+                ieps++; 
+            } 
+            for(; j; j >>= 1, i++) 
+                if (j & 1) { 
+                    ieps++; 
+                    ds *= bigtens[i]; 
+                } 
+            dval(&u) /= ds; 
+        } 
+        else if ((j1 = -k)) { 
+            dval(&u) *= tens[j1 & 0xf]; 
+            for(j = j1 >> 4; j; j >>= 1, i++) 
+                if (j & 1) { 
+                    ieps++; 
+                    dval(&u) *= bigtens[i]; 
+                } 
+        } 
+        if (k_check && dval(&u) < 1. && ilim > 0) { 
+            if (ilim1 <= 0) 
+                goto fast_failed; 
+            ilim = ilim1; 
+            k--; 
+            dval(&u) *= 10.; 
+            ieps++; 
+        } 
+        dval(&eps) = ieps*dval(&u) + 7.; 
+        word0(&eps) -= (P-1)*Exp_msk1; 
+        if (ilim == 0) { 
+            S = mhi = 0; 
+            dval(&u) -= 5.; 
+            if (dval(&u) > dval(&eps)) 
+                goto one_digit; 
+            if (dval(&u) < -dval(&eps)) 
+                goto no_digits; 
+            goto fast_failed; 
+        } 
+        if (leftright) { 
+            /* Use Steele & White method of only 
+             * generating digits needed. 
+             */ 
+            dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); 
+            for(i = 0;;) { 
+                L = (Long)dval(&u); 
+                dval(&u) -= L; 
+                *s++ = '0' + (int)L; 
+                if (dval(&u) < dval(&eps)) 
+                    goto ret1; 
+                if (1. - dval(&u) < dval(&eps)) 
+                    goto bump_up; 
+                if (++i >= ilim) 
+                    break; 
+                dval(&eps) *= 10.; 
+                dval(&u) *= 10.; 
+            } 
+        } 
+        else { 
+            /* Generate ilim digits, then fix them up. */ 
+            dval(&eps) *= tens[ilim-1]; 
+            for(i = 1;; i++, dval(&u) *= 10.) { 
+                L = (Long)(dval(&u)); 
+                if (!(dval(&u) -= L)) 
+                    ilim = i; 
+                *s++ = '0' + (int)L; 
+                if (i == ilim) { 
+                    if (dval(&u) > 0.5 + dval(&eps)) 
+                        goto bump_up; 
+                    else if (dval(&u) < 0.5 - dval(&eps)) { 
+                        while(*--s == '0'); 
+                        s++; 
+                        goto ret1; 
+                    } 
+                    break; 
+                } 
+            } 
+        } 
+      fast_failed: 
+        s = s0; 
+        dval(&u) = dval(&d2); 
+        k = k0; 
+        ilim = ilim0; 
+    } 
+ 
+    /* Do we have a "small" integer? */ 
+ 
+    if (be >= 0 && k <= Int_max) { 
+        /* Yes. */ 
+        ds = tens[k]; 
+        if (ndigits < 0 && ilim <= 0) { 
+            S = mhi = 0; 
+            if (ilim < 0 || dval(&u) <= 5*ds) 
+                goto no_digits; 
+            goto one_digit; 
+        } 
+        for(i = 1;; i++, dval(&u) *= 10.) { 
+            L = (Long)(dval(&u) / ds); 
+            dval(&u) -= L*ds; 
+            *s++ = '0' + (int)L; 
+            if (!dval(&u)) { 
+                break; 
+            } 
+            if (i == ilim) { 
+                dval(&u) += dval(&u); 
+                if (dval(&u) > ds || (dval(&u) == ds && L & 1)) { 
+                  bump_up: 
+                    while(*--s == '9') 
+                        if (s == s0) { 
+                            k++; 
+                            *s = '0'; 
+                            break; 
+                        } 
+                    ++*s++; 
+                } 
                 else {
                     /* Strip trailing zeros. This branch was missing from the
                        original dtoa.c, leading to surplus trailing zeros in
@@ -2574,286 +2574,286 @@ _Py_dg_dtoa(double dd, int mode, int ndigits,
                         --s;
                     }
                 }
-                break;
-            }
-        }
-        goto ret1;
-    }
-
-    m2 = b2;
-    m5 = b5;
-    if (leftright) {
-        i =
-            denorm ? be + (Bias + (P-1) - 1 + 1) :
-            1 + P - bbits;
-        b2 += i;
-        s2 += i;
-        mhi = i2b(1);
-        if (mhi == NULL)
-            goto failed_malloc;
-    }
-    if (m2 > 0 && s2 > 0) {
-        i = m2 < s2 ? m2 : s2;
-        b2 -= i;
-        m2 -= i;
-        s2 -= i;
-    }
-    if (b5 > 0) {
-        if (leftright) {
-            if (m5 > 0) {
-                mhi = pow5mult(mhi, m5);
-                if (mhi == NULL)
-                    goto failed_malloc;
-                b1 = mult(mhi, b);
-                Bfree(b);
-                b = b1;
-                if (b == NULL)
-                    goto failed_malloc;
-            }
-            if ((j = b5 - m5)) {
-                b = pow5mult(b, j);
-                if (b == NULL)
-                    goto failed_malloc;
-            }
-        }
-        else {
-            b = pow5mult(b, b5);
-            if (b == NULL)
-                goto failed_malloc;
-        }
-    }
-    S = i2b(1);
-    if (S == NULL)
-        goto failed_malloc;
-    if (s5 > 0) {
-        S = pow5mult(S, s5);
-        if (S == NULL)
-            goto failed_malloc;
-    }
-
-    /* Check for special case that d is a normalized power of 2. */
-
-    spec_case = 0;
-    if ((mode < 2 || leftright)
-        ) {
-        if (!word1(&u) && !(word0(&u) & Bndry_mask)
-            && word0(&u) & (Exp_mask & ~Exp_msk1)
-            ) {
-            /* The special case */
-            b2 += Log2P;
-            s2 += Log2P;
-            spec_case = 1;
-        }
-    }
-
-    /* Arrange for convenient computation of quotients:
-     * shift left if necessary so divisor has 4 leading 0 bits.
-     *
-     * Perhaps we should just compute leading 28 bits of S once
-     * and for all and pass them and a shift to quorem, so it
-     * can do shifts and ors to compute the numerator for q.
-     */
-#define iInc 28
-    i = dshift(S, s2);
-    b2 += i;
-    m2 += i;
-    s2 += i;
-    if (b2 > 0) {
-        b = lshift(b, b2);
-        if (b == NULL)
-            goto failed_malloc;
-    }
-    if (s2 > 0) {
-        S = lshift(S, s2);
-        if (S == NULL)
-            goto failed_malloc;
-    }
-    if (k_check) {
-        if (cmp(b,S) < 0) {
-            k--;
-            b = multadd(b, 10, 0);      /* we botched the k estimate */
-            if (b == NULL)
-                goto failed_malloc;
-            if (leftright) {
-                mhi = multadd(mhi, 10, 0);
-                if (mhi == NULL)
-                    goto failed_malloc;
-            }
-            ilim = ilim1;
-        }
-    }
-    if (ilim <= 0 && (mode == 3 || mode == 5)) {
-        if (ilim < 0) {
-            /* no digits, fcvt style */
-          no_digits:
-            k = -1 - ndigits;
-            goto ret;
-        }
-        else {
-            S = multadd(S, 5, 0);
-            if (S == NULL)
-                goto failed_malloc;
-            if (cmp(b, S) <= 0)
-                goto no_digits;
-        }
-      one_digit:
-        *s++ = '1';
-        k++;
-        goto ret;
-    }
-    if (leftright) {
-        if (m2 > 0) {
-            mhi = lshift(mhi, m2);
-            if (mhi == NULL)
-                goto failed_malloc;
-        }
-
-        /* Compute mlo -- check for special case
-         * that d is a normalized power of 2.
-         */
-
-        mlo = mhi;
-        if (spec_case) {
-            mhi = Balloc(mhi->k);
-            if (mhi == NULL)
-                goto failed_malloc;
-            Bcopy(mhi, mlo);
-            mhi = lshift(mhi, Log2P);
-            if (mhi == NULL)
-                goto failed_malloc;
-        }
-
-        for(i = 1;;i++) {
-            dig = quorem(b,S) + '0';
-            /* Do we yet have the shortest decimal string
-             * that will round to d?
-             */
-            j = cmp(b, mlo);
-            delta = diff(S, mhi);
-            if (delta == NULL)
-                goto failed_malloc;
-            j1 = delta->sign ? 1 : cmp(b, delta);
-            Bfree(delta);
-            if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
-                ) {
-                if (dig == '9')
-                    goto round_9_up;
-                if (j > 0)
-                    dig++;
-                *s++ = dig;
-                goto ret;
-            }
-            if (j < 0 || (j == 0 && mode != 1
-                          && !(word1(&u) & 1)
-                    )) {
-                if (!b->x[0] && b->wds <= 1) {
-                    goto accept_dig;
-                }
-                if (j1 > 0) {
-                    b = lshift(b, 1);
-                    if (b == NULL)
-                        goto failed_malloc;
-                    j1 = cmp(b, S);
-                    if ((j1 > 0 || (j1 == 0 && dig & 1))
-                        && dig++ == '9')
-                        goto round_9_up;
-                }
-              accept_dig:
-                *s++ = dig;
-                goto ret;
-            }
-            if (j1 > 0) {
-                if (dig == '9') { /* possible if i == 1 */
-                  round_9_up:
-                    *s++ = '9';
-                    goto roundoff;
-                }
-                *s++ = dig + 1;
-                goto ret;
-            }
-            *s++ = dig;
-            if (i == ilim)
-                break;
-            b = multadd(b, 10, 0);
-            if (b == NULL)
-                goto failed_malloc;
-            if (mlo == mhi) {
-                mlo = mhi = multadd(mhi, 10, 0);
-                if (mlo == NULL)
-                    goto failed_malloc;
-            }
-            else {
-                mlo = multadd(mlo, 10, 0);
-                if (mlo == NULL)
-                    goto failed_malloc;
-                mhi = multadd(mhi, 10, 0);
-                if (mhi == NULL)
-                    goto failed_malloc;
-            }
-        }
-    }
-    else
-        for(i = 1;; i++) {
-            *s++ = dig = quorem(b,S) + '0';
-            if (!b->x[0] && b->wds <= 1) {
-                goto ret;
-            }
-            if (i >= ilim)
-                break;
-            b = multadd(b, 10, 0);
-            if (b == NULL)
-                goto failed_malloc;
-        }
-
-    /* Round off last digit */
-
-    b = lshift(b, 1);
-    if (b == NULL)
-        goto failed_malloc;
-    j = cmp(b, S);
-    if (j > 0 || (j == 0 && dig & 1)) {
-      roundoff:
-        while(*--s == '9')
-            if (s == s0) {
-                k++;
-                *s++ = '1';
-                goto ret;
-            }
-        ++*s++;
-    }
-    else {
-        while(*--s == '0');
-        s++;
-    }
-  ret:
-    Bfree(S);
-    if (mhi) {
-        if (mlo && mlo != mhi)
-            Bfree(mlo);
-        Bfree(mhi);
-    }
-  ret1:
-    Bfree(b);
-    *s = 0;
-    *decpt = k + 1;
-    if (rve)
-        *rve = s;
-    return s0;
-  failed_malloc:
-    if (S)
-        Bfree(S);
-    if (mlo && mlo != mhi)
-        Bfree(mlo);
-    if (mhi)
-        Bfree(mhi);
-    if (b)
-        Bfree(b);
-    if (s0)
-        _Py_dg_freedtoa(s0);
-    return NULL;
-}
-#ifdef __cplusplus
-}
-#endif
-
-#endif  /* PY_NO_SHORT_FLOAT_REPR */
+                break; 
+            } 
+        } 
+        goto ret1; 
+    } 
+ 
+    m2 = b2; 
+    m5 = b5; 
+    if (leftright) { 
+        i = 
+            denorm ? be + (Bias + (P-1) - 1 + 1) : 
+            1 + P - bbits; 
+        b2 += i; 
+        s2 += i; 
+        mhi = i2b(1); 
+        if (mhi == NULL) 
+            goto failed_malloc; 
+    } 
+    if (m2 > 0 && s2 > 0) { 
+        i = m2 < s2 ? m2 : s2; 
+        b2 -= i; 
+        m2 -= i; 
+        s2 -= i; 
+    } 
+    if (b5 > 0) { 
+        if (leftright) { 
+            if (m5 > 0) { 
+                mhi = pow5mult(mhi, m5); 
+                if (mhi == NULL) 
+                    goto failed_malloc; 
+                b1 = mult(mhi, b); 
+                Bfree(b); 
+                b = b1; 
+                if (b == NULL) 
+                    goto failed_malloc; 
+            } 
+            if ((j = b5 - m5)) { 
+                b = pow5mult(b, j); 
+                if (b == NULL) 
+                    goto failed_malloc; 
+            } 
+        } 
+        else { 
+            b = pow5mult(b, b5); 
+            if (b == NULL) 
+                goto failed_malloc; 
+        } 
+    } 
+    S = i2b(1); 
+    if (S == NULL) 
+        goto failed_malloc; 
+    if (s5 > 0) { 
+        S = pow5mult(S, s5); 
+        if (S == NULL) 
+            goto failed_malloc; 
+    } 
+ 
+    /* Check for special case that d is a normalized power of 2. */ 
+ 
+    spec_case = 0; 
+    if ((mode < 2 || leftright) 
+        ) { 
+        if (!word1(&u) && !(word0(&u) & Bndry_mask) 
+            && word0(&u) & (Exp_mask & ~Exp_msk1) 
+            ) { 
+            /* The special case */ 
+            b2 += Log2P; 
+            s2 += Log2P; 
+            spec_case = 1; 
+        } 
+    } 
+ 
+    /* Arrange for convenient computation of quotients: 
+     * shift left if necessary so divisor has 4 leading 0 bits. 
+     * 
+     * Perhaps we should just compute leading 28 bits of S once 
+     * and for all and pass them and a shift to quorem, so it 
+     * can do shifts and ors to compute the numerator for q. 
+     */ 
+#define iInc 28 
+    i = dshift(S, s2); 
+    b2 += i; 
+    m2 += i; 
+    s2 += i; 
+    if (b2 > 0) { 
+        b = lshift(b, b2); 
+        if (b == NULL) 
+            goto failed_malloc; 
+    } 
+    if (s2 > 0) { 
+        S = lshift(S, s2); 
+        if (S == NULL) 
+            goto failed_malloc; 
+    } 
+    if (k_check) { 
+        if (cmp(b,S) < 0) { 
+            k--; 
+            b = multadd(b, 10, 0);      /* we botched the k estimate */ 
+            if (b == NULL) 
+                goto failed_malloc; 
+            if (leftright) { 
+                mhi = multadd(mhi, 10, 0); 
+                if (mhi == NULL) 
+                    goto failed_malloc; 
+            } 
+            ilim = ilim1; 
+        } 
+    } 
+    if (ilim <= 0 && (mode == 3 || mode == 5)) { 
+        if (ilim < 0) { 
+            /* no digits, fcvt style */ 
+          no_digits: 
+            k = -1 - ndigits; 
+            goto ret; 
+        } 
+        else { 
+            S = multadd(S, 5, 0); 
+            if (S == NULL) 
+                goto failed_malloc; 
+            if (cmp(b, S) <= 0) 
+                goto no_digits; 
+        } 
+      one_digit: 
+        *s++ = '1'; 
+        k++; 
+        goto ret; 
+    } 
+    if (leftright) { 
+        if (m2 > 0) { 
+            mhi = lshift(mhi, m2); 
+            if (mhi == NULL) 
+                goto failed_malloc; 
+        } 
+ 
+        /* Compute mlo -- check for special case 
+         * that d is a normalized power of 2. 
+         */ 
+ 
+        mlo = mhi; 
+        if (spec_case) { 
+            mhi = Balloc(mhi->k); 
+            if (mhi == NULL) 
+                goto failed_malloc; 
+            Bcopy(mhi, mlo); 
+            mhi = lshift(mhi, Log2P); 
+            if (mhi == NULL) 
+                goto failed_malloc; 
+        } 
+ 
+        for(i = 1;;i++) { 
+            dig = quorem(b,S) + '0'; 
+            /* Do we yet have the shortest decimal string 
+             * that will round to d? 
+             */ 
+            j = cmp(b, mlo); 
+            delta = diff(S, mhi); 
+            if (delta == NULL) 
+                goto failed_malloc; 
+            j1 = delta->sign ? 1 : cmp(b, delta); 
+            Bfree(delta); 
+            if (j1 == 0 && mode != 1 && !(word1(&u) & 1) 
+                ) { 
+                if (dig == '9') 
+                    goto round_9_up; 
+                if (j > 0) 
+                    dig++; 
+                *s++ = dig; 
+                goto ret; 
+            } 
+            if (j < 0 || (j == 0 && mode != 1 
+                          && !(word1(&u) & 1) 
+                    )) { 
+                if (!b->x[0] && b->wds <= 1) { 
+                    goto accept_dig; 
+                } 
+                if (j1 > 0) { 
+                    b = lshift(b, 1); 
+                    if (b == NULL) 
+                        goto failed_malloc; 
+                    j1 = cmp(b, S); 
+                    if ((j1 > 0 || (j1 == 0 && dig & 1)) 
+                        && dig++ == '9') 
+                        goto round_9_up; 
+                } 
+              accept_dig: 
+                *s++ = dig; 
+                goto ret; 
+            } 
+            if (j1 > 0) { 
+                if (dig == '9') { /* possible if i == 1 */ 
+                  round_9_up: 
+                    *s++ = '9'; 
+                    goto roundoff; 
+                } 
+                *s++ = dig + 1; 
+                goto ret; 
+            } 
+            *s++ = dig; 
+            if (i == ilim) 
+                break; 
+            b = multadd(b, 10, 0); 
+            if (b == NULL) 
+                goto failed_malloc; 
+            if (mlo == mhi) { 
+                mlo = mhi = multadd(mhi, 10, 0); 
+                if (mlo == NULL) 
+                    goto failed_malloc; 
+            } 
+            else { 
+                mlo = multadd(mlo, 10, 0); 
+                if (mlo == NULL) 
+                    goto failed_malloc; 
+                mhi = multadd(mhi, 10, 0); 
+                if (mhi == NULL) 
+                    goto failed_malloc; 
+            } 
+        } 
+    } 
+    else 
+        for(i = 1;; i++) { 
+            *s++ = dig = quorem(b,S) + '0'; 
+            if (!b->x[0] && b->wds <= 1) { 
+                goto ret; 
+            } 
+            if (i >= ilim) 
+                break; 
+            b = multadd(b, 10, 0); 
+            if (b == NULL) 
+                goto failed_malloc; 
+        } 
+ 
+    /* Round off last digit */ 
+ 
+    b = lshift(b, 1); 
+    if (b == NULL) 
+        goto failed_malloc; 
+    j = cmp(b, S); 
+    if (j > 0 || (j == 0 && dig & 1)) { 
+      roundoff: 
+        while(*--s == '9') 
+            if (s == s0) { 
+                k++; 
+                *s++ = '1'; 
+                goto ret; 
+            } 
+        ++*s++; 
+    } 
+    else { 
+        while(*--s == '0'); 
+        s++; 
+    } 
+  ret: 
+    Bfree(S); 
+    if (mhi) { 
+        if (mlo && mlo != mhi) 
+            Bfree(mlo); 
+        Bfree(mhi); 
+    } 
+  ret1: 
+    Bfree(b); 
+    *s = 0; 
+    *decpt = k + 1; 
+    if (rve) 
+        *rve = s; 
+    return s0; 
+  failed_malloc: 
+    if (S) 
+        Bfree(S); 
+    if (mlo && mlo != mhi) 
+        Bfree(mlo); 
+    if (mhi) 
+        Bfree(mhi); 
+    if (b) 
+        Bfree(b); 
+    if (s0) 
+        _Py_dg_freedtoa(s0); 
+    return NULL; 
+} 
+#ifdef __cplusplus 
+} 
+#endif 
+ 
+#endif  /* PY_NO_SHORT_FLOAT_REPR */ 
-- 
cgit v1.2.3