From 1ac13c847b5358faba44dbb638a828e24369467b Mon Sep 17 00:00:00 2001
From: AlexSm <alex@ydb.tech>
Date: Tue, 5 Mar 2024 10:40:59 +0100
Subject: Library import 16 (#2433)

Co-authored-by: robot-piglet <robot-piglet@yandex-team.com>
Co-authored-by: deshevoy <deshevoy@yandex-team.com>
Co-authored-by: robot-contrib <robot-contrib@yandex-team.com>
Co-authored-by: thegeorg <thegeorg@yandex-team.com>
Co-authored-by: robot-ya-builder <robot-ya-builder@yandex-team.com>
Co-authored-by: svidyuk <svidyuk@yandex-team.com>
Co-authored-by: shadchin <shadchin@yandex-team.com>
Co-authored-by: robot-ratatosk <robot-ratatosk@yandex-team.com>
Co-authored-by: innokentii <innokentii@yandex-team.com>
Co-authored-by: arkady-e1ppa <arkady-e1ppa@yandex-team.com>
Co-authored-by: snermolaev <snermolaev@yandex-team.com>
Co-authored-by: dimdim11 <dimdim11@yandex-team.com>
Co-authored-by: kickbutt <kickbutt@yandex-team.com>
Co-authored-by: abdullinsaid <abdullinsaid@yandex-team.com>
Co-authored-by: korsunandrei <korsunandrei@yandex-team.com>
Co-authored-by: petrk <petrk@yandex-team.com>
Co-authored-by: miroslav2 <miroslav2@yandex-team.com>
Co-authored-by: serjflint <serjflint@yandex-team.com>
Co-authored-by: akhropov <akhropov@yandex-team.com>
Co-authored-by: prettyboy <prettyboy@yandex-team.com>
Co-authored-by: ilikepugs <ilikepugs@yandex-team.com>
Co-authored-by: hiddenpath <hiddenpath@yandex-team.com>
Co-authored-by: mikhnenko <mikhnenko@yandex-team.com>
Co-authored-by: spreis <spreis@yandex-team.com>
Co-authored-by: andreyshspb <andreyshspb@yandex-team.com>
Co-authored-by: dimaandreev <dimaandreev@yandex-team.com>
Co-authored-by: rashid <rashid@yandex-team.com>
Co-authored-by: robot-ydb-importer <robot-ydb-importer@yandex-team.com>
Co-authored-by: r-vetrov <r-vetrov@yandex-team.com>
Co-authored-by: ypodlesov <ypodlesov@yandex-team.com>
Co-authored-by: zaverden <zaverden@yandex-team.com>
Co-authored-by: vpozdyayev <vpozdyayev@yandex-team.com>
Co-authored-by: robot-cozmo <robot-cozmo@yandex-team.com>
Co-authored-by: v-korovin <v-korovin@yandex-team.com>
Co-authored-by: arikon <arikon@yandex-team.com>
Co-authored-by: khoden <khoden@yandex-team.com>
Co-authored-by: psydmm <psydmm@yandex-team.com>
Co-authored-by: robot-javacom <robot-javacom@yandex-team.com>
Co-authored-by: dtorilov <dtorilov@yandex-team.com>
Co-authored-by: sennikovmv <sennikovmv@yandex-team.com>
Co-authored-by: hcpp <hcpp@ydb.tech>
---
 contrib/tools/python3/Python/flowgraph.c | 2229 ++++++++++++++++++++++++++++++
 1 file changed, 2229 insertions(+)
 create mode 100644 contrib/tools/python3/Python/flowgraph.c

(limited to 'contrib/tools/python3/Python/flowgraph.c')

diff --git a/contrib/tools/python3/Python/flowgraph.c b/contrib/tools/python3/Python/flowgraph.c
new file mode 100644
index 0000000000..fbbe053ae5
--- /dev/null
+++ b/contrib/tools/python3/Python/flowgraph.c
@@ -0,0 +1,2229 @@
+
+#include <stdbool.h>
+
+#include "Python.h"
+#include "pycore_flowgraph.h"
+#include "pycore_compile.h"
+#include "pycore_pymem.h"         // _PyMem_IsPtrFreed()
+
+#include "pycore_opcode_utils.h"
+#define NEED_OPCODE_METADATA
+#include "opcode_metadata.h"      // _PyOpcode_opcode_metadata, _PyOpcode_num_popped/pushed
+#undef NEED_OPCODE_METADATA
+
+
+#undef SUCCESS
+#undef ERROR
+#define SUCCESS 0
+#define ERROR -1
+
+#define RETURN_IF_ERROR(X)  \
+    if ((X) == -1) {        \
+        return ERROR;       \
+    }
+
+#define DEFAULT_BLOCK_SIZE 16
+
+typedef _PyCompilerSrcLocation location;
+typedef _PyCfgJumpTargetLabel jump_target_label;
+typedef _PyCfgBasicblock basicblock;
+typedef _PyCfgBuilder cfg_builder;
+typedef _PyCfgInstruction cfg_instr;
+
+static const jump_target_label NO_LABEL = {-1};
+
+#define SAME_LABEL(L1, L2) ((L1).id == (L2).id)
+#define IS_LABEL(L) (!SAME_LABEL((L), (NO_LABEL)))
+
+
+static inline int
+is_block_push(cfg_instr *i)
+{
+    return IS_BLOCK_PUSH_OPCODE(i->i_opcode);
+}
+
+static inline int
+is_jump(cfg_instr *i)
+{
+    return IS_JUMP_OPCODE(i->i_opcode);
+}
+
+/* One arg*/
+#define INSTR_SET_OP1(I, OP, ARG) \
+    do { \
+        assert(HAS_ARG(OP)); \
+        _PyCfgInstruction *_instr__ptr_ = (I); \
+        _instr__ptr_->i_opcode = (OP); \
+        _instr__ptr_->i_oparg = (ARG); \
+    } while (0);
+
+/* No args*/
+#define INSTR_SET_OP0(I, OP) \
+    do { \
+        assert(!HAS_ARG(OP)); \
+        _PyCfgInstruction *_instr__ptr_ = (I); \
+        _instr__ptr_->i_opcode = (OP); \
+        _instr__ptr_->i_oparg = 0; \
+    } while (0);
+
+/***** Blocks *****/
+
+/* Returns the offset of the next instruction in the current block's
+   b_instr array.  Resizes the b_instr as necessary.
+   Returns -1 on failure.
+*/
+static int
+basicblock_next_instr(basicblock *b)
+{
+    assert(b != NULL);
+    RETURN_IF_ERROR(
+        _PyCompile_EnsureArrayLargeEnough(
+            b->b_iused + 1,
+            (void**)&b->b_instr,
+            &b->b_ialloc,
+            DEFAULT_BLOCK_SIZE,
+            sizeof(cfg_instr)));
+    return b->b_iused++;
+}
+
+/* Allocate a new block and return a pointer to it.
+   Returns NULL on error.
+*/
+
+static basicblock *
+cfg_builder_new_block(cfg_builder *g)
+{
+    basicblock *b = (basicblock *)PyObject_Calloc(1, sizeof(basicblock));
+    if (b == NULL) {
+        PyErr_NoMemory();
+        return NULL;
+    }
+    /* Extend the singly linked list of blocks with new block. */
+    b->b_list = g->g_block_list;
+    g->g_block_list = b;
+    b->b_label = NO_LABEL;
+    return b;
+}
+
+static int
+basicblock_addop(basicblock *b, int opcode, int oparg, location loc)
+{
+    assert(IS_WITHIN_OPCODE_RANGE(opcode));
+    assert(!IS_ASSEMBLER_OPCODE(opcode));
+    assert(HAS_ARG(opcode) || HAS_TARGET(opcode) || oparg == 0);
+    assert(0 <= oparg && oparg < (1 << 30));
+
+    int off = basicblock_next_instr(b);
+    if (off < 0) {
+        return ERROR;
+    }
+    cfg_instr *i = &b->b_instr[off];
+    i->i_opcode = opcode;
+    i->i_oparg = oparg;
+    i->i_target = NULL;
+    i->i_loc = loc;
+
+    return SUCCESS;
+}
+
+static inline int
+basicblock_append_instructions(basicblock *target, basicblock *source)
+{
+    for (int i = 0; i < source->b_iused; i++) {
+        int n = basicblock_next_instr(target);
+        if (n < 0) {
+            return ERROR;
+        }
+        target->b_instr[n] = source->b_instr[i];
+    }
+    return SUCCESS;
+}
+
+static basicblock *
+copy_basicblock(cfg_builder *g, basicblock *block)
+{
+    /* Cannot copy a block if it has a fallthrough, since
+     * a block can only have one fallthrough predecessor.
+     */
+    assert(BB_NO_FALLTHROUGH(block));
+    basicblock *result = cfg_builder_new_block(g);
+    if (result == NULL) {
+        return NULL;
+    }
+    if (basicblock_append_instructions(result, block) < 0) {
+        return NULL;
+    }
+    return result;
+}
+
+int
+_PyBasicblock_InsertInstruction(basicblock *block, int pos, cfg_instr *instr) {
+    RETURN_IF_ERROR(basicblock_next_instr(block));
+    for (int i = block->b_iused - 1; i > pos; i--) {
+        block->b_instr[i] = block->b_instr[i-1];
+    }
+    block->b_instr[pos] = *instr;
+    return SUCCESS;
+}
+
+static int
+instr_size(cfg_instr *instruction)
+{
+    return _PyCompile_InstrSize(instruction->i_opcode, instruction->i_oparg);
+}
+
+static int
+blocksize(basicblock *b)
+{
+    int size = 0;
+    for (int i = 0; i < b->b_iused; i++) {
+        size += instr_size(&b->b_instr[i]);
+    }
+    return size;
+}
+
+/* For debugging purposes only */
+#if 0
+static void
+dump_instr(cfg_instr *i)
+{
+    const char *jump = is_jump(i) ? "jump " : "";
+
+    char arg[128];
+
+    *arg = '\0';
+    if (HAS_ARG(i->i_opcode)) {
+        sprintf(arg, "arg: %d ", i->i_oparg);
+    }
+    if (HAS_TARGET(i->i_opcode)) {
+        sprintf(arg, "target: %p [%d] ", i->i_target, i->i_oparg);
+    }
+    fprintf(stderr, "line: %d, opcode: %d %s%s\n",
+                    i->i_loc.lineno, i->i_opcode, arg, jump);
+}
+
+static inline int
+basicblock_returns(const basicblock *b) {
+    cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
+    return last && (last->i_opcode == RETURN_VALUE || last->i_opcode == RETURN_CONST);
+}
+
+static void
+dump_basicblock(const basicblock *b)
+{
+    const char *b_return = basicblock_returns(b) ? "return " : "";
+    fprintf(stderr, "%d: [EH=%d CLD=%d WRM=%d NO_FT=%d %p] used: %d, depth: %d, offset: %d %s\n",
+        b->b_label.id, b->b_except_handler, b->b_cold, b->b_warm, BB_NO_FALLTHROUGH(b), b, b->b_iused,
+        b->b_startdepth, b->b_offset, b_return);
+    if (b->b_instr) {
+        int i;
+        for (i = 0; i < b->b_iused; i++) {
+            fprintf(stderr, "  [%02d] ", i);
+            dump_instr(b->b_instr + i);
+        }
+    }
+}
+
+void
+_PyCfgBuilder_DumpGraph(const basicblock *entryblock)
+{
+    for (const basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        dump_basicblock(b);
+    }
+}
+
+#endif
+
+
+/***** CFG construction and modification *****/
+
+static basicblock *
+cfg_builder_use_next_block(cfg_builder *g, basicblock *block)
+{
+    assert(block != NULL);
+    g->g_curblock->b_next = block;
+    g->g_curblock = block;
+    return block;
+}
+
+cfg_instr *
+_PyCfg_BasicblockLastInstr(const basicblock *b) {
+    assert(b->b_iused >= 0);
+    if (b->b_iused > 0) {
+        assert(b->b_instr != NULL);
+        return &b->b_instr[b->b_iused - 1];
+    }
+    return NULL;
+}
+
+static inline int
+basicblock_exits_scope(const basicblock *b) {
+    cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
+    return last && IS_SCOPE_EXIT_OPCODE(last->i_opcode);
+}
+
+static bool
+cfg_builder_current_block_is_terminated(cfg_builder *g)
+{
+    cfg_instr *last = _PyCfg_BasicblockLastInstr(g->g_curblock);
+    if (last && IS_TERMINATOR_OPCODE(last->i_opcode)) {
+        return true;
+    }
+    if (IS_LABEL(g->g_current_label)) {
+        if (last || IS_LABEL(g->g_curblock->b_label)) {
+            return true;
+        }
+        else {
+            /* current block is empty, label it */
+            g->g_curblock->b_label = g->g_current_label;
+            g->g_current_label = NO_LABEL;
+        }
+    }
+    return false;
+}
+
+static int
+cfg_builder_maybe_start_new_block(cfg_builder *g)
+{
+    if (cfg_builder_current_block_is_terminated(g)) {
+        basicblock *b = cfg_builder_new_block(g);
+        if (b == NULL) {
+            return ERROR;
+        }
+        b->b_label = g->g_current_label;
+        g->g_current_label = NO_LABEL;
+        cfg_builder_use_next_block(g, b);
+    }
+    return SUCCESS;
+}
+
+#ifndef NDEBUG
+static bool
+cfg_builder_check(cfg_builder *g)
+{
+    assert(g->g_entryblock->b_iused > 0);
+    for (basicblock *block = g->g_block_list; block != NULL; block = block->b_list) {
+        assert(!_PyMem_IsPtrFreed(block));
+        if (block->b_instr != NULL) {
+            assert(block->b_ialloc > 0);
+            assert(block->b_iused >= 0);
+            assert(block->b_ialloc >= block->b_iused);
+        }
+        else {
+            assert (block->b_iused == 0);
+            assert (block->b_ialloc == 0);
+        }
+    }
+    return true;
+}
+#endif
+
+int
+_PyCfgBuilder_Init(cfg_builder *g)
+{
+    g->g_block_list = NULL;
+    basicblock *block = cfg_builder_new_block(g);
+    if (block == NULL) {
+        return ERROR;
+    }
+    g->g_curblock = g->g_entryblock = block;
+    g->g_current_label = NO_LABEL;
+    return SUCCESS;
+}
+
+void
+_PyCfgBuilder_Fini(cfg_builder* g)
+{
+    assert(cfg_builder_check(g));
+    basicblock *b = g->g_block_list;
+    while (b != NULL) {
+        if (b->b_instr) {
+            PyObject_Free((void *)b->b_instr);
+        }
+        basicblock *next = b->b_list;
+        PyObject_Free((void *)b);
+        b = next;
+    }
+}
+
+int
+_PyCfgBuilder_UseLabel(cfg_builder *g, jump_target_label lbl)
+{
+    g->g_current_label = lbl;
+    return cfg_builder_maybe_start_new_block(g);
+}
+
+int
+_PyCfgBuilder_Addop(cfg_builder *g, int opcode, int oparg, location loc)
+{
+    RETURN_IF_ERROR(cfg_builder_maybe_start_new_block(g));
+    return basicblock_addop(g->g_curblock, opcode, oparg, loc);
+}
+
+
+/***** debugging helpers *****/
+
+#ifndef NDEBUG
+static int remove_redundant_nops(basicblock *bb);
+
+/*
+static bool
+no_redundant_nops(cfg_builder *g) {
+    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+        if (remove_redundant_nops(b) != 0) {
+            return false;
+        }
+    }
+    return true;
+}
+*/
+
+static bool
+no_empty_basic_blocks(cfg_builder *g) {
+    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+        if (b->b_iused == 0) {
+            return false;
+        }
+    }
+    return true;
+}
+
+static bool
+no_redundant_jumps(cfg_builder *g) {
+    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+        cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
+        if (last != NULL) {
+            if (IS_UNCONDITIONAL_JUMP_OPCODE(last->i_opcode)) {
+                assert(last->i_target != b->b_next);
+                if (last->i_target == b->b_next) {
+                    return false;
+                }
+            }
+        }
+    }
+    return true;
+}
+
+#endif
+
+/***** CFG preprocessing (jump targets and exceptions) *****/
+
+static int
+normalize_jumps_in_block(cfg_builder *g, basicblock *b) {
+    cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
+    if (last == NULL || !is_jump(last)) {
+        return SUCCESS;
+    }
+    assert(!IS_ASSEMBLER_OPCODE(last->i_opcode));
+    bool is_forward = last->i_target->b_visited == 0;
+    switch(last->i_opcode) {
+        case JUMP:
+            last->i_opcode = is_forward ? JUMP_FORWARD : JUMP_BACKWARD;
+            return SUCCESS;
+        case JUMP_NO_INTERRUPT:
+            last->i_opcode = is_forward ?
+                JUMP_FORWARD : JUMP_BACKWARD_NO_INTERRUPT;
+            return SUCCESS;
+    }
+    int reversed_opcode = 0;
+    switch(last->i_opcode) {
+        case POP_JUMP_IF_NOT_NONE:
+            reversed_opcode = POP_JUMP_IF_NONE;
+            break;
+        case POP_JUMP_IF_NONE:
+            reversed_opcode = POP_JUMP_IF_NOT_NONE;
+            break;
+        case POP_JUMP_IF_FALSE:
+            reversed_opcode = POP_JUMP_IF_TRUE;
+            break;
+        case POP_JUMP_IF_TRUE:
+            reversed_opcode = POP_JUMP_IF_FALSE;
+            break;
+    }
+    if (is_forward) {
+        return SUCCESS;
+    }
+    /* transform 'conditional jump T' to
+     * 'reversed_jump b_next' followed by 'jump_backwards T'
+     */
+
+    basicblock *target = last->i_target;
+    basicblock *backwards_jump = cfg_builder_new_block(g);
+    if (backwards_jump == NULL) {
+        return ERROR;
+    }
+    basicblock_addop(backwards_jump, JUMP, target->b_label.id, last->i_loc);
+    backwards_jump->b_instr[0].i_target = target;
+    last->i_opcode = reversed_opcode;
+    last->i_target = b->b_next;
+
+    backwards_jump->b_cold = b->b_cold;
+    backwards_jump->b_next = b->b_next;
+    b->b_next = backwards_jump;
+    return SUCCESS;
+}
+
+
+static int
+normalize_jumps(_PyCfgBuilder *g)
+{
+    basicblock *entryblock = g->g_entryblock;
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        b->b_visited = 0;
+    }
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        b->b_visited = 1;
+        RETURN_IF_ERROR(normalize_jumps_in_block(g, b));
+    }
+    return SUCCESS;
+}
+
+static void
+resolve_jump_offsets(basicblock *entryblock)
+{
+    int bsize, totsize, extended_arg_recompile;
+
+    /* Compute the size of each block and fixup jump args.
+       Replace block pointer with position in bytecode. */
+    do {
+        totsize = 0;
+        for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+            bsize = blocksize(b);
+            b->b_offset = totsize;
+            totsize += bsize;
+        }
+        extended_arg_recompile = 0;
+        for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+            bsize = b->b_offset;
+            for (int i = 0; i < b->b_iused; i++) {
+                cfg_instr *instr = &b->b_instr[i];
+                int isize = instr_size(instr);
+                /* jump offsets are computed relative to
+                 * the instruction pointer after fetching
+                 * the jump instruction.
+                 */
+                bsize += isize;
+                if (is_jump(instr)) {
+                    instr->i_oparg = instr->i_target->b_offset;
+                    if (instr->i_oparg < bsize) {
+                        assert(IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode));
+                        instr->i_oparg = bsize - instr->i_oparg;
+                    }
+                    else {
+                        assert(!IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode));
+                        instr->i_oparg -= bsize;
+                    }
+                    if (instr_size(instr) != isize) {
+                        extended_arg_recompile = 1;
+                    }
+                }
+            }
+        }
+
+    /* XXX: This is an awful hack that could hurt performance, but
+        on the bright side it should work until we come up
+        with a better solution.
+
+        The issue is that in the first loop blocksize() is called
+        which calls instr_size() which requires i_oparg be set
+        appropriately. There is a bootstrap problem because
+        i_oparg is calculated in the second loop above.
+
+        So we loop until we stop seeing new EXTENDED_ARGs.
+        The only EXTENDED_ARGs that could be popping up are
+        ones in jump instructions.  So this should converge
+        fairly quickly.
+    */
+    } while (extended_arg_recompile);
+}
+
+int
+_PyCfg_ResolveJumps(_PyCfgBuilder *g)
+{
+    RETURN_IF_ERROR(normalize_jumps(g));
+    assert(no_redundant_jumps(g));
+    resolve_jump_offsets(g->g_entryblock);
+    return SUCCESS;
+}
+
+static int
+check_cfg(cfg_builder *g) {
+    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+        /* Raise SystemError if jump or exit is not last instruction in the block. */
+        for (int i = 0; i < b->b_iused; i++) {
+            int opcode = b->b_instr[i].i_opcode;
+            assert(!IS_ASSEMBLER_OPCODE(opcode));
+            if (IS_TERMINATOR_OPCODE(opcode)) {
+                if (i != b->b_iused - 1) {
+                    PyErr_SetString(PyExc_SystemError, "malformed control flow graph.");
+                    return ERROR;
+                }
+            }
+        }
+    }
+    return SUCCESS;
+}
+
+static int
+get_max_label(basicblock *entryblock)
+{
+    int lbl = -1;
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        if (b->b_label.id > lbl) {
+            lbl = b->b_label.id;
+        }
+    }
+    return lbl;
+}
+
+/* Calculate the actual jump target from the target_label */
+static int
+translate_jump_labels_to_targets(basicblock *entryblock)
+{
+    int max_label = get_max_label(entryblock);
+    size_t mapsize = sizeof(basicblock *) * (max_label + 1);
+    basicblock **label2block = (basicblock **)PyMem_Malloc(mapsize);
+    if (!label2block) {
+        PyErr_NoMemory();
+        return ERROR;
+    }
+    memset(label2block, 0, mapsize);
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        if (b->b_label.id >= 0) {
+            label2block[b->b_label.id] = b;
+        }
+    }
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        for (int i = 0; i < b->b_iused; i++) {
+            cfg_instr *instr = &b->b_instr[i];
+            assert(instr->i_target == NULL);
+            if (HAS_TARGET(instr->i_opcode)) {
+                int lbl = instr->i_oparg;
+                assert(lbl >= 0 && lbl <= max_label);
+                instr->i_target = label2block[lbl];
+                assert(instr->i_target != NULL);
+                assert(instr->i_target->b_label.id == lbl);
+            }
+        }
+    }
+    PyMem_Free(label2block);
+    return SUCCESS;
+}
+
+int
+_PyCfg_JumpLabelsToTargets(basicblock *entryblock)
+{
+    return translate_jump_labels_to_targets(entryblock);
+}
+
+static int
+mark_except_handlers(basicblock *entryblock) {
+#ifndef NDEBUG
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        assert(!b->b_except_handler);
+    }
+#endif
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        for (int i=0; i < b->b_iused; i++) {
+            cfg_instr *instr = &b->b_instr[i];
+            if (is_block_push(instr)) {
+                instr->i_target->b_except_handler = 1;
+            }
+        }
+    }
+    return SUCCESS;
+}
+
+
+typedef _PyCfgExceptStack ExceptStack;
+
+static basicblock *
+push_except_block(ExceptStack *stack, cfg_instr *setup) {
+    assert(is_block_push(setup));
+    int opcode = setup->i_opcode;
+    basicblock * target = setup->i_target;
+    if (opcode == SETUP_WITH || opcode == SETUP_CLEANUP) {
+        target->b_preserve_lasti = 1;
+    }
+    assert(stack->depth <= CO_MAXBLOCKS);
+    stack->handlers[++stack->depth] = target;
+    return target;
+}
+
+static basicblock *
+pop_except_block(ExceptStack *stack) {
+    assert(stack->depth > 0);
+    return stack->handlers[--stack->depth];
+}
+
+static basicblock *
+except_stack_top(ExceptStack *stack) {
+    return stack->handlers[stack->depth];
+}
+
+static ExceptStack *
+make_except_stack(void) {
+    ExceptStack *new = PyMem_Malloc(sizeof(ExceptStack));
+    if (new == NULL) {
+        PyErr_NoMemory();
+        return NULL;
+    }
+    new->depth = 0;
+    new->handlers[0] = NULL;
+    return new;
+}
+
+static ExceptStack *
+copy_except_stack(ExceptStack *stack) {
+    ExceptStack *copy = PyMem_Malloc(sizeof(ExceptStack));
+    if (copy == NULL) {
+        PyErr_NoMemory();
+        return NULL;
+    }
+    memcpy(copy, stack, sizeof(ExceptStack));
+    return copy;
+}
+
+static basicblock**
+make_cfg_traversal_stack(basicblock *entryblock) {
+    int nblocks = 0;
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        b->b_visited = 0;
+        nblocks++;
+    }
+    basicblock **stack = (basicblock **)PyMem_Malloc(sizeof(basicblock *) * nblocks);
+    if (!stack) {
+        PyErr_NoMemory();
+    }
+    return stack;
+}
+
+Py_LOCAL_INLINE(void)
+stackdepth_push(basicblock ***sp, basicblock *b, int depth)
+{
+    assert(b->b_startdepth < 0 || b->b_startdepth == depth);
+    if (b->b_startdepth < depth && b->b_startdepth < 100) {
+        assert(b->b_startdepth < 0);
+        b->b_startdepth = depth;
+        *(*sp)++ = b;
+    }
+}
+
+/* Find the flow path that needs the largest stack.  We assume that
+ * cycles in the flow graph have no net effect on the stack depth.
+ */
+int
+_PyCfg_Stackdepth(basicblock *entryblock, int code_flags)
+{
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        b->b_startdepth = INT_MIN;
+    }
+    basicblock **stack = make_cfg_traversal_stack(entryblock);
+    if (!stack) {
+        return ERROR;
+    }
+
+    int maxdepth = 0;
+    basicblock **sp = stack;
+    if (code_flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) {
+        stackdepth_push(&sp, entryblock, 1);
+    } else {
+        stackdepth_push(&sp, entryblock, 0);
+    }
+
+    while (sp != stack) {
+        basicblock *b = *--sp;
+        int depth = b->b_startdepth;
+        assert(depth >= 0);
+        basicblock *next = b->b_next;
+        for (int i = 0; i < b->b_iused; i++) {
+            cfg_instr *instr = &b->b_instr[i];
+            int effect = PyCompile_OpcodeStackEffectWithJump(instr->i_opcode, instr->i_oparg, 0);
+            if (effect == PY_INVALID_STACK_EFFECT) {
+                PyErr_Format(PyExc_SystemError,
+                             "compiler PyCompile_OpcodeStackEffectWithJump(opcode=%d, arg=%i) failed",
+                             instr->i_opcode, instr->i_oparg);
+                return ERROR;
+            }
+            int new_depth = depth + effect;
+            assert(new_depth >= 0); /* invalid code or bug in stackdepth() */
+            if (new_depth > maxdepth) {
+                maxdepth = new_depth;
+            }
+            if (HAS_TARGET(instr->i_opcode)) {
+                effect = PyCompile_OpcodeStackEffectWithJump(instr->i_opcode, instr->i_oparg, 1);
+                assert(effect != PY_INVALID_STACK_EFFECT);
+                int target_depth = depth + effect;
+                assert(target_depth >= 0); /* invalid code or bug in stackdepth() */
+                if (target_depth > maxdepth) {
+                    maxdepth = target_depth;
+                }
+                stackdepth_push(&sp, instr->i_target, target_depth);
+            }
+            depth = new_depth;
+            assert(!IS_ASSEMBLER_OPCODE(instr->i_opcode));
+            if (IS_UNCONDITIONAL_JUMP_OPCODE(instr->i_opcode) ||
+                IS_SCOPE_EXIT_OPCODE(instr->i_opcode))
+            {
+                /* remaining code is dead */
+                next = NULL;
+                break;
+            }
+        }
+        if (next != NULL) {
+            assert(BB_HAS_FALLTHROUGH(b));
+            stackdepth_push(&sp, next, depth);
+        }
+    }
+    PyMem_Free(stack);
+    return maxdepth;
+}
+
+static int
+label_exception_targets(basicblock *entryblock) {
+    basicblock **todo_stack = make_cfg_traversal_stack(entryblock);
+    if (todo_stack == NULL) {
+        return ERROR;
+    }
+    ExceptStack *except_stack = make_except_stack();
+    if (except_stack == NULL) {
+        PyMem_Free(todo_stack);
+        PyErr_NoMemory();
+        return ERROR;
+    }
+    except_stack->depth = 0;
+    todo_stack[0] = entryblock;
+    entryblock->b_visited = 1;
+    entryblock->b_exceptstack = except_stack;
+    basicblock **todo = &todo_stack[1];
+    basicblock *handler = NULL;
+    while (todo > todo_stack) {
+        todo--;
+        basicblock *b = todo[0];
+        assert(b->b_visited == 1);
+        except_stack = b->b_exceptstack;
+        assert(except_stack != NULL);
+        b->b_exceptstack = NULL;
+        handler = except_stack_top(except_stack);
+        for (int i = 0; i < b->b_iused; i++) {
+            cfg_instr *instr = &b->b_instr[i];
+            if (is_block_push(instr)) {
+                if (!instr->i_target->b_visited) {
+                    ExceptStack *copy = copy_except_stack(except_stack);
+                    if (copy == NULL) {
+                        goto error;
+                    }
+                    instr->i_target->b_exceptstack = copy;
+                    todo[0] = instr->i_target;
+                    instr->i_target->b_visited = 1;
+                    todo++;
+                }
+                handler = push_except_block(except_stack, instr);
+            }
+            else if (instr->i_opcode == POP_BLOCK) {
+                handler = pop_except_block(except_stack);
+            }
+            else if (is_jump(instr)) {
+                instr->i_except = handler;
+                assert(i == b->b_iused -1);
+                if (!instr->i_target->b_visited) {
+                    if (BB_HAS_FALLTHROUGH(b)) {
+                        ExceptStack *copy = copy_except_stack(except_stack);
+                        if (copy == NULL) {
+                            goto error;
+                        }
+                        instr->i_target->b_exceptstack = copy;
+                    }
+                    else {
+                        instr->i_target->b_exceptstack = except_stack;
+                        except_stack = NULL;
+                    }
+                    todo[0] = instr->i_target;
+                    instr->i_target->b_visited = 1;
+                    todo++;
+                }
+            }
+            else {
+                if (instr->i_opcode == YIELD_VALUE) {
+                    instr->i_oparg = except_stack->depth;
+                }
+                instr->i_except = handler;
+            }
+        }
+        if (BB_HAS_FALLTHROUGH(b) && !b->b_next->b_visited) {
+            assert(except_stack != NULL);
+            b->b_next->b_exceptstack = except_stack;
+            todo[0] = b->b_next;
+            b->b_next->b_visited = 1;
+            todo++;
+        }
+        else if (except_stack != NULL) {
+           PyMem_Free(except_stack);
+        }
+    }
+#ifdef Py_DEBUG
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        assert(b->b_exceptstack == NULL);
+    }
+#endif
+    PyMem_Free(todo_stack);
+    return SUCCESS;
+error:
+    PyMem_Free(todo_stack);
+    PyMem_Free(except_stack);
+    return ERROR;
+}
+
+/***** CFG optimizations *****/
+
+static int
+mark_reachable(basicblock *entryblock) {
+    basicblock **stack = make_cfg_traversal_stack(entryblock);
+    if (stack == NULL) {
+        return ERROR;
+    }
+    basicblock **sp = stack;
+    entryblock->b_predecessors = 1;
+    *sp++ = entryblock;
+    while (sp > stack) {
+        basicblock *b = *(--sp);
+        b->b_visited = 1;
+        if (b->b_next && BB_HAS_FALLTHROUGH(b)) {
+            if (!b->b_next->b_visited) {
+                assert(b->b_next->b_predecessors == 0);
+                *sp++ = b->b_next;
+            }
+            b->b_next->b_predecessors++;
+        }
+        for (int i = 0; i < b->b_iused; i++) {
+            basicblock *target;
+            cfg_instr *instr = &b->b_instr[i];
+            if (is_jump(instr) || is_block_push(instr)) {
+                target = instr->i_target;
+                if (!target->b_visited) {
+                    assert(target->b_predecessors == 0 || target == b->b_next);
+                    *sp++ = target;
+                }
+                target->b_predecessors++;
+            }
+        }
+    }
+    PyMem_Free(stack);
+    return SUCCESS;
+}
+
+static void
+eliminate_empty_basic_blocks(cfg_builder *g) {
+    /* Eliminate empty blocks */
+    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+        basicblock *next = b->b_next;
+        while (next && next->b_iused == 0) {
+            next = next->b_next;
+        }
+        b->b_next = next;
+    }
+    while(g->g_entryblock && g->g_entryblock->b_iused == 0) {
+        g->g_entryblock = g->g_entryblock->b_next;
+    }
+    int next_lbl = get_max_label(g->g_entryblock) + 1;
+    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+        assert(b->b_iused > 0);
+        for (int i = 0; i < b->b_iused; i++) {
+            cfg_instr *instr = &b->b_instr[i];
+            if (HAS_TARGET(instr->i_opcode)) {
+                basicblock *target = instr->i_target;
+                while (target->b_iused == 0) {
+                    target = target->b_next;
+                }
+                if (instr->i_target != target) {
+                    if (!IS_LABEL(target->b_label)) {
+                        target->b_label.id = next_lbl++;
+                    }
+                    instr->i_target = target;
+                    instr->i_oparg = target->b_label.id;
+                }
+                assert(instr->i_target && instr->i_target->b_iused > 0);
+            }
+        }
+    }
+}
+
+static int
+remove_redundant_nops(basicblock *bb) {
+    /* Remove NOPs when legal to do so. */
+    int dest = 0;
+    int prev_lineno = -1;
+    for (int src = 0; src < bb->b_iused; src++) {
+        int lineno = bb->b_instr[src].i_loc.lineno;
+        if (bb->b_instr[src].i_opcode == NOP) {
+            /* Eliminate no-op if it doesn't have a line number */
+            if (lineno < 0) {
+                continue;
+            }
+            /* or, if the previous instruction had the same line number. */
+            if (prev_lineno == lineno) {
+                continue;
+            }
+            /* or, if the next instruction has same line number or no line number */
+            if (src < bb->b_iused - 1) {
+                int next_lineno = bb->b_instr[src+1].i_loc.lineno;
+                if (next_lineno == lineno) {
+                    continue;
+                }
+                if (next_lineno < 0) {
+                    bb->b_instr[src+1].i_loc = bb->b_instr[src].i_loc;
+                    continue;
+                }
+            }
+            else {
+                basicblock* next = bb->b_next;
+                while (next && next->b_iused == 0) {
+                    next = next->b_next;
+                }
+                /* or if last instruction in BB and next BB has same line number */
+                if (next) {
+                    location next_loc = NO_LOCATION;
+                    for (int next_i=0; next_i < next->b_iused; next_i++) {
+                        cfg_instr *instr = &next->b_instr[next_i];
+                        if (instr->i_opcode == NOP && instr->i_loc.lineno == NO_LOCATION.lineno) {
+                            /* Skip over NOPs without location, they will be removed */
+                            continue;
+                        }
+                        next_loc = instr->i_loc;
+                        break;
+                    }
+                    if (lineno == next_loc.lineno) {
+                        continue;
+                    }
+                }
+            }
+
+        }
+        if (dest != src) {
+            bb->b_instr[dest] = bb->b_instr[src];
+        }
+        dest++;
+        prev_lineno = lineno;
+    }
+    assert(dest <= bb->b_iused);
+    int num_removed = bb->b_iused - dest;
+    bb->b_iused = dest;
+    return num_removed;
+}
+
+static int
+remove_redundant_nops_and_pairs(basicblock *entryblock)
+{
+    bool done = false;
+
+    while (! done) {
+        done = true;
+        cfg_instr *prev_instr = NULL;
+        cfg_instr *instr = NULL;
+        for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+            remove_redundant_nops(b);
+            if (IS_LABEL(b->b_label)) {
+                /* this block is a jump target, forget instr */
+                instr = NULL;
+            }
+            for (int i = 0; i < b->b_iused; i++) {
+                prev_instr = instr;
+                instr = &b->b_instr[i];
+                int prev_opcode = prev_instr ? prev_instr->i_opcode : 0;
+                int prev_oparg = prev_instr ? prev_instr->i_oparg : 0;
+                int opcode = instr->i_opcode;
+                bool is_redundant_pair = false;
+                if (opcode == POP_TOP) {
+                   if (prev_opcode == LOAD_CONST) {
+                       is_redundant_pair = true;
+                   }
+                   else if (prev_opcode == COPY && prev_oparg == 1) {
+                       is_redundant_pair = true;
+                   }
+                }
+                if (is_redundant_pair) {
+                    INSTR_SET_OP0(prev_instr, NOP);
+                    INSTR_SET_OP0(instr, NOP);
+                    done = false;
+                }
+            }
+            if ((instr && is_jump(instr)) || !BB_HAS_FALLTHROUGH(b)) {
+                instr = NULL;
+            }
+        }
+    }
+    return SUCCESS;
+}
+
+static int
+remove_redundant_jumps(cfg_builder *g) {
+    /* If a non-empty block ends with a jump instruction, check if the next
+     * non-empty block reached through normal flow control is the target
+     * of that jump. If it is, then the jump instruction is redundant and
+     * can be deleted.
+     */
+    assert(no_empty_basic_blocks(g));
+    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+        cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
+        assert(last != NULL);
+        assert(!IS_ASSEMBLER_OPCODE(last->i_opcode));
+        if (IS_UNCONDITIONAL_JUMP_OPCODE(last->i_opcode)) {
+            if (last->i_target == NULL) {
+                PyErr_SetString(PyExc_SystemError, "jump with NULL target");
+                return ERROR;
+            }
+            if (last->i_target == b->b_next) {
+                assert(b->b_next->b_iused);
+                INSTR_SET_OP0(last, NOP);
+            }
+        }
+    }
+    return SUCCESS;
+}
+
+/* Maximum size of basic block that should be copied in optimizer */
+#define MAX_COPY_SIZE 4
+
+/* If this block ends with an unconditional jump to a small exit block, then
+ * remove the jump and extend this block with the target.
+ * Returns 1 if extended, 0 if no change, and -1 on error.
+ */
+static int
+inline_small_exit_blocks(basicblock *bb) {
+    cfg_instr *last = _PyCfg_BasicblockLastInstr(bb);
+    if (last == NULL) {
+        return 0;
+    }
+    if (!IS_UNCONDITIONAL_JUMP_OPCODE(last->i_opcode)) {
+        return 0;
+    }
+    basicblock *target = last->i_target;
+    if (basicblock_exits_scope(target) && target->b_iused <= MAX_COPY_SIZE) {
+        INSTR_SET_OP0(last, NOP);
+        RETURN_IF_ERROR(basicblock_append_instructions(bb, target));
+        return 1;
+    }
+    return 0;
+}
+
+// Attempt to eliminate jumps to jumps by updating inst to jump to
+// target->i_target using the provided opcode. Return whether or not the
+// optimization was successful.
+static bool
+jump_thread(cfg_instr *inst, cfg_instr *target, int opcode)
+{
+    assert(is_jump(inst));
+    assert(is_jump(target));
+    // bpo-45773: If inst->i_target == target->i_target, then nothing actually
+    // changes (and we fall into an infinite loop):
+    if ((inst->i_loc.lineno == target->i_loc.lineno || target->i_loc.lineno == -1) &&
+        inst->i_target != target->i_target)
+    {
+        inst->i_target = target->i_target;
+        inst->i_opcode = opcode;
+        return true;
+    }
+    return false;
+}
+
+static PyObject*
+get_const_value(int opcode, int oparg, PyObject *co_consts)
+{
+    PyObject *constant = NULL;
+    assert(HAS_CONST(opcode));
+    if (opcode == LOAD_CONST) {
+        constant = PyList_GET_ITEM(co_consts, oparg);
+    }
+
+    if (constant == NULL) {
+        PyErr_SetString(PyExc_SystemError,
+                        "Internal error: failed to get value of a constant");
+        return NULL;
+    }
+    return Py_NewRef(constant);
+}
+
+/* Replace LOAD_CONST c1, LOAD_CONST c2 ... LOAD_CONST cn, BUILD_TUPLE n
+   with    LOAD_CONST (c1, c2, ... cn).
+   The consts table must still be in list form so that the
+   new constant (c1, c2, ... cn) can be appended.
+   Called with codestr pointing to the first LOAD_CONST.
+*/
+static int
+fold_tuple_on_constants(PyObject *const_cache,
+                        cfg_instr *inst,
+                        int n, PyObject *consts)
+{
+    /* Pre-conditions */
+    assert(PyDict_CheckExact(const_cache));
+    assert(PyList_CheckExact(consts));
+    assert(inst[n].i_opcode == BUILD_TUPLE);
+    assert(inst[n].i_oparg == n);
+
+    for (int i = 0; i < n; i++) {
+        if (!HAS_CONST(inst[i].i_opcode)) {
+            return SUCCESS;
+        }
+    }
+
+    /* Buildup new tuple of constants */
+    PyObject *newconst = PyTuple_New(n);
+    if (newconst == NULL) {
+        return ERROR;
+    }
+    for (int i = 0; i < n; i++) {
+        int op = inst[i].i_opcode;
+        int arg = inst[i].i_oparg;
+        PyObject *constant = get_const_value(op, arg, consts);
+        if (constant == NULL) {
+            return ERROR;
+        }
+        PyTuple_SET_ITEM(newconst, i, constant);
+    }
+    if (_PyCompile_ConstCacheMergeOne(const_cache, &newconst) < 0) {
+        Py_DECREF(newconst);
+        return ERROR;
+    }
+
+    Py_ssize_t index;
+    for (index = 0; index < PyList_GET_SIZE(consts); index++) {
+        if (PyList_GET_ITEM(consts, index) == newconst) {
+            break;
+        }
+    }
+    if (index == PyList_GET_SIZE(consts)) {
+        if ((size_t)index >= (size_t)INT_MAX - 1) {
+            Py_DECREF(newconst);
+            PyErr_SetString(PyExc_OverflowError, "too many constants");
+            return ERROR;
+        }
+        if (PyList_Append(consts, newconst)) {
+            Py_DECREF(newconst);
+            return ERROR;
+        }
+    }
+    Py_DECREF(newconst);
+    for (int i = 0; i < n; i++) {
+        INSTR_SET_OP0(&inst[i], NOP);
+    }
+    INSTR_SET_OP1(&inst[n], LOAD_CONST, (int)index);
+    return SUCCESS;
+}
+
+#define VISITED (-1)
+
+// Replace an arbitrary run of SWAPs and NOPs with an optimal one that has the
+// same effect.
+static int
+swaptimize(basicblock *block, int *ix)
+{
+    // NOTE: "./python -m test test_patma" serves as a good, quick stress test
+    // for this function. Make sure to blow away cached *.pyc files first!
+    assert(*ix < block->b_iused);
+    cfg_instr *instructions = &block->b_instr[*ix];
+    // Find the length of the current sequence of SWAPs and NOPs, and record the
+    // maximum depth of the stack manipulations:
+    assert(instructions[0].i_opcode == SWAP);
+    int depth = instructions[0].i_oparg;
+    int len = 0;
+    int more = false;
+    int limit = block->b_iused - *ix;
+    while (++len < limit) {
+        int opcode = instructions[len].i_opcode;
+        if (opcode == SWAP) {
+            depth = Py_MAX(depth, instructions[len].i_oparg);
+            more = true;
+        }
+        else if (opcode != NOP) {
+            break;
+        }
+    }
+    // It's already optimal if there's only one SWAP:
+    if (!more) {
+        return SUCCESS;
+    }
+    // Create an array with elements {0, 1, 2, ..., depth - 1}:
+    int *stack = PyMem_Malloc(depth * sizeof(int));
+    if (stack == NULL) {
+        PyErr_NoMemory();
+        return ERROR;
+    }
+    for (int i = 0; i < depth; i++) {
+        stack[i] = i;
+    }
+    // Simulate the combined effect of these instructions by "running" them on
+    // our "stack":
+    for (int i = 0; i < len; i++) {
+        if (instructions[i].i_opcode == SWAP) {
+            int oparg = instructions[i].i_oparg;
+            int top = stack[0];
+            // SWAPs are 1-indexed:
+            stack[0] = stack[oparg - 1];
+            stack[oparg - 1] = top;
+        }
+    }
+    // Now we can begin! Our approach here is based on a solution to a closely
+    // related problem (https://cs.stackexchange.com/a/13938). It's easiest to
+    // think of this algorithm as determining the steps needed to efficiently
+    // "un-shuffle" our stack. By performing the moves in *reverse* order,
+    // though, we can efficiently *shuffle* it! For this reason, we will be
+    // replacing instructions starting from the *end* of the run. Since the
+    // solution is optimal, we don't need to worry about running out of space:
+    int current = len - 1;
+    for (int i = 0; i < depth; i++) {
+        // Skip items that have already been visited, or just happen to be in
+        // the correct location:
+        if (stack[i] == VISITED || stack[i] == i) {
+            continue;
+        }
+        // Okay, we've found an item that hasn't been visited. It forms a cycle
+        // with other items; traversing the cycle and swapping each item with
+        // the next will put them all in the correct place. The weird
+        // loop-and-a-half is necessary to insert 0 into every cycle, since we
+        // can only swap from that position:
+        int j = i;
+        while (true) {
+            // Skip the actual swap if our item is zero, since swapping the top
+            // item with itself is pointless:
+            if (j) {
+                assert(0 <= current);
+                // SWAPs are 1-indexed:
+                instructions[current].i_opcode = SWAP;
+                instructions[current--].i_oparg = j + 1;
+            }
+            if (stack[j] == VISITED) {
+                // Completed the cycle:
+                assert(j == i);
+                break;
+            }
+            int next_j = stack[j];
+            stack[j] = VISITED;
+            j = next_j;
+        }
+    }
+    // NOP out any unused instructions:
+    while (0 <= current) {
+        INSTR_SET_OP0(&instructions[current--], NOP);
+    }
+    PyMem_Free(stack);
+    *ix += len - 1;
+    return SUCCESS;
+}
+
+
+// This list is pretty small, since it's only okay to reorder opcodes that:
+// - can't affect control flow (like jumping or raising exceptions)
+// - can't invoke arbitrary code (besides finalizers)
+// - only touch the TOS (and pop it when finished)
+#define SWAPPABLE(opcode) \
+    ((opcode) == STORE_FAST || \
+     (opcode) == STORE_FAST_MAYBE_NULL || \
+     (opcode) == POP_TOP)
+
+#define STORES_TO(instr) \
+    (((instr).i_opcode == STORE_FAST || \
+      (instr).i_opcode == STORE_FAST_MAYBE_NULL) \
+     ? (instr).i_oparg : -1)
+
+static int
+next_swappable_instruction(basicblock *block, int i, int lineno)
+{
+    while (++i < block->b_iused) {
+        cfg_instr *instruction = &block->b_instr[i];
+        if (0 <= lineno && instruction->i_loc.lineno != lineno) {
+            // Optimizing across this instruction could cause user-visible
+            // changes in the names bound between line tracing events!
+            return -1;
+        }
+        if (instruction->i_opcode == NOP) {
+            continue;
+        }
+        if (SWAPPABLE(instruction->i_opcode)) {
+            return i;
+        }
+        return -1;
+    }
+    return -1;
+}
+
+// Attempt to apply SWAPs statically by swapping *instructions* rather than
+// stack items. For example, we can replace SWAP(2), POP_TOP, STORE_FAST(42)
+// with the more efficient NOP, STORE_FAST(42), POP_TOP.
+static void
+apply_static_swaps(basicblock *block, int i)
+{
+    // SWAPs are to our left, and potential swaperands are to our right:
+    for (; 0 <= i; i--) {
+        assert(i < block->b_iused);
+        cfg_instr *swap = &block->b_instr[i];
+        if (swap->i_opcode != SWAP) {
+            if (swap->i_opcode == NOP || SWAPPABLE(swap->i_opcode)) {
+                // Nope, but we know how to handle these. Keep looking:
+                continue;
+            }
+            // We can't reason about what this instruction does. Bail:
+            return;
+        }
+        int j = next_swappable_instruction(block, i, -1);
+        if (j < 0) {
+            return;
+        }
+        int k = j;
+        int lineno = block->b_instr[j].i_loc.lineno;
+        for (int count = swap->i_oparg - 1; 0 < count; count--) {
+            k = next_swappable_instruction(block, k, lineno);
+            if (k < 0) {
+                return;
+            }
+        }
+        // The reordering is not safe if the two instructions to be swapped
+        // store to the same location, or if any intervening instruction stores
+        // to the same location as either of them.
+        int store_j = STORES_TO(block->b_instr[j]);
+        int store_k = STORES_TO(block->b_instr[k]);
+        if (store_j >= 0 || store_k >= 0) {
+            if (store_j == store_k) {
+                return;
+            }
+            for (int idx = j + 1; idx < k; idx++) {
+                int store_idx = STORES_TO(block->b_instr[idx]);
+                if (store_idx >= 0 && (store_idx == store_j || store_idx == store_k)) {
+                    return;
+                }
+            }
+        }
+
+        // Success!
+        INSTR_SET_OP0(swap, NOP);
+        cfg_instr temp = block->b_instr[j];
+        block->b_instr[j] = block->b_instr[k];
+        block->b_instr[k] = temp;
+    }
+}
+
+static int
+optimize_basic_block(PyObject *const_cache, basicblock *bb, PyObject *consts)
+{
+    assert(PyDict_CheckExact(const_cache));
+    assert(PyList_CheckExact(consts));
+    cfg_instr nop;
+    INSTR_SET_OP0(&nop, NOP);
+    cfg_instr *target = &nop;
+    int opcode = 0;
+    int oparg = 0;
+    int nextop = 0;
+    for (int i = 0; i < bb->b_iused; i++) {
+        cfg_instr *inst = &bb->b_instr[i];
+        bool is_copy_of_load_const = (opcode == LOAD_CONST &&
+                                      inst->i_opcode == COPY &&
+                                      inst->i_oparg == 1);
+        if (! is_copy_of_load_const) {
+            opcode = inst->i_opcode;
+            oparg = inst->i_oparg;
+            if (HAS_TARGET(opcode)) {
+                assert(inst->i_target->b_iused > 0);
+                target = &inst->i_target->b_instr[0];
+                assert(!IS_ASSEMBLER_OPCODE(target->i_opcode));
+            }
+            else {
+                target = &nop;
+            }
+        }
+        nextop = i+1 < bb->b_iused ? bb->b_instr[i+1].i_opcode : 0;
+        assert(!IS_ASSEMBLER_OPCODE(opcode));
+        switch (opcode) {
+            /* Remove LOAD_CONST const; conditional jump */
+            case LOAD_CONST:
+            {
+                PyObject* cnt;
+                int is_true;
+                int jump_if_true;
+                switch(nextop) {
+                    case POP_JUMP_IF_FALSE:
+                    case POP_JUMP_IF_TRUE:
+                        cnt = get_const_value(opcode, oparg, consts);
+                        if (cnt == NULL) {
+                            goto error;
+                        }
+                        is_true = PyObject_IsTrue(cnt);
+                        Py_DECREF(cnt);
+                        if (is_true == -1) {
+                            goto error;
+                        }
+                        INSTR_SET_OP0(inst, NOP);
+                        jump_if_true = nextop == POP_JUMP_IF_TRUE;
+                        if (is_true == jump_if_true) {
+                            bb->b_instr[i+1].i_opcode = JUMP;
+                        }
+                        else {
+                            INSTR_SET_OP0(&bb->b_instr[i + 1], NOP);
+                        }
+                        break;
+                    case IS_OP:
+                        cnt = get_const_value(opcode, oparg, consts);
+                        if (cnt == NULL) {
+                            goto error;
+                        }
+                        int jump_op = i+2 < bb->b_iused ? bb->b_instr[i+2].i_opcode : 0;
+                        if (Py_IsNone(cnt) && (jump_op == POP_JUMP_IF_FALSE || jump_op == POP_JUMP_IF_TRUE)) {
+                            unsigned char nextarg = bb->b_instr[i+1].i_oparg;
+                            INSTR_SET_OP0(inst, NOP);
+                            INSTR_SET_OP0(&bb->b_instr[i + 1], NOP);
+                            bb->b_instr[i+2].i_opcode = nextarg ^ (jump_op == POP_JUMP_IF_FALSE) ?
+                                    POP_JUMP_IF_NOT_NONE : POP_JUMP_IF_NONE;
+                        }
+                        Py_DECREF(cnt);
+                        break;
+                    case RETURN_VALUE:
+                        INSTR_SET_OP0(inst, NOP);
+                        INSTR_SET_OP1(&bb->b_instr[++i], RETURN_CONST, oparg);
+                        break;
+                }
+                break;
+            }
+                /* Try to fold tuples of constants.
+                   Skip over BUILD_TUPLE(1) UNPACK_SEQUENCE(1).
+                   Replace BUILD_TUPLE(2) UNPACK_SEQUENCE(2) with SWAP(2).
+                   Replace BUILD_TUPLE(3) UNPACK_SEQUENCE(3) with SWAP(3). */
+            case BUILD_TUPLE:
+                if (nextop == UNPACK_SEQUENCE && oparg == bb->b_instr[i+1].i_oparg) {
+                    switch(oparg) {
+                        case 1:
+                            INSTR_SET_OP0(inst, NOP);
+                            INSTR_SET_OP0(&bb->b_instr[i + 1], NOP);
+                            continue;
+                        case 2:
+                        case 3:
+                            INSTR_SET_OP0(inst, NOP);
+                            bb->b_instr[i+1].i_opcode = SWAP;
+                            continue;
+                    }
+                }
+                if (i >= oparg) {
+                    if (fold_tuple_on_constants(const_cache, inst-oparg, oparg, consts)) {
+                        goto error;
+                    }
+                }
+                break;
+            case POP_JUMP_IF_NOT_NONE:
+            case POP_JUMP_IF_NONE:
+                switch (target->i_opcode) {
+                    case JUMP:
+                        i -= jump_thread(inst, target, inst->i_opcode);
+                }
+                break;
+            case POP_JUMP_IF_FALSE:
+                switch (target->i_opcode) {
+                    case JUMP:
+                        i -= jump_thread(inst, target, POP_JUMP_IF_FALSE);
+                }
+                break;
+            case POP_JUMP_IF_TRUE:
+                switch (target->i_opcode) {
+                    case JUMP:
+                        i -= jump_thread(inst, target, POP_JUMP_IF_TRUE);
+                }
+                break;
+            case JUMP:
+                switch (target->i_opcode) {
+                    case JUMP:
+                        i -= jump_thread(inst, target, JUMP);
+                }
+                break;
+            case FOR_ITER:
+                if (target->i_opcode == JUMP) {
+                    /* This will not work now because the jump (at target) could
+                     * be forward or backward and FOR_ITER only jumps forward. We
+                     * can re-enable this if ever we implement a backward version
+                     * of FOR_ITER.
+                     */
+                    /*
+                    i -= jump_thread(inst, target, FOR_ITER);
+                    */
+                }
+                break;
+            case SWAP:
+                if (oparg == 1) {
+                    INSTR_SET_OP0(inst, NOP);
+                    break;
+                }
+                if (swaptimize(bb, &i) < 0) {
+                    goto error;
+                }
+                apply_static_swaps(bb, i);
+                break;
+            case KW_NAMES:
+                break;
+            case PUSH_NULL:
+                if (nextop == LOAD_GLOBAL && (bb->b_instr[i+1].i_oparg & 1) == 0) {
+                    INSTR_SET_OP0(inst, NOP);
+                    bb->b_instr[i+1].i_oparg |= 1;
+                }
+                break;
+            default:
+                /* All HAS_CONST opcodes should be handled with LOAD_CONST */
+                assert (!HAS_CONST(inst->i_opcode));
+        }
+    }
+    return SUCCESS;
+error:
+    return ERROR;
+}
+
+
+/* Perform optimizations on a control flow graph.
+   The consts object should still be in list form to allow new constants
+   to be appended.
+
+   Code trasnformations that reduce code size initially fill the gaps with
+   NOPs.  Later those NOPs are removed.
+*/
+static int
+optimize_cfg(cfg_builder *g, PyObject *consts, PyObject *const_cache)
+{
+    assert(PyDict_CheckExact(const_cache));
+    RETURN_IF_ERROR(check_cfg(g));
+    eliminate_empty_basic_blocks(g);
+    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+        RETURN_IF_ERROR(inline_small_exit_blocks(b));
+    }
+    assert(no_empty_basic_blocks(g));
+    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+        RETURN_IF_ERROR(optimize_basic_block(const_cache, b, consts));
+        assert(b->b_predecessors == 0);
+    }
+    RETURN_IF_ERROR(remove_redundant_nops_and_pairs(g->g_entryblock));
+    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+        RETURN_IF_ERROR(inline_small_exit_blocks(b));
+    }
+    RETURN_IF_ERROR(mark_reachable(g->g_entryblock));
+
+    /* Delete unreachable instructions */
+    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+       if (b->b_predecessors == 0) {
+            b->b_iused = 0;
+       }
+    }
+    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
+        remove_redundant_nops(b);
+    }
+    eliminate_empty_basic_blocks(g);
+    /* This assertion fails in an edge case (See gh-109889).
+     * Remove it for the release (it's just one more NOP in the
+     * bytecode for unlikely code).
+     */
+    // assert(no_redundant_nops(g));
+    RETURN_IF_ERROR(remove_redundant_jumps(g));
+    return SUCCESS;
+}
+
+// helper functions for add_checks_for_loads_of_unknown_variables
+static inline void
+maybe_push(basicblock *b, uint64_t unsafe_mask, basicblock ***sp)
+{
+    // Push b if the unsafe mask is giving us any new information.
+    // To avoid overflowing the stack, only allow each block once.
+    // Use b->b_visited=1 to mean that b is currently on the stack.
+    uint64_t both = b->b_unsafe_locals_mask | unsafe_mask;
+    if (b->b_unsafe_locals_mask != both) {
+        b->b_unsafe_locals_mask = both;
+        // More work left to do.
+        if (!b->b_visited) {
+            // not on the stack, so push it.
+            *(*sp)++ = b;
+            b->b_visited = 1;
+        }
+    }
+}
+
+static void
+scan_block_for_locals(basicblock *b, basicblock ***sp)
+{
+    // bit i is set if local i is potentially uninitialized
+    uint64_t unsafe_mask = b->b_unsafe_locals_mask;
+    for (int i = 0; i < b->b_iused; i++) {
+        cfg_instr *instr = &b->b_instr[i];
+        assert(instr->i_opcode != EXTENDED_ARG);
+        assert(!IS_SUPERINSTRUCTION_OPCODE(instr->i_opcode));
+        if (instr->i_except != NULL) {
+            maybe_push(instr->i_except, unsafe_mask, sp);
+        }
+        if (instr->i_oparg >= 64) {
+            continue;
+        }
+        assert(instr->i_oparg >= 0);
+        uint64_t bit = (uint64_t)1 << instr->i_oparg;
+        switch (instr->i_opcode) {
+            case DELETE_FAST:
+            case LOAD_FAST_AND_CLEAR:
+            case STORE_FAST_MAYBE_NULL:
+                unsafe_mask |= bit;
+                break;
+            case STORE_FAST:
+                unsafe_mask &= ~bit;
+                break;
+            case LOAD_FAST_CHECK:
+                // If this doesn't raise, then the local is defined.
+                unsafe_mask &= ~bit;
+                break;
+            case LOAD_FAST:
+                if (unsafe_mask & bit) {
+                    instr->i_opcode = LOAD_FAST_CHECK;
+                }
+                unsafe_mask &= ~bit;
+                break;
+        }
+    }
+    if (b->b_next && BB_HAS_FALLTHROUGH(b)) {
+        maybe_push(b->b_next, unsafe_mask, sp);
+    }
+    cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
+    if (last && is_jump(last)) {
+        assert(last->i_target != NULL);
+        maybe_push(last->i_target, unsafe_mask, sp);
+    }
+}
+
+static int
+fast_scan_many_locals(basicblock *entryblock, int nlocals)
+{
+    assert(nlocals > 64);
+    Py_ssize_t *states = PyMem_Calloc(nlocals - 64, sizeof(Py_ssize_t));
+    if (states == NULL) {
+        PyErr_NoMemory();
+        return ERROR;
+    }
+    Py_ssize_t blocknum = 0;
+    // state[i - 64] == blocknum if local i is guaranteed to
+    // be initialized, i.e., if it has had a previous LOAD_FAST or
+    // STORE_FAST within that basicblock (not followed by
+    // DELETE_FAST/LOAD_FAST_AND_CLEAR/STORE_FAST_MAYBE_NULL).
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        blocknum++;
+        for (int i = 0; i < b->b_iused; i++) {
+            cfg_instr *instr = &b->b_instr[i];
+            assert(instr->i_opcode != EXTENDED_ARG);
+            assert(!IS_SUPERINSTRUCTION_OPCODE(instr->i_opcode));
+            int arg = instr->i_oparg;
+            if (arg < 64) {
+                continue;
+            }
+            assert(arg >= 0);
+            switch (instr->i_opcode) {
+                case DELETE_FAST:
+                case LOAD_FAST_AND_CLEAR:
+                case STORE_FAST_MAYBE_NULL:
+                    states[arg - 64] = blocknum - 1;
+                    break;
+                case STORE_FAST:
+                    states[arg - 64] = blocknum;
+                    break;
+                case LOAD_FAST:
+                    if (states[arg - 64] != blocknum) {
+                        instr->i_opcode = LOAD_FAST_CHECK;
+                    }
+                    states[arg - 64] = blocknum;
+                    break;
+                    Py_UNREACHABLE();
+            }
+        }
+    }
+    PyMem_Free(states);
+    return SUCCESS;
+}
+
+static int
+remove_unused_consts(basicblock *entryblock, PyObject *consts)
+{
+    assert(PyList_CheckExact(consts));
+    Py_ssize_t nconsts = PyList_GET_SIZE(consts);
+    if (nconsts == 0) {
+        return SUCCESS;  /* nothing to do */
+    }
+
+    Py_ssize_t *index_map = NULL;
+    Py_ssize_t *reverse_index_map = NULL;
+    int err = ERROR;
+
+    index_map = PyMem_Malloc(nconsts * sizeof(Py_ssize_t));
+    if (index_map == NULL) {
+        goto end;
+    }
+    for (Py_ssize_t i = 1; i < nconsts; i++) {
+        index_map[i] = -1;
+    }
+    // The first constant may be docstring; keep it always.
+    index_map[0] = 0;
+
+    /* mark used consts */
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        for (int i = 0; i < b->b_iused; i++) {
+            if (HAS_CONST(b->b_instr[i].i_opcode)) {
+                int index = b->b_instr[i].i_oparg;
+                index_map[index] = index;
+            }
+        }
+    }
+    /* now index_map[i] == i if consts[i] is used, -1 otherwise */
+    /* condense consts */
+    Py_ssize_t n_used_consts = 0;
+    for (int i = 0; i < nconsts; i++) {
+        if (index_map[i] != -1) {
+            assert(index_map[i] == i);
+            index_map[n_used_consts++] = index_map[i];
+        }
+    }
+    if (n_used_consts == nconsts) {
+        /* nothing to do */
+        err = SUCCESS;
+        goto end;
+    }
+
+    /* move all used consts to the beginning of the consts list */
+    assert(n_used_consts < nconsts);
+    for (Py_ssize_t i = 0; i < n_used_consts; i++) {
+        Py_ssize_t old_index = index_map[i];
+        assert(i <= old_index && old_index < nconsts);
+        if (i != old_index) {
+            PyObject *value = PyList_GET_ITEM(consts, index_map[i]);
+            assert(value != NULL);
+            PyList_SetItem(consts, i, Py_NewRef(value));
+        }
+    }
+
+    /* truncate the consts list at its new size */
+    if (PyList_SetSlice(consts, n_used_consts, nconsts, NULL) < 0) {
+        goto end;
+    }
+    /* adjust const indices in the bytecode */
+    reverse_index_map = PyMem_Malloc(nconsts * sizeof(Py_ssize_t));
+    if (reverse_index_map == NULL) {
+        goto end;
+    }
+    for (Py_ssize_t i = 0; i < nconsts; i++) {
+        reverse_index_map[i] = -1;
+    }
+    for (Py_ssize_t i = 0; i < n_used_consts; i++) {
+        assert(index_map[i] != -1);
+        assert(reverse_index_map[index_map[i]] == -1);
+        reverse_index_map[index_map[i]] = i;
+    }
+
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        for (int i = 0; i < b->b_iused; i++) {
+            if (HAS_CONST(b->b_instr[i].i_opcode)) {
+                int index = b->b_instr[i].i_oparg;
+                assert(reverse_index_map[index] >= 0);
+                assert(reverse_index_map[index] < n_used_consts);
+                b->b_instr[i].i_oparg = (int)reverse_index_map[index];
+            }
+        }
+    }
+
+    err = SUCCESS;
+end:
+    PyMem_Free(index_map);
+    PyMem_Free(reverse_index_map);
+    return err;
+}
+
+
+
+static int
+add_checks_for_loads_of_uninitialized_variables(basicblock *entryblock,
+                                                int nlocals,
+                                                int nparams)
+{
+    if (nlocals == 0) {
+        return SUCCESS;
+    }
+    if (nlocals > 64) {
+        // To avoid O(nlocals**2) compilation, locals beyond the first
+        // 64 are only analyzed one basicblock at a time: initialization
+        // info is not passed between basicblocks.
+        if (fast_scan_many_locals(entryblock, nlocals) < 0) {
+            return ERROR;
+        }
+        nlocals = 64;
+    }
+    basicblock **stack = make_cfg_traversal_stack(entryblock);
+    if (stack == NULL) {
+        return ERROR;
+    }
+    basicblock **sp = stack;
+
+    // First origin of being uninitialized:
+    // The non-parameter locals in the entry block.
+    uint64_t start_mask = 0;
+    for (int i = nparams; i < nlocals; i++) {
+        start_mask |= (uint64_t)1 << i;
+    }
+    maybe_push(entryblock, start_mask, &sp);
+
+    // Second origin of being uninitialized:
+    // There could be DELETE_FAST somewhere, so
+    // be sure to scan each basicblock at least once.
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        scan_block_for_locals(b, &sp);
+    }
+    // Now propagate the uncertainty from the origins we found: Use
+    // LOAD_FAST_CHECK for any LOAD_FAST where the local could be undefined.
+    while (sp > stack) {
+        basicblock *b = *--sp;
+        // mark as no longer on stack
+        b->b_visited = 0;
+        scan_block_for_locals(b, &sp);
+    }
+    PyMem_Free(stack);
+    return SUCCESS;
+}
+
+
+static int
+mark_warm(basicblock *entryblock) {
+    basicblock **stack = make_cfg_traversal_stack(entryblock);
+    if (stack == NULL) {
+        return ERROR;
+    }
+    basicblock **sp = stack;
+
+    *sp++ = entryblock;
+    entryblock->b_visited = 1;
+    while (sp > stack) {
+        basicblock *b = *(--sp);
+        assert(!b->b_except_handler);
+        b->b_warm = 1;
+        basicblock *next = b->b_next;
+        if (next && BB_HAS_FALLTHROUGH(b) && !next->b_visited) {
+            *sp++ = next;
+            next->b_visited = 1;
+        }
+        for (int i=0; i < b->b_iused; i++) {
+            cfg_instr *instr = &b->b_instr[i];
+            if (is_jump(instr) && !instr->i_target->b_visited) {
+                *sp++ = instr->i_target;
+                instr->i_target->b_visited = 1;
+            }
+        }
+    }
+    PyMem_Free(stack);
+    return SUCCESS;
+}
+
+static int
+mark_cold(basicblock *entryblock) {
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        assert(!b->b_cold && !b->b_warm);
+    }
+    if (mark_warm(entryblock) < 0) {
+        return ERROR;
+    }
+
+    basicblock **stack = make_cfg_traversal_stack(entryblock);
+    if (stack == NULL) {
+        return ERROR;
+    }
+
+    basicblock **sp = stack;
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        if (b->b_except_handler) {
+            assert(!b->b_warm);
+            *sp++ = b;
+            b->b_visited = 1;
+        }
+    }
+
+    while (sp > stack) {
+        basicblock *b = *(--sp);
+        b->b_cold = 1;
+        basicblock *next = b->b_next;
+        if (next && BB_HAS_FALLTHROUGH(b)) {
+            if (!next->b_warm && !next->b_visited) {
+                *sp++ = next;
+                next->b_visited = 1;
+            }
+        }
+        for (int i = 0; i < b->b_iused; i++) {
+            cfg_instr *instr = &b->b_instr[i];
+            if (is_jump(instr)) {
+                assert(i == b->b_iused - 1);
+                basicblock *target = b->b_instr[i].i_target;
+                if (!target->b_warm && !target->b_visited) {
+                    *sp++ = target;
+                    target->b_visited = 1;
+                }
+            }
+        }
+    }
+    PyMem_Free(stack);
+    return SUCCESS;
+}
+
+
+static int
+push_cold_blocks_to_end(cfg_builder *g, int code_flags) {
+    basicblock *entryblock = g->g_entryblock;
+    if (entryblock->b_next == NULL) {
+        /* single basicblock, no need to reorder */
+        return SUCCESS;
+    }
+    RETURN_IF_ERROR(mark_cold(entryblock));
+
+    int next_lbl = get_max_label(g->g_entryblock) + 1;
+
+    /* If we have a cold block with fallthrough to a warm block, add */
+    /* an explicit jump instead of fallthrough */
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        if (b->b_cold && BB_HAS_FALLTHROUGH(b) && b->b_next && b->b_next->b_warm) {
+            basicblock *explicit_jump = cfg_builder_new_block(g);
+            if (explicit_jump == NULL) {
+                return ERROR;
+            }
+            if (!IS_LABEL(b->b_next->b_label)) {
+                b->b_next->b_label.id = next_lbl++;
+            }
+            basicblock_addop(explicit_jump, JUMP, b->b_next->b_label.id, NO_LOCATION);
+            explicit_jump->b_cold = 1;
+            explicit_jump->b_next = b->b_next;
+            b->b_next = explicit_jump;
+
+            /* set target */
+            cfg_instr *last = _PyCfg_BasicblockLastInstr(explicit_jump);
+            last->i_target = explicit_jump->b_next;
+        }
+    }
+
+    assert(!entryblock->b_cold);  /* First block can't be cold */
+    basicblock *cold_blocks = NULL;
+    basicblock *cold_blocks_tail = NULL;
+
+    basicblock *b = entryblock;
+    while(b->b_next) {
+        assert(!b->b_cold);
+        while (b->b_next && !b->b_next->b_cold) {
+            b = b->b_next;
+        }
+        if (b->b_next == NULL) {
+            /* no more cold blocks */
+            break;
+        }
+
+        /* b->b_next is the beginning of a cold streak */
+        assert(!b->b_cold && b->b_next->b_cold);
+
+        basicblock *b_end = b->b_next;
+        while (b_end->b_next && b_end->b_next->b_cold) {
+            b_end = b_end->b_next;
+        }
+
+        /* b_end is the end of the cold streak */
+        assert(b_end && b_end->b_cold);
+        assert(b_end->b_next == NULL || !b_end->b_next->b_cold);
+
+        if (cold_blocks == NULL) {
+            cold_blocks = b->b_next;
+        }
+        else {
+            cold_blocks_tail->b_next = b->b_next;
+        }
+        cold_blocks_tail = b_end;
+        b->b_next = b_end->b_next;
+        b_end->b_next = NULL;
+    }
+    assert(b != NULL && b->b_next == NULL);
+    b->b_next = cold_blocks;
+
+    if (cold_blocks != NULL) {
+        RETURN_IF_ERROR(remove_redundant_jumps(g));
+    }
+    return SUCCESS;
+}
+
+void
+_PyCfg_ConvertPseudoOps(basicblock *entryblock)
+{
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        for (int i = 0; i < b->b_iused; i++) {
+            cfg_instr *instr = &b->b_instr[i];
+            if (is_block_push(instr) || instr->i_opcode == POP_BLOCK) {
+                INSTR_SET_OP0(instr, NOP);
+            }
+            else if (instr->i_opcode == STORE_FAST_MAYBE_NULL) {
+                instr->i_opcode = STORE_FAST;
+            }
+        }
+    }
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        remove_redundant_nops(b);
+    }
+}
+
+static inline bool
+is_exit_without_lineno(basicblock *b) {
+    if (!basicblock_exits_scope(b)) {
+        return false;
+    }
+    for (int i = 0; i < b->b_iused; i++) {
+        if (b->b_instr[i].i_loc.lineno >= 0) {
+            return false;
+        }
+    }
+    return true;
+}
+
+
+/* PEP 626 mandates that the f_lineno of a frame is correct
+ * after a frame terminates. It would be prohibitively expensive
+ * to continuously update the f_lineno field at runtime,
+ * so we make sure that all exiting instruction (raises and returns)
+ * have a valid line number, allowing us to compute f_lineno lazily.
+ * We can do this by duplicating the exit blocks without line number
+ * so that none have more than one predecessor. We can then safely
+ * copy the line number from the sole predecessor block.
+ */
+static int
+duplicate_exits_without_lineno(cfg_builder *g)
+{
+    assert(no_empty_basic_blocks(g));
+
+    int next_lbl = get_max_label(g->g_entryblock) + 1;
+
+    /* Copy all exit blocks without line number that are targets of a jump.
+     */
+    basicblock *entryblock = g->g_entryblock;
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
+        assert(last != NULL);
+        if (is_jump(last)) {
+            basicblock *target = last->i_target;
+            if (is_exit_without_lineno(target) && target->b_predecessors > 1) {
+                basicblock *new_target = copy_basicblock(g, target);
+                if (new_target == NULL) {
+                    return ERROR;
+                }
+                new_target->b_instr[0].i_loc = last->i_loc;
+                last->i_target = new_target;
+                target->b_predecessors--;
+                new_target->b_predecessors = 1;
+                new_target->b_next = target->b_next;
+                new_target->b_label.id = next_lbl++;
+                target->b_next = new_target;
+            }
+        }
+    }
+
+    /* Any remaining reachable exit blocks without line number can only be reached by
+     * fall through, and thus can only have a single predecessor */
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        if (BB_HAS_FALLTHROUGH(b) && b->b_next && b->b_iused > 0) {
+            if (is_exit_without_lineno(b->b_next)) {
+                cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
+                assert(last != NULL);
+                b->b_next->b_instr[0].i_loc = last->i_loc;
+            }
+        }
+    }
+    return SUCCESS;
+}
+
+
+/* If an instruction has no line number, but it's predecessor in the BB does,
+ * then copy the line number. If a successor block has no line number, and only
+ * one predecessor, then inherit the line number.
+ * This ensures that all exit blocks (with one predecessor) receive a line number.
+ * Also reduces the size of the line number table,
+ * but has no impact on the generated line number events.
+ */
+static void
+propagate_line_numbers(basicblock *entryblock) {
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
+        if (last == NULL) {
+            continue;
+        }
+
+        location prev_location = NO_LOCATION;
+        for (int i = 0; i < b->b_iused; i++) {
+            if (b->b_instr[i].i_loc.lineno < 0) {
+                b->b_instr[i].i_loc = prev_location;
+            }
+            else {
+                prev_location = b->b_instr[i].i_loc;
+            }
+        }
+        if (BB_HAS_FALLTHROUGH(b) && b->b_next->b_predecessors == 1) {
+            assert(b->b_next->b_iused);
+            if (b->b_next->b_instr[0].i_loc.lineno < 0) {
+                b->b_next->b_instr[0].i_loc = prev_location;
+            }
+        }
+        if (is_jump(last)) {
+            basicblock *target = last->i_target;
+            if (target->b_predecessors == 1) {
+                if (target->b_instr[0].i_loc.lineno < 0) {
+                    target->b_instr[0].i_loc = prev_location;
+                }
+            }
+        }
+    }
+}
+
+/* Make sure that all returns have a line number, even if early passes
+ * have failed to propagate a correct line number.
+ * The resulting line number may not be correct according to PEP 626,
+ * but should be "good enough", and no worse than in older versions. */
+static void
+guarantee_lineno_for_exits(basicblock *entryblock, int firstlineno) {
+    int lineno = firstlineno;
+    assert(lineno > 0);
+    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
+        cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
+        if (last == NULL) {
+            continue;
+        }
+        if (last->i_loc.lineno < 0) {
+            if (last->i_opcode == RETURN_VALUE) {
+                for (int i = 0; i < b->b_iused; i++) {
+                    assert(b->b_instr[i].i_loc.lineno < 0);
+
+                    b->b_instr[i].i_loc.lineno = lineno;
+                }
+            }
+        }
+        else {
+            lineno = last->i_loc.lineno;
+        }
+    }
+}
+
+static int
+resolve_line_numbers(cfg_builder *g, int firstlineno)
+{
+    RETURN_IF_ERROR(duplicate_exits_without_lineno(g));
+    propagate_line_numbers(g->g_entryblock);
+    guarantee_lineno_for_exits(g->g_entryblock, firstlineno);
+    return SUCCESS;
+}
+
+int
+_PyCfg_OptimizeCodeUnit(cfg_builder *g, PyObject *consts, PyObject *const_cache,
+                       int code_flags, int nlocals, int nparams, int firstlineno)
+{
+    assert(cfg_builder_check(g));
+    /** Preprocessing **/
+    /* Map labels to targets and mark exception handlers */
+    RETURN_IF_ERROR(translate_jump_labels_to_targets(g->g_entryblock));
+    RETURN_IF_ERROR(mark_except_handlers(g->g_entryblock));
+    RETURN_IF_ERROR(label_exception_targets(g->g_entryblock));
+
+    /** Optimization **/
+    RETURN_IF_ERROR(optimize_cfg(g, consts, const_cache));
+    RETURN_IF_ERROR(remove_unused_consts(g->g_entryblock, consts));
+    RETURN_IF_ERROR(
+        add_checks_for_loads_of_uninitialized_variables(
+            g->g_entryblock, nlocals, nparams));
+
+    RETURN_IF_ERROR(push_cold_blocks_to_end(g, code_flags));
+    RETURN_IF_ERROR(resolve_line_numbers(g, firstlineno));
+    return SUCCESS;
+}
-- 
cgit v1.2.3