aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/abseil-cpp/absl/debugging/internal/demangle.cc
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/restricted/abseil-cpp/absl/debugging/internal/demangle.cc')
-rw-r--r--contrib/restricted/abseil-cpp/absl/debugging/internal/demangle.cc3728
1 files changed, 1864 insertions, 1864 deletions
diff --git a/contrib/restricted/abseil-cpp/absl/debugging/internal/demangle.cc b/contrib/restricted/abseil-cpp/absl/debugging/internal/demangle.cc
index 69f379802f..93ae32796c 100644
--- a/contrib/restricted/abseil-cpp/absl/debugging/internal/demangle.cc
+++ b/contrib/restricted/abseil-cpp/absl/debugging/internal/demangle.cc
@@ -1,395 +1,395 @@
-// Copyright 2018 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-// For reference check out:
-// https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
-//
-// Note that we only have partial C++11 support yet.
-
-#include "absl/debugging/internal/demangle.h"
-
-#include <cstdint>
-#include <cstdio>
-#include <limits>
-
-namespace absl {
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// For reference check out:
+// https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
+//
+// Note that we only have partial C++11 support yet.
+
+#include "absl/debugging/internal/demangle.h"
+
+#include <cstdint>
+#include <cstdio>
+#include <limits>
+
+namespace absl {
ABSL_NAMESPACE_BEGIN
-namespace debugging_internal {
-
-typedef struct {
- const char *abbrev;
- const char *real_name;
- // Number of arguments in <expression> context, or 0 if disallowed.
- int arity;
-} AbbrevPair;
-
-// List of operators from Itanium C++ ABI.
-static const AbbrevPair kOperatorList[] = {
- // New has special syntax (not currently supported).
- {"nw", "new", 0},
- {"na", "new[]", 0},
-
- // Works except that the 'gs' prefix is not supported.
- {"dl", "delete", 1},
- {"da", "delete[]", 1},
-
- {"ps", "+", 1}, // "positive"
- {"ng", "-", 1}, // "negative"
- {"ad", "&", 1}, // "address-of"
- {"de", "*", 1}, // "dereference"
- {"co", "~", 1},
-
- {"pl", "+", 2},
- {"mi", "-", 2},
- {"ml", "*", 2},
- {"dv", "/", 2},
- {"rm", "%", 2},
- {"an", "&", 2},
- {"or", "|", 2},
- {"eo", "^", 2},
- {"aS", "=", 2},
- {"pL", "+=", 2},
- {"mI", "-=", 2},
- {"mL", "*=", 2},
- {"dV", "/=", 2},
- {"rM", "%=", 2},
- {"aN", "&=", 2},
- {"oR", "|=", 2},
- {"eO", "^=", 2},
- {"ls", "<<", 2},
- {"rs", ">>", 2},
- {"lS", "<<=", 2},
- {"rS", ">>=", 2},
- {"eq", "==", 2},
- {"ne", "!=", 2},
- {"lt", "<", 2},
- {"gt", ">", 2},
- {"le", "<=", 2},
- {"ge", ">=", 2},
- {"nt", "!", 1},
- {"aa", "&&", 2},
- {"oo", "||", 2},
- {"pp", "++", 1},
- {"mm", "--", 1},
- {"cm", ",", 2},
- {"pm", "->*", 2},
- {"pt", "->", 0}, // Special syntax
- {"cl", "()", 0}, // Special syntax
- {"ix", "[]", 2},
- {"qu", "?", 3},
- {"st", "sizeof", 0}, // Special syntax
- {"sz", "sizeof", 1}, // Not a real operator name, but used in expressions.
- {nullptr, nullptr, 0},
-};
-
-// List of builtin types from Itanium C++ ABI.
-//
-// Invariant: only one- or two-character type abbreviations here.
-static const AbbrevPair kBuiltinTypeList[] = {
- {"v", "void", 0},
- {"w", "wchar_t", 0},
- {"b", "bool", 0},
- {"c", "char", 0},
- {"a", "signed char", 0},
- {"h", "unsigned char", 0},
- {"s", "short", 0},
- {"t", "unsigned short", 0},
- {"i", "int", 0},
- {"j", "unsigned int", 0},
- {"l", "long", 0},
- {"m", "unsigned long", 0},
- {"x", "long long", 0},
- {"y", "unsigned long long", 0},
- {"n", "__int128", 0},
- {"o", "unsigned __int128", 0},
- {"f", "float", 0},
- {"d", "double", 0},
- {"e", "long double", 0},
- {"g", "__float128", 0},
- {"z", "ellipsis", 0},
-
- {"De", "decimal128", 0}, // IEEE 754r decimal floating point (128 bits)
- {"Dd", "decimal64", 0}, // IEEE 754r decimal floating point (64 bits)
- {"Dc", "decltype(auto)", 0},
- {"Da", "auto", 0},
- {"Dn", "std::nullptr_t", 0}, // i.e., decltype(nullptr)
- {"Df", "decimal32", 0}, // IEEE 754r decimal floating point (32 bits)
- {"Di", "char32_t", 0},
+namespace debugging_internal {
+
+typedef struct {
+ const char *abbrev;
+ const char *real_name;
+ // Number of arguments in <expression> context, or 0 if disallowed.
+ int arity;
+} AbbrevPair;
+
+// List of operators from Itanium C++ ABI.
+static const AbbrevPair kOperatorList[] = {
+ // New has special syntax (not currently supported).
+ {"nw", "new", 0},
+ {"na", "new[]", 0},
+
+ // Works except that the 'gs' prefix is not supported.
+ {"dl", "delete", 1},
+ {"da", "delete[]", 1},
+
+ {"ps", "+", 1}, // "positive"
+ {"ng", "-", 1}, // "negative"
+ {"ad", "&", 1}, // "address-of"
+ {"de", "*", 1}, // "dereference"
+ {"co", "~", 1},
+
+ {"pl", "+", 2},
+ {"mi", "-", 2},
+ {"ml", "*", 2},
+ {"dv", "/", 2},
+ {"rm", "%", 2},
+ {"an", "&", 2},
+ {"or", "|", 2},
+ {"eo", "^", 2},
+ {"aS", "=", 2},
+ {"pL", "+=", 2},
+ {"mI", "-=", 2},
+ {"mL", "*=", 2},
+ {"dV", "/=", 2},
+ {"rM", "%=", 2},
+ {"aN", "&=", 2},
+ {"oR", "|=", 2},
+ {"eO", "^=", 2},
+ {"ls", "<<", 2},
+ {"rs", ">>", 2},
+ {"lS", "<<=", 2},
+ {"rS", ">>=", 2},
+ {"eq", "==", 2},
+ {"ne", "!=", 2},
+ {"lt", "<", 2},
+ {"gt", ">", 2},
+ {"le", "<=", 2},
+ {"ge", ">=", 2},
+ {"nt", "!", 1},
+ {"aa", "&&", 2},
+ {"oo", "||", 2},
+ {"pp", "++", 1},
+ {"mm", "--", 1},
+ {"cm", ",", 2},
+ {"pm", "->*", 2},
+ {"pt", "->", 0}, // Special syntax
+ {"cl", "()", 0}, // Special syntax
+ {"ix", "[]", 2},
+ {"qu", "?", 3},
+ {"st", "sizeof", 0}, // Special syntax
+ {"sz", "sizeof", 1}, // Not a real operator name, but used in expressions.
+ {nullptr, nullptr, 0},
+};
+
+// List of builtin types from Itanium C++ ABI.
+//
+// Invariant: only one- or two-character type abbreviations here.
+static const AbbrevPair kBuiltinTypeList[] = {
+ {"v", "void", 0},
+ {"w", "wchar_t", 0},
+ {"b", "bool", 0},
+ {"c", "char", 0},
+ {"a", "signed char", 0},
+ {"h", "unsigned char", 0},
+ {"s", "short", 0},
+ {"t", "unsigned short", 0},
+ {"i", "int", 0},
+ {"j", "unsigned int", 0},
+ {"l", "long", 0},
+ {"m", "unsigned long", 0},
+ {"x", "long long", 0},
+ {"y", "unsigned long long", 0},
+ {"n", "__int128", 0},
+ {"o", "unsigned __int128", 0},
+ {"f", "float", 0},
+ {"d", "double", 0},
+ {"e", "long double", 0},
+ {"g", "__float128", 0},
+ {"z", "ellipsis", 0},
+
+ {"De", "decimal128", 0}, // IEEE 754r decimal floating point (128 bits)
+ {"Dd", "decimal64", 0}, // IEEE 754r decimal floating point (64 bits)
+ {"Dc", "decltype(auto)", 0},
+ {"Da", "auto", 0},
+ {"Dn", "std::nullptr_t", 0}, // i.e., decltype(nullptr)
+ {"Df", "decimal32", 0}, // IEEE 754r decimal floating point (32 bits)
+ {"Di", "char32_t", 0},
{"Du", "char8_t", 0},
- {"Ds", "char16_t", 0},
- {"Dh", "float16", 0}, // IEEE 754r half-precision float (16 bits)
- {nullptr, nullptr, 0},
-};
-
-// List of substitutions Itanium C++ ABI.
-static const AbbrevPair kSubstitutionList[] = {
- {"St", "", 0},
- {"Sa", "allocator", 0},
- {"Sb", "basic_string", 0},
- // std::basic_string<char, std::char_traits<char>,std::allocator<char> >
- {"Ss", "string", 0},
- // std::basic_istream<char, std::char_traits<char> >
- {"Si", "istream", 0},
- // std::basic_ostream<char, std::char_traits<char> >
- {"So", "ostream", 0},
- // std::basic_iostream<char, std::char_traits<char> >
- {"Sd", "iostream", 0},
- {nullptr, nullptr, 0},
-};
-
-// State needed for demangling. This struct is copied in almost every stack
-// frame, so every byte counts.
-typedef struct {
- int mangled_idx; // Cursor of mangled name.
+ {"Ds", "char16_t", 0},
+ {"Dh", "float16", 0}, // IEEE 754r half-precision float (16 bits)
+ {nullptr, nullptr, 0},
+};
+
+// List of substitutions Itanium C++ ABI.
+static const AbbrevPair kSubstitutionList[] = {
+ {"St", "", 0},
+ {"Sa", "allocator", 0},
+ {"Sb", "basic_string", 0},
+ // std::basic_string<char, std::char_traits<char>,std::allocator<char> >
+ {"Ss", "string", 0},
+ // std::basic_istream<char, std::char_traits<char> >
+ {"Si", "istream", 0},
+ // std::basic_ostream<char, std::char_traits<char> >
+ {"So", "ostream", 0},
+ // std::basic_iostream<char, std::char_traits<char> >
+ {"Sd", "iostream", 0},
+ {nullptr, nullptr, 0},
+};
+
+// State needed for demangling. This struct is copied in almost every stack
+// frame, so every byte counts.
+typedef struct {
+ int mangled_idx; // Cursor of mangled name.
int out_cur_idx; // Cursor of output string.
- int prev_name_idx; // For constructors/destructors.
- signed int prev_name_length : 16; // For constructors/destructors.
- signed int nest_level : 15; // For nested names.
- unsigned int append : 1; // Append flag.
- // Note: for some reason MSVC can't pack "bool append : 1" into the same int
- // with the above two fields, so we use an int instead. Amusingly it can pack
- // "signed bool" as expected, but relying on that to continue to be a legal
- // type seems ill-advised (as it's illegal in at least clang).
-} ParseState;
-
-static_assert(sizeof(ParseState) == 4 * sizeof(int),
- "unexpected size of ParseState");
-
-// One-off state for demangling that's not subject to backtracking -- either
-// constant data, data that's intentionally immune to backtracking (steps), or
-// data that would never be changed by backtracking anyway (recursion_depth).
-//
-// Only one copy of this exists for each call to Demangle, so the size of this
-// struct is nearly inconsequential.
-typedef struct {
+ int prev_name_idx; // For constructors/destructors.
+ signed int prev_name_length : 16; // For constructors/destructors.
+ signed int nest_level : 15; // For nested names.
+ unsigned int append : 1; // Append flag.
+ // Note: for some reason MSVC can't pack "bool append : 1" into the same int
+ // with the above two fields, so we use an int instead. Amusingly it can pack
+ // "signed bool" as expected, but relying on that to continue to be a legal
+ // type seems ill-advised (as it's illegal in at least clang).
+} ParseState;
+
+static_assert(sizeof(ParseState) == 4 * sizeof(int),
+ "unexpected size of ParseState");
+
+// One-off state for demangling that's not subject to backtracking -- either
+// constant data, data that's intentionally immune to backtracking (steps), or
+// data that would never be changed by backtracking anyway (recursion_depth).
+//
+// Only one copy of this exists for each call to Demangle, so the size of this
+// struct is nearly inconsequential.
+typedef struct {
const char *mangled_begin; // Beginning of input string.
char *out; // Beginning of output string.
- int out_end_idx; // One past last allowed output character.
- int recursion_depth; // For stack exhaustion prevention.
- int steps; // Cap how much work we'll do, regardless of depth.
- ParseState parse_state; // Backtrackable state copied for most frames.
-} State;
-
-namespace {
-// Prevent deep recursion / stack exhaustion.
-// Also prevent unbounded handling of complex inputs.
-class ComplexityGuard {
- public:
- explicit ComplexityGuard(State *state) : state_(state) {
- ++state->recursion_depth;
- ++state->steps;
- }
- ~ComplexityGuard() { --state_->recursion_depth; }
-
- // 256 levels of recursion seems like a reasonable upper limit on depth.
- // 128 is not enough to demagle synthetic tests from demangle_unittest.txt:
- // "_ZaaZZZZ..." and "_ZaaZcvZcvZ..."
- static constexpr int kRecursionDepthLimit = 256;
-
- // We're trying to pick a charitable upper-limit on how many parse steps are
- // necessary to handle something that a human could actually make use of.
- // This is mostly in place as a bound on how much work we'll do if we are
- // asked to demangle an mangled name from an untrusted source, so it should be
- // much larger than the largest expected symbol, but much smaller than the
- // amount of work we can do in, e.g., a second.
- //
- // Some real-world symbols from an arbitrary binary started failing between
- // 2^12 and 2^13, so we multiply the latter by an extra factor of 16 to set
- // the limit.
- //
- // Spending one second on 2^17 parse steps would require each step to take
- // 7.6us, or ~30000 clock cycles, so it's safe to say this can be done in
- // under a second.
- static constexpr int kParseStepsLimit = 1 << 17;
-
- bool IsTooComplex() const {
- return state_->recursion_depth > kRecursionDepthLimit ||
- state_->steps > kParseStepsLimit;
- }
-
- private:
- State *state_;
-};
-} // namespace
-
-// We don't use strlen() in libc since it's not guaranteed to be async
-// signal safe.
-static size_t StrLen(const char *str) {
- size_t len = 0;
- while (*str != '\0') {
- ++str;
- ++len;
- }
- return len;
-}
-
-// Returns true if "str" has at least "n" characters remaining.
-static bool AtLeastNumCharsRemaining(const char *str, int n) {
- for (int i = 0; i < n; ++i) {
- if (str[i] == '\0') {
- return false;
- }
- }
- return true;
-}
-
-// Returns true if "str" has "prefix" as a prefix.
-static bool StrPrefix(const char *str, const char *prefix) {
- size_t i = 0;
- while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) {
- ++i;
- }
- return prefix[i] == '\0'; // Consumed everything in "prefix".
-}
-
-static void InitState(State *state, const char *mangled, char *out,
- int out_size) {
- state->mangled_begin = mangled;
- state->out = out;
- state->out_end_idx = out_size;
- state->recursion_depth = 0;
- state->steps = 0;
-
- state->parse_state.mangled_idx = 0;
- state->parse_state.out_cur_idx = 0;
- state->parse_state.prev_name_idx = 0;
- state->parse_state.prev_name_length = -1;
- state->parse_state.nest_level = -1;
- state->parse_state.append = true;
-}
-
-static inline const char *RemainingInput(State *state) {
- return &state->mangled_begin[state->parse_state.mangled_idx];
-}
-
-// Returns true and advances "mangled_idx" if we find "one_char_token"
-// at "mangled_idx" position. It is assumed that "one_char_token" does
-// not contain '\0'.
-static bool ParseOneCharToken(State *state, const char one_char_token) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- if (RemainingInput(state)[0] == one_char_token) {
- ++state->parse_state.mangled_idx;
- return true;
- }
- return false;
-}
-
-// Returns true and advances "mangled_cur" if we find "two_char_token"
-// at "mangled_cur" position. It is assumed that "two_char_token" does
-// not contain '\0'.
-static bool ParseTwoCharToken(State *state, const char *two_char_token) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- if (RemainingInput(state)[0] == two_char_token[0] &&
- RemainingInput(state)[1] == two_char_token[1]) {
- state->parse_state.mangled_idx += 2;
- return true;
- }
- return false;
-}
-
-// Returns true and advances "mangled_cur" if we find any character in
-// "char_class" at "mangled_cur" position.
-static bool ParseCharClass(State *state, const char *char_class) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- if (RemainingInput(state)[0] == '\0') {
- return false;
- }
- const char *p = char_class;
- for (; *p != '\0'; ++p) {
- if (RemainingInput(state)[0] == *p) {
- ++state->parse_state.mangled_idx;
- return true;
- }
- }
- return false;
-}
-
-static bool ParseDigit(State *state, int *digit) {
- char c = RemainingInput(state)[0];
- if (ParseCharClass(state, "0123456789")) {
- if (digit != nullptr) {
- *digit = c - '0';
- }
- return true;
- }
- return false;
-}
-
-// This function is used for handling an optional non-terminal.
-static bool Optional(bool /*status*/) { return true; }
-
-// This function is used for handling <non-terminal>+ syntax.
-typedef bool (*ParseFunc)(State *);
-static bool OneOrMore(ParseFunc parse_func, State *state) {
- if (parse_func(state)) {
- while (parse_func(state)) {
- }
- return true;
- }
- return false;
-}
-
-// This function is used for handling <non-terminal>* syntax. The function
-// always returns true and must be followed by a termination token or a
-// terminating sequence not handled by parse_func (e.g.
-// ParseOneCharToken(state, 'E')).
-static bool ZeroOrMore(ParseFunc parse_func, State *state) {
- while (parse_func(state)) {
- }
- return true;
-}
-
-// Append "str" at "out_cur_idx". If there is an overflow, out_cur_idx is
-// set to out_end_idx+1. The output string is ensured to
-// always terminate with '\0' as long as there is no overflow.
-static void Append(State *state, const char *const str, const int length) {
- for (int i = 0; i < length; ++i) {
- if (state->parse_state.out_cur_idx + 1 <
- state->out_end_idx) { // +1 for '\0'
- state->out[state->parse_state.out_cur_idx++] = str[i];
- } else {
- // signal overflow
- state->parse_state.out_cur_idx = state->out_end_idx + 1;
- break;
- }
- }
- if (state->parse_state.out_cur_idx < state->out_end_idx) {
- state->out[state->parse_state.out_cur_idx] =
- '\0'; // Terminate it with '\0'
- }
-}
-
-// We don't use equivalents in libc to avoid locale issues.
-static bool IsLower(char c) { return c >= 'a' && c <= 'z'; }
-
-static bool IsAlpha(char c) {
- return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
-}
-
-static bool IsDigit(char c) { return c >= '0' && c <= '9'; }
-
-// Returns true if "str" is a function clone suffix. These suffixes are used
-// by GCC 4.5.x and later versions (and our locally-modified version of GCC
-// 4.4.x) to indicate functions which have been cloned during optimization.
-// We treat any sequence (.<alpha>+.<digit>+)+ as a function clone suffix.
+ int out_end_idx; // One past last allowed output character.
+ int recursion_depth; // For stack exhaustion prevention.
+ int steps; // Cap how much work we'll do, regardless of depth.
+ ParseState parse_state; // Backtrackable state copied for most frames.
+} State;
+
+namespace {
+// Prevent deep recursion / stack exhaustion.
+// Also prevent unbounded handling of complex inputs.
+class ComplexityGuard {
+ public:
+ explicit ComplexityGuard(State *state) : state_(state) {
+ ++state->recursion_depth;
+ ++state->steps;
+ }
+ ~ComplexityGuard() { --state_->recursion_depth; }
+
+ // 256 levels of recursion seems like a reasonable upper limit on depth.
+ // 128 is not enough to demagle synthetic tests from demangle_unittest.txt:
+ // "_ZaaZZZZ..." and "_ZaaZcvZcvZ..."
+ static constexpr int kRecursionDepthLimit = 256;
+
+ // We're trying to pick a charitable upper-limit on how many parse steps are
+ // necessary to handle something that a human could actually make use of.
+ // This is mostly in place as a bound on how much work we'll do if we are
+ // asked to demangle an mangled name from an untrusted source, so it should be
+ // much larger than the largest expected symbol, but much smaller than the
+ // amount of work we can do in, e.g., a second.
+ //
+ // Some real-world symbols from an arbitrary binary started failing between
+ // 2^12 and 2^13, so we multiply the latter by an extra factor of 16 to set
+ // the limit.
+ //
+ // Spending one second on 2^17 parse steps would require each step to take
+ // 7.6us, or ~30000 clock cycles, so it's safe to say this can be done in
+ // under a second.
+ static constexpr int kParseStepsLimit = 1 << 17;
+
+ bool IsTooComplex() const {
+ return state_->recursion_depth > kRecursionDepthLimit ||
+ state_->steps > kParseStepsLimit;
+ }
+
+ private:
+ State *state_;
+};
+} // namespace
+
+// We don't use strlen() in libc since it's not guaranteed to be async
+// signal safe.
+static size_t StrLen(const char *str) {
+ size_t len = 0;
+ while (*str != '\0') {
+ ++str;
+ ++len;
+ }
+ return len;
+}
+
+// Returns true if "str" has at least "n" characters remaining.
+static bool AtLeastNumCharsRemaining(const char *str, int n) {
+ for (int i = 0; i < n; ++i) {
+ if (str[i] == '\0') {
+ return false;
+ }
+ }
+ return true;
+}
+
+// Returns true if "str" has "prefix" as a prefix.
+static bool StrPrefix(const char *str, const char *prefix) {
+ size_t i = 0;
+ while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) {
+ ++i;
+ }
+ return prefix[i] == '\0'; // Consumed everything in "prefix".
+}
+
+static void InitState(State *state, const char *mangled, char *out,
+ int out_size) {
+ state->mangled_begin = mangled;
+ state->out = out;
+ state->out_end_idx = out_size;
+ state->recursion_depth = 0;
+ state->steps = 0;
+
+ state->parse_state.mangled_idx = 0;
+ state->parse_state.out_cur_idx = 0;
+ state->parse_state.prev_name_idx = 0;
+ state->parse_state.prev_name_length = -1;
+ state->parse_state.nest_level = -1;
+ state->parse_state.append = true;
+}
+
+static inline const char *RemainingInput(State *state) {
+ return &state->mangled_begin[state->parse_state.mangled_idx];
+}
+
+// Returns true and advances "mangled_idx" if we find "one_char_token"
+// at "mangled_idx" position. It is assumed that "one_char_token" does
+// not contain '\0'.
+static bool ParseOneCharToken(State *state, const char one_char_token) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ if (RemainingInput(state)[0] == one_char_token) {
+ ++state->parse_state.mangled_idx;
+ return true;
+ }
+ return false;
+}
+
+// Returns true and advances "mangled_cur" if we find "two_char_token"
+// at "mangled_cur" position. It is assumed that "two_char_token" does
+// not contain '\0'.
+static bool ParseTwoCharToken(State *state, const char *two_char_token) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ if (RemainingInput(state)[0] == two_char_token[0] &&
+ RemainingInput(state)[1] == two_char_token[1]) {
+ state->parse_state.mangled_idx += 2;
+ return true;
+ }
+ return false;
+}
+
+// Returns true and advances "mangled_cur" if we find any character in
+// "char_class" at "mangled_cur" position.
+static bool ParseCharClass(State *state, const char *char_class) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ if (RemainingInput(state)[0] == '\0') {
+ return false;
+ }
+ const char *p = char_class;
+ for (; *p != '\0'; ++p) {
+ if (RemainingInput(state)[0] == *p) {
+ ++state->parse_state.mangled_idx;
+ return true;
+ }
+ }
+ return false;
+}
+
+static bool ParseDigit(State *state, int *digit) {
+ char c = RemainingInput(state)[0];
+ if (ParseCharClass(state, "0123456789")) {
+ if (digit != nullptr) {
+ *digit = c - '0';
+ }
+ return true;
+ }
+ return false;
+}
+
+// This function is used for handling an optional non-terminal.
+static bool Optional(bool /*status*/) { return true; }
+
+// This function is used for handling <non-terminal>+ syntax.
+typedef bool (*ParseFunc)(State *);
+static bool OneOrMore(ParseFunc parse_func, State *state) {
+ if (parse_func(state)) {
+ while (parse_func(state)) {
+ }
+ return true;
+ }
+ return false;
+}
+
+// This function is used for handling <non-terminal>* syntax. The function
+// always returns true and must be followed by a termination token or a
+// terminating sequence not handled by parse_func (e.g.
+// ParseOneCharToken(state, 'E')).
+static bool ZeroOrMore(ParseFunc parse_func, State *state) {
+ while (parse_func(state)) {
+ }
+ return true;
+}
+
+// Append "str" at "out_cur_idx". If there is an overflow, out_cur_idx is
+// set to out_end_idx+1. The output string is ensured to
+// always terminate with '\0' as long as there is no overflow.
+static void Append(State *state, const char *const str, const int length) {
+ for (int i = 0; i < length; ++i) {
+ if (state->parse_state.out_cur_idx + 1 <
+ state->out_end_idx) { // +1 for '\0'
+ state->out[state->parse_state.out_cur_idx++] = str[i];
+ } else {
+ // signal overflow
+ state->parse_state.out_cur_idx = state->out_end_idx + 1;
+ break;
+ }
+ }
+ if (state->parse_state.out_cur_idx < state->out_end_idx) {
+ state->out[state->parse_state.out_cur_idx] =
+ '\0'; // Terminate it with '\0'
+ }
+}
+
+// We don't use equivalents in libc to avoid locale issues.
+static bool IsLower(char c) { return c >= 'a' && c <= 'z'; }
+
+static bool IsAlpha(char c) {
+ return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
+}
+
+static bool IsDigit(char c) { return c >= '0' && c <= '9'; }
+
+// Returns true if "str" is a function clone suffix. These suffixes are used
+// by GCC 4.5.x and later versions (and our locally-modified version of GCC
+// 4.4.x) to indicate functions which have been cloned during optimization.
+// We treat any sequence (.<alpha>+.<digit>+)+ as a function clone suffix.
// Additionally, '_' is allowed along with the alphanumeric sequence.
-static bool IsFunctionCloneSuffix(const char *str) {
- size_t i = 0;
- while (str[i] != '\0') {
+static bool IsFunctionCloneSuffix(const char *str) {
+ size_t i = 0;
+ while (str[i] != '\0') {
bool parsed = false;
// Consume a single [.<alpha> | _]*[.<digit>]* sequence.
if (str[i] == '.' && (IsAlpha(str[i + 1]) || str[i + 1] == '_')) {
@@ -398,705 +398,705 @@ static bool IsFunctionCloneSuffix(const char *str) {
while (IsAlpha(str[i]) || str[i] == '_') {
++i;
}
- }
+ }
if (str[i] == '.' && IsDigit(str[i + 1])) {
parsed = true;
i += 2;
while (IsDigit(str[i])) {
++i;
}
- }
+ }
if (!parsed)
- return false;
- }
- return true; // Consumed everything in "str".
-}
-
-static bool EndsWith(State *state, const char chr) {
- return state->parse_state.out_cur_idx > 0 &&
+ return false;
+ }
+ return true; // Consumed everything in "str".
+}
+
+static bool EndsWith(State *state, const char chr) {
+ return state->parse_state.out_cur_idx > 0 &&
state->parse_state.out_cur_idx < state->out_end_idx &&
- chr == state->out[state->parse_state.out_cur_idx - 1];
-}
-
-// Append "str" with some tweaks, iff "append" state is true.
-static void MaybeAppendWithLength(State *state, const char *const str,
- const int length) {
- if (state->parse_state.append && length > 0) {
- // Append a space if the output buffer ends with '<' and "str"
- // starts with '<' to avoid <<<.
- if (str[0] == '<' && EndsWith(state, '<')) {
- Append(state, " ", 1);
- }
+ chr == state->out[state->parse_state.out_cur_idx - 1];
+}
+
+// Append "str" with some tweaks, iff "append" state is true.
+static void MaybeAppendWithLength(State *state, const char *const str,
+ const int length) {
+ if (state->parse_state.append && length > 0) {
+ // Append a space if the output buffer ends with '<' and "str"
+ // starts with '<' to avoid <<<.
+ if (str[0] == '<' && EndsWith(state, '<')) {
+ Append(state, " ", 1);
+ }
// Remember the last identifier name for ctors/dtors,
// but only if we haven't yet overflown the buffer.
if (state->parse_state.out_cur_idx < state->out_end_idx &&
(IsAlpha(str[0]) || str[0] == '_')) {
- state->parse_state.prev_name_idx = state->parse_state.out_cur_idx;
- state->parse_state.prev_name_length = length;
- }
- Append(state, str, length);
- }
-}
-
-// Appends a positive decimal number to the output if appending is enabled.
-static bool MaybeAppendDecimal(State *state, unsigned int val) {
- // Max {32-64}-bit unsigned int is 20 digits.
- constexpr size_t kMaxLength = 20;
- char buf[kMaxLength];
-
- // We can't use itoa or sprintf as neither is specified to be
- // async-signal-safe.
- if (state->parse_state.append) {
- // We can't have a one-before-the-beginning pointer, so instead start with
- // one-past-the-end and manipulate one character before the pointer.
- char *p = &buf[kMaxLength];
- do { // val=0 is the only input that should write a leading zero digit.
- *--p = (val % 10) + '0';
- val /= 10;
- } while (p > buf && val != 0);
-
- // 'p' landed on the last character we set. How convenient.
- Append(state, p, kMaxLength - (p - buf));
- }
-
- return true;
-}
-
-// A convenient wrapper around MaybeAppendWithLength().
-// Returns true so that it can be placed in "if" conditions.
-static bool MaybeAppend(State *state, const char *const str) {
- if (state->parse_state.append) {
- int length = StrLen(str);
- MaybeAppendWithLength(state, str, length);
- }
- return true;
-}
-
-// This function is used for handling nested names.
-static bool EnterNestedName(State *state) {
- state->parse_state.nest_level = 0;
- return true;
-}
-
-// This function is used for handling nested names.
-static bool LeaveNestedName(State *state, int16_t prev_value) {
- state->parse_state.nest_level = prev_value;
- return true;
-}
-
-// Disable the append mode not to print function parameters, etc.
-static bool DisableAppend(State *state) {
- state->parse_state.append = false;
- return true;
-}
-
-// Restore the append mode to the previous state.
-static bool RestoreAppend(State *state, bool prev_value) {
- state->parse_state.append = prev_value;
- return true;
-}
-
-// Increase the nest level for nested names.
-static void MaybeIncreaseNestLevel(State *state) {
- if (state->parse_state.nest_level > -1) {
- ++state->parse_state.nest_level;
- }
-}
-
-// Appends :: for nested names if necessary.
-static void MaybeAppendSeparator(State *state) {
- if (state->parse_state.nest_level >= 1) {
- MaybeAppend(state, "::");
- }
-}
-
-// Cancel the last separator if necessary.
-static void MaybeCancelLastSeparator(State *state) {
- if (state->parse_state.nest_level >= 1 && state->parse_state.append &&
- state->parse_state.out_cur_idx >= 2) {
- state->parse_state.out_cur_idx -= 2;
- state->out[state->parse_state.out_cur_idx] = '\0';
- }
-}
-
-// Returns true if the identifier of the given length pointed to by
-// "mangled_cur" is anonymous namespace.
-static bool IdentifierIsAnonymousNamespace(State *state, int length) {
- // Returns true if "anon_prefix" is a proper prefix of "mangled_cur".
- static const char anon_prefix[] = "_GLOBAL__N_";
- return (length > static_cast<int>(sizeof(anon_prefix) - 1) &&
- StrPrefix(RemainingInput(state), anon_prefix));
-}
-
-// Forward declarations of our parsing functions.
-static bool ParseMangledName(State *state);
-static bool ParseEncoding(State *state);
-static bool ParseName(State *state);
-static bool ParseUnscopedName(State *state);
-static bool ParseNestedName(State *state);
-static bool ParsePrefix(State *state);
-static bool ParseUnqualifiedName(State *state);
-static bool ParseSourceName(State *state);
-static bool ParseLocalSourceName(State *state);
-static bool ParseUnnamedTypeName(State *state);
-static bool ParseNumber(State *state, int *number_out);
-static bool ParseFloatNumber(State *state);
-static bool ParseSeqId(State *state);
-static bool ParseIdentifier(State *state, int length);
-static bool ParseOperatorName(State *state, int *arity);
-static bool ParseSpecialName(State *state);
-static bool ParseCallOffset(State *state);
-static bool ParseNVOffset(State *state);
-static bool ParseVOffset(State *state);
-static bool ParseCtorDtorName(State *state);
-static bool ParseDecltype(State *state);
-static bool ParseType(State *state);
-static bool ParseCVQualifiers(State *state);
-static bool ParseBuiltinType(State *state);
-static bool ParseFunctionType(State *state);
-static bool ParseBareFunctionType(State *state);
-static bool ParseClassEnumType(State *state);
-static bool ParseArrayType(State *state);
-static bool ParsePointerToMemberType(State *state);
-static bool ParseTemplateParam(State *state);
-static bool ParseTemplateTemplateParam(State *state);
-static bool ParseTemplateArgs(State *state);
-static bool ParseTemplateArg(State *state);
-static bool ParseBaseUnresolvedName(State *state);
-static bool ParseUnresolvedName(State *state);
-static bool ParseExpression(State *state);
-static bool ParseExprPrimary(State *state);
-static bool ParseExprCastValue(State *state);
-static bool ParseLocalName(State *state);
-static bool ParseLocalNameSuffix(State *state);
-static bool ParseDiscriminator(State *state);
-static bool ParseSubstitution(State *state, bool accept_std);
-
-// Implementation note: the following code is a straightforward
-// translation of the Itanium C++ ABI defined in BNF with a couple of
-// exceptions.
-//
-// - Support GNU extensions not defined in the Itanium C++ ABI
-// - <prefix> and <template-prefix> are combined to avoid infinite loop
-// - Reorder patterns to shorten the code
-// - Reorder patterns to give greedier functions precedence
-// We'll mark "Less greedy than" for these cases in the code
-//
-// Each parsing function changes the parse state and returns true on
-// success, or returns false and doesn't change the parse state (note:
-// the parse-steps counter increases regardless of success or failure).
-// To ensure that the parse state isn't changed in the latter case, we
-// save the original state before we call multiple parsing functions
-// consecutively with &&, and restore it if unsuccessful. See
-// ParseEncoding() as an example of this convention. We follow the
-// convention throughout the code.
-//
-// Originally we tried to do demangling without following the full ABI
-// syntax but it turned out we needed to follow the full syntax to
-// parse complicated cases like nested template arguments. Note that
-// implementing a full-fledged demangler isn't trivial (libiberty's
-// cp-demangle.c has +4300 lines).
-//
-// Note that (foo) in <(foo) ...> is a modifier to be ignored.
-//
-// Reference:
-// - Itanium C++ ABI
-// <https://mentorembedded.github.io/cxx-abi/abi.html#mangling>
-
-// <mangled-name> ::= _Z <encoding>
-static bool ParseMangledName(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- return ParseTwoCharToken(state, "_Z") && ParseEncoding(state);
-}
-
-// <encoding> ::= <(function) name> <bare-function-type>
-// ::= <(data) name>
-// ::= <special-name>
-static bool ParseEncoding(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- // Implementing the first two productions together as <name>
- // [<bare-function-type>] avoids exponential blowup of backtracking.
- //
- // Since Optional(...) can't fail, there's no need to copy the state for
- // backtracking.
- if (ParseName(state) && Optional(ParseBareFunctionType(state))) {
- return true;
- }
-
- if (ParseSpecialName(state)) {
- return true;
- }
- return false;
-}
-
-// <name> ::= <nested-name>
-// ::= <unscoped-template-name> <template-args>
-// ::= <unscoped-name>
-// ::= <local-name>
-static bool ParseName(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- if (ParseNestedName(state) || ParseLocalName(state)) {
- return true;
- }
-
- // We reorganize the productions to avoid re-parsing unscoped names.
- // - Inline <unscoped-template-name> productions:
- // <name> ::= <substitution> <template-args>
- // ::= <unscoped-name> <template-args>
- // ::= <unscoped-name>
- // - Merge the two productions that start with unscoped-name:
- // <name> ::= <unscoped-name> [<template-args>]
-
- ParseState copy = state->parse_state;
- // "std<...>" isn't a valid name.
- if (ParseSubstitution(state, /*accept_std=*/false) &&
- ParseTemplateArgs(state)) {
- return true;
- }
- state->parse_state = copy;
-
- // Note there's no need to restore state after this since only the first
- // subparser can fail.
- return ParseUnscopedName(state) && Optional(ParseTemplateArgs(state));
-}
-
-// <unscoped-name> ::= <unqualified-name>
-// ::= St <unqualified-name>
-static bool ParseUnscopedName(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- if (ParseUnqualifiedName(state)) {
- return true;
- }
-
- ParseState copy = state->parse_state;
- if (ParseTwoCharToken(state, "St") && MaybeAppend(state, "std::") &&
- ParseUnqualifiedName(state)) {
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
-// <ref-qualifer> ::= R // lvalue method reference qualifier
-// ::= O // rvalue method reference qualifier
-static inline bool ParseRefQualifier(State *state) {
- return ParseCharClass(state, "OR");
-}
-
-// <nested-name> ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix>
-// <unqualified-name> E
-// ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
-// <template-args> E
-static bool ParseNestedName(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
- if (ParseOneCharToken(state, 'N') && EnterNestedName(state) &&
- Optional(ParseCVQualifiers(state)) &&
- Optional(ParseRefQualifier(state)) && ParsePrefix(state) &&
- LeaveNestedName(state, copy.nest_level) &&
- ParseOneCharToken(state, 'E')) {
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
-// This part is tricky. If we literally translate them to code, we'll
-// end up infinite loop. Hence we merge them to avoid the case.
-//
-// <prefix> ::= <prefix> <unqualified-name>
-// ::= <template-prefix> <template-args>
-// ::= <template-param>
-// ::= <substitution>
-// ::= # empty
-// <template-prefix> ::= <prefix> <(template) unqualified-name>
-// ::= <template-param>
-// ::= <substitution>
-static bool ParsePrefix(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- bool has_something = false;
- while (true) {
- MaybeAppendSeparator(state);
- if (ParseTemplateParam(state) ||
- ParseSubstitution(state, /*accept_std=*/true) ||
- ParseUnscopedName(state) ||
- (ParseOneCharToken(state, 'M') && ParseUnnamedTypeName(state))) {
- has_something = true;
- MaybeIncreaseNestLevel(state);
- continue;
- }
- MaybeCancelLastSeparator(state);
- if (has_something && ParseTemplateArgs(state)) {
- return ParsePrefix(state);
- } else {
- break;
- }
- }
- return true;
-}
-
-// <unqualified-name> ::= <operator-name>
-// ::= <ctor-dtor-name>
-// ::= <source-name>
-// ::= <local-source-name> // GCC extension; see below.
-// ::= <unnamed-type-name>
-static bool ParseUnqualifiedName(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- return (ParseOperatorName(state, nullptr) || ParseCtorDtorName(state) ||
- ParseSourceName(state) || ParseLocalSourceName(state) ||
- ParseUnnamedTypeName(state));
-}
-
-// <source-name> ::= <positive length number> <identifier>
-static bool ParseSourceName(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
- int length = -1;
- if (ParseNumber(state, &length) && ParseIdentifier(state, length)) {
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
-// <local-source-name> ::= L <source-name> [<discriminator>]
-//
-// References:
-// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775
-// https://gcc.gnu.org/viewcvs?view=rev&revision=124467
-static bool ParseLocalSourceName(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
- if (ParseOneCharToken(state, 'L') && ParseSourceName(state) &&
- Optional(ParseDiscriminator(state))) {
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
-// <unnamed-type-name> ::= Ut [<(nonnegative) number>] _
-// ::= <closure-type-name>
-// <closure-type-name> ::= Ul <lambda-sig> E [<(nonnegative) number>] _
-// <lambda-sig> ::= <(parameter) type>+
-static bool ParseUnnamedTypeName(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
- // Type's 1-based index n is encoded as { "", n == 1; itoa(n-2), otherwise }.
- // Optionally parse the encoded value into 'which' and add 2 to get the index.
- int which = -1;
-
- // Unnamed type local to function or class.
- if (ParseTwoCharToken(state, "Ut") && Optional(ParseNumber(state, &which)) &&
- which <= std::numeric_limits<int>::max() - 2 && // Don't overflow.
- ParseOneCharToken(state, '_')) {
- MaybeAppend(state, "{unnamed type#");
- MaybeAppendDecimal(state, 2 + which);
- MaybeAppend(state, "}");
- return true;
- }
- state->parse_state = copy;
-
- // Closure type.
- which = -1;
- if (ParseTwoCharToken(state, "Ul") && DisableAppend(state) &&
- OneOrMore(ParseType, state) && RestoreAppend(state, copy.append) &&
- ParseOneCharToken(state, 'E') && Optional(ParseNumber(state, &which)) &&
- which <= std::numeric_limits<int>::max() - 2 && // Don't overflow.
- ParseOneCharToken(state, '_')) {
- MaybeAppend(state, "{lambda()#");
- MaybeAppendDecimal(state, 2 + which);
- MaybeAppend(state, "}");
- return true;
- }
- state->parse_state = copy;
-
- return false;
-}
-
-// <number> ::= [n] <non-negative decimal integer>
-// If "number_out" is non-null, then *number_out is set to the value of the
-// parsed number on success.
-static bool ParseNumber(State *state, int *number_out) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- bool negative = false;
- if (ParseOneCharToken(state, 'n')) {
- negative = true;
- }
- const char *p = RemainingInput(state);
- uint64_t number = 0;
- for (; *p != '\0'; ++p) {
- if (IsDigit(*p)) {
- number = number * 10 + (*p - '0');
- } else {
- break;
- }
- }
- // Apply the sign with uint64_t arithmetic so overflows aren't UB. Gives
- // "incorrect" results for out-of-range inputs, but negative values only
- // appear for literals, which aren't printed.
- if (negative) {
- number = ~number + 1;
- }
- if (p != RemainingInput(state)) { // Conversion succeeded.
- state->parse_state.mangled_idx += p - RemainingInput(state);
- if (number_out != nullptr) {
- // Note: possibly truncate "number".
- *number_out = number;
- }
- return true;
- }
- return false;
-}
-
-// Floating-point literals are encoded using a fixed-length lowercase
-// hexadecimal string.
-static bool ParseFloatNumber(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- const char *p = RemainingInput(state);
- for (; *p != '\0'; ++p) {
- if (!IsDigit(*p) && !(*p >= 'a' && *p <= 'f')) {
- break;
- }
- }
- if (p != RemainingInput(state)) { // Conversion succeeded.
- state->parse_state.mangled_idx += p - RemainingInput(state);
- return true;
- }
- return false;
-}
-
-// The <seq-id> is a sequence number in base 36,
-// using digits and upper case letters
-static bool ParseSeqId(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- const char *p = RemainingInput(state);
- for (; *p != '\0'; ++p) {
- if (!IsDigit(*p) && !(*p >= 'A' && *p <= 'Z')) {
- break;
- }
- }
- if (p != RemainingInput(state)) { // Conversion succeeded.
- state->parse_state.mangled_idx += p - RemainingInput(state);
- return true;
- }
- return false;
-}
-
-// <identifier> ::= <unqualified source code identifier> (of given length)
-static bool ParseIdentifier(State *state, int length) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- if (length < 0 || !AtLeastNumCharsRemaining(RemainingInput(state), length)) {
- return false;
- }
- if (IdentifierIsAnonymousNamespace(state, length)) {
- MaybeAppend(state, "(anonymous namespace)");
- } else {
- MaybeAppendWithLength(state, RemainingInput(state), length);
- }
- state->parse_state.mangled_idx += length;
- return true;
-}
-
-// <operator-name> ::= nw, and other two letters cases
-// ::= cv <type> # (cast)
-// ::= v <digit> <source-name> # vendor extended operator
-static bool ParseOperatorName(State *state, int *arity) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- if (!AtLeastNumCharsRemaining(RemainingInput(state), 2)) {
- return false;
- }
- // First check with "cv" (cast) case.
- ParseState copy = state->parse_state;
- if (ParseTwoCharToken(state, "cv") && MaybeAppend(state, "operator ") &&
- EnterNestedName(state) && ParseType(state) &&
- LeaveNestedName(state, copy.nest_level)) {
- if (arity != nullptr) {
- *arity = 1;
- }
- return true;
- }
- state->parse_state = copy;
-
- // Then vendor extended operators.
- if (ParseOneCharToken(state, 'v') && ParseDigit(state, arity) &&
- ParseSourceName(state)) {
- return true;
- }
- state->parse_state = copy;
-
- // Other operator names should start with a lower alphabet followed
- // by a lower/upper alphabet.
- if (!(IsLower(RemainingInput(state)[0]) &&
- IsAlpha(RemainingInput(state)[1]))) {
- return false;
- }
- // We may want to perform a binary search if we really need speed.
- const AbbrevPair *p;
- for (p = kOperatorList; p->abbrev != nullptr; ++p) {
- if (RemainingInput(state)[0] == p->abbrev[0] &&
- RemainingInput(state)[1] == p->abbrev[1]) {
- if (arity != nullptr) {
- *arity = p->arity;
- }
- MaybeAppend(state, "operator");
- if (IsLower(*p->real_name)) { // new, delete, etc.
- MaybeAppend(state, " ");
- }
- MaybeAppend(state, p->real_name);
- state->parse_state.mangled_idx += 2;
- return true;
- }
- }
- return false;
-}
-
-// <special-name> ::= TV <type>
-// ::= TT <type>
-// ::= TI <type>
-// ::= TS <type>
+ state->parse_state.prev_name_idx = state->parse_state.out_cur_idx;
+ state->parse_state.prev_name_length = length;
+ }
+ Append(state, str, length);
+ }
+}
+
+// Appends a positive decimal number to the output if appending is enabled.
+static bool MaybeAppendDecimal(State *state, unsigned int val) {
+ // Max {32-64}-bit unsigned int is 20 digits.
+ constexpr size_t kMaxLength = 20;
+ char buf[kMaxLength];
+
+ // We can't use itoa or sprintf as neither is specified to be
+ // async-signal-safe.
+ if (state->parse_state.append) {
+ // We can't have a one-before-the-beginning pointer, so instead start with
+ // one-past-the-end and manipulate one character before the pointer.
+ char *p = &buf[kMaxLength];
+ do { // val=0 is the only input that should write a leading zero digit.
+ *--p = (val % 10) + '0';
+ val /= 10;
+ } while (p > buf && val != 0);
+
+ // 'p' landed on the last character we set. How convenient.
+ Append(state, p, kMaxLength - (p - buf));
+ }
+
+ return true;
+}
+
+// A convenient wrapper around MaybeAppendWithLength().
+// Returns true so that it can be placed in "if" conditions.
+static bool MaybeAppend(State *state, const char *const str) {
+ if (state->parse_state.append) {
+ int length = StrLen(str);
+ MaybeAppendWithLength(state, str, length);
+ }
+ return true;
+}
+
+// This function is used for handling nested names.
+static bool EnterNestedName(State *state) {
+ state->parse_state.nest_level = 0;
+ return true;
+}
+
+// This function is used for handling nested names.
+static bool LeaveNestedName(State *state, int16_t prev_value) {
+ state->parse_state.nest_level = prev_value;
+ return true;
+}
+
+// Disable the append mode not to print function parameters, etc.
+static bool DisableAppend(State *state) {
+ state->parse_state.append = false;
+ return true;
+}
+
+// Restore the append mode to the previous state.
+static bool RestoreAppend(State *state, bool prev_value) {
+ state->parse_state.append = prev_value;
+ return true;
+}
+
+// Increase the nest level for nested names.
+static void MaybeIncreaseNestLevel(State *state) {
+ if (state->parse_state.nest_level > -1) {
+ ++state->parse_state.nest_level;
+ }
+}
+
+// Appends :: for nested names if necessary.
+static void MaybeAppendSeparator(State *state) {
+ if (state->parse_state.nest_level >= 1) {
+ MaybeAppend(state, "::");
+ }
+}
+
+// Cancel the last separator if necessary.
+static void MaybeCancelLastSeparator(State *state) {
+ if (state->parse_state.nest_level >= 1 && state->parse_state.append &&
+ state->parse_state.out_cur_idx >= 2) {
+ state->parse_state.out_cur_idx -= 2;
+ state->out[state->parse_state.out_cur_idx] = '\0';
+ }
+}
+
+// Returns true if the identifier of the given length pointed to by
+// "mangled_cur" is anonymous namespace.
+static bool IdentifierIsAnonymousNamespace(State *state, int length) {
+ // Returns true if "anon_prefix" is a proper prefix of "mangled_cur".
+ static const char anon_prefix[] = "_GLOBAL__N_";
+ return (length > static_cast<int>(sizeof(anon_prefix) - 1) &&
+ StrPrefix(RemainingInput(state), anon_prefix));
+}
+
+// Forward declarations of our parsing functions.
+static bool ParseMangledName(State *state);
+static bool ParseEncoding(State *state);
+static bool ParseName(State *state);
+static bool ParseUnscopedName(State *state);
+static bool ParseNestedName(State *state);
+static bool ParsePrefix(State *state);
+static bool ParseUnqualifiedName(State *state);
+static bool ParseSourceName(State *state);
+static bool ParseLocalSourceName(State *state);
+static bool ParseUnnamedTypeName(State *state);
+static bool ParseNumber(State *state, int *number_out);
+static bool ParseFloatNumber(State *state);
+static bool ParseSeqId(State *state);
+static bool ParseIdentifier(State *state, int length);
+static bool ParseOperatorName(State *state, int *arity);
+static bool ParseSpecialName(State *state);
+static bool ParseCallOffset(State *state);
+static bool ParseNVOffset(State *state);
+static bool ParseVOffset(State *state);
+static bool ParseCtorDtorName(State *state);
+static bool ParseDecltype(State *state);
+static bool ParseType(State *state);
+static bool ParseCVQualifiers(State *state);
+static bool ParseBuiltinType(State *state);
+static bool ParseFunctionType(State *state);
+static bool ParseBareFunctionType(State *state);
+static bool ParseClassEnumType(State *state);
+static bool ParseArrayType(State *state);
+static bool ParsePointerToMemberType(State *state);
+static bool ParseTemplateParam(State *state);
+static bool ParseTemplateTemplateParam(State *state);
+static bool ParseTemplateArgs(State *state);
+static bool ParseTemplateArg(State *state);
+static bool ParseBaseUnresolvedName(State *state);
+static bool ParseUnresolvedName(State *state);
+static bool ParseExpression(State *state);
+static bool ParseExprPrimary(State *state);
+static bool ParseExprCastValue(State *state);
+static bool ParseLocalName(State *state);
+static bool ParseLocalNameSuffix(State *state);
+static bool ParseDiscriminator(State *state);
+static bool ParseSubstitution(State *state, bool accept_std);
+
+// Implementation note: the following code is a straightforward
+// translation of the Itanium C++ ABI defined in BNF with a couple of
+// exceptions.
+//
+// - Support GNU extensions not defined in the Itanium C++ ABI
+// - <prefix> and <template-prefix> are combined to avoid infinite loop
+// - Reorder patterns to shorten the code
+// - Reorder patterns to give greedier functions precedence
+// We'll mark "Less greedy than" for these cases in the code
+//
+// Each parsing function changes the parse state and returns true on
+// success, or returns false and doesn't change the parse state (note:
+// the parse-steps counter increases regardless of success or failure).
+// To ensure that the parse state isn't changed in the latter case, we
+// save the original state before we call multiple parsing functions
+// consecutively with &&, and restore it if unsuccessful. See
+// ParseEncoding() as an example of this convention. We follow the
+// convention throughout the code.
+//
+// Originally we tried to do demangling without following the full ABI
+// syntax but it turned out we needed to follow the full syntax to
+// parse complicated cases like nested template arguments. Note that
+// implementing a full-fledged demangler isn't trivial (libiberty's
+// cp-demangle.c has +4300 lines).
+//
+// Note that (foo) in <(foo) ...> is a modifier to be ignored.
+//
+// Reference:
+// - Itanium C++ ABI
+// <https://mentorembedded.github.io/cxx-abi/abi.html#mangling>
+
+// <mangled-name> ::= _Z <encoding>
+static bool ParseMangledName(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ return ParseTwoCharToken(state, "_Z") && ParseEncoding(state);
+}
+
+// <encoding> ::= <(function) name> <bare-function-type>
+// ::= <(data) name>
+// ::= <special-name>
+static bool ParseEncoding(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ // Implementing the first two productions together as <name>
+ // [<bare-function-type>] avoids exponential blowup of backtracking.
+ //
+ // Since Optional(...) can't fail, there's no need to copy the state for
+ // backtracking.
+ if (ParseName(state) && Optional(ParseBareFunctionType(state))) {
+ return true;
+ }
+
+ if (ParseSpecialName(state)) {
+ return true;
+ }
+ return false;
+}
+
+// <name> ::= <nested-name>
+// ::= <unscoped-template-name> <template-args>
+// ::= <unscoped-name>
+// ::= <local-name>
+static bool ParseName(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ if (ParseNestedName(state) || ParseLocalName(state)) {
+ return true;
+ }
+
+ // We reorganize the productions to avoid re-parsing unscoped names.
+ // - Inline <unscoped-template-name> productions:
+ // <name> ::= <substitution> <template-args>
+ // ::= <unscoped-name> <template-args>
+ // ::= <unscoped-name>
+ // - Merge the two productions that start with unscoped-name:
+ // <name> ::= <unscoped-name> [<template-args>]
+
+ ParseState copy = state->parse_state;
+ // "std<...>" isn't a valid name.
+ if (ParseSubstitution(state, /*accept_std=*/false) &&
+ ParseTemplateArgs(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ // Note there's no need to restore state after this since only the first
+ // subparser can fail.
+ return ParseUnscopedName(state) && Optional(ParseTemplateArgs(state));
+}
+
+// <unscoped-name> ::= <unqualified-name>
+// ::= St <unqualified-name>
+static bool ParseUnscopedName(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ if (ParseUnqualifiedName(state)) {
+ return true;
+ }
+
+ ParseState copy = state->parse_state;
+ if (ParseTwoCharToken(state, "St") && MaybeAppend(state, "std::") &&
+ ParseUnqualifiedName(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// <ref-qualifer> ::= R // lvalue method reference qualifier
+// ::= O // rvalue method reference qualifier
+static inline bool ParseRefQualifier(State *state) {
+ return ParseCharClass(state, "OR");
+}
+
+// <nested-name> ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix>
+// <unqualified-name> E
+// ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
+// <template-args> E
+static bool ParseNestedName(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
+ if (ParseOneCharToken(state, 'N') && EnterNestedName(state) &&
+ Optional(ParseCVQualifiers(state)) &&
+ Optional(ParseRefQualifier(state)) && ParsePrefix(state) &&
+ LeaveNestedName(state, copy.nest_level) &&
+ ParseOneCharToken(state, 'E')) {
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// This part is tricky. If we literally translate them to code, we'll
+// end up infinite loop. Hence we merge them to avoid the case.
+//
+// <prefix> ::= <prefix> <unqualified-name>
+// ::= <template-prefix> <template-args>
+// ::= <template-param>
+// ::= <substitution>
+// ::= # empty
+// <template-prefix> ::= <prefix> <(template) unqualified-name>
+// ::= <template-param>
+// ::= <substitution>
+static bool ParsePrefix(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ bool has_something = false;
+ while (true) {
+ MaybeAppendSeparator(state);
+ if (ParseTemplateParam(state) ||
+ ParseSubstitution(state, /*accept_std=*/true) ||
+ ParseUnscopedName(state) ||
+ (ParseOneCharToken(state, 'M') && ParseUnnamedTypeName(state))) {
+ has_something = true;
+ MaybeIncreaseNestLevel(state);
+ continue;
+ }
+ MaybeCancelLastSeparator(state);
+ if (has_something && ParseTemplateArgs(state)) {
+ return ParsePrefix(state);
+ } else {
+ break;
+ }
+ }
+ return true;
+}
+
+// <unqualified-name> ::= <operator-name>
+// ::= <ctor-dtor-name>
+// ::= <source-name>
+// ::= <local-source-name> // GCC extension; see below.
+// ::= <unnamed-type-name>
+static bool ParseUnqualifiedName(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ return (ParseOperatorName(state, nullptr) || ParseCtorDtorName(state) ||
+ ParseSourceName(state) || ParseLocalSourceName(state) ||
+ ParseUnnamedTypeName(state));
+}
+
+// <source-name> ::= <positive length number> <identifier>
+static bool ParseSourceName(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
+ int length = -1;
+ if (ParseNumber(state, &length) && ParseIdentifier(state, length)) {
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// <local-source-name> ::= L <source-name> [<discriminator>]
+//
+// References:
+// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775
+// https://gcc.gnu.org/viewcvs?view=rev&revision=124467
+static bool ParseLocalSourceName(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
+ if (ParseOneCharToken(state, 'L') && ParseSourceName(state) &&
+ Optional(ParseDiscriminator(state))) {
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// <unnamed-type-name> ::= Ut [<(nonnegative) number>] _
+// ::= <closure-type-name>
+// <closure-type-name> ::= Ul <lambda-sig> E [<(nonnegative) number>] _
+// <lambda-sig> ::= <(parameter) type>+
+static bool ParseUnnamedTypeName(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
+ // Type's 1-based index n is encoded as { "", n == 1; itoa(n-2), otherwise }.
+ // Optionally parse the encoded value into 'which' and add 2 to get the index.
+ int which = -1;
+
+ // Unnamed type local to function or class.
+ if (ParseTwoCharToken(state, "Ut") && Optional(ParseNumber(state, &which)) &&
+ which <= std::numeric_limits<int>::max() - 2 && // Don't overflow.
+ ParseOneCharToken(state, '_')) {
+ MaybeAppend(state, "{unnamed type#");
+ MaybeAppendDecimal(state, 2 + which);
+ MaybeAppend(state, "}");
+ return true;
+ }
+ state->parse_state = copy;
+
+ // Closure type.
+ which = -1;
+ if (ParseTwoCharToken(state, "Ul") && DisableAppend(state) &&
+ OneOrMore(ParseType, state) && RestoreAppend(state, copy.append) &&
+ ParseOneCharToken(state, 'E') && Optional(ParseNumber(state, &which)) &&
+ which <= std::numeric_limits<int>::max() - 2 && // Don't overflow.
+ ParseOneCharToken(state, '_')) {
+ MaybeAppend(state, "{lambda()#");
+ MaybeAppendDecimal(state, 2 + which);
+ MaybeAppend(state, "}");
+ return true;
+ }
+ state->parse_state = copy;
+
+ return false;
+}
+
+// <number> ::= [n] <non-negative decimal integer>
+// If "number_out" is non-null, then *number_out is set to the value of the
+// parsed number on success.
+static bool ParseNumber(State *state, int *number_out) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ bool negative = false;
+ if (ParseOneCharToken(state, 'n')) {
+ negative = true;
+ }
+ const char *p = RemainingInput(state);
+ uint64_t number = 0;
+ for (; *p != '\0'; ++p) {
+ if (IsDigit(*p)) {
+ number = number * 10 + (*p - '0');
+ } else {
+ break;
+ }
+ }
+ // Apply the sign with uint64_t arithmetic so overflows aren't UB. Gives
+ // "incorrect" results for out-of-range inputs, but negative values only
+ // appear for literals, which aren't printed.
+ if (negative) {
+ number = ~number + 1;
+ }
+ if (p != RemainingInput(state)) { // Conversion succeeded.
+ state->parse_state.mangled_idx += p - RemainingInput(state);
+ if (number_out != nullptr) {
+ // Note: possibly truncate "number".
+ *number_out = number;
+ }
+ return true;
+ }
+ return false;
+}
+
+// Floating-point literals are encoded using a fixed-length lowercase
+// hexadecimal string.
+static bool ParseFloatNumber(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ const char *p = RemainingInput(state);
+ for (; *p != '\0'; ++p) {
+ if (!IsDigit(*p) && !(*p >= 'a' && *p <= 'f')) {
+ break;
+ }
+ }
+ if (p != RemainingInput(state)) { // Conversion succeeded.
+ state->parse_state.mangled_idx += p - RemainingInput(state);
+ return true;
+ }
+ return false;
+}
+
+// The <seq-id> is a sequence number in base 36,
+// using digits and upper case letters
+static bool ParseSeqId(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ const char *p = RemainingInput(state);
+ for (; *p != '\0'; ++p) {
+ if (!IsDigit(*p) && !(*p >= 'A' && *p <= 'Z')) {
+ break;
+ }
+ }
+ if (p != RemainingInput(state)) { // Conversion succeeded.
+ state->parse_state.mangled_idx += p - RemainingInput(state);
+ return true;
+ }
+ return false;
+}
+
+// <identifier> ::= <unqualified source code identifier> (of given length)
+static bool ParseIdentifier(State *state, int length) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ if (length < 0 || !AtLeastNumCharsRemaining(RemainingInput(state), length)) {
+ return false;
+ }
+ if (IdentifierIsAnonymousNamespace(state, length)) {
+ MaybeAppend(state, "(anonymous namespace)");
+ } else {
+ MaybeAppendWithLength(state, RemainingInput(state), length);
+ }
+ state->parse_state.mangled_idx += length;
+ return true;
+}
+
+// <operator-name> ::= nw, and other two letters cases
+// ::= cv <type> # (cast)
+// ::= v <digit> <source-name> # vendor extended operator
+static bool ParseOperatorName(State *state, int *arity) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ if (!AtLeastNumCharsRemaining(RemainingInput(state), 2)) {
+ return false;
+ }
+ // First check with "cv" (cast) case.
+ ParseState copy = state->parse_state;
+ if (ParseTwoCharToken(state, "cv") && MaybeAppend(state, "operator ") &&
+ EnterNestedName(state) && ParseType(state) &&
+ LeaveNestedName(state, copy.nest_level)) {
+ if (arity != nullptr) {
+ *arity = 1;
+ }
+ return true;
+ }
+ state->parse_state = copy;
+
+ // Then vendor extended operators.
+ if (ParseOneCharToken(state, 'v') && ParseDigit(state, arity) &&
+ ParseSourceName(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ // Other operator names should start with a lower alphabet followed
+ // by a lower/upper alphabet.
+ if (!(IsLower(RemainingInput(state)[0]) &&
+ IsAlpha(RemainingInput(state)[1]))) {
+ return false;
+ }
+ // We may want to perform a binary search if we really need speed.
+ const AbbrevPair *p;
+ for (p = kOperatorList; p->abbrev != nullptr; ++p) {
+ if (RemainingInput(state)[0] == p->abbrev[0] &&
+ RemainingInput(state)[1] == p->abbrev[1]) {
+ if (arity != nullptr) {
+ *arity = p->arity;
+ }
+ MaybeAppend(state, "operator");
+ if (IsLower(*p->real_name)) { // new, delete, etc.
+ MaybeAppend(state, " ");
+ }
+ MaybeAppend(state, p->real_name);
+ state->parse_state.mangled_idx += 2;
+ return true;
+ }
+ }
+ return false;
+}
+
+// <special-name> ::= TV <type>
+// ::= TT <type>
+// ::= TI <type>
+// ::= TS <type>
// ::= TH <type> # thread-local
-// ::= Tc <call-offset> <call-offset> <(base) encoding>
-// ::= GV <(object) name>
-// ::= T <call-offset> <(base) encoding>
-// G++ extensions:
-// ::= TC <type> <(offset) number> _ <(base) type>
-// ::= TF <type>
-// ::= TJ <type>
-// ::= GR <name>
-// ::= GA <encoding>
-// ::= Th <call-offset> <(base) encoding>
-// ::= Tv <call-offset> <(base) encoding>
-//
-// Note: we don't care much about them since they don't appear in
-// stack traces. The are special data.
-static bool ParseSpecialName(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
+// ::= Tc <call-offset> <call-offset> <(base) encoding>
+// ::= GV <(object) name>
+// ::= T <call-offset> <(base) encoding>
+// G++ extensions:
+// ::= TC <type> <(offset) number> _ <(base) type>
+// ::= TF <type>
+// ::= TJ <type>
+// ::= GR <name>
+// ::= GA <encoding>
+// ::= Th <call-offset> <(base) encoding>
+// ::= Tv <call-offset> <(base) encoding>
+//
+// Note: we don't care much about them since they don't appear in
+// stack traces. The are special data.
+static bool ParseSpecialName(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "VTISH") &&
- ParseType(state)) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseTwoCharToken(state, "Tc") && ParseCallOffset(state) &&
- ParseCallOffset(state) && ParseEncoding(state)) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseTwoCharToken(state, "GV") && ParseName(state)) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseOneCharToken(state, 'T') && ParseCallOffset(state) &&
- ParseEncoding(state)) {
- return true;
- }
- state->parse_state = copy;
-
- // G++ extensions
- if (ParseTwoCharToken(state, "TC") && ParseType(state) &&
- ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
- DisableAppend(state) && ParseType(state)) {
- RestoreAppend(state, copy.append);
- return true;
- }
- state->parse_state = copy;
-
- if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "FJ") &&
- ParseType(state)) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseTwoCharToken(state, "GR") && ParseName(state)) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseTwoCharToken(state, "GA") && ParseEncoding(state)) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "hv") &&
- ParseCallOffset(state) && ParseEncoding(state)) {
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
-// <call-offset> ::= h <nv-offset> _
-// ::= v <v-offset> _
-static bool ParseCallOffset(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
- if (ParseOneCharToken(state, 'h') && ParseNVOffset(state) &&
- ParseOneCharToken(state, '_')) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseOneCharToken(state, 'v') && ParseVOffset(state) &&
- ParseOneCharToken(state, '_')) {
- return true;
- }
- state->parse_state = copy;
-
- return false;
-}
-
-// <nv-offset> ::= <(offset) number>
-static bool ParseNVOffset(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- return ParseNumber(state, nullptr);
-}
-
-// <v-offset> ::= <(offset) number> _ <(virtual offset) number>
-static bool ParseVOffset(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
- if (ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
- ParseNumber(state, nullptr)) {
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
+ ParseType(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseTwoCharToken(state, "Tc") && ParseCallOffset(state) &&
+ ParseCallOffset(state) && ParseEncoding(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseTwoCharToken(state, "GV") && ParseName(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseOneCharToken(state, 'T') && ParseCallOffset(state) &&
+ ParseEncoding(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ // G++ extensions
+ if (ParseTwoCharToken(state, "TC") && ParseType(state) &&
+ ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
+ DisableAppend(state) && ParseType(state)) {
+ RestoreAppend(state, copy.append);
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "FJ") &&
+ ParseType(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseTwoCharToken(state, "GR") && ParseName(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseTwoCharToken(state, "GA") && ParseEncoding(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "hv") &&
+ ParseCallOffset(state) && ParseEncoding(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// <call-offset> ::= h <nv-offset> _
+// ::= v <v-offset> _
+static bool ParseCallOffset(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
+ if (ParseOneCharToken(state, 'h') && ParseNVOffset(state) &&
+ ParseOneCharToken(state, '_')) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseOneCharToken(state, 'v') && ParseVOffset(state) &&
+ ParseOneCharToken(state, '_')) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ return false;
+}
+
+// <nv-offset> ::= <(offset) number>
+static bool ParseNVOffset(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ return ParseNumber(state, nullptr);
+}
+
+// <v-offset> ::= <(offset) number> _ <(virtual offset) number>
+static bool ParseVOffset(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
+ if (ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
+ ParseNumber(state, nullptr)) {
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
// <ctor-dtor-name> ::= C1 | C2 | C3 | CI1 <base-class-type> | CI2
// <base-class-type>
-// ::= D0 | D1 | D2
-// # GCC extensions: "unified" constructor/destructor. See
+// ::= D0 | D1 | D2
+// # GCC extensions: "unified" constructor/destructor. See
// #
// https://github.com/gcc-mirror/gcc/blob/7ad17b583c3643bd4557f29b8391ca7ef08391f5/gcc/cp/mangle.c#L1847
-// ::= C4 | D4
-static bool ParseCtorDtorName(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
+// ::= C4 | D4
+static bool ParseCtorDtorName(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
if (ParseOneCharToken(state, 'C')) {
if (ParseCharClass(state, "1234")) {
const char *const prev_name =
@@ -1108,175 +1108,175 @@ static bool ParseCtorDtorName(State *state) {
ParseClassEnumType(state)) {
return true;
}
- }
- state->parse_state = copy;
-
- if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "0124")) {
- const char *const prev_name = state->out + state->parse_state.prev_name_idx;
- MaybeAppend(state, "~");
- MaybeAppendWithLength(state, prev_name,
- state->parse_state.prev_name_length);
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
-// <decltype> ::= Dt <expression> E # decltype of an id-expression or class
-// # member access (C++0x)
-// ::= DT <expression> E # decltype of an expression (C++0x)
-static bool ParseDecltype(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
-
- ParseState copy = state->parse_state;
- if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "tT") &&
- ParseExpression(state) && ParseOneCharToken(state, 'E')) {
- return true;
- }
- state->parse_state = copy;
-
- return false;
-}
-
-// <type> ::= <CV-qualifiers> <type>
-// ::= P <type> # pointer-to
-// ::= R <type> # reference-to
-// ::= O <type> # rvalue reference-to (C++0x)
-// ::= C <type> # complex pair (C 2000)
-// ::= G <type> # imaginary (C 2000)
-// ::= U <source-name> <type> # vendor extended type qualifier
-// ::= <builtin-type>
-// ::= <function-type>
-// ::= <class-enum-type> # note: just an alias for <name>
-// ::= <array-type>
-// ::= <pointer-to-member-type>
-// ::= <template-template-param> <template-args>
-// ::= <template-param>
-// ::= <decltype>
-// ::= <substitution>
-// ::= Dp <type> # pack expansion of (C++0x)
+ }
+ state->parse_state = copy;
+
+ if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "0124")) {
+ const char *const prev_name = state->out + state->parse_state.prev_name_idx;
+ MaybeAppend(state, "~");
+ MaybeAppendWithLength(state, prev_name,
+ state->parse_state.prev_name_length);
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// <decltype> ::= Dt <expression> E # decltype of an id-expression or class
+// # member access (C++0x)
+// ::= DT <expression> E # decltype of an expression (C++0x)
+static bool ParseDecltype(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+
+ ParseState copy = state->parse_state;
+ if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "tT") &&
+ ParseExpression(state) && ParseOneCharToken(state, 'E')) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ return false;
+}
+
+// <type> ::= <CV-qualifiers> <type>
+// ::= P <type> # pointer-to
+// ::= R <type> # reference-to
+// ::= O <type> # rvalue reference-to (C++0x)
+// ::= C <type> # complex pair (C 2000)
+// ::= G <type> # imaginary (C 2000)
+// ::= U <source-name> <type> # vendor extended type qualifier
+// ::= <builtin-type>
+// ::= <function-type>
+// ::= <class-enum-type> # note: just an alias for <name>
+// ::= <array-type>
+// ::= <pointer-to-member-type>
+// ::= <template-template-param> <template-args>
+// ::= <template-param>
+// ::= <decltype>
+// ::= <substitution>
+// ::= Dp <type> # pack expansion of (C++0x)
// ::= Dv <num-elems> _ # GNU vector extension
-//
-static bool ParseType(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
-
- // We should check CV-qualifers, and PRGC things first.
- //
- // CV-qualifiers overlap with some operator names, but an operator name is not
- // valid as a type. To avoid an ambiguity that can lead to exponential time
- // complexity, refuse to backtrack the CV-qualifiers.
- //
- // _Z4aoeuIrMvvE
- // => _Z 4aoeuI rM v v E
- // aoeu<operator%=, void, void>
- // => _Z 4aoeuI r Mv v E
- // aoeu<void void::* restrict>
- //
- // By consuming the CV-qualifiers first, the former parse is disabled.
- if (ParseCVQualifiers(state)) {
- const bool result = ParseType(state);
- if (!result) state->parse_state = copy;
- return result;
- }
- state->parse_state = copy;
-
- // Similarly, these tag characters can overlap with other <name>s resulting in
- // two different parse prefixes that land on <template-args> in the same
- // place, such as "C3r1xI...". So, disable the "ctor-name = C3" parse by
- // refusing to backtrack the tag characters.
- if (ParseCharClass(state, "OPRCG")) {
- const bool result = ParseType(state);
- if (!result) state->parse_state = copy;
- return result;
- }
- state->parse_state = copy;
-
- if (ParseTwoCharToken(state, "Dp") && ParseType(state)) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseOneCharToken(state, 'U') && ParseSourceName(state) &&
- ParseType(state)) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseBuiltinType(state) || ParseFunctionType(state) ||
- ParseClassEnumType(state) || ParseArrayType(state) ||
- ParsePointerToMemberType(state) || ParseDecltype(state) ||
- // "std" on its own isn't a type.
- ParseSubstitution(state, /*accept_std=*/false)) {
- return true;
- }
-
- if (ParseTemplateTemplateParam(state) && ParseTemplateArgs(state)) {
- return true;
- }
- state->parse_state = copy;
-
- // Less greedy than <template-template-param> <template-args>.
- if (ParseTemplateParam(state)) {
- return true;
- }
-
+//
+static bool ParseType(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
+
+ // We should check CV-qualifers, and PRGC things first.
+ //
+ // CV-qualifiers overlap with some operator names, but an operator name is not
+ // valid as a type. To avoid an ambiguity that can lead to exponential time
+ // complexity, refuse to backtrack the CV-qualifiers.
+ //
+ // _Z4aoeuIrMvvE
+ // => _Z 4aoeuI rM v v E
+ // aoeu<operator%=, void, void>
+ // => _Z 4aoeuI r Mv v E
+ // aoeu<void void::* restrict>
+ //
+ // By consuming the CV-qualifiers first, the former parse is disabled.
+ if (ParseCVQualifiers(state)) {
+ const bool result = ParseType(state);
+ if (!result) state->parse_state = copy;
+ return result;
+ }
+ state->parse_state = copy;
+
+ // Similarly, these tag characters can overlap with other <name>s resulting in
+ // two different parse prefixes that land on <template-args> in the same
+ // place, such as "C3r1xI...". So, disable the "ctor-name = C3" parse by
+ // refusing to backtrack the tag characters.
+ if (ParseCharClass(state, "OPRCG")) {
+ const bool result = ParseType(state);
+ if (!result) state->parse_state = copy;
+ return result;
+ }
+ state->parse_state = copy;
+
+ if (ParseTwoCharToken(state, "Dp") && ParseType(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseOneCharToken(state, 'U') && ParseSourceName(state) &&
+ ParseType(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseBuiltinType(state) || ParseFunctionType(state) ||
+ ParseClassEnumType(state) || ParseArrayType(state) ||
+ ParsePointerToMemberType(state) || ParseDecltype(state) ||
+ // "std" on its own isn't a type.
+ ParseSubstitution(state, /*accept_std=*/false)) {
+ return true;
+ }
+
+ if (ParseTemplateTemplateParam(state) && ParseTemplateArgs(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ // Less greedy than <template-template-param> <template-args>.
+ if (ParseTemplateParam(state)) {
+ return true;
+ }
+
if (ParseTwoCharToken(state, "Dv") && ParseNumber(state, nullptr) &&
ParseOneCharToken(state, '_')) {
return true;
}
state->parse_state = copy;
- return false;
-}
-
-// <CV-qualifiers> ::= [r] [V] [K]
-// We don't allow empty <CV-qualifiers> to avoid infinite loop in
-// ParseType().
-static bool ParseCVQualifiers(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- int num_cv_qualifiers = 0;
- num_cv_qualifiers += ParseOneCharToken(state, 'r');
- num_cv_qualifiers += ParseOneCharToken(state, 'V');
- num_cv_qualifiers += ParseOneCharToken(state, 'K');
- return num_cv_qualifiers > 0;
-}
-
-// <builtin-type> ::= v, etc. # single-character builtin types
-// ::= u <source-name>
-// ::= Dd, etc. # two-character builtin types
-//
-// Not supported:
-// ::= DF <number> _ # _FloatN (N bits)
-//
-static bool ParseBuiltinType(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- const AbbrevPair *p;
- for (p = kBuiltinTypeList; p->abbrev != nullptr; ++p) {
- // Guaranteed only 1- or 2-character strings in kBuiltinTypeList.
- if (p->abbrev[1] == '\0') {
- if (ParseOneCharToken(state, p->abbrev[0])) {
- MaybeAppend(state, p->real_name);
- return true;
- }
- } else if (p->abbrev[2] == '\0' && ParseTwoCharToken(state, p->abbrev)) {
- MaybeAppend(state, p->real_name);
- return true;
- }
- }
-
- ParseState copy = state->parse_state;
- if (ParseOneCharToken(state, 'u') && ParseSourceName(state)) {
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
+ return false;
+}
+
+// <CV-qualifiers> ::= [r] [V] [K]
+// We don't allow empty <CV-qualifiers> to avoid infinite loop in
+// ParseType().
+static bool ParseCVQualifiers(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ int num_cv_qualifiers = 0;
+ num_cv_qualifiers += ParseOneCharToken(state, 'r');
+ num_cv_qualifiers += ParseOneCharToken(state, 'V');
+ num_cv_qualifiers += ParseOneCharToken(state, 'K');
+ return num_cv_qualifiers > 0;
+}
+
+// <builtin-type> ::= v, etc. # single-character builtin types
+// ::= u <source-name>
+// ::= Dd, etc. # two-character builtin types
+//
+// Not supported:
+// ::= DF <number> _ # _FloatN (N bits)
+//
+static bool ParseBuiltinType(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ const AbbrevPair *p;
+ for (p = kBuiltinTypeList; p->abbrev != nullptr; ++p) {
+ // Guaranteed only 1- or 2-character strings in kBuiltinTypeList.
+ if (p->abbrev[1] == '\0') {
+ if (ParseOneCharToken(state, p->abbrev[0])) {
+ MaybeAppend(state, p->real_name);
+ return true;
+ }
+ } else if (p->abbrev[2] == '\0' && ParseTwoCharToken(state, p->abbrev)) {
+ MaybeAppend(state, p->real_name);
+ return true;
+ }
+ }
+
+ ParseState copy = state->parse_state;
+ if (ParseOneCharToken(state, 'u') && ParseSourceName(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
// <exception-spec> ::= Do # non-throwing
// exception-specification (e.g.,
// noexcept, throw())
@@ -1306,349 +1306,349 @@ static bool ParseExceptionSpec(State *state) {
}
// <function-type> ::= [exception-spec] F [Y] <bare-function-type> [O] E
-static bool ParseFunctionType(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
+static bool ParseFunctionType(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
if (Optional(ParseExceptionSpec(state)) && ParseOneCharToken(state, 'F') &&
- Optional(ParseOneCharToken(state, 'Y')) && ParseBareFunctionType(state) &&
+ Optional(ParseOneCharToken(state, 'Y')) && ParseBareFunctionType(state) &&
Optional(ParseOneCharToken(state, 'O')) &&
- ParseOneCharToken(state, 'E')) {
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
-// <bare-function-type> ::= <(signature) type>+
-static bool ParseBareFunctionType(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
- DisableAppend(state);
- if (OneOrMore(ParseType, state)) {
- RestoreAppend(state, copy.append);
- MaybeAppend(state, "()");
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
-// <class-enum-type> ::= <name>
-static bool ParseClassEnumType(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- return ParseName(state);
-}
-
-// <array-type> ::= A <(positive dimension) number> _ <(element) type>
-// ::= A [<(dimension) expression>] _ <(element) type>
-static bool ParseArrayType(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
- if (ParseOneCharToken(state, 'A') && ParseNumber(state, nullptr) &&
- ParseOneCharToken(state, '_') && ParseType(state)) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseOneCharToken(state, 'A') && Optional(ParseExpression(state)) &&
- ParseOneCharToken(state, '_') && ParseType(state)) {
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
-// <pointer-to-member-type> ::= M <(class) type> <(member) type>
-static bool ParsePointerToMemberType(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
- if (ParseOneCharToken(state, 'M') && ParseType(state) && ParseType(state)) {
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
-// <template-param> ::= T_
-// ::= T <parameter-2 non-negative number> _
-static bool ParseTemplateParam(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- if (ParseTwoCharToken(state, "T_")) {
- MaybeAppend(state, "?"); // We don't support template substitutions.
- return true;
- }
-
- ParseState copy = state->parse_state;
- if (ParseOneCharToken(state, 'T') && ParseNumber(state, nullptr) &&
- ParseOneCharToken(state, '_')) {
- MaybeAppend(state, "?"); // We don't support template substitutions.
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
-// <template-template-param> ::= <template-param>
-// ::= <substitution>
-static bool ParseTemplateTemplateParam(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- return (ParseTemplateParam(state) ||
- // "std" on its own isn't a template.
- ParseSubstitution(state, /*accept_std=*/false));
-}
-
-// <template-args> ::= I <template-arg>+ E
-static bool ParseTemplateArgs(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
- DisableAppend(state);
- if (ParseOneCharToken(state, 'I') && OneOrMore(ParseTemplateArg, state) &&
- ParseOneCharToken(state, 'E')) {
- RestoreAppend(state, copy.append);
- MaybeAppend(state, "<>");
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
-// <template-arg> ::= <type>
-// ::= <expr-primary>
-// ::= J <template-arg>* E # argument pack
-// ::= X <expression> E
-static bool ParseTemplateArg(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
- if (ParseOneCharToken(state, 'J') && ZeroOrMore(ParseTemplateArg, state) &&
- ParseOneCharToken(state, 'E')) {
- return true;
- }
- state->parse_state = copy;
-
- // There can be significant overlap between the following leading to
- // exponential backtracking:
- //
- // <expr-primary> ::= L <type> <expr-cast-value> E
- // e.g. L 2xxIvE 1 E
- // <type> ==> <local-source-name> <template-args>
- // e.g. L 2xx IvE
- //
- // This means parsing an entire <type> twice, and <type> can contain
- // <template-arg>, so this can generate exponential backtracking. There is
- // only overlap when the remaining input starts with "L <source-name>", so
- // parse all cases that can start this way jointly to share the common prefix.
- //
- // We have:
- //
- // <template-arg> ::= <type>
- // ::= <expr-primary>
- //
- // First, drop all the productions of <type> that must start with something
- // other than 'L'. All that's left is <class-enum-type>; inline it.
- //
- // <type> ::= <nested-name> # starts with 'N'
- // ::= <unscoped-name>
- // ::= <unscoped-template-name> <template-args>
- // ::= <local-name> # starts with 'Z'
- //
- // Drop and inline again:
- //
- // <type> ::= <unscoped-name>
- // ::= <unscoped-name> <template-args>
- // ::= <substitution> <template-args> # starts with 'S'
- //
- // Merge the first two, inline <unscoped-name>, drop last:
- //
- // <type> ::= <unqualified-name> [<template-args>]
- // ::= St <unqualified-name> [<template-args>] # starts with 'S'
- //
- // Drop and inline:
- //
- // <type> ::= <operator-name> [<template-args>] # starts with lowercase
- // ::= <ctor-dtor-name> [<template-args>] # starts with 'C' or 'D'
- // ::= <source-name> [<template-args>] # starts with digit
- // ::= <local-source-name> [<template-args>]
- // ::= <unnamed-type-name> [<template-args>] # starts with 'U'
- //
- // One more time:
- //
- // <type> ::= L <source-name> [<template-args>]
- //
- // Likewise with <expr-primary>:
- //
- // <expr-primary> ::= L <type> <expr-cast-value> E
- // ::= LZ <encoding> E # cannot overlap; drop
- // ::= L <mangled_name> E # cannot overlap; drop
- //
- // By similar reasoning as shown above, the only <type>s starting with
- // <source-name> are "<source-name> [<template-args>]". Inline this.
- //
- // <expr-primary> ::= L <source-name> [<template-args>] <expr-cast-value> E
- //
- // Now inline both of these into <template-arg>:
- //
- // <template-arg> ::= L <source-name> [<template-args>]
- // ::= L <source-name> [<template-args>] <expr-cast-value> E
- //
- // Merge them and we're done:
- // <template-arg>
- // ::= L <source-name> [<template-args>] [<expr-cast-value> E]
- if (ParseLocalSourceName(state) && Optional(ParseTemplateArgs(state))) {
- copy = state->parse_state;
- if (ParseExprCastValue(state) && ParseOneCharToken(state, 'E')) {
- return true;
- }
- state->parse_state = copy;
- return true;
- }
-
- // Now that the overlapping cases can't reach this code, we can safely call
- // both of these.
- if (ParseType(state) || ParseExprPrimary(state)) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseOneCharToken(state, 'X') && ParseExpression(state) &&
- ParseOneCharToken(state, 'E')) {
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
-// <unresolved-type> ::= <template-param> [<template-args>]
-// ::= <decltype>
-// ::= <substitution>
-static inline bool ParseUnresolvedType(State *state) {
- // No ComplexityGuard because we don't copy the state in this stack frame.
- return (ParseTemplateParam(state) && Optional(ParseTemplateArgs(state))) ||
- ParseDecltype(state) || ParseSubstitution(state, /*accept_std=*/false);
-}
-
-// <simple-id> ::= <source-name> [<template-args>]
-static inline bool ParseSimpleId(State *state) {
- // No ComplexityGuard because we don't copy the state in this stack frame.
-
- // Note: <simple-id> cannot be followed by a parameter pack; see comment in
- // ParseUnresolvedType.
- return ParseSourceName(state) && Optional(ParseTemplateArgs(state));
-}
-
-// <base-unresolved-name> ::= <source-name> [<template-args>]
-// ::= on <operator-name> [<template-args>]
-// ::= dn <destructor-name>
-static bool ParseBaseUnresolvedName(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
-
- if (ParseSimpleId(state)) {
- return true;
- }
-
- ParseState copy = state->parse_state;
- if (ParseTwoCharToken(state, "on") && ParseOperatorName(state, nullptr) &&
- Optional(ParseTemplateArgs(state))) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseTwoCharToken(state, "dn") &&
- (ParseUnresolvedType(state) || ParseSimpleId(state))) {
- return true;
- }
- state->parse_state = copy;
-
- return false;
-}
-
-// <unresolved-name> ::= [gs] <base-unresolved-name>
-// ::= sr <unresolved-type> <base-unresolved-name>
-// ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
-// <base-unresolved-name>
-// ::= [gs] sr <unresolved-qualifier-level>+ E
-// <base-unresolved-name>
-static bool ParseUnresolvedName(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
-
- ParseState copy = state->parse_state;
- if (Optional(ParseTwoCharToken(state, "gs")) &&
- ParseBaseUnresolvedName(state)) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseTwoCharToken(state, "sr") && ParseUnresolvedType(state) &&
- ParseBaseUnresolvedName(state)) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseTwoCharToken(state, "sr") && ParseOneCharToken(state, 'N') &&
- ParseUnresolvedType(state) &&
- OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&
- ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
- return true;
- }
- state->parse_state = copy;
-
- if (Optional(ParseTwoCharToken(state, "gs")) &&
- ParseTwoCharToken(state, "sr") &&
- OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&
- ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
- return true;
- }
- state->parse_state = copy;
-
- return false;
-}
-
-// <expression> ::= <1-ary operator-name> <expression>
-// ::= <2-ary operator-name> <expression> <expression>
-// ::= <3-ary operator-name> <expression> <expression> <expression>
-// ::= cl <expression>+ E
+ ParseOneCharToken(state, 'E')) {
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// <bare-function-type> ::= <(signature) type>+
+static bool ParseBareFunctionType(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
+ DisableAppend(state);
+ if (OneOrMore(ParseType, state)) {
+ RestoreAppend(state, copy.append);
+ MaybeAppend(state, "()");
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// <class-enum-type> ::= <name>
+static bool ParseClassEnumType(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ return ParseName(state);
+}
+
+// <array-type> ::= A <(positive dimension) number> _ <(element) type>
+// ::= A [<(dimension) expression>] _ <(element) type>
+static bool ParseArrayType(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
+ if (ParseOneCharToken(state, 'A') && ParseNumber(state, nullptr) &&
+ ParseOneCharToken(state, '_') && ParseType(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseOneCharToken(state, 'A') && Optional(ParseExpression(state)) &&
+ ParseOneCharToken(state, '_') && ParseType(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// <pointer-to-member-type> ::= M <(class) type> <(member) type>
+static bool ParsePointerToMemberType(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
+ if (ParseOneCharToken(state, 'M') && ParseType(state) && ParseType(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// <template-param> ::= T_
+// ::= T <parameter-2 non-negative number> _
+static bool ParseTemplateParam(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ if (ParseTwoCharToken(state, "T_")) {
+ MaybeAppend(state, "?"); // We don't support template substitutions.
+ return true;
+ }
+
+ ParseState copy = state->parse_state;
+ if (ParseOneCharToken(state, 'T') && ParseNumber(state, nullptr) &&
+ ParseOneCharToken(state, '_')) {
+ MaybeAppend(state, "?"); // We don't support template substitutions.
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// <template-template-param> ::= <template-param>
+// ::= <substitution>
+static bool ParseTemplateTemplateParam(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ return (ParseTemplateParam(state) ||
+ // "std" on its own isn't a template.
+ ParseSubstitution(state, /*accept_std=*/false));
+}
+
+// <template-args> ::= I <template-arg>+ E
+static bool ParseTemplateArgs(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
+ DisableAppend(state);
+ if (ParseOneCharToken(state, 'I') && OneOrMore(ParseTemplateArg, state) &&
+ ParseOneCharToken(state, 'E')) {
+ RestoreAppend(state, copy.append);
+ MaybeAppend(state, "<>");
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// <template-arg> ::= <type>
+// ::= <expr-primary>
+// ::= J <template-arg>* E # argument pack
+// ::= X <expression> E
+static bool ParseTemplateArg(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
+ if (ParseOneCharToken(state, 'J') && ZeroOrMore(ParseTemplateArg, state) &&
+ ParseOneCharToken(state, 'E')) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ // There can be significant overlap between the following leading to
+ // exponential backtracking:
+ //
+ // <expr-primary> ::= L <type> <expr-cast-value> E
+ // e.g. L 2xxIvE 1 E
+ // <type> ==> <local-source-name> <template-args>
+ // e.g. L 2xx IvE
+ //
+ // This means parsing an entire <type> twice, and <type> can contain
+ // <template-arg>, so this can generate exponential backtracking. There is
+ // only overlap when the remaining input starts with "L <source-name>", so
+ // parse all cases that can start this way jointly to share the common prefix.
+ //
+ // We have:
+ //
+ // <template-arg> ::= <type>
+ // ::= <expr-primary>
+ //
+ // First, drop all the productions of <type> that must start with something
+ // other than 'L'. All that's left is <class-enum-type>; inline it.
+ //
+ // <type> ::= <nested-name> # starts with 'N'
+ // ::= <unscoped-name>
+ // ::= <unscoped-template-name> <template-args>
+ // ::= <local-name> # starts with 'Z'
+ //
+ // Drop and inline again:
+ //
+ // <type> ::= <unscoped-name>
+ // ::= <unscoped-name> <template-args>
+ // ::= <substitution> <template-args> # starts with 'S'
+ //
+ // Merge the first two, inline <unscoped-name>, drop last:
+ //
+ // <type> ::= <unqualified-name> [<template-args>]
+ // ::= St <unqualified-name> [<template-args>] # starts with 'S'
+ //
+ // Drop and inline:
+ //
+ // <type> ::= <operator-name> [<template-args>] # starts with lowercase
+ // ::= <ctor-dtor-name> [<template-args>] # starts with 'C' or 'D'
+ // ::= <source-name> [<template-args>] # starts with digit
+ // ::= <local-source-name> [<template-args>]
+ // ::= <unnamed-type-name> [<template-args>] # starts with 'U'
+ //
+ // One more time:
+ //
+ // <type> ::= L <source-name> [<template-args>]
+ //
+ // Likewise with <expr-primary>:
+ //
+ // <expr-primary> ::= L <type> <expr-cast-value> E
+ // ::= LZ <encoding> E # cannot overlap; drop
+ // ::= L <mangled_name> E # cannot overlap; drop
+ //
+ // By similar reasoning as shown above, the only <type>s starting with
+ // <source-name> are "<source-name> [<template-args>]". Inline this.
+ //
+ // <expr-primary> ::= L <source-name> [<template-args>] <expr-cast-value> E
+ //
+ // Now inline both of these into <template-arg>:
+ //
+ // <template-arg> ::= L <source-name> [<template-args>]
+ // ::= L <source-name> [<template-args>] <expr-cast-value> E
+ //
+ // Merge them and we're done:
+ // <template-arg>
+ // ::= L <source-name> [<template-args>] [<expr-cast-value> E]
+ if (ParseLocalSourceName(state) && Optional(ParseTemplateArgs(state))) {
+ copy = state->parse_state;
+ if (ParseExprCastValue(state) && ParseOneCharToken(state, 'E')) {
+ return true;
+ }
+ state->parse_state = copy;
+ return true;
+ }
+
+ // Now that the overlapping cases can't reach this code, we can safely call
+ // both of these.
+ if (ParseType(state) || ParseExprPrimary(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseOneCharToken(state, 'X') && ParseExpression(state) &&
+ ParseOneCharToken(state, 'E')) {
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// <unresolved-type> ::= <template-param> [<template-args>]
+// ::= <decltype>
+// ::= <substitution>
+static inline bool ParseUnresolvedType(State *state) {
+ // No ComplexityGuard because we don't copy the state in this stack frame.
+ return (ParseTemplateParam(state) && Optional(ParseTemplateArgs(state))) ||
+ ParseDecltype(state) || ParseSubstitution(state, /*accept_std=*/false);
+}
+
+// <simple-id> ::= <source-name> [<template-args>]
+static inline bool ParseSimpleId(State *state) {
+ // No ComplexityGuard because we don't copy the state in this stack frame.
+
+ // Note: <simple-id> cannot be followed by a parameter pack; see comment in
+ // ParseUnresolvedType.
+ return ParseSourceName(state) && Optional(ParseTemplateArgs(state));
+}
+
+// <base-unresolved-name> ::= <source-name> [<template-args>]
+// ::= on <operator-name> [<template-args>]
+// ::= dn <destructor-name>
+static bool ParseBaseUnresolvedName(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+
+ if (ParseSimpleId(state)) {
+ return true;
+ }
+
+ ParseState copy = state->parse_state;
+ if (ParseTwoCharToken(state, "on") && ParseOperatorName(state, nullptr) &&
+ Optional(ParseTemplateArgs(state))) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseTwoCharToken(state, "dn") &&
+ (ParseUnresolvedType(state) || ParseSimpleId(state))) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ return false;
+}
+
+// <unresolved-name> ::= [gs] <base-unresolved-name>
+// ::= sr <unresolved-type> <base-unresolved-name>
+// ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
+// <base-unresolved-name>
+// ::= [gs] sr <unresolved-qualifier-level>+ E
+// <base-unresolved-name>
+static bool ParseUnresolvedName(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+
+ ParseState copy = state->parse_state;
+ if (Optional(ParseTwoCharToken(state, "gs")) &&
+ ParseBaseUnresolvedName(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseTwoCharToken(state, "sr") && ParseUnresolvedType(state) &&
+ ParseBaseUnresolvedName(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseTwoCharToken(state, "sr") && ParseOneCharToken(state, 'N') &&
+ ParseUnresolvedType(state) &&
+ OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&
+ ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (Optional(ParseTwoCharToken(state, "gs")) &&
+ ParseTwoCharToken(state, "sr") &&
+ OneOrMore(/* <unresolved-qualifier-level> ::= */ ParseSimpleId, state) &&
+ ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ return false;
+}
+
+// <expression> ::= <1-ary operator-name> <expression>
+// ::= <2-ary operator-name> <expression> <expression>
+// ::= <3-ary operator-name> <expression> <expression> <expression>
+// ::= cl <expression>+ E
// ::= cp <simple-id> <expression>* E # Clang-specific.
-// ::= cv <type> <expression> # type (expression)
-// ::= cv <type> _ <expression>* E # type (expr-list)
-// ::= st <type>
-// ::= <template-param>
-// ::= <function-param>
-// ::= <expr-primary>
-// ::= dt <expression> <unresolved-name> # expr.name
-// ::= pt <expression> <unresolved-name> # expr->name
-// ::= sp <expression> # argument pack expansion
-// ::= sr <type> <unqualified-name> <template-args>
-// ::= sr <type> <unqualified-name>
-// <function-param> ::= fp <(top-level) CV-qualifiers> _
-// ::= fp <(top-level) CV-qualifiers> <number> _
-// ::= fL <number> p <(top-level) CV-qualifiers> _
-// ::= fL <number> p <(top-level) CV-qualifiers> <number> _
-static bool ParseExpression(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- if (ParseTemplateParam(state) || ParseExprPrimary(state)) {
- return true;
- }
-
+// ::= cv <type> <expression> # type (expression)
+// ::= cv <type> _ <expression>* E # type (expr-list)
+// ::= st <type>
+// ::= <template-param>
+// ::= <function-param>
+// ::= <expr-primary>
+// ::= dt <expression> <unresolved-name> # expr.name
+// ::= pt <expression> <unresolved-name> # expr->name
+// ::= sp <expression> # argument pack expansion
+// ::= sr <type> <unqualified-name> <template-args>
+// ::= sr <type> <unqualified-name>
+// <function-param> ::= fp <(top-level) CV-qualifiers> _
+// ::= fp <(top-level) CV-qualifiers> <number> _
+// ::= fL <number> p <(top-level) CV-qualifiers> _
+// ::= fL <number> p <(top-level) CV-qualifiers> <number> _
+static bool ParseExpression(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ if (ParseTemplateParam(state) || ParseExprPrimary(state)) {
+ return true;
+ }
+
ParseState copy = state->parse_state;
- // Object/function call expression.
- if (ParseTwoCharToken(state, "cl") && OneOrMore(ParseExpression, state) &&
- ParseOneCharToken(state, 'E')) {
- return true;
- }
- state->parse_state = copy;
-
+ // Object/function call expression.
+ if (ParseTwoCharToken(state, "cl") && OneOrMore(ParseExpression, state) &&
+ ParseOneCharToken(state, 'E')) {
+ return true;
+ }
+ state->parse_state = copy;
+
// Clang-specific "cp <simple-id> <expression>* E"
// https://clang.llvm.org/doxygen/ItaniumMangle_8cpp_source.html#l04338
if (ParseTwoCharToken(state, "cp") && ParseSimpleId(state) &&
@@ -1657,303 +1657,303 @@ static bool ParseExpression(State *state) {
}
state->parse_state = copy;
- // Function-param expression (level 0).
- if (ParseTwoCharToken(state, "fp") && Optional(ParseCVQualifiers(state)) &&
- Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
- return true;
- }
- state->parse_state = copy;
-
- // Function-param expression (level 1+).
- if (ParseTwoCharToken(state, "fL") && Optional(ParseNumber(state, nullptr)) &&
- ParseOneCharToken(state, 'p') && Optional(ParseCVQualifiers(state)) &&
- Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
- return true;
- }
- state->parse_state = copy;
-
- // Parse the conversion expressions jointly to avoid re-parsing the <type> in
- // their common prefix. Parsed as:
- // <expression> ::= cv <type> <conversion-args>
- // <conversion-args> ::= _ <expression>* E
- // ::= <expression>
- //
- // Also don't try ParseOperatorName after seeing "cv", since ParseOperatorName
- // also needs to accept "cv <type>" in other contexts.
- if (ParseTwoCharToken(state, "cv")) {
- if (ParseType(state)) {
- ParseState copy2 = state->parse_state;
- if (ParseOneCharToken(state, '_') && ZeroOrMore(ParseExpression, state) &&
- ParseOneCharToken(state, 'E')) {
- return true;
- }
- state->parse_state = copy2;
- if (ParseExpression(state)) {
- return true;
- }
- }
- } else {
- // Parse unary, binary, and ternary operator expressions jointly, taking
- // care not to re-parse subexpressions repeatedly. Parse like:
- // <expression> ::= <operator-name> <expression>
- // [<one-to-two-expressions>]
- // <one-to-two-expressions> ::= <expression> [<expression>]
- int arity = -1;
- if (ParseOperatorName(state, &arity) &&
- arity > 0 && // 0 arity => disabled.
- (arity < 3 || ParseExpression(state)) &&
- (arity < 2 || ParseExpression(state)) &&
- (arity < 1 || ParseExpression(state))) {
- return true;
- }
- }
- state->parse_state = copy;
-
- // sizeof type
- if (ParseTwoCharToken(state, "st") && ParseType(state)) {
- return true;
- }
- state->parse_state = copy;
-
- // Object and pointer member access expressions.
- if ((ParseTwoCharToken(state, "dt") || ParseTwoCharToken(state, "pt")) &&
- ParseExpression(state) && ParseType(state)) {
- return true;
- }
- state->parse_state = copy;
-
- // Pointer-to-member access expressions. This parses the same as a binary
- // operator, but it's implemented separately because "ds" shouldn't be
- // accepted in other contexts that parse an operator name.
- if (ParseTwoCharToken(state, "ds") && ParseExpression(state) &&
- ParseExpression(state)) {
- return true;
- }
- state->parse_state = copy;
-
- // Parameter pack expansion
- if (ParseTwoCharToken(state, "sp") && ParseExpression(state)) {
- return true;
- }
- state->parse_state = copy;
-
- return ParseUnresolvedName(state);
-}
-
-// <expr-primary> ::= L <type> <(value) number> E
-// ::= L <type> <(value) float> E
-// ::= L <mangled-name> E
-// // A bug in g++'s C++ ABI version 2 (-fabi-version=2).
-// ::= LZ <encoding> E
-//
-// Warning, subtle: the "bug" LZ production above is ambiguous with the first
-// production where <type> starts with <local-name>, which can lead to
-// exponential backtracking in two scenarios:
-//
-// - When whatever follows the E in the <local-name> in the first production is
-// not a name, we backtrack the whole <encoding> and re-parse the whole thing.
-//
-// - When whatever follows the <local-name> in the first production is not a
-// number and this <expr-primary> may be followed by a name, we backtrack the
-// <name> and re-parse it.
-//
-// Moreover this ambiguity isn't always resolved -- for example, the following
-// has two different parses:
-//
-// _ZaaILZ4aoeuE1x1EvE
-// => operator&&<aoeu, x, E, void>
-// => operator&&<(aoeu::x)(1), void>
-//
-// To resolve this, we just do what GCC's demangler does, and refuse to parse
-// casts to <local-name> types.
-static bool ParseExprPrimary(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
-
- // The "LZ" special case: if we see LZ, we commit to accept "LZ <encoding> E"
- // or fail, no backtracking.
- if (ParseTwoCharToken(state, "LZ")) {
- if (ParseEncoding(state) && ParseOneCharToken(state, 'E')) {
- return true;
- }
-
- state->parse_state = copy;
- return false;
- }
-
- // The merged cast production.
- if (ParseOneCharToken(state, 'L') && ParseType(state) &&
- ParseExprCastValue(state)) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseOneCharToken(state, 'L') && ParseMangledName(state) &&
- ParseOneCharToken(state, 'E')) {
- return true;
- }
- state->parse_state = copy;
-
- return false;
-}
-
-// <number> or <float>, followed by 'E', as described above ParseExprPrimary.
-static bool ParseExprCastValue(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- // We have to be able to backtrack after accepting a number because we could
- // have e.g. "7fffE", which will accept "7" as a number but then fail to find
- // the 'E'.
- ParseState copy = state->parse_state;
- if (ParseNumber(state, nullptr) && ParseOneCharToken(state, 'E')) {
- return true;
- }
- state->parse_state = copy;
-
- if (ParseFloatNumber(state) && ParseOneCharToken(state, 'E')) {
- return true;
- }
- state->parse_state = copy;
-
- return false;
-}
-
-// <local-name> ::= Z <(function) encoding> E <(entity) name> [<discriminator>]
-// ::= Z <(function) encoding> E s [<discriminator>]
-//
-// Parsing a common prefix of these two productions together avoids an
-// exponential blowup of backtracking. Parse like:
-// <local-name> := Z <encoding> E <local-name-suffix>
-// <local-name-suffix> ::= s [<discriminator>]
-// ::= <name> [<discriminator>]
-
-static bool ParseLocalNameSuffix(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
-
- if (MaybeAppend(state, "::") && ParseName(state) &&
- Optional(ParseDiscriminator(state))) {
- return true;
- }
-
- // Since we're not going to overwrite the above "::" by re-parsing the
- // <encoding> (whose trailing '\0' byte was in the byte now holding the
- // first ':'), we have to rollback the "::" if the <name> parse failed.
- if (state->parse_state.append) {
- state->out[state->parse_state.out_cur_idx - 2] = '\0';
- }
-
- return ParseOneCharToken(state, 's') && Optional(ParseDiscriminator(state));
-}
-
-static bool ParseLocalName(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
- if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) &&
- ParseOneCharToken(state, 'E') && ParseLocalNameSuffix(state)) {
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
-// <discriminator> := _ <(non-negative) number>
-static bool ParseDiscriminator(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- ParseState copy = state->parse_state;
- if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) {
- return true;
- }
- state->parse_state = copy;
- return false;
-}
-
-// <substitution> ::= S_
-// ::= S <seq-id> _
-// ::= St, etc.
-//
-// "St" is special in that it's not valid as a standalone name, and it *is*
-// allowed to precede a name without being wrapped in "N...E". This means that
-// if we accept it on its own, we can accept "St1a" and try to parse
-// template-args, then fail and backtrack, accept "St" on its own, then "1a" as
-// an unqualified name and re-parse the same template-args. To block this
-// exponential backtracking, we disable it with 'accept_std=false' in
-// problematic contexts.
-static bool ParseSubstitution(State *state, bool accept_std) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- if (ParseTwoCharToken(state, "S_")) {
- MaybeAppend(state, "?"); // We don't support substitutions.
- return true;
- }
-
- ParseState copy = state->parse_state;
- if (ParseOneCharToken(state, 'S') && ParseSeqId(state) &&
- ParseOneCharToken(state, '_')) {
- MaybeAppend(state, "?"); // We don't support substitutions.
- return true;
- }
- state->parse_state = copy;
-
- // Expand abbreviations like "St" => "std".
- if (ParseOneCharToken(state, 'S')) {
- const AbbrevPair *p;
- for (p = kSubstitutionList; p->abbrev != nullptr; ++p) {
- if (RemainingInput(state)[0] == p->abbrev[1] &&
- (accept_std || p->abbrev[1] != 't')) {
- MaybeAppend(state, "std");
- if (p->real_name[0] != '\0') {
- MaybeAppend(state, "::");
- MaybeAppend(state, p->real_name);
- }
- ++state->parse_state.mangled_idx;
- return true;
- }
- }
- }
- state->parse_state = copy;
- return false;
-}
-
-// Parse <mangled-name>, optionally followed by either a function-clone suffix
-// or version suffix. Returns true only if all of "mangled_cur" was consumed.
-static bool ParseTopLevelMangledName(State *state) {
- ComplexityGuard guard(state);
- if (guard.IsTooComplex()) return false;
- if (ParseMangledName(state)) {
- if (RemainingInput(state)[0] != '\0') {
- // Drop trailing function clone suffix, if any.
- if (IsFunctionCloneSuffix(RemainingInput(state))) {
- return true;
- }
- // Append trailing version suffix if any.
- // ex. _Z3foo@@GLIBCXX_3.4
- if (RemainingInput(state)[0] == '@') {
- MaybeAppend(state, RemainingInput(state));
- return true;
- }
- return false; // Unconsumed suffix.
- }
- return true;
- }
- return false;
-}
-
-static bool Overflowed(const State *state) {
- return state->parse_state.out_cur_idx >= state->out_end_idx;
-}
-
-// The demangler entry point.
-bool Demangle(const char *mangled, char *out, int out_size) {
- State state;
- InitState(&state, mangled, out, out_size);
+ // Function-param expression (level 0).
+ if (ParseTwoCharToken(state, "fp") && Optional(ParseCVQualifiers(state)) &&
+ Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ // Function-param expression (level 1+).
+ if (ParseTwoCharToken(state, "fL") && Optional(ParseNumber(state, nullptr)) &&
+ ParseOneCharToken(state, 'p') && Optional(ParseCVQualifiers(state)) &&
+ Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ // Parse the conversion expressions jointly to avoid re-parsing the <type> in
+ // their common prefix. Parsed as:
+ // <expression> ::= cv <type> <conversion-args>
+ // <conversion-args> ::= _ <expression>* E
+ // ::= <expression>
+ //
+ // Also don't try ParseOperatorName after seeing "cv", since ParseOperatorName
+ // also needs to accept "cv <type>" in other contexts.
+ if (ParseTwoCharToken(state, "cv")) {
+ if (ParseType(state)) {
+ ParseState copy2 = state->parse_state;
+ if (ParseOneCharToken(state, '_') && ZeroOrMore(ParseExpression, state) &&
+ ParseOneCharToken(state, 'E')) {
+ return true;
+ }
+ state->parse_state = copy2;
+ if (ParseExpression(state)) {
+ return true;
+ }
+ }
+ } else {
+ // Parse unary, binary, and ternary operator expressions jointly, taking
+ // care not to re-parse subexpressions repeatedly. Parse like:
+ // <expression> ::= <operator-name> <expression>
+ // [<one-to-two-expressions>]
+ // <one-to-two-expressions> ::= <expression> [<expression>]
+ int arity = -1;
+ if (ParseOperatorName(state, &arity) &&
+ arity > 0 && // 0 arity => disabled.
+ (arity < 3 || ParseExpression(state)) &&
+ (arity < 2 || ParseExpression(state)) &&
+ (arity < 1 || ParseExpression(state))) {
+ return true;
+ }
+ }
+ state->parse_state = copy;
+
+ // sizeof type
+ if (ParseTwoCharToken(state, "st") && ParseType(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ // Object and pointer member access expressions.
+ if ((ParseTwoCharToken(state, "dt") || ParseTwoCharToken(state, "pt")) &&
+ ParseExpression(state) && ParseType(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ // Pointer-to-member access expressions. This parses the same as a binary
+ // operator, but it's implemented separately because "ds" shouldn't be
+ // accepted in other contexts that parse an operator name.
+ if (ParseTwoCharToken(state, "ds") && ParseExpression(state) &&
+ ParseExpression(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ // Parameter pack expansion
+ if (ParseTwoCharToken(state, "sp") && ParseExpression(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ return ParseUnresolvedName(state);
+}
+
+// <expr-primary> ::= L <type> <(value) number> E
+// ::= L <type> <(value) float> E
+// ::= L <mangled-name> E
+// // A bug in g++'s C++ ABI version 2 (-fabi-version=2).
+// ::= LZ <encoding> E
+//
+// Warning, subtle: the "bug" LZ production above is ambiguous with the first
+// production where <type> starts with <local-name>, which can lead to
+// exponential backtracking in two scenarios:
+//
+// - When whatever follows the E in the <local-name> in the first production is
+// not a name, we backtrack the whole <encoding> and re-parse the whole thing.
+//
+// - When whatever follows the <local-name> in the first production is not a
+// number and this <expr-primary> may be followed by a name, we backtrack the
+// <name> and re-parse it.
+//
+// Moreover this ambiguity isn't always resolved -- for example, the following
+// has two different parses:
+//
+// _ZaaILZ4aoeuE1x1EvE
+// => operator&&<aoeu, x, E, void>
+// => operator&&<(aoeu::x)(1), void>
+//
+// To resolve this, we just do what GCC's demangler does, and refuse to parse
+// casts to <local-name> types.
+static bool ParseExprPrimary(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
+
+ // The "LZ" special case: if we see LZ, we commit to accept "LZ <encoding> E"
+ // or fail, no backtracking.
+ if (ParseTwoCharToken(state, "LZ")) {
+ if (ParseEncoding(state) && ParseOneCharToken(state, 'E')) {
+ return true;
+ }
+
+ state->parse_state = copy;
+ return false;
+ }
+
+ // The merged cast production.
+ if (ParseOneCharToken(state, 'L') && ParseType(state) &&
+ ParseExprCastValue(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseOneCharToken(state, 'L') && ParseMangledName(state) &&
+ ParseOneCharToken(state, 'E')) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ return false;
+}
+
+// <number> or <float>, followed by 'E', as described above ParseExprPrimary.
+static bool ParseExprCastValue(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ // We have to be able to backtrack after accepting a number because we could
+ // have e.g. "7fffE", which will accept "7" as a number but then fail to find
+ // the 'E'.
+ ParseState copy = state->parse_state;
+ if (ParseNumber(state, nullptr) && ParseOneCharToken(state, 'E')) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ if (ParseFloatNumber(state) && ParseOneCharToken(state, 'E')) {
+ return true;
+ }
+ state->parse_state = copy;
+
+ return false;
+}
+
+// <local-name> ::= Z <(function) encoding> E <(entity) name> [<discriminator>]
+// ::= Z <(function) encoding> E s [<discriminator>]
+//
+// Parsing a common prefix of these two productions together avoids an
+// exponential blowup of backtracking. Parse like:
+// <local-name> := Z <encoding> E <local-name-suffix>
+// <local-name-suffix> ::= s [<discriminator>]
+// ::= <name> [<discriminator>]
+
+static bool ParseLocalNameSuffix(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+
+ if (MaybeAppend(state, "::") && ParseName(state) &&
+ Optional(ParseDiscriminator(state))) {
+ return true;
+ }
+
+ // Since we're not going to overwrite the above "::" by re-parsing the
+ // <encoding> (whose trailing '\0' byte was in the byte now holding the
+ // first ':'), we have to rollback the "::" if the <name> parse failed.
+ if (state->parse_state.append) {
+ state->out[state->parse_state.out_cur_idx - 2] = '\0';
+ }
+
+ return ParseOneCharToken(state, 's') && Optional(ParseDiscriminator(state));
+}
+
+static bool ParseLocalName(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
+ if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) &&
+ ParseOneCharToken(state, 'E') && ParseLocalNameSuffix(state)) {
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// <discriminator> := _ <(non-negative) number>
+static bool ParseDiscriminator(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ ParseState copy = state->parse_state;
+ if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr)) {
+ return true;
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// <substitution> ::= S_
+// ::= S <seq-id> _
+// ::= St, etc.
+//
+// "St" is special in that it's not valid as a standalone name, and it *is*
+// allowed to precede a name without being wrapped in "N...E". This means that
+// if we accept it on its own, we can accept "St1a" and try to parse
+// template-args, then fail and backtrack, accept "St" on its own, then "1a" as
+// an unqualified name and re-parse the same template-args. To block this
+// exponential backtracking, we disable it with 'accept_std=false' in
+// problematic contexts.
+static bool ParseSubstitution(State *state, bool accept_std) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ if (ParseTwoCharToken(state, "S_")) {
+ MaybeAppend(state, "?"); // We don't support substitutions.
+ return true;
+ }
+
+ ParseState copy = state->parse_state;
+ if (ParseOneCharToken(state, 'S') && ParseSeqId(state) &&
+ ParseOneCharToken(state, '_')) {
+ MaybeAppend(state, "?"); // We don't support substitutions.
+ return true;
+ }
+ state->parse_state = copy;
+
+ // Expand abbreviations like "St" => "std".
+ if (ParseOneCharToken(state, 'S')) {
+ const AbbrevPair *p;
+ for (p = kSubstitutionList; p->abbrev != nullptr; ++p) {
+ if (RemainingInput(state)[0] == p->abbrev[1] &&
+ (accept_std || p->abbrev[1] != 't')) {
+ MaybeAppend(state, "std");
+ if (p->real_name[0] != '\0') {
+ MaybeAppend(state, "::");
+ MaybeAppend(state, p->real_name);
+ }
+ ++state->parse_state.mangled_idx;
+ return true;
+ }
+ }
+ }
+ state->parse_state = copy;
+ return false;
+}
+
+// Parse <mangled-name>, optionally followed by either a function-clone suffix
+// or version suffix. Returns true only if all of "mangled_cur" was consumed.
+static bool ParseTopLevelMangledName(State *state) {
+ ComplexityGuard guard(state);
+ if (guard.IsTooComplex()) return false;
+ if (ParseMangledName(state)) {
+ if (RemainingInput(state)[0] != '\0') {
+ // Drop trailing function clone suffix, if any.
+ if (IsFunctionCloneSuffix(RemainingInput(state))) {
+ return true;
+ }
+ // Append trailing version suffix if any.
+ // ex. _Z3foo@@GLIBCXX_3.4
+ if (RemainingInput(state)[0] == '@') {
+ MaybeAppend(state, RemainingInput(state));
+ return true;
+ }
+ return false; // Unconsumed suffix.
+ }
+ return true;
+ }
+ return false;
+}
+
+static bool Overflowed(const State *state) {
+ return state->parse_state.out_cur_idx >= state->out_end_idx;
+}
+
+// The demangler entry point.
+bool Demangle(const char *mangled, char *out, int out_size) {
+ State state;
+ InitState(&state, mangled, out, out_size);
return ParseTopLevelMangledName(&state) && !Overflowed(&state) &&
state.parse_state.out_cur_idx > 0;
-}
-
-} // namespace debugging_internal
+}
+
+} // namespace debugging_internal
ABSL_NAMESPACE_END
-} // namespace absl
+} // namespace absl