aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/abseil-cpp/absl/container/flat_hash_set.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/restricted/abseil-cpp/absl/container/flat_hash_set.h')
-rw-r--r--contrib/restricted/abseil-cpp/absl/container/flat_hash_set.h982
1 files changed, 491 insertions, 491 deletions
diff --git a/contrib/restricted/abseil-cpp/absl/container/flat_hash_set.h b/contrib/restricted/abseil-cpp/absl/container/flat_hash_set.h
index ebac6a44b4..6b89da6571 100644
--- a/contrib/restricted/abseil-cpp/absl/container/flat_hash_set.h
+++ b/contrib/restricted/abseil-cpp/absl/container/flat_hash_set.h
@@ -1,445 +1,445 @@
-// Copyright 2018 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// -----------------------------------------------------------------------------
-// File: flat_hash_set.h
-// -----------------------------------------------------------------------------
-//
-// An `absl::flat_hash_set<T>` is an unordered associative container designed to
-// be a more efficient replacement for `std::unordered_set`. Like
-// `unordered_set`, search, insertion, and deletion of set elements can be done
-// as an `O(1)` operation. However, `flat_hash_set` (and other unordered
-// associative containers known as the collection of Abseil "Swiss tables")
-// contain other optimizations that result in both memory and computation
-// advantages.
-//
-// In most cases, your default choice for a hash set should be a set of type
-// `flat_hash_set`.
-#ifndef ABSL_CONTAINER_FLAT_HASH_SET_H_
-#define ABSL_CONTAINER_FLAT_HASH_SET_H_
-
-#include <type_traits>
-#include <utility>
-
-#include "absl/algorithm/container.h"
-#include "absl/base/macros.h"
-#include "absl/container/internal/container_memory.h"
-#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
-#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
-#include "absl/memory/memory.h"
-
-namespace absl {
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// File: flat_hash_set.h
+// -----------------------------------------------------------------------------
+//
+// An `absl::flat_hash_set<T>` is an unordered associative container designed to
+// be a more efficient replacement for `std::unordered_set`. Like
+// `unordered_set`, search, insertion, and deletion of set elements can be done
+// as an `O(1)` operation. However, `flat_hash_set` (and other unordered
+// associative containers known as the collection of Abseil "Swiss tables")
+// contain other optimizations that result in both memory and computation
+// advantages.
+//
+// In most cases, your default choice for a hash set should be a set of type
+// `flat_hash_set`.
+#ifndef ABSL_CONTAINER_FLAT_HASH_SET_H_
+#define ABSL_CONTAINER_FLAT_HASH_SET_H_
+
+#include <type_traits>
+#include <utility>
+
+#include "absl/algorithm/container.h"
+#include "absl/base/macros.h"
+#include "absl/container/internal/container_memory.h"
+#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
+#include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
+#include "absl/memory/memory.h"
+
+namespace absl {
ABSL_NAMESPACE_BEGIN
-namespace container_internal {
-template <typename T>
-struct FlatHashSetPolicy;
-} // namespace container_internal
-
-// -----------------------------------------------------------------------------
-// absl::flat_hash_set
-// -----------------------------------------------------------------------------
-//
-// An `absl::flat_hash_set<T>` is an unordered associative container which has
-// been optimized for both speed and memory footprint in most common use cases.
-// Its interface is similar to that of `std::unordered_set<T>` with the
-// following notable differences:
-//
-// * Requires keys that are CopyConstructible
-// * Supports heterogeneous lookup, through `find()` and `insert()`, provided
-// that the set is provided a compatible heterogeneous hashing function and
-// equality operator.
-// * Invalidates any references and pointers to elements within the table after
-// `rehash()`.
-// * Contains a `capacity()` member function indicating the number of element
-// slots (open, deleted, and empty) within the hash set.
-// * Returns `void` from the `erase(iterator)` overload.
-//
-// By default, `flat_hash_set` uses the `absl::Hash` hashing framework. All
-// fundamental and Abseil types that support the `absl::Hash` framework have a
-// compatible equality operator for comparing insertions into `flat_hash_map`.
-// If your type is not yet supported by the `absl::Hash` framework, see
-// absl/hash/hash.h for information on extending Abseil hashing to user-defined
-// types.
-//
-// NOTE: A `flat_hash_set` stores its keys directly inside its implementation
-// array to avoid memory indirection. Because a `flat_hash_set` is designed to
-// move data when rehashed, set keys will not retain pointer stability. If you
-// require pointer stability, consider using
-// `absl::flat_hash_set<std::unique_ptr<T>>`. If your type is not moveable and
-// you require pointer stability, consider `absl::node_hash_set` instead.
-//
-// Example:
-//
-// // Create a flat hash set of three strings
-// absl::flat_hash_set<std::string> ducks =
-// {"huey", "dewey", "louie"};
-//
-// // Insert a new element into the flat hash set
-// ducks.insert("donald");
-//
-// // Force a rehash of the flat hash set
-// ducks.rehash(0);
-//
-// // See if "dewey" is present
-// if (ducks.contains("dewey")) {
-// std::cout << "We found dewey!" << std::endl;
-// }
-template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
- class Eq = absl::container_internal::hash_default_eq<T>,
- class Allocator = std::allocator<T>>
-class flat_hash_set
- : public absl::container_internal::raw_hash_set<
- absl::container_internal::FlatHashSetPolicy<T>, Hash, Eq, Allocator> {
- using Base = typename flat_hash_set::raw_hash_set;
-
- public:
- // Constructors and Assignment Operators
- //
- // A flat_hash_set supports the same overload set as `std::unordered_map`
- // for construction and assignment:
- //
- // * Default constructor
- //
- // // No allocation for the table's elements is made.
- // absl::flat_hash_set<std::string> set1;
- //
- // * Initializer List constructor
- //
- // absl::flat_hash_set<std::string> set2 =
- // {{"huey"}, {"dewey"}, {"louie"},};
- //
- // * Copy constructor
- //
- // absl::flat_hash_set<std::string> set3(set2);
- //
- // * Copy assignment operator
- //
- // // Hash functor and Comparator are copied as well
- // absl::flat_hash_set<std::string> set4;
- // set4 = set3;
- //
- // * Move constructor
- //
- // // Move is guaranteed efficient
- // absl::flat_hash_set<std::string> set5(std::move(set4));
- //
- // * Move assignment operator
- //
- // // May be efficient if allocators are compatible
- // absl::flat_hash_set<std::string> set6;
- // set6 = std::move(set5);
- //
- // * Range constructor
- //
- // std::vector<std::string> v = {"a", "b"};
- // absl::flat_hash_set<std::string> set7(v.begin(), v.end());
- flat_hash_set() {}
- using Base::Base;
-
- // flat_hash_set::begin()
- //
- // Returns an iterator to the beginning of the `flat_hash_set`.
- using Base::begin;
-
- // flat_hash_set::cbegin()
- //
- // Returns a const iterator to the beginning of the `flat_hash_set`.
- using Base::cbegin;
-
- // flat_hash_set::cend()
- //
- // Returns a const iterator to the end of the `flat_hash_set`.
- using Base::cend;
-
- // flat_hash_set::end()
- //
- // Returns an iterator to the end of the `flat_hash_set`.
- using Base::end;
-
- // flat_hash_set::capacity()
- //
- // Returns the number of element slots (assigned, deleted, and empty)
- // available within the `flat_hash_set`.
- //
- // NOTE: this member function is particular to `absl::flat_hash_set` and is
- // not provided in the `std::unordered_map` API.
- using Base::capacity;
-
- // flat_hash_set::empty()
- //
- // Returns whether or not the `flat_hash_set` is empty.
- using Base::empty;
-
- // flat_hash_set::max_size()
- //
- // Returns the largest theoretical possible number of elements within a
- // `flat_hash_set` under current memory constraints. This value can be thought
- // of the largest value of `std::distance(begin(), end())` for a
- // `flat_hash_set<T>`.
- using Base::max_size;
-
- // flat_hash_set::size()
- //
- // Returns the number of elements currently within the `flat_hash_set`.
- using Base::size;
-
- // flat_hash_set::clear()
- //
- // Removes all elements from the `flat_hash_set`. Invalidates any references,
- // pointers, or iterators referring to contained elements.
- //
- // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
- // the underlying buffer call `erase(begin(), end())`.
- using Base::clear;
-
- // flat_hash_set::erase()
- //
- // Erases elements within the `flat_hash_set`. Erasing does not trigger a
- // rehash. Overloads are listed below.
- //
- // void erase(const_iterator pos):
- //
- // Erases the element at `position` of the `flat_hash_set`, returning
- // `void`.
- //
- // NOTE: returning `void` in this case is different than that of STL
- // containers in general and `std::unordered_set` in particular (which
- // return an iterator to the element following the erased element). If that
- // iterator is needed, simply post increment the iterator:
- //
- // set.erase(it++);
- //
- // iterator erase(const_iterator first, const_iterator last):
- //
- // Erases the elements in the open interval [`first`, `last`), returning an
- // iterator pointing to `last`.
- //
- // size_type erase(const key_type& key):
- //
+namespace container_internal {
+template <typename T>
+struct FlatHashSetPolicy;
+} // namespace container_internal
+
+// -----------------------------------------------------------------------------
+// absl::flat_hash_set
+// -----------------------------------------------------------------------------
+//
+// An `absl::flat_hash_set<T>` is an unordered associative container which has
+// been optimized for both speed and memory footprint in most common use cases.
+// Its interface is similar to that of `std::unordered_set<T>` with the
+// following notable differences:
+//
+// * Requires keys that are CopyConstructible
+// * Supports heterogeneous lookup, through `find()` and `insert()`, provided
+// that the set is provided a compatible heterogeneous hashing function and
+// equality operator.
+// * Invalidates any references and pointers to elements within the table after
+// `rehash()`.
+// * Contains a `capacity()` member function indicating the number of element
+// slots (open, deleted, and empty) within the hash set.
+// * Returns `void` from the `erase(iterator)` overload.
+//
+// By default, `flat_hash_set` uses the `absl::Hash` hashing framework. All
+// fundamental and Abseil types that support the `absl::Hash` framework have a
+// compatible equality operator for comparing insertions into `flat_hash_map`.
+// If your type is not yet supported by the `absl::Hash` framework, see
+// absl/hash/hash.h for information on extending Abseil hashing to user-defined
+// types.
+//
+// NOTE: A `flat_hash_set` stores its keys directly inside its implementation
+// array to avoid memory indirection. Because a `flat_hash_set` is designed to
+// move data when rehashed, set keys will not retain pointer stability. If you
+// require pointer stability, consider using
+// `absl::flat_hash_set<std::unique_ptr<T>>`. If your type is not moveable and
+// you require pointer stability, consider `absl::node_hash_set` instead.
+//
+// Example:
+//
+// // Create a flat hash set of three strings
+// absl::flat_hash_set<std::string> ducks =
+// {"huey", "dewey", "louie"};
+//
+// // Insert a new element into the flat hash set
+// ducks.insert("donald");
+//
+// // Force a rehash of the flat hash set
+// ducks.rehash(0);
+//
+// // See if "dewey" is present
+// if (ducks.contains("dewey")) {
+// std::cout << "We found dewey!" << std::endl;
+// }
+template <class T, class Hash = absl::container_internal::hash_default_hash<T>,
+ class Eq = absl::container_internal::hash_default_eq<T>,
+ class Allocator = std::allocator<T>>
+class flat_hash_set
+ : public absl::container_internal::raw_hash_set<
+ absl::container_internal::FlatHashSetPolicy<T>, Hash, Eq, Allocator> {
+ using Base = typename flat_hash_set::raw_hash_set;
+
+ public:
+ // Constructors and Assignment Operators
+ //
+ // A flat_hash_set supports the same overload set as `std::unordered_map`
+ // for construction and assignment:
+ //
+ // * Default constructor
+ //
+ // // No allocation for the table's elements is made.
+ // absl::flat_hash_set<std::string> set1;
+ //
+ // * Initializer List constructor
+ //
+ // absl::flat_hash_set<std::string> set2 =
+ // {{"huey"}, {"dewey"}, {"louie"},};
+ //
+ // * Copy constructor
+ //
+ // absl::flat_hash_set<std::string> set3(set2);
+ //
+ // * Copy assignment operator
+ //
+ // // Hash functor and Comparator are copied as well
+ // absl::flat_hash_set<std::string> set4;
+ // set4 = set3;
+ //
+ // * Move constructor
+ //
+ // // Move is guaranteed efficient
+ // absl::flat_hash_set<std::string> set5(std::move(set4));
+ //
+ // * Move assignment operator
+ //
+ // // May be efficient if allocators are compatible
+ // absl::flat_hash_set<std::string> set6;
+ // set6 = std::move(set5);
+ //
+ // * Range constructor
+ //
+ // std::vector<std::string> v = {"a", "b"};
+ // absl::flat_hash_set<std::string> set7(v.begin(), v.end());
+ flat_hash_set() {}
+ using Base::Base;
+
+ // flat_hash_set::begin()
+ //
+ // Returns an iterator to the beginning of the `flat_hash_set`.
+ using Base::begin;
+
+ // flat_hash_set::cbegin()
+ //
+ // Returns a const iterator to the beginning of the `flat_hash_set`.
+ using Base::cbegin;
+
+ // flat_hash_set::cend()
+ //
+ // Returns a const iterator to the end of the `flat_hash_set`.
+ using Base::cend;
+
+ // flat_hash_set::end()
+ //
+ // Returns an iterator to the end of the `flat_hash_set`.
+ using Base::end;
+
+ // flat_hash_set::capacity()
+ //
+ // Returns the number of element slots (assigned, deleted, and empty)
+ // available within the `flat_hash_set`.
+ //
+ // NOTE: this member function is particular to `absl::flat_hash_set` and is
+ // not provided in the `std::unordered_map` API.
+ using Base::capacity;
+
+ // flat_hash_set::empty()
+ //
+ // Returns whether or not the `flat_hash_set` is empty.
+ using Base::empty;
+
+ // flat_hash_set::max_size()
+ //
+ // Returns the largest theoretical possible number of elements within a
+ // `flat_hash_set` under current memory constraints. This value can be thought
+ // of the largest value of `std::distance(begin(), end())` for a
+ // `flat_hash_set<T>`.
+ using Base::max_size;
+
+ // flat_hash_set::size()
+ //
+ // Returns the number of elements currently within the `flat_hash_set`.
+ using Base::size;
+
+ // flat_hash_set::clear()
+ //
+ // Removes all elements from the `flat_hash_set`. Invalidates any references,
+ // pointers, or iterators referring to contained elements.
+ //
+ // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
+ // the underlying buffer call `erase(begin(), end())`.
+ using Base::clear;
+
+ // flat_hash_set::erase()
+ //
+ // Erases elements within the `flat_hash_set`. Erasing does not trigger a
+ // rehash. Overloads are listed below.
+ //
+ // void erase(const_iterator pos):
+ //
+ // Erases the element at `position` of the `flat_hash_set`, returning
+ // `void`.
+ //
+ // NOTE: returning `void` in this case is different than that of STL
+ // containers in general and `std::unordered_set` in particular (which
+ // return an iterator to the element following the erased element). If that
+ // iterator is needed, simply post increment the iterator:
+ //
+ // set.erase(it++);
+ //
+ // iterator erase(const_iterator first, const_iterator last):
+ //
+ // Erases the elements in the open interval [`first`, `last`), returning an
+ // iterator pointing to `last`.
+ //
+ // size_type erase(const key_type& key):
+ //
// Erases the element with the matching key, if it exists, returning the
// number of elements erased (0 or 1).
- using Base::erase;
-
- // flat_hash_set::insert()
- //
- // Inserts an element of the specified value into the `flat_hash_set`,
- // returning an iterator pointing to the newly inserted element, provided that
- // an element with the given key does not already exist. If rehashing occurs
- // due to the insertion, all iterators are invalidated. Overloads are listed
- // below.
- //
- // std::pair<iterator,bool> insert(const T& value):
- //
- // Inserts a value into the `flat_hash_set`. Returns a pair consisting of an
- // iterator to the inserted element (or to the element that prevented the
- // insertion) and a bool denoting whether the insertion took place.
- //
- // std::pair<iterator,bool> insert(T&& value):
- //
- // Inserts a moveable value into the `flat_hash_set`. Returns a pair
- // consisting of an iterator to the inserted element (or to the element that
- // prevented the insertion) and a bool denoting whether the insertion took
- // place.
- //
- // iterator insert(const_iterator hint, const T& value):
- // iterator insert(const_iterator hint, T&& value):
- //
- // Inserts a value, using the position of `hint` as a non-binding suggestion
- // for where to begin the insertion search. Returns an iterator to the
- // inserted element, or to the existing element that prevented the
- // insertion.
- //
- // void insert(InputIterator first, InputIterator last):
- //
- // Inserts a range of values [`first`, `last`).
- //
- // NOTE: Although the STL does not specify which element may be inserted if
- // multiple keys compare equivalently, for `flat_hash_set` we guarantee the
- // first match is inserted.
- //
- // void insert(std::initializer_list<T> ilist):
- //
- // Inserts the elements within the initializer list `ilist`.
- //
- // NOTE: Although the STL does not specify which element may be inserted if
- // multiple keys compare equivalently within the initializer list, for
- // `flat_hash_set` we guarantee the first match is inserted.
- using Base::insert;
-
- // flat_hash_set::emplace()
- //
- // Inserts an element of the specified value by constructing it in-place
- // within the `flat_hash_set`, provided that no element with the given key
- // already exists.
- //
- // The element may be constructed even if there already is an element with the
- // key in the container, in which case the newly constructed element will be
- // destroyed immediately.
- //
- // If rehashing occurs due to the insertion, all iterators are invalidated.
- using Base::emplace;
-
- // flat_hash_set::emplace_hint()
- //
- // Inserts an element of the specified value by constructing it in-place
- // within the `flat_hash_set`, using the position of `hint` as a non-binding
- // suggestion for where to begin the insertion search, and only inserts
- // provided that no element with the given key already exists.
- //
- // The element may be constructed even if there already is an element with the
- // key in the container, in which case the newly constructed element will be
- // destroyed immediately.
- //
- // If rehashing occurs due to the insertion, all iterators are invalidated.
- using Base::emplace_hint;
-
- // flat_hash_set::extract()
- //
- // Extracts the indicated element, erasing it in the process, and returns it
- // as a C++17-compatible node handle. Overloads are listed below.
- //
- // node_type extract(const_iterator position):
- //
- // Extracts the element at the indicated position and returns a node handle
- // owning that extracted data.
- //
- // node_type extract(const key_type& x):
- //
- // Extracts the element with the key matching the passed key value and
- // returns a node handle owning that extracted data. If the `flat_hash_set`
- // does not contain an element with a matching key, this function returns an
- // empty node handle.
- using Base::extract;
-
- // flat_hash_set::merge()
- //
+ using Base::erase;
+
+ // flat_hash_set::insert()
+ //
+ // Inserts an element of the specified value into the `flat_hash_set`,
+ // returning an iterator pointing to the newly inserted element, provided that
+ // an element with the given key does not already exist. If rehashing occurs
+ // due to the insertion, all iterators are invalidated. Overloads are listed
+ // below.
+ //
+ // std::pair<iterator,bool> insert(const T& value):
+ //
+ // Inserts a value into the `flat_hash_set`. Returns a pair consisting of an
+ // iterator to the inserted element (or to the element that prevented the
+ // insertion) and a bool denoting whether the insertion took place.
+ //
+ // std::pair<iterator,bool> insert(T&& value):
+ //
+ // Inserts a moveable value into the `flat_hash_set`. Returns a pair
+ // consisting of an iterator to the inserted element (or to the element that
+ // prevented the insertion) and a bool denoting whether the insertion took
+ // place.
+ //
+ // iterator insert(const_iterator hint, const T& value):
+ // iterator insert(const_iterator hint, T&& value):
+ //
+ // Inserts a value, using the position of `hint` as a non-binding suggestion
+ // for where to begin the insertion search. Returns an iterator to the
+ // inserted element, or to the existing element that prevented the
+ // insertion.
+ //
+ // void insert(InputIterator first, InputIterator last):
+ //
+ // Inserts a range of values [`first`, `last`).
+ //
+ // NOTE: Although the STL does not specify which element may be inserted if
+ // multiple keys compare equivalently, for `flat_hash_set` we guarantee the
+ // first match is inserted.
+ //
+ // void insert(std::initializer_list<T> ilist):
+ //
+ // Inserts the elements within the initializer list `ilist`.
+ //
+ // NOTE: Although the STL does not specify which element may be inserted if
+ // multiple keys compare equivalently within the initializer list, for
+ // `flat_hash_set` we guarantee the first match is inserted.
+ using Base::insert;
+
+ // flat_hash_set::emplace()
+ //
+ // Inserts an element of the specified value by constructing it in-place
+ // within the `flat_hash_set`, provided that no element with the given key
+ // already exists.
+ //
+ // The element may be constructed even if there already is an element with the
+ // key in the container, in which case the newly constructed element will be
+ // destroyed immediately.
+ //
+ // If rehashing occurs due to the insertion, all iterators are invalidated.
+ using Base::emplace;
+
+ // flat_hash_set::emplace_hint()
+ //
+ // Inserts an element of the specified value by constructing it in-place
+ // within the `flat_hash_set`, using the position of `hint` as a non-binding
+ // suggestion for where to begin the insertion search, and only inserts
+ // provided that no element with the given key already exists.
+ //
+ // The element may be constructed even if there already is an element with the
+ // key in the container, in which case the newly constructed element will be
+ // destroyed immediately.
+ //
+ // If rehashing occurs due to the insertion, all iterators are invalidated.
+ using Base::emplace_hint;
+
+ // flat_hash_set::extract()
+ //
+ // Extracts the indicated element, erasing it in the process, and returns it
+ // as a C++17-compatible node handle. Overloads are listed below.
+ //
+ // node_type extract(const_iterator position):
+ //
+ // Extracts the element at the indicated position and returns a node handle
+ // owning that extracted data.
+ //
+ // node_type extract(const key_type& x):
+ //
+ // Extracts the element with the key matching the passed key value and
+ // returns a node handle owning that extracted data. If the `flat_hash_set`
+ // does not contain an element with a matching key, this function returns an
+ // empty node handle.
+ using Base::extract;
+
+ // flat_hash_set::merge()
+ //
// Extracts elements from a given `source` flat hash set into this
- // `flat_hash_set`. If the destination `flat_hash_set` already contains an
- // element with an equivalent key, that element is not extracted.
- using Base::merge;
-
- // flat_hash_set::swap(flat_hash_set& other)
- //
- // Exchanges the contents of this `flat_hash_set` with those of the `other`
- // flat hash map, avoiding invocation of any move, copy, or swap operations on
- // individual elements.
- //
- // All iterators and references on the `flat_hash_set` remain valid, excepting
- // for the past-the-end iterator, which is invalidated.
- //
- // `swap()` requires that the flat hash set's hashing and key equivalence
- // functions be Swappable, and are exchaged using unqualified calls to
- // non-member `swap()`. If the map's allocator has
- // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
- // set to `true`, the allocators are also exchanged using an unqualified call
- // to non-member `swap()`; otherwise, the allocators are not swapped.
- using Base::swap;
-
- // flat_hash_set::rehash(count)
- //
- // Rehashes the `flat_hash_set`, setting the number of slots to be at least
- // the passed value. If the new number of slots increases the load factor more
- // than the current maximum load factor
- // (`count` < `size()` / `max_load_factor()`), then the new number of slots
- // will be at least `size()` / `max_load_factor()`.
- //
- // To force a rehash, pass rehash(0).
- //
- // NOTE: unlike behavior in `std::unordered_set`, references are also
- // invalidated upon a `rehash()`.
- using Base::rehash;
-
- // flat_hash_set::reserve(count)
- //
- // Sets the number of slots in the `flat_hash_set` to the number needed to
- // accommodate at least `count` total elements without exceeding the current
- // maximum load factor, and may rehash the container if needed.
- using Base::reserve;
-
- // flat_hash_set::contains()
- //
- // Determines whether an element comparing equal to the given `key` exists
- // within the `flat_hash_set`, returning `true` if so or `false` otherwise.
- using Base::contains;
-
- // flat_hash_set::count(const Key& key) const
- //
- // Returns the number of elements comparing equal to the given `key` within
- // the `flat_hash_set`. note that this function will return either `1` or `0`
- // since duplicate elements are not allowed within a `flat_hash_set`.
- using Base::count;
-
- // flat_hash_set::equal_range()
- //
- // Returns a closed range [first, last], defined by a `std::pair` of two
- // iterators, containing all elements with the passed key in the
- // `flat_hash_set`.
- using Base::equal_range;
-
- // flat_hash_set::find()
- //
- // Finds an element with the passed `key` within the `flat_hash_set`.
- using Base::find;
-
- // flat_hash_set::bucket_count()
- //
- // Returns the number of "buckets" within the `flat_hash_set`. Note that
- // because a flat hash map contains all elements within its internal storage,
- // this value simply equals the current capacity of the `flat_hash_set`.
- using Base::bucket_count;
-
- // flat_hash_set::load_factor()
- //
- // Returns the current load factor of the `flat_hash_set` (the average number
- // of slots occupied with a value within the hash map).
- using Base::load_factor;
-
- // flat_hash_set::max_load_factor()
- //
- // Manages the maximum load factor of the `flat_hash_set`. Overloads are
- // listed below.
- //
- // float flat_hash_set::max_load_factor()
- //
- // Returns the current maximum load factor of the `flat_hash_set`.
- //
- // void flat_hash_set::max_load_factor(float ml)
- //
- // Sets the maximum load factor of the `flat_hash_set` to the passed value.
- //
- // NOTE: This overload is provided only for API compatibility with the STL;
- // `flat_hash_set` will ignore any set load factor and manage its rehashing
- // internally as an implementation detail.
- using Base::max_load_factor;
-
- // flat_hash_set::get_allocator()
- //
- // Returns the allocator function associated with this `flat_hash_set`.
- using Base::get_allocator;
-
- // flat_hash_set::hash_function()
- //
- // Returns the hashing function used to hash the keys within this
- // `flat_hash_set`.
- using Base::hash_function;
-
- // flat_hash_set::key_eq()
- //
- // Returns the function used for comparing keys equality.
- using Base::key_eq;
-};
-
+ // `flat_hash_set`. If the destination `flat_hash_set` already contains an
+ // element with an equivalent key, that element is not extracted.
+ using Base::merge;
+
+ // flat_hash_set::swap(flat_hash_set& other)
+ //
+ // Exchanges the contents of this `flat_hash_set` with those of the `other`
+ // flat hash map, avoiding invocation of any move, copy, or swap operations on
+ // individual elements.
+ //
+ // All iterators and references on the `flat_hash_set` remain valid, excepting
+ // for the past-the-end iterator, which is invalidated.
+ //
+ // `swap()` requires that the flat hash set's hashing and key equivalence
+ // functions be Swappable, and are exchaged using unqualified calls to
+ // non-member `swap()`. If the map's allocator has
+ // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
+ // set to `true`, the allocators are also exchanged using an unqualified call
+ // to non-member `swap()`; otherwise, the allocators are not swapped.
+ using Base::swap;
+
+ // flat_hash_set::rehash(count)
+ //
+ // Rehashes the `flat_hash_set`, setting the number of slots to be at least
+ // the passed value. If the new number of slots increases the load factor more
+ // than the current maximum load factor
+ // (`count` < `size()` / `max_load_factor()`), then the new number of slots
+ // will be at least `size()` / `max_load_factor()`.
+ //
+ // To force a rehash, pass rehash(0).
+ //
+ // NOTE: unlike behavior in `std::unordered_set`, references are also
+ // invalidated upon a `rehash()`.
+ using Base::rehash;
+
+ // flat_hash_set::reserve(count)
+ //
+ // Sets the number of slots in the `flat_hash_set` to the number needed to
+ // accommodate at least `count` total elements without exceeding the current
+ // maximum load factor, and may rehash the container if needed.
+ using Base::reserve;
+
+ // flat_hash_set::contains()
+ //
+ // Determines whether an element comparing equal to the given `key` exists
+ // within the `flat_hash_set`, returning `true` if so or `false` otherwise.
+ using Base::contains;
+
+ // flat_hash_set::count(const Key& key) const
+ //
+ // Returns the number of elements comparing equal to the given `key` within
+ // the `flat_hash_set`. note that this function will return either `1` or `0`
+ // since duplicate elements are not allowed within a `flat_hash_set`.
+ using Base::count;
+
+ // flat_hash_set::equal_range()
+ //
+ // Returns a closed range [first, last], defined by a `std::pair` of two
+ // iterators, containing all elements with the passed key in the
+ // `flat_hash_set`.
+ using Base::equal_range;
+
+ // flat_hash_set::find()
+ //
+ // Finds an element with the passed `key` within the `flat_hash_set`.
+ using Base::find;
+
+ // flat_hash_set::bucket_count()
+ //
+ // Returns the number of "buckets" within the `flat_hash_set`. Note that
+ // because a flat hash map contains all elements within its internal storage,
+ // this value simply equals the current capacity of the `flat_hash_set`.
+ using Base::bucket_count;
+
+ // flat_hash_set::load_factor()
+ //
+ // Returns the current load factor of the `flat_hash_set` (the average number
+ // of slots occupied with a value within the hash map).
+ using Base::load_factor;
+
+ // flat_hash_set::max_load_factor()
+ //
+ // Manages the maximum load factor of the `flat_hash_set`. Overloads are
+ // listed below.
+ //
+ // float flat_hash_set::max_load_factor()
+ //
+ // Returns the current maximum load factor of the `flat_hash_set`.
+ //
+ // void flat_hash_set::max_load_factor(float ml)
+ //
+ // Sets the maximum load factor of the `flat_hash_set` to the passed value.
+ //
+ // NOTE: This overload is provided only for API compatibility with the STL;
+ // `flat_hash_set` will ignore any set load factor and manage its rehashing
+ // internally as an implementation detail.
+ using Base::max_load_factor;
+
+ // flat_hash_set::get_allocator()
+ //
+ // Returns the allocator function associated with this `flat_hash_set`.
+ using Base::get_allocator;
+
+ // flat_hash_set::hash_function()
+ //
+ // Returns the hashing function used to hash the keys within this
+ // `flat_hash_set`.
+ using Base::hash_function;
+
+ // flat_hash_set::key_eq()
+ //
+ // Returns the function used for comparing keys equality.
+ using Base::key_eq;
+};
+
// erase_if(flat_hash_set<>, Pred)
//
// Erases all elements that satisfy the predicate `pred` from the container `c`.
@@ -448,57 +448,57 @@ void erase_if(flat_hash_set<T, H, E, A>& c, Predicate pred) {
container_internal::EraseIf(pred, &c);
}
-namespace container_internal {
-
-template <class T>
-struct FlatHashSetPolicy {
- using slot_type = T;
- using key_type = T;
- using init_type = T;
- using constant_iterators = std::true_type;
-
- template <class Allocator, class... Args>
- static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
- absl::allocator_traits<Allocator>::construct(*alloc, slot,
- std::forward<Args>(args)...);
- }
-
- template <class Allocator>
- static void destroy(Allocator* alloc, slot_type* slot) {
- absl::allocator_traits<Allocator>::destroy(*alloc, slot);
- }
-
- template <class Allocator>
- static void transfer(Allocator* alloc, slot_type* new_slot,
- slot_type* old_slot) {
- construct(alloc, new_slot, std::move(*old_slot));
- destroy(alloc, old_slot);
- }
-
- static T& element(slot_type* slot) { return *slot; }
-
- template <class F, class... Args>
- static decltype(absl::container_internal::DecomposeValue(
- std::declval<F>(), std::declval<Args>()...))
- apply(F&& f, Args&&... args) {
- return absl::container_internal::DecomposeValue(
- std::forward<F>(f), std::forward<Args>(args)...);
- }
-
- static size_t space_used(const T*) { return 0; }
-};
-} // namespace container_internal
-
-namespace container_algorithm_internal {
-
-// Specialization of trait in absl/algorithm/container.h
-template <class Key, class Hash, class KeyEqual, class Allocator>
-struct IsUnorderedContainer<absl::flat_hash_set<Key, Hash, KeyEqual, Allocator>>
- : std::true_type {};
-
-} // namespace container_algorithm_internal
-
+namespace container_internal {
+
+template <class T>
+struct FlatHashSetPolicy {
+ using slot_type = T;
+ using key_type = T;
+ using init_type = T;
+ using constant_iterators = std::true_type;
+
+ template <class Allocator, class... Args>
+ static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
+ absl::allocator_traits<Allocator>::construct(*alloc, slot,
+ std::forward<Args>(args)...);
+ }
+
+ template <class Allocator>
+ static void destroy(Allocator* alloc, slot_type* slot) {
+ absl::allocator_traits<Allocator>::destroy(*alloc, slot);
+ }
+
+ template <class Allocator>
+ static void transfer(Allocator* alloc, slot_type* new_slot,
+ slot_type* old_slot) {
+ construct(alloc, new_slot, std::move(*old_slot));
+ destroy(alloc, old_slot);
+ }
+
+ static T& element(slot_type* slot) { return *slot; }
+
+ template <class F, class... Args>
+ static decltype(absl::container_internal::DecomposeValue(
+ std::declval<F>(), std::declval<Args>()...))
+ apply(F&& f, Args&&... args) {
+ return absl::container_internal::DecomposeValue(
+ std::forward<F>(f), std::forward<Args>(args)...);
+ }
+
+ static size_t space_used(const T*) { return 0; }
+};
+} // namespace container_internal
+
+namespace container_algorithm_internal {
+
+// Specialization of trait in absl/algorithm/container.h
+template <class Key, class Hash, class KeyEqual, class Allocator>
+struct IsUnorderedContainer<absl::flat_hash_set<Key, Hash, KeyEqual, Allocator>>
+ : std::true_type {};
+
+} // namespace container_algorithm_internal
+
ABSL_NAMESPACE_END
-} // namespace absl
-
-#endif // ABSL_CONTAINER_FLAT_HASH_SET_H_
+} // namespace absl
+
+#endif // ABSL_CONTAINER_FLAT_HASH_SET_H_