aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/btree.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/btree.h')
-rw-r--r--contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/btree.h3626
1 files changed, 1813 insertions, 1813 deletions
diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/btree.h b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/btree.h
index 0c791c639b..a249260811 100644
--- a/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/btree.h
+++ b/contrib/restricted/abseil-cpp-tstring/y_absl/container/internal/btree.h
@@ -1,63 +1,63 @@
-// Copyright 2018 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-// A btree implementation of the STL set and map interfaces. A btree is smaller
-// and generally also faster than STL set/map (refer to the benchmarks below).
-// The red-black tree implementation of STL set/map has an overhead of 3
-// pointers (left, right and parent) plus the node color information for each
-// stored value. So a set<int32_t> consumes 40 bytes for each value stored in
-// 64-bit mode. This btree implementation stores multiple values on fixed
-// size nodes (usually 256 bytes) and doesn't store child pointers for leaf
-// nodes. The result is that a btree_set<int32_t> may use much less memory per
-// stored value. For the random insertion benchmark in btree_bench.cc, a
-// btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value.
-//
-// The packing of multiple values on to each node of a btree has another effect
-// besides better space utilization: better cache locality due to fewer cache
-// lines being accessed. Better cache locality translates into faster
-// operations.
-//
-// CAVEATS
-//
-// Insertions and deletions on a btree can cause splitting, merging or
-// rebalancing of btree nodes. And even without these operations, insertions
-// and deletions on a btree will move values around within a node. In both
-// cases, the result is that insertions and deletions can invalidate iterators
-// pointing to values other than the one being inserted/deleted. Therefore, this
-// container does not provide pointer stability. This is notably different from
-// STL set/map which takes care to not invalidate iterators on insert/erase
-// except, of course, for iterators pointing to the value being erased. A
-// partial workaround when erasing is available: erase() returns an iterator
-// pointing to the item just after the one that was erased (or end() if none
-// exists).
-
-#ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_
-#define ABSL_CONTAINER_INTERNAL_BTREE_H_
-
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <cstdint>
-#include <cstring>
-#include <functional>
-#include <iterator>
-#include <limits>
-#include <new>
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// A btree implementation of the STL set and map interfaces. A btree is smaller
+// and generally also faster than STL set/map (refer to the benchmarks below).
+// The red-black tree implementation of STL set/map has an overhead of 3
+// pointers (left, right and parent) plus the node color information for each
+// stored value. So a set<int32_t> consumes 40 bytes for each value stored in
+// 64-bit mode. This btree implementation stores multiple values on fixed
+// size nodes (usually 256 bytes) and doesn't store child pointers for leaf
+// nodes. The result is that a btree_set<int32_t> may use much less memory per
+// stored value. For the random insertion benchmark in btree_bench.cc, a
+// btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value.
+//
+// The packing of multiple values on to each node of a btree has another effect
+// besides better space utilization: better cache locality due to fewer cache
+// lines being accessed. Better cache locality translates into faster
+// operations.
+//
+// CAVEATS
+//
+// Insertions and deletions on a btree can cause splitting, merging or
+// rebalancing of btree nodes. And even without these operations, insertions
+// and deletions on a btree will move values around within a node. In both
+// cases, the result is that insertions and deletions can invalidate iterators
+// pointing to values other than the one being inserted/deleted. Therefore, this
+// container does not provide pointer stability. This is notably different from
+// STL set/map which takes care to not invalidate iterators on insert/erase
+// except, of course, for iterators pointing to the value being erased. A
+// partial workaround when erasing is available: erase() returns an iterator
+// pointing to the item just after the one that was erased (or end() if none
+// exists).
+
+#ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_
+#define ABSL_CONTAINER_INTERNAL_BTREE_H_
+
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <functional>
+#include <iterator>
+#include <limits>
+#include <new>
#include <util/generic/string.h>
-#include <type_traits>
-#include <utility>
-
+#include <type_traits>
+#include <utility>
+
#include "y_absl/base/macros.h"
#include "y_absl/container/internal/common.h"
#include "y_absl/container/internal/compressed_tuple.h"
@@ -69,27 +69,27 @@
#include "y_absl/strings/string_view.h"
#include "y_absl/types/compare.h"
#include "y_absl/utility/utility.h"
-
+
namespace y_absl {
ABSL_NAMESPACE_BEGIN
-namespace container_internal {
-
-// A helper class that indicates if the Compare parameter is a key-compare-to
-// comparator.
-template <typename Compare, typename T>
-using btree_is_key_compare_to =
+namespace container_internal {
+
+// A helper class that indicates if the Compare parameter is a key-compare-to
+// comparator.
+template <typename Compare, typename T>
+using btree_is_key_compare_to =
std::is_convertible<y_absl::result_of_t<Compare(const T &, const T &)>,
y_absl::weak_ordering>;
-
-struct StringBtreeDefaultLess {
- using is_transparent = void;
-
- StringBtreeDefaultLess() = default;
-
- // Compatibility constructor.
+
+struct StringBtreeDefaultLess {
+ using is_transparent = void;
+
+ StringBtreeDefaultLess() = default;
+
+ // Compatibility constructor.
StringBtreeDefaultLess(std::less<TString>) {} // NOLINT
StringBtreeDefaultLess(std::less<y_absl::string_view>) {} // NOLINT
-
+
// Allow converting to std::less for use in key_comp()/value_comp().
explicit operator std::less<TString>() const { return {}; }
explicit operator std::less<y_absl::string_view>() const { return {}; }
@@ -97,8 +97,8 @@ struct StringBtreeDefaultLess {
y_absl::weak_ordering operator()(y_absl::string_view lhs,
y_absl::string_view rhs) const {
- return compare_internal::compare_result_as_ordering(lhs.compare(rhs));
- }
+ return compare_internal::compare_result_as_ordering(lhs.compare(rhs));
+ }
StringBtreeDefaultLess(std::less<y_absl::Cord>) {} // NOLINT
y_absl::weak_ordering operator()(const y_absl::Cord &lhs,
const y_absl::Cord &rhs) const {
@@ -112,16 +112,16 @@ struct StringBtreeDefaultLess {
const y_absl::Cord &rhs) const {
return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs));
}
-};
-
-struct StringBtreeDefaultGreater {
- using is_transparent = void;
-
- StringBtreeDefaultGreater() = default;
-
+};
+
+struct StringBtreeDefaultGreater {
+ using is_transparent = void;
+
+ StringBtreeDefaultGreater() = default;
+
StringBtreeDefaultGreater(std::greater<TString>) {} // NOLINT
StringBtreeDefaultGreater(std::greater<y_absl::string_view>) {} // NOLINT
-
+
// Allow converting to std::greater for use in key_comp()/value_comp().
explicit operator std::greater<TString>() const { return {}; }
explicit operator std::greater<y_absl::string_view>() const { return {}; }
@@ -129,8 +129,8 @@ struct StringBtreeDefaultGreater {
y_absl::weak_ordering operator()(y_absl::string_view lhs,
y_absl::string_view rhs) const {
- return compare_internal::compare_result_as_ordering(rhs.compare(lhs));
- }
+ return compare_internal::compare_result_as_ordering(rhs.compare(lhs));
+ }
StringBtreeDefaultGreater(std::greater<y_absl::Cord>) {} // NOLINT
y_absl::weak_ordering operator()(const y_absl::Cord &lhs,
const y_absl::Cord &rhs) const {
@@ -144,44 +144,44 @@ struct StringBtreeDefaultGreater {
const y_absl::Cord &rhs) const {
return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
}
-};
-
-// A helper class to convert a boolean comparison into a three-way "compare-to"
+};
+
+// A helper class to convert a boolean comparison into a three-way "compare-to"
// comparison that returns an `y_absl::weak_ordering`. This helper
// class is specialized for less<TString>, greater<TString>,
// less<string_view>, greater<string_view>, less<y_absl::Cord>, and
// greater<y_absl::Cord>.
-//
-// key_compare_to_adapter is provided so that btree users
-// automatically get the more efficient compare-to code when using common
+//
+// key_compare_to_adapter is provided so that btree users
+// automatically get the more efficient compare-to code when using common
// Abseil string types with common comparison functors.
-// These string-like specializations also turn on heterogeneous lookup by
-// default.
-template <typename Compare>
-struct key_compare_to_adapter {
- using type = Compare;
-};
-
-template <>
+// These string-like specializations also turn on heterogeneous lookup by
+// default.
+template <typename Compare>
+struct key_compare_to_adapter {
+ using type = Compare;
+};
+
+template <>
struct key_compare_to_adapter<std::less<TString>> {
- using type = StringBtreeDefaultLess;
-};
-
-template <>
+ using type = StringBtreeDefaultLess;
+};
+
+template <>
struct key_compare_to_adapter<std::greater<TString>> {
- using type = StringBtreeDefaultGreater;
-};
-
-template <>
+ using type = StringBtreeDefaultGreater;
+};
+
+template <>
struct key_compare_to_adapter<std::less<y_absl::string_view>> {
- using type = StringBtreeDefaultLess;
-};
-
-template <>
+ using type = StringBtreeDefaultLess;
+};
+
+template <>
struct key_compare_to_adapter<std::greater<y_absl::string_view>> {
- using type = StringBtreeDefaultGreater;
-};
-
+ using type = StringBtreeDefaultGreater;
+};
+
template <>
struct key_compare_to_adapter<std::less<y_absl::Cord>> {
using type = StringBtreeDefaultLess;
@@ -224,32 +224,32 @@ struct prefers_linear_node_search<
T, y_absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
: T::absl_btree_prefer_linear_node_search {};
-template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
- bool Multi, typename SlotPolicy>
-struct common_params {
+template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
+ bool Multi, typename SlotPolicy>
+struct common_params {
using original_key_compare = Compare;
// If Compare is a common comparator for a string-like type, then we adapt it
- // to use heterogeneous lookup and to be a key-compare-to comparator.
- using key_compare = typename key_compare_to_adapter<Compare>::type;
- // A type which indicates if we have a key-compare-to functor or a plain old
- // key-compare functor.
- using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>;
-
- using allocator_type = Alloc;
- using key_type = Key;
- using size_type = std::make_signed<size_t>::type;
- using difference_type = ptrdiff_t;
-
- using slot_policy = SlotPolicy;
- using slot_type = typename slot_policy::slot_type;
- using value_type = typename slot_policy::value_type;
- using init_type = typename slot_policy::mutable_value_type;
- using pointer = value_type *;
- using const_pointer = const value_type *;
- using reference = value_type &;
- using const_reference = const value_type &;
-
+ // to use heterogeneous lookup and to be a key-compare-to comparator.
+ using key_compare = typename key_compare_to_adapter<Compare>::type;
+ // A type which indicates if we have a key-compare-to functor or a plain old
+ // key-compare functor.
+ using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>;
+
+ using allocator_type = Alloc;
+ using key_type = Key;
+ using size_type = std::make_signed<size_t>::type;
+ using difference_type = ptrdiff_t;
+
+ using slot_policy = SlotPolicy;
+ using slot_type = typename slot_policy::slot_type;
+ using value_type = typename slot_policy::value_type;
+ using init_type = typename slot_policy::mutable_value_type;
+ using pointer = value_type *;
+ using const_pointer = const value_type *;
+ using reference = value_type &;
+ using const_reference = const value_type &;
+
// For the given lookup key type, returns whether we can have multiple
// equivalent keys in the btree. If this is a multi-container, then we can.
// Otherwise, we can have multiple equivalent keys only if all of the
@@ -267,74 +267,74 @@ struct common_params {
!std::is_same<key_compare, StringBtreeDefaultGreater>::value);
}
- enum {
- kTargetNodeSize = TargetNodeSize,
-
- // Upper bound for the available space for values. This is largest for leaf
- // nodes, which have overhead of at least a pointer + 4 bytes (for storing
- // 3 field_types and an enum).
- kNodeValueSpace =
- TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4),
- };
-
- // This is an integral type large enough to hold as many
- // ValueSize-values as will fit a node of TargetNodeSize bytes.
- using node_count_type =
+ enum {
+ kTargetNodeSize = TargetNodeSize,
+
+ // Upper bound for the available space for values. This is largest for leaf
+ // nodes, which have overhead of at least a pointer + 4 bytes (for storing
+ // 3 field_types and an enum).
+ kNodeValueSpace =
+ TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4),
+ };
+
+ // This is an integral type large enough to hold as many
+ // ValueSize-values as will fit a node of TargetNodeSize bytes.
+ using node_count_type =
y_absl::conditional_t<(kNodeValueSpace / sizeof(value_type) >
- (std::numeric_limits<uint8_t>::max)()),
- uint16_t, uint8_t>; // NOLINT
-
- // The following methods are necessary for passing this struct as PolicyTraits
- // for node_handle and/or are used within btree.
- static value_type &element(slot_type *slot) {
- return slot_policy::element(slot);
- }
- static const value_type &element(const slot_type *slot) {
- return slot_policy::element(slot);
- }
- template <class... Args>
- static void construct(Alloc *alloc, slot_type *slot, Args &&... args) {
- slot_policy::construct(alloc, slot, std::forward<Args>(args)...);
- }
- static void construct(Alloc *alloc, slot_type *slot, slot_type *other) {
- slot_policy::construct(alloc, slot, other);
- }
- static void destroy(Alloc *alloc, slot_type *slot) {
- slot_policy::destroy(alloc, slot);
- }
- static void transfer(Alloc *alloc, slot_type *new_slot, slot_type *old_slot) {
- construct(alloc, new_slot, old_slot);
- destroy(alloc, old_slot);
- }
- static void swap(Alloc *alloc, slot_type *a, slot_type *b) {
- slot_policy::swap(alloc, a, b);
- }
- static void move(Alloc *alloc, slot_type *src, slot_type *dest) {
- slot_policy::move(alloc, src, dest);
- }
-};
-
-// A parameters structure for holding the type parameters for a btree_map.
-// Compare and Alloc should be nothrow copy-constructible.
-template <typename Key, typename Data, typename Compare, typename Alloc,
- int TargetNodeSize, bool Multi>
-struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
- map_slot_policy<Key, Data>> {
- using super_type = typename map_params::common_params;
- using mapped_type = Data;
- // This type allows us to move keys when it is safe to do so. It is safe
- // for maps in which value_type and mutable_value_type are layout compatible.
- using slot_policy = typename super_type::slot_policy;
- using slot_type = typename super_type::slot_type;
- using value_type = typename super_type::value_type;
- using init_type = typename super_type::init_type;
-
+ (std::numeric_limits<uint8_t>::max)()),
+ uint16_t, uint8_t>; // NOLINT
+
+ // The following methods are necessary for passing this struct as PolicyTraits
+ // for node_handle and/or are used within btree.
+ static value_type &element(slot_type *slot) {
+ return slot_policy::element(slot);
+ }
+ static const value_type &element(const slot_type *slot) {
+ return slot_policy::element(slot);
+ }
+ template <class... Args>
+ static void construct(Alloc *alloc, slot_type *slot, Args &&... args) {
+ slot_policy::construct(alloc, slot, std::forward<Args>(args)...);
+ }
+ static void construct(Alloc *alloc, slot_type *slot, slot_type *other) {
+ slot_policy::construct(alloc, slot, other);
+ }
+ static void destroy(Alloc *alloc, slot_type *slot) {
+ slot_policy::destroy(alloc, slot);
+ }
+ static void transfer(Alloc *alloc, slot_type *new_slot, slot_type *old_slot) {
+ construct(alloc, new_slot, old_slot);
+ destroy(alloc, old_slot);
+ }
+ static void swap(Alloc *alloc, slot_type *a, slot_type *b) {
+ slot_policy::swap(alloc, a, b);
+ }
+ static void move(Alloc *alloc, slot_type *src, slot_type *dest) {
+ slot_policy::move(alloc, src, dest);
+ }
+};
+
+// A parameters structure for holding the type parameters for a btree_map.
+// Compare and Alloc should be nothrow copy-constructible.
+template <typename Key, typename Data, typename Compare, typename Alloc,
+ int TargetNodeSize, bool Multi>
+struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
+ map_slot_policy<Key, Data>> {
+ using super_type = typename map_params::common_params;
+ using mapped_type = Data;
+ // This type allows us to move keys when it is safe to do so. It is safe
+ // for maps in which value_type and mutable_value_type are layout compatible.
+ using slot_policy = typename super_type::slot_policy;
+ using slot_type = typename super_type::slot_type;
+ using value_type = typename super_type::value_type;
+ using init_type = typename super_type::init_type;
+
using original_key_compare = typename super_type::original_key_compare;
// Reference: https://en.cppreference.com/w/cpp/container/map/value_compare
class value_compare {
template <typename Params>
friend class btree;
-
+
protected:
explicit value_compare(original_key_compare c) : comp(std::move(c)) {}
@@ -344,10 +344,10 @@ struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
auto operator()(const value_type &lhs, const value_type &rhs) const
-> decltype(comp(lhs.first, rhs.first)) {
return comp(lhs.first, rhs.first);
- }
- };
- using is_map_container = std::true_type;
-
+ }
+ };
+ using is_map_container = std::true_type;
+
template <typename V>
static auto key(const V &value) -> decltype(value.first) {
return value.first;
@@ -359,140 +359,140 @@ struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
-> decltype(slot_policy::mutable_key(s)) {
return slot_policy::mutable_key(s);
}
- static mapped_type &value(value_type *value) { return value->second; }
-};
-
-// This type implements the necessary functions from the
+ static mapped_type &value(value_type *value) { return value->second; }
+};
+
+// This type implements the necessary functions from the
// y_absl::container_internal::slot_type interface.
-template <typename Key>
-struct set_slot_policy {
- using slot_type = Key;
- using value_type = Key;
- using mutable_value_type = Key;
-
- static value_type &element(slot_type *slot) { return *slot; }
- static const value_type &element(const slot_type *slot) { return *slot; }
-
- template <typename Alloc, class... Args>
- static void construct(Alloc *alloc, slot_type *slot, Args &&... args) {
+template <typename Key>
+struct set_slot_policy {
+ using slot_type = Key;
+ using value_type = Key;
+ using mutable_value_type = Key;
+
+ static value_type &element(slot_type *slot) { return *slot; }
+ static const value_type &element(const slot_type *slot) { return *slot; }
+
+ template <typename Alloc, class... Args>
+ static void construct(Alloc *alloc, slot_type *slot, Args &&... args) {
y_absl::allocator_traits<Alloc>::construct(*alloc, slot,
- std::forward<Args>(args)...);
- }
-
- template <typename Alloc>
- static void construct(Alloc *alloc, slot_type *slot, slot_type *other) {
+ std::forward<Args>(args)...);
+ }
+
+ template <typename Alloc>
+ static void construct(Alloc *alloc, slot_type *slot, slot_type *other) {
y_absl::allocator_traits<Alloc>::construct(*alloc, slot, std::move(*other));
- }
-
- template <typename Alloc>
- static void destroy(Alloc *alloc, slot_type *slot) {
+ }
+
+ template <typename Alloc>
+ static void destroy(Alloc *alloc, slot_type *slot) {
y_absl::allocator_traits<Alloc>::destroy(*alloc, slot);
- }
-
- template <typename Alloc>
- static void swap(Alloc * /*alloc*/, slot_type *a, slot_type *b) {
- using std::swap;
- swap(*a, *b);
- }
-
- template <typename Alloc>
- static void move(Alloc * /*alloc*/, slot_type *src, slot_type *dest) {
- *dest = std::move(*src);
- }
-};
-
-// A parameters structure for holding the type parameters for a btree_set.
-// Compare and Alloc should be nothrow copy-constructible.
-template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
- bool Multi>
-struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
- set_slot_policy<Key>> {
- using value_type = Key;
- using slot_type = typename set_params::common_params::slot_type;
+ }
+
+ template <typename Alloc>
+ static void swap(Alloc * /*alloc*/, slot_type *a, slot_type *b) {
+ using std::swap;
+ swap(*a, *b);
+ }
+
+ template <typename Alloc>
+ static void move(Alloc * /*alloc*/, slot_type *src, slot_type *dest) {
+ *dest = std::move(*src);
+ }
+};
+
+// A parameters structure for holding the type parameters for a btree_set.
+// Compare and Alloc should be nothrow copy-constructible.
+template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
+ bool Multi>
+struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
+ set_slot_policy<Key>> {
+ using value_type = Key;
+ using slot_type = typename set_params::common_params::slot_type;
using value_compare =
typename set_params::common_params::original_key_compare;
- using is_map_container = std::false_type;
-
+ using is_map_container = std::false_type;
+
template <typename V>
static const V &key(const V &value) { return value; }
static const Key &key(const slot_type *slot) { return *slot; }
static const Key &key(slot_type *slot) { return *slot; }
-};
-
-// An adapter class that converts a lower-bound compare into an upper-bound
-// compare. Note: there is no need to make a version of this adapter specialized
-// for key-compare-to functors because the upper-bound (the first value greater
-// than the input) is never an exact match.
-template <typename Compare>
-struct upper_bound_adapter {
- explicit upper_bound_adapter(const Compare &c) : comp(c) {}
+};
+
+// An adapter class that converts a lower-bound compare into an upper-bound
+// compare. Note: there is no need to make a version of this adapter specialized
+// for key-compare-to functors because the upper-bound (the first value greater
+// than the input) is never an exact match.
+template <typename Compare>
+struct upper_bound_adapter {
+ explicit upper_bound_adapter(const Compare &c) : comp(c) {}
template <typename K1, typename K2>
bool operator()(const K1 &a, const K2 &b) const {
- // Returns true when a is not greater than b.
- return !compare_internal::compare_result_as_less_than(comp(b, a));
- }
-
- private:
- Compare comp;
-};
-
-enum class MatchKind : uint8_t { kEq, kNe };
-
-template <typename V, bool IsCompareTo>
-struct SearchResult {
- V value;
- MatchKind match;
-
- static constexpr bool HasMatch() { return true; }
- bool IsEq() const { return match == MatchKind::kEq; }
-};
-
-// When we don't use CompareTo, `match` is not present.
-// This ensures that callers can't use it accidentally when it provides no
-// useful information.
-template <typename V>
-struct SearchResult<V, false> {
+ // Returns true when a is not greater than b.
+ return !compare_internal::compare_result_as_less_than(comp(b, a));
+ }
+
+ private:
+ Compare comp;
+};
+
+enum class MatchKind : uint8_t { kEq, kNe };
+
+template <typename V, bool IsCompareTo>
+struct SearchResult {
+ V value;
+ MatchKind match;
+
+ static constexpr bool HasMatch() { return true; }
+ bool IsEq() const { return match == MatchKind::kEq; }
+};
+
+// When we don't use CompareTo, `match` is not present.
+// This ensures that callers can't use it accidentally when it provides no
+// useful information.
+template <typename V>
+struct SearchResult<V, false> {
SearchResult() {}
explicit SearchResult(V value) : value(value) {}
SearchResult(V value, MatchKind /*match*/) : value(value) {}
- V value;
-
- static constexpr bool HasMatch() { return false; }
- static constexpr bool IsEq() { return false; }
-};
-
-// A node in the btree holding. The same node type is used for both internal
-// and leaf nodes in the btree, though the nodes are allocated in such a way
-// that the children array is only valid in internal nodes.
-template <typename Params>
-class btree_node {
- using is_key_compare_to = typename Params::is_key_compare_to;
- using field_type = typename Params::node_count_type;
- using allocator_type = typename Params::allocator_type;
- using slot_type = typename Params::slot_type;
-
- public:
- using params_type = Params;
- using key_type = typename Params::key_type;
- using value_type = typename Params::value_type;
- using pointer = typename Params::pointer;
- using const_pointer = typename Params::const_pointer;
- using reference = typename Params::reference;
- using const_reference = typename Params::const_reference;
- using key_compare = typename Params::key_compare;
- using size_type = typename Params::size_type;
- using difference_type = typename Params::difference_type;
-
- // Btree decides whether to use linear node search as follows:
+ V value;
+
+ static constexpr bool HasMatch() { return false; }
+ static constexpr bool IsEq() { return false; }
+};
+
+// A node in the btree holding. The same node type is used for both internal
+// and leaf nodes in the btree, though the nodes are allocated in such a way
+// that the children array is only valid in internal nodes.
+template <typename Params>
+class btree_node {
+ using is_key_compare_to = typename Params::is_key_compare_to;
+ using field_type = typename Params::node_count_type;
+ using allocator_type = typename Params::allocator_type;
+ using slot_type = typename Params::slot_type;
+
+ public:
+ using params_type = Params;
+ using key_type = typename Params::key_type;
+ using value_type = typename Params::value_type;
+ using pointer = typename Params::pointer;
+ using const_pointer = typename Params::const_pointer;
+ using reference = typename Params::reference;
+ using const_reference = typename Params::const_reference;
+ using key_compare = typename Params::key_compare;
+ using size_type = typename Params::size_type;
+ using difference_type = typename Params::difference_type;
+
+ // Btree decides whether to use linear node search as follows:
// - If the comparator expresses a preference, use that.
// - If the key expresses a preference, use that.
- // - If the key is arithmetic and the comparator is std::less or
- // std::greater, choose linear.
- // - Otherwise, choose binary.
- // TODO(ezb): Might make sense to add condition(s) based on node-size.
- using use_linear_search = std::integral_constant<
- bool,
+ // - If the key is arithmetic and the comparator is std::less or
+ // std::greater, choose linear.
+ // - Otherwise, choose binary.
+ // TODO(ezb): Might make sense to add condition(s) based on node-size.
+ using use_linear_search = std::integral_constant<
+ bool,
has_linear_node_search_preference<key_compare>::value
? prefers_linear_node_search<key_compare>::value
: has_linear_node_search_preference<key_type>::value
@@ -501,355 +501,355 @@ class btree_node {
(std::is_same<std::less<key_type>, key_compare>::value ||
std::is_same<std::greater<key_type>,
key_compare>::value)>;
-
+
// This class is organized by y_absl::container_internal::Layout as if it had
// the following structure:
- // // A pointer to the node's parent.
- // btree_node *parent;
- //
- // // The position of the node in the node's parent.
- // field_type position;
- // // The index of the first populated value in `values`.
- // // TODO(ezb): right now, `start` is always 0. Update insertion/merge
- // // logic to allow for floating storage within nodes.
- // field_type start;
+ // // A pointer to the node's parent.
+ // btree_node *parent;
+ //
+ // // The position of the node in the node's parent.
+ // field_type position;
+ // // The index of the first populated value in `values`.
+ // // TODO(ezb): right now, `start` is always 0. Update insertion/merge
+ // // logic to allow for floating storage within nodes.
+ // field_type start;
// // The index after the last populated value in `values`. Currently, this
// // is the same as the count of values.
// field_type finish;
- // // The maximum number of values the node can hold. This is an integer in
+ // // The maximum number of values the node can hold. This is an integer in
// // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf
- // // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal
+ // // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal
// // nodes (even though there are still kNodeSlots values in the node).
- // // TODO(ezb): make max_count use only 4 bits and record log2(capacity)
- // // to free extra bits for is_root, etc.
- // field_type max_count;
- //
- // // The array of values. The capacity is `max_count` for leaf nodes and
+ // // TODO(ezb): make max_count use only 4 bits and record log2(capacity)
+ // // to free extra bits for is_root, etc.
+ // field_type max_count;
+ //
+ // // The array of values. The capacity is `max_count` for leaf nodes and
// // kNodeSlots for internal nodes. Only the values in
// // [start, finish) have been initialized and are valid.
- // slot_type values[max_count];
- //
- // // The array of child pointers. The keys in children[i] are all less
- // // than key(i). The keys in children[i + 1] are all greater than key(i).
+ // slot_type values[max_count];
+ //
+ // // The array of child pointers. The keys in children[i] are all less
+ // // than key(i). The keys in children[i + 1] are all greater than key(i).
// // There are 0 children for leaf nodes and kNodeSlots + 1 children for
- // // internal nodes.
+ // // internal nodes.
// btree_node *children[kNodeSlots + 1];
- //
- // This class is only constructed by EmptyNodeType. Normally, pointers to the
- // layout above are allocated, cast to btree_node*, and de-allocated within
- // the btree implementation.
- ~btree_node() = default;
- btree_node(btree_node const &) = delete;
- btree_node &operator=(btree_node const &) = delete;
-
- // Public for EmptyNodeType.
- constexpr static size_type Alignment() {
- static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(),
- "Alignment of all nodes must be equal.");
- return InternalLayout().Alignment();
- }
-
- protected:
- btree_node() = default;
-
- private:
+ //
+ // This class is only constructed by EmptyNodeType. Normally, pointers to the
+ // layout above are allocated, cast to btree_node*, and de-allocated within
+ // the btree implementation.
+ ~btree_node() = default;
+ btree_node(btree_node const &) = delete;
+ btree_node &operator=(btree_node const &) = delete;
+
+ // Public for EmptyNodeType.
+ constexpr static size_type Alignment() {
+ static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(),
+ "Alignment of all nodes must be equal.");
+ return InternalLayout().Alignment();
+ }
+
+ protected:
+ btree_node() = default;
+
+ private:
using layout_type = y_absl::container_internal::Layout<btree_node *, field_type,
- slot_type, btree_node *>;
+ slot_type, btree_node *>;
constexpr static size_type SizeWithNSlots(size_type n) {
- return layout_type(/*parent*/ 1,
+ return layout_type(/*parent*/ 1,
/*position, start, finish, max_count*/ 4,
/*slots*/ n,
- /*children*/ 0)
- .AllocSize();
- }
- // A lower bound for the overhead of fields other than values in a leaf node.
- constexpr static size_type MinimumOverhead() {
+ /*children*/ 0)
+ .AllocSize();
+ }
+ // A lower bound for the overhead of fields other than values in a leaf node.
+ constexpr static size_type MinimumOverhead() {
return SizeWithNSlots(1) - sizeof(value_type);
- }
-
- // Compute how many values we can fit onto a leaf node taking into account
- // padding.
+ }
+
+ // Compute how many values we can fit onto a leaf node taking into account
+ // padding.
constexpr static size_type NodeTargetSlots(const int begin, const int end) {
- return begin == end ? begin
+ return begin == end ? begin
: SizeWithNSlots((begin + end) / 2 + 1) >
- params_type::kTargetNodeSize
+ params_type::kTargetNodeSize
? NodeTargetSlots(begin, (begin + end) / 2)
: NodeTargetSlots((begin + end) / 2 + 1, end);
- }
-
- enum {
- kTargetNodeSize = params_type::kTargetNodeSize,
+ }
+
+ enum {
+ kTargetNodeSize = params_type::kTargetNodeSize,
kNodeTargetSlots = NodeTargetSlots(0, params_type::kTargetNodeSize),
-
+
// We need a minimum of 3 slots per internal node in order to perform
- // splitting (1 value for the two nodes involved in the split and 1 value
+ // splitting (1 value for the two nodes involved in the split and 1 value
// propagated to the parent as the delimiter for the split). For performance
// reasons, we don't allow 3 slots-per-node due to bad worst case occupancy
// of 1/3 (for a node, not a b-tree).
kMinNodeSlots = 4,
-
+
kNodeSlots =
kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots,
- // The node is internal (i.e. is not a leaf node) if and only if `max_count`
- // has this value.
- kInternalNodeMaxCount = 0,
- };
-
+ // The node is internal (i.e. is not a leaf node) if and only if `max_count`
+ // has this value.
+ kInternalNodeMaxCount = 0,
+ };
+
// Leaves can have less than kNodeSlots values.
constexpr static layout_type LeafLayout(const int slot_count = kNodeSlots) {
- return layout_type(/*parent*/ 1,
+ return layout_type(/*parent*/ 1,
/*position, start, finish, max_count*/ 4,
/*slots*/ slot_count,
- /*children*/ 0);
- }
- constexpr static layout_type InternalLayout() {
- return layout_type(/*parent*/ 1,
+ /*children*/ 0);
+ }
+ constexpr static layout_type InternalLayout() {
+ return layout_type(/*parent*/ 1,
/*position, start, finish, max_count*/ 4,
/*slots*/ kNodeSlots,
/*children*/ kNodeSlots + 1);
- }
+ }
constexpr static size_type LeafSize(const int slot_count = kNodeSlots) {
return LeafLayout(slot_count).AllocSize();
- }
- constexpr static size_type InternalSize() {
- return InternalLayout().AllocSize();
- }
-
- // N is the index of the type in the Layout definition.
- // ElementType<N> is the Nth type in the Layout definition.
- template <size_type N>
- inline typename layout_type::template ElementType<N> *GetField() {
- // We assert that we don't read from values that aren't there.
- assert(N < 3 || !leaf());
- return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this));
- }
- template <size_type N>
- inline const typename layout_type::template ElementType<N> *GetField() const {
- assert(N < 3 || !leaf());
- return InternalLayout().template Pointer<N>(
- reinterpret_cast<const char *>(this));
- }
- void set_parent(btree_node *p) { *GetField<0>() = p; }
+ }
+ constexpr static size_type InternalSize() {
+ return InternalLayout().AllocSize();
+ }
+
+ // N is the index of the type in the Layout definition.
+ // ElementType<N> is the Nth type in the Layout definition.
+ template <size_type N>
+ inline typename layout_type::template ElementType<N> *GetField() {
+ // We assert that we don't read from values that aren't there.
+ assert(N < 3 || !leaf());
+ return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this));
+ }
+ template <size_type N>
+ inline const typename layout_type::template ElementType<N> *GetField() const {
+ assert(N < 3 || !leaf());
+ return InternalLayout().template Pointer<N>(
+ reinterpret_cast<const char *>(this));
+ }
+ void set_parent(btree_node *p) { *GetField<0>() = p; }
field_type &mutable_finish() { return GetField<1>()[2]; }
- slot_type *slot(int i) { return &GetField<2>()[i]; }
+ slot_type *slot(int i) { return &GetField<2>()[i]; }
slot_type *start_slot() { return slot(start()); }
slot_type *finish_slot() { return slot(finish()); }
- const slot_type *slot(int i) const { return &GetField<2>()[i]; }
- void set_position(field_type v) { GetField<1>()[0] = v; }
- void set_start(field_type v) { GetField<1>()[1] = v; }
+ const slot_type *slot(int i) const { return &GetField<2>()[i]; }
+ void set_position(field_type v) { GetField<1>()[0] = v; }
+ void set_start(field_type v) { GetField<1>()[1] = v; }
void set_finish(field_type v) { GetField<1>()[2] = v; }
- // This method is only called by the node init methods.
- void set_max_count(field_type v) { GetField<1>()[3] = v; }
-
- public:
- // Whether this is a leaf node or not. This value doesn't change after the
- // node is created.
- bool leaf() const { return GetField<1>()[3] != kInternalNodeMaxCount; }
-
- // Getter for the position of this node in its parent.
- field_type position() const { return GetField<1>()[0]; }
-
- // Getter for the offset of the first value in the `values` array.
+ // This method is only called by the node init methods.
+ void set_max_count(field_type v) { GetField<1>()[3] = v; }
+
+ public:
+ // Whether this is a leaf node or not. This value doesn't change after the
+ // node is created.
+ bool leaf() const { return GetField<1>()[3] != kInternalNodeMaxCount; }
+
+ // Getter for the position of this node in its parent.
+ field_type position() const { return GetField<1>()[0]; }
+
+ // Getter for the offset of the first value in the `values` array.
field_type start() const {
// TODO(ezb): when floating storage is implemented, return GetField<1>()[1];
assert(GetField<1>()[1] == 0);
return 0;
}
-
+
// Getter for the offset after the last value in the `values` array.
field_type finish() const { return GetField<1>()[2]; }
- // Getters for the number of values stored in this node.
+ // Getters for the number of values stored in this node.
field_type count() const {
assert(finish() >= start());
return finish() - start();
}
- field_type max_count() const {
- // Internal nodes have max_count==kInternalNodeMaxCount.
+ field_type max_count() const {
+ // Internal nodes have max_count==kInternalNodeMaxCount.
// Leaf nodes have max_count in [1, kNodeSlots].
- const field_type max_count = GetField<1>()[3];
- return max_count == field_type{kInternalNodeMaxCount}
+ const field_type max_count = GetField<1>()[3];
+ return max_count == field_type{kInternalNodeMaxCount}
? field_type{kNodeSlots}
- : max_count;
- }
-
- // Getter for the parent of this node.
- btree_node *parent() const { return *GetField<0>(); }
- // Getter for whether the node is the root of the tree. The parent of the
- // root of the tree is the leftmost node in the tree which is guaranteed to
- // be a leaf.
- bool is_root() const { return parent()->leaf(); }
- void make_root() {
- assert(parent()->is_root());
- set_parent(parent()->parent());
- }
-
- // Getters for the key/value at position i in the node.
- const key_type &key(int i) const { return params_type::key(slot(i)); }
- reference value(int i) { return params_type::element(slot(i)); }
- const_reference value(int i) const { return params_type::element(slot(i)); }
-
- // Getters/setter for the child at position i in the node.
- btree_node *child(int i) const { return GetField<3>()[i]; }
+ : max_count;
+ }
+
+ // Getter for the parent of this node.
+ btree_node *parent() const { return *GetField<0>(); }
+ // Getter for whether the node is the root of the tree. The parent of the
+ // root of the tree is the leftmost node in the tree which is guaranteed to
+ // be a leaf.
+ bool is_root() const { return parent()->leaf(); }
+ void make_root() {
+ assert(parent()->is_root());
+ set_parent(parent()->parent());
+ }
+
+ // Getters for the key/value at position i in the node.
+ const key_type &key(int i) const { return params_type::key(slot(i)); }
+ reference value(int i) { return params_type::element(slot(i)); }
+ const_reference value(int i) const { return params_type::element(slot(i)); }
+
+ // Getters/setter for the child at position i in the node.
+ btree_node *child(int i) const { return GetField<3>()[i]; }
btree_node *start_child() const { return child(start()); }
- btree_node *&mutable_child(int i) { return GetField<3>()[i]; }
- void clear_child(int i) {
+ btree_node *&mutable_child(int i) { return GetField<3>()[i]; }
+ void clear_child(int i) {
y_absl::container_internal::SanitizerPoisonObject(&mutable_child(i));
- }
- void set_child(int i, btree_node *c) {
+ }
+ void set_child(int i, btree_node *c) {
y_absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i));
- mutable_child(i) = c;
- c->set_position(i);
- }
- void init_child(int i, btree_node *c) {
- set_child(i, c);
- c->set_parent(this);
- }
-
- // Returns the position of the first value whose key is not less than k.
- template <typename K>
- SearchResult<int, is_key_compare_to::value> lower_bound(
- const K &k, const key_compare &comp) const {
- return use_linear_search::value ? linear_search(k, comp)
- : binary_search(k, comp);
- }
- // Returns the position of the first value whose key is greater than k.
- template <typename K>
- int upper_bound(const K &k, const key_compare &comp) const {
- auto upper_compare = upper_bound_adapter<key_compare>(comp);
- return use_linear_search::value ? linear_search(k, upper_compare).value
- : binary_search(k, upper_compare).value;
- }
-
- template <typename K, typename Compare>
- SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
- linear_search(const K &k, const Compare &comp) const {
+ mutable_child(i) = c;
+ c->set_position(i);
+ }
+ void init_child(int i, btree_node *c) {
+ set_child(i, c);
+ c->set_parent(this);
+ }
+
+ // Returns the position of the first value whose key is not less than k.
+ template <typename K>
+ SearchResult<int, is_key_compare_to::value> lower_bound(
+ const K &k, const key_compare &comp) const {
+ return use_linear_search::value ? linear_search(k, comp)
+ : binary_search(k, comp);
+ }
+ // Returns the position of the first value whose key is greater than k.
+ template <typename K>
+ int upper_bound(const K &k, const key_compare &comp) const {
+ auto upper_compare = upper_bound_adapter<key_compare>(comp);
+ return use_linear_search::value ? linear_search(k, upper_compare).value
+ : binary_search(k, upper_compare).value;
+ }
+
+ template <typename K, typename Compare>
+ SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
+ linear_search(const K &k, const Compare &comp) const {
return linear_search_impl(k, start(), finish(), comp,
- btree_is_key_compare_to<Compare, key_type>());
- }
-
- template <typename K, typename Compare>
- SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
- binary_search(const K &k, const Compare &comp) const {
+ btree_is_key_compare_to<Compare, key_type>());
+ }
+
+ template <typename K, typename Compare>
+ SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
+ binary_search(const K &k, const Compare &comp) const {
return binary_search_impl(k, start(), finish(), comp,
- btree_is_key_compare_to<Compare, key_type>());
- }
-
- // Returns the position of the first value whose key is not less than k using
- // linear search performed using plain compare.
- template <typename K, typename Compare>
- SearchResult<int, false> linear_search_impl(
- const K &k, int s, const int e, const Compare &comp,
- std::false_type /* IsCompareTo */) const {
- while (s < e) {
- if (!comp(key(s), k)) {
- break;
- }
- ++s;
- }
+ btree_is_key_compare_to<Compare, key_type>());
+ }
+
+ // Returns the position of the first value whose key is not less than k using
+ // linear search performed using plain compare.
+ template <typename K, typename Compare>
+ SearchResult<int, false> linear_search_impl(
+ const K &k, int s, const int e, const Compare &comp,
+ std::false_type /* IsCompareTo */) const {
+ while (s < e) {
+ if (!comp(key(s), k)) {
+ break;
+ }
+ ++s;
+ }
return SearchResult<int, false>{s};
- }
-
- // Returns the position of the first value whose key is not less than k using
- // linear search performed using compare-to.
- template <typename K, typename Compare>
- SearchResult<int, true> linear_search_impl(
- const K &k, int s, const int e, const Compare &comp,
- std::true_type /* IsCompareTo */) const {
- while (s < e) {
+ }
+
+ // Returns the position of the first value whose key is not less than k using
+ // linear search performed using compare-to.
+ template <typename K, typename Compare>
+ SearchResult<int, true> linear_search_impl(
+ const K &k, int s, const int e, const Compare &comp,
+ std::true_type /* IsCompareTo */) const {
+ while (s < e) {
const y_absl::weak_ordering c = comp(key(s), k);
- if (c == 0) {
- return {s, MatchKind::kEq};
- } else if (c > 0) {
- break;
- }
- ++s;
- }
- return {s, MatchKind::kNe};
- }
-
- // Returns the position of the first value whose key is not less than k using
- // binary search performed using plain compare.
- template <typename K, typename Compare>
- SearchResult<int, false> binary_search_impl(
- const K &k, int s, int e, const Compare &comp,
- std::false_type /* IsCompareTo */) const {
- while (s != e) {
- const int mid = (s + e) >> 1;
- if (comp(key(mid), k)) {
- s = mid + 1;
- } else {
- e = mid;
- }
- }
+ if (c == 0) {
+ return {s, MatchKind::kEq};
+ } else if (c > 0) {
+ break;
+ }
+ ++s;
+ }
+ return {s, MatchKind::kNe};
+ }
+
+ // Returns the position of the first value whose key is not less than k using
+ // binary search performed using plain compare.
+ template <typename K, typename Compare>
+ SearchResult<int, false> binary_search_impl(
+ const K &k, int s, int e, const Compare &comp,
+ std::false_type /* IsCompareTo */) const {
+ while (s != e) {
+ const int mid = (s + e) >> 1;
+ if (comp(key(mid), k)) {
+ s = mid + 1;
+ } else {
+ e = mid;
+ }
+ }
return SearchResult<int, false>{s};
- }
-
- // Returns the position of the first value whose key is not less than k using
- // binary search performed using compare-to.
- template <typename K, typename CompareTo>
- SearchResult<int, true> binary_search_impl(
- const K &k, int s, int e, const CompareTo &comp,
- std::true_type /* IsCompareTo */) const {
+ }
+
+ // Returns the position of the first value whose key is not less than k using
+ // binary search performed using compare-to.
+ template <typename K, typename CompareTo>
+ SearchResult<int, true> binary_search_impl(
+ const K &k, int s, int e, const CompareTo &comp,
+ std::true_type /* IsCompareTo */) const {
if (params_type::template can_have_multiple_equivalent_keys<K>()) {
- MatchKind exact_match = MatchKind::kNe;
- while (s != e) {
- const int mid = (s + e) >> 1;
+ MatchKind exact_match = MatchKind::kNe;
+ while (s != e) {
+ const int mid = (s + e) >> 1;
const y_absl::weak_ordering c = comp(key(mid), k);
- if (c < 0) {
- s = mid + 1;
- } else {
- e = mid;
- if (c == 0) {
- // Need to return the first value whose key is not less than k,
+ if (c < 0) {
+ s = mid + 1;
+ } else {
+ e = mid;
+ if (c == 0) {
+ // Need to return the first value whose key is not less than k,
// which requires continuing the binary search if there could be
// multiple equivalent keys.
- exact_match = MatchKind::kEq;
- }
- }
- }
- return {s, exact_match};
+ exact_match = MatchKind::kEq;
+ }
+ }
+ }
+ return {s, exact_match};
} else { // Can't have multiple equivalent keys.
- while (s != e) {
- const int mid = (s + e) >> 1;
+ while (s != e) {
+ const int mid = (s + e) >> 1;
const y_absl::weak_ordering c = comp(key(mid), k);
- if (c < 0) {
- s = mid + 1;
- } else if (c > 0) {
- e = mid;
- } else {
- return {mid, MatchKind::kEq};
- }
- }
- return {s, MatchKind::kNe};
- }
- }
-
- // Emplaces a value at position i, shifting all existing values and
- // children at positions >= i to the right by 1.
- template <typename... Args>
- void emplace_value(size_type i, allocator_type *alloc, Args &&... args);
-
+ if (c < 0) {
+ s = mid + 1;
+ } else if (c > 0) {
+ e = mid;
+ } else {
+ return {mid, MatchKind::kEq};
+ }
+ }
+ return {s, MatchKind::kNe};
+ }
+ }
+
+ // Emplaces a value at position i, shifting all existing values and
+ // children at positions >= i to the right by 1.
+ template <typename... Args>
+ void emplace_value(size_type i, allocator_type *alloc, Args &&... args);
+
// Removes the values at positions [i, i + to_erase), shifting all existing
// values and children after that range to the left by to_erase. Clears all
// children between [i, i + to_erase).
void remove_values(field_type i, field_type to_erase, allocator_type *alloc);
-
- // Rebalances a node with its right sibling.
- void rebalance_right_to_left(int to_move, btree_node *right,
- allocator_type *alloc);
- void rebalance_left_to_right(int to_move, btree_node *right,
- allocator_type *alloc);
-
- // Splits a node, moving a portion of the node's values to its right sibling.
- void split(int insert_position, btree_node *dest, allocator_type *alloc);
-
- // Merges a node with its right sibling, moving all of the values and the
+
+ // Rebalances a node with its right sibling.
+ void rebalance_right_to_left(int to_move, btree_node *right,
+ allocator_type *alloc);
+ void rebalance_left_to_right(int to_move, btree_node *right,
+ allocator_type *alloc);
+
+ // Splits a node, moving a portion of the node's values to its right sibling.
+ void split(int insert_position, btree_node *dest, allocator_type *alloc);
+
+ // Merges a node with its right sibling, moving all of the values and the
// delimiting key in the parent node onto itself, and deleting the src node.
void merge(btree_node *src, allocator_type *alloc);
-
- // Node allocation/deletion routines.
+
+ // Node allocation/deletion routines.
void init_leaf(btree_node *parent, int max_count) {
set_parent(parent);
set_position(0);
@@ -858,34 +858,34 @@ class btree_node {
set_max_count(max_count);
y_absl::container_internal::SanitizerPoisonMemoryRegion(
start_slot(), max_count * sizeof(slot_type));
- }
+ }
void init_internal(btree_node *parent) {
init_leaf(parent, kNodeSlots);
- // Set `max_count` to a sentinel value to indicate that this node is
- // internal.
+ // Set `max_count` to a sentinel value to indicate that this node is
+ // internal.
set_max_count(kInternalNodeMaxCount);
y_absl::container_internal::SanitizerPoisonMemoryRegion(
&mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *));
- }
-
+ }
+
static void deallocate(const size_type size, btree_node *node,
allocator_type *alloc) {
y_absl::container_internal::Deallocate<Alignment()>(alloc, node, size);
- }
-
+ }
+
// Deletes a node and all of its children.
static void clear_and_delete(btree_node *node, allocator_type *alloc);
- private:
- template <typename... Args>
+ private:
+ template <typename... Args>
void value_init(const field_type i, allocator_type *alloc, Args &&... args) {
y_absl::container_internal::SanitizerUnpoisonObject(slot(i));
- params_type::construct(alloc, slot(i), std::forward<Args>(args)...);
- }
+ params_type::construct(alloc, slot(i), std::forward<Args>(args)...);
+ }
void value_destroy(const field_type i, allocator_type *alloc) {
- params_type::destroy(alloc, slot(i));
+ params_type::destroy(alloc, slot(i));
y_absl::container_internal::SanitizerPoisonObject(slot(i));
- }
+ }
void value_destroy_n(const field_type i, const field_type n,
allocator_type *alloc) {
for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) {
@@ -893,7 +893,7 @@ class btree_node {
y_absl::container_internal::SanitizerPoisonObject(s);
}
}
-
+
static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) {
y_absl::container_internal::SanitizerUnpoisonObject(dest);
params_type::transfer(alloc, dest, src);
@@ -913,11 +913,11 @@ class btree_node {
allocator_type *alloc) {
for (slot_type *src = src_node->slot(src_i), *end = src + n,
*dest = slot(dest_i);
- src != end; ++src, ++dest) {
+ src != end; ++src, ++dest) {
transfer(dest, src, alloc);
- }
- }
-
+ }
+ }
+
// Same as above, except that we start at the end and work our way to the
// beginning.
void transfer_n_backward(const size_type n, const size_type dest_i,
@@ -927,106 +927,106 @@ class btree_node {
*dest = slot(dest_i + n - 1);
src != end; --src, --dest) {
transfer(dest, src, alloc);
- }
- }
-
- template <typename P>
- friend class btree;
- template <typename N, typename R, typename P>
- friend struct btree_iterator;
- friend class BtreeNodePeer;
-};
-
-template <typename Node, typename Reference, typename Pointer>
-struct btree_iterator {
- private:
- using key_type = typename Node::key_type;
- using size_type = typename Node::size_type;
- using params_type = typename Node::params_type;
+ }
+ }
+
+ template <typename P>
+ friend class btree;
+ template <typename N, typename R, typename P>
+ friend struct btree_iterator;
+ friend class BtreeNodePeer;
+};
+
+template <typename Node, typename Reference, typename Pointer>
+struct btree_iterator {
+ private:
+ using key_type = typename Node::key_type;
+ using size_type = typename Node::size_type;
+ using params_type = typename Node::params_type;
using is_map_container = typename params_type::is_map_container;
-
- using node_type = Node;
- using normal_node = typename std::remove_const<Node>::type;
- using const_node = const Node;
- using normal_pointer = typename params_type::pointer;
- using normal_reference = typename params_type::reference;
- using const_pointer = typename params_type::const_pointer;
- using const_reference = typename params_type::const_reference;
- using slot_type = typename params_type::slot_type;
-
- using iterator =
+
+ using node_type = Node;
+ using normal_node = typename std::remove_const<Node>::type;
+ using const_node = const Node;
+ using normal_pointer = typename params_type::pointer;
+ using normal_reference = typename params_type::reference;
+ using const_pointer = typename params_type::const_pointer;
+ using const_reference = typename params_type::const_reference;
+ using slot_type = typename params_type::slot_type;
+
+ using iterator =
btree_iterator<normal_node, normal_reference, normal_pointer>;
- using const_iterator =
- btree_iterator<const_node, const_reference, const_pointer>;
-
- public:
- // These aliases are public for std::iterator_traits.
- using difference_type = typename Node::difference_type;
- using value_type = typename params_type::value_type;
- using pointer = Pointer;
- using reference = Reference;
- using iterator_category = std::bidirectional_iterator_tag;
-
- btree_iterator() : node(nullptr), position(-1) {}
+ using const_iterator =
+ btree_iterator<const_node, const_reference, const_pointer>;
+
+ public:
+ // These aliases are public for std::iterator_traits.
+ using difference_type = typename Node::difference_type;
+ using value_type = typename params_type::value_type;
+ using pointer = Pointer;
+ using reference = Reference;
+ using iterator_category = std::bidirectional_iterator_tag;
+
+ btree_iterator() : node(nullptr), position(-1) {}
explicit btree_iterator(Node *n) : node(n), position(n->start()) {}
- btree_iterator(Node *n, int p) : node(n), position(p) {}
-
- // NOTE: this SFINAE allows for implicit conversions from iterator to
+ btree_iterator(Node *n, int p) : node(n), position(p) {}
+
+ // NOTE: this SFINAE allows for implicit conversions from iterator to
// const_iterator, but it specifically avoids hiding the copy constructor so
// that the trivial one will be used when possible.
- template <typename N, typename R, typename P,
+ template <typename N, typename R, typename P,
y_absl::enable_if_t<
- std::is_same<btree_iterator<N, R, P>, iterator>::value &&
- std::is_same<btree_iterator, const_iterator>::value,
- int> = 0>
+ std::is_same<btree_iterator<N, R, P>, iterator>::value &&
+ std::is_same<btree_iterator, const_iterator>::value,
+ int> = 0>
btree_iterator(const btree_iterator<N, R, P> other) // NOLINT
: node(other.node), position(other.position) {}
-
- private:
- // This SFINAE allows explicit conversions from const_iterator to
+
+ private:
+ // This SFINAE allows explicit conversions from const_iterator to
// iterator, but also avoids hiding the copy constructor.
- // NOTE: the const_cast is safe because this constructor is only called by
- // non-const methods and the container owns the nodes.
- template <typename N, typename R, typename P,
+ // NOTE: the const_cast is safe because this constructor is only called by
+ // non-const methods and the container owns the nodes.
+ template <typename N, typename R, typename P,
y_absl::enable_if_t<
- std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
- std::is_same<btree_iterator, iterator>::value,
- int> = 0>
+ std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
+ std::is_same<btree_iterator, iterator>::value,
+ int> = 0>
explicit btree_iterator(const btree_iterator<N, R, P> other)
: node(const_cast<node_type *>(other.node)), position(other.position) {}
-
- // Increment/decrement the iterator.
- void increment() {
+
+ // Increment/decrement the iterator.
+ void increment() {
if (node->leaf() && ++position < node->finish()) {
- return;
- }
- increment_slow();
- }
- void increment_slow();
-
- void decrement() {
+ return;
+ }
+ increment_slow();
+ }
+ void increment_slow();
+
+ void decrement() {
if (node->leaf() && --position >= node->start()) {
- return;
- }
- decrement_slow();
- }
- void decrement_slow();
-
- public:
+ return;
+ }
+ decrement_slow();
+ }
+ void decrement_slow();
+
+ public:
bool operator==(const iterator &other) const {
return node == other.node && position == other.position;
- }
+ }
bool operator==(const const_iterator &other) const {
return node == other.node && position == other.position;
- }
+ }
bool operator!=(const iterator &other) const {
return node != other.node || position != other.position;
}
bool operator!=(const const_iterator &other) const {
return node != other.node || position != other.position;
}
-
- // Accessors for the key/value the iterator is pointing at.
+
+ // Accessors for the key/value the iterator is pointing at.
reference operator*() const {
ABSL_HARDENING_ASSERT(node != nullptr);
ABSL_HARDENING_ASSERT(node->start() <= position);
@@ -1034,165 +1034,165 @@ struct btree_iterator {
return node->value(position);
}
pointer operator->() const { return &operator*(); }
-
+
btree_iterator &operator++() {
- increment();
- return *this;
- }
+ increment();
+ return *this;
+ }
btree_iterator &operator--() {
- decrement();
- return *this;
- }
- btree_iterator operator++(int) {
- btree_iterator tmp = *this;
- ++*this;
- return tmp;
- }
- btree_iterator operator--(int) {
- btree_iterator tmp = *this;
- --*this;
- return tmp;
- }
-
- private:
+ decrement();
+ return *this;
+ }
+ btree_iterator operator++(int) {
+ btree_iterator tmp = *this;
+ ++*this;
+ return tmp;
+ }
+ btree_iterator operator--(int) {
+ btree_iterator tmp = *this;
+ --*this;
+ return tmp;
+ }
+
+ private:
friend iterator;
friend const_iterator;
- template <typename Params>
- friend class btree;
- template <typename Tree>
- friend class btree_container;
- template <typename Tree>
- friend class btree_set_container;
- template <typename Tree>
- friend class btree_map_container;
- template <typename Tree>
- friend class btree_multiset_container;
- template <typename TreeType, typename CheckerType>
- friend class base_checker;
-
- const key_type &key() const { return node->key(position); }
- slot_type *slot() { return node->slot(position); }
-
- // The node in the tree the iterator is pointing at.
- Node *node;
- // The position within the node of the tree the iterator is pointing at.
+ template <typename Params>
+ friend class btree;
+ template <typename Tree>
+ friend class btree_container;
+ template <typename Tree>
+ friend class btree_set_container;
+ template <typename Tree>
+ friend class btree_map_container;
+ template <typename Tree>
+ friend class btree_multiset_container;
+ template <typename TreeType, typename CheckerType>
+ friend class base_checker;
+
+ const key_type &key() const { return node->key(position); }
+ slot_type *slot() { return node->slot(position); }
+
+ // The node in the tree the iterator is pointing at.
+ Node *node;
+ // The position within the node of the tree the iterator is pointing at.
// NOTE: this is an int rather than a field_type because iterators can point
// to invalid positions (such as -1) in certain circumstances.
- int position;
-};
-
-template <typename Params>
-class btree {
- using node_type = btree_node<Params>;
- using is_key_compare_to = typename Params::is_key_compare_to;
+ int position;
+};
+
+template <typename Params>
+class btree {
+ using node_type = btree_node<Params>;
+ using is_key_compare_to = typename Params::is_key_compare_to;
using init_type = typename Params::init_type;
using field_type = typename node_type::field_type;
-
- // We use a static empty node for the root/leftmost/rightmost of empty btrees
- // in order to avoid branching in begin()/end().
- struct alignas(node_type::Alignment()) EmptyNodeType : node_type {
- using field_type = typename node_type::field_type;
- node_type *parent;
- field_type position = 0;
- field_type start = 0;
+
+ // We use a static empty node for the root/leftmost/rightmost of empty btrees
+ // in order to avoid branching in begin()/end().
+ struct alignas(node_type::Alignment()) EmptyNodeType : node_type {
+ using field_type = typename node_type::field_type;
+ node_type *parent;
+ field_type position = 0;
+ field_type start = 0;
field_type finish = 0;
- // max_count must be != kInternalNodeMaxCount (so that this node is regarded
- // as a leaf node). max_count() is never called when the tree is empty.
- field_type max_count = node_type::kInternalNodeMaxCount + 1;
-
-#ifdef _MSC_VER
- // MSVC has constexpr code generations bugs here.
- EmptyNodeType() : parent(this) {}
-#else
- constexpr EmptyNodeType(node_type *p) : parent(p) {}
-#endif
- };
-
- static node_type *EmptyNode() {
-#ifdef _MSC_VER
+ // max_count must be != kInternalNodeMaxCount (so that this node is regarded
+ // as a leaf node). max_count() is never called when the tree is empty.
+ field_type max_count = node_type::kInternalNodeMaxCount + 1;
+
+#ifdef _MSC_VER
+ // MSVC has constexpr code generations bugs here.
+ EmptyNodeType() : parent(this) {}
+#else
+ constexpr EmptyNodeType(node_type *p) : parent(p) {}
+#endif
+ };
+
+ static node_type *EmptyNode() {
+#ifdef _MSC_VER
static EmptyNodeType *empty_node = new EmptyNodeType;
- // This assert fails on some other construction methods.
- assert(empty_node->parent == empty_node);
- return empty_node;
-#else
- static constexpr EmptyNodeType empty_node(
- const_cast<EmptyNodeType *>(&empty_node));
- return const_cast<EmptyNodeType *>(&empty_node);
-#endif
- }
-
+ // This assert fails on some other construction methods.
+ assert(empty_node->parent == empty_node);
+ return empty_node;
+#else
+ static constexpr EmptyNodeType empty_node(
+ const_cast<EmptyNodeType *>(&empty_node));
+ return const_cast<EmptyNodeType *>(&empty_node);
+#endif
+ }
+
enum : uint32_t {
kNodeSlots = node_type::kNodeSlots,
kMinNodeValues = kNodeSlots / 2,
- };
-
- struct node_stats {
- using size_type = typename Params::size_type;
-
+ };
+
+ struct node_stats {
+ using size_type = typename Params::size_type;
+
node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {}
-
+
node_stats &operator+=(const node_stats &other) {
leaf_nodes += other.leaf_nodes;
internal_nodes += other.internal_nodes;
- return *this;
- }
-
- size_type leaf_nodes;
- size_type internal_nodes;
- };
-
- public:
- using key_type = typename Params::key_type;
- using value_type = typename Params::value_type;
- using size_type = typename Params::size_type;
- using difference_type = typename Params::difference_type;
- using key_compare = typename Params::key_compare;
+ return *this;
+ }
+
+ size_type leaf_nodes;
+ size_type internal_nodes;
+ };
+
+ public:
+ using key_type = typename Params::key_type;
+ using value_type = typename Params::value_type;
+ using size_type = typename Params::size_type;
+ using difference_type = typename Params::difference_type;
+ using key_compare = typename Params::key_compare;
using original_key_compare = typename Params::original_key_compare;
- using value_compare = typename Params::value_compare;
- using allocator_type = typename Params::allocator_type;
- using reference = typename Params::reference;
- using const_reference = typename Params::const_reference;
- using pointer = typename Params::pointer;
- using const_pointer = typename Params::const_pointer;
+ using value_compare = typename Params::value_compare;
+ using allocator_type = typename Params::allocator_type;
+ using reference = typename Params::reference;
+ using const_reference = typename Params::const_reference;
+ using pointer = typename Params::pointer;
+ using const_pointer = typename Params::const_pointer;
using iterator =
typename btree_iterator<node_type, reference, pointer>::iterator;
- using const_iterator = typename iterator::const_iterator;
- using reverse_iterator = std::reverse_iterator<iterator>;
- using const_reverse_iterator = std::reverse_iterator<const_iterator>;
- using node_handle_type = node_handle<Params, Params, allocator_type>;
-
- // Internal types made public for use by btree_container types.
- using params_type = Params;
- using slot_type = typename Params::slot_type;
-
- private:
- // For use in copy_or_move_values_in_order.
+ using const_iterator = typename iterator::const_iterator;
+ using reverse_iterator = std::reverse_iterator<iterator>;
+ using const_reverse_iterator = std::reverse_iterator<const_iterator>;
+ using node_handle_type = node_handle<Params, Params, allocator_type>;
+
+ // Internal types made public for use by btree_container types.
+ using params_type = Params;
+ using slot_type = typename Params::slot_type;
+
+ private:
+ // For use in copy_or_move_values_in_order.
const value_type &maybe_move_from_iterator(const_iterator it) { return *it; }
value_type &&maybe_move_from_iterator(iterator it) {
// This is a destructive operation on the other container so it's safe for
// us to const_cast and move from the keys here even if it's a set.
return std::move(const_cast<value_type &>(*it));
}
-
- // Copies or moves (depending on the template parameter) the values in
+
+ // Copies or moves (depending on the template parameter) the values in
// other into this btree in their order in other. This btree must be empty
// before this method is called. This method is used in copy construction,
// copy assignment, and move assignment.
- template <typename Btree>
+ template <typename Btree>
void copy_or_move_values_in_order(Btree &other);
-
- // Validates that various assumptions/requirements are true at compile time.
- constexpr static bool static_assert_validation();
-
- public:
+
+ // Validates that various assumptions/requirements are true at compile time.
+ constexpr static bool static_assert_validation();
+
+ public:
btree(const key_compare &comp, const allocator_type &alloc)
: root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {}
-
+
btree(const btree &other) : btree(other, other.allocator()) {}
btree(const btree &other, const allocator_type &alloc)
: btree(other.key_comp(), alloc) {
copy_or_move_values_in_order(other);
- }
+ }
btree(btree &&other) noexcept
: root_(std::move(other.root_)),
rightmost_(y_absl::exchange(other.rightmost_, EmptyNode())),
@@ -1208,87 +1208,87 @@ class btree {
copy_or_move_values_in_order(other);
}
}
-
- ~btree() {
- // Put static_asserts in destructor to avoid triggering them before the type
- // is complete.
- static_assert(static_assert_validation(), "This call must be elided.");
- clear();
- }
-
+
+ ~btree() {
+ // Put static_asserts in destructor to avoid triggering them before the type
+ // is complete.
+ static_assert(static_assert_validation(), "This call must be elided.");
+ clear();
+ }
+
// Assign the contents of other to *this.
btree &operator=(const btree &other);
btree &operator=(btree &&other) noexcept;
-
+
iterator begin() { return iterator(leftmost()); }
const_iterator begin() const { return const_iterator(leftmost()); }
iterator end() { return iterator(rightmost_, rightmost_->finish()); }
- const_iterator end() const {
+ const_iterator end() const {
return const_iterator(rightmost_, rightmost_->finish());
- }
+ }
reverse_iterator rbegin() { return reverse_iterator(end()); }
- const_reverse_iterator rbegin() const {
- return const_reverse_iterator(end());
- }
+ const_reverse_iterator rbegin() const {
+ return const_reverse_iterator(end());
+ }
reverse_iterator rend() { return reverse_iterator(begin()); }
- const_reverse_iterator rend() const {
- return const_reverse_iterator(begin());
- }
-
+ const_reverse_iterator rend() const {
+ return const_reverse_iterator(begin());
+ }
+
// Finds the first element whose key is not less than `key`.
- template <typename K>
- iterator lower_bound(const K &key) {
+ template <typename K>
+ iterator lower_bound(const K &key) {
return internal_end(internal_lower_bound(key).value);
- }
- template <typename K>
- const_iterator lower_bound(const K &key) const {
+ }
+ template <typename K>
+ const_iterator lower_bound(const K &key) const {
return internal_end(internal_lower_bound(key).value);
- }
-
+ }
+
// Finds the first element whose key is not less than `key` and also returns
// whether that element is equal to `key`.
- template <typename K>
+ template <typename K>
std::pair<iterator, bool> lower_bound_equal(const K &key) const;
// Finds the first element whose key is greater than `key`.
template <typename K>
- iterator upper_bound(const K &key) {
- return internal_end(internal_upper_bound(key));
- }
- template <typename K>
- const_iterator upper_bound(const K &key) const {
- return internal_end(internal_upper_bound(key));
- }
-
- // Finds the range of values which compare equal to key. The first member of
+ iterator upper_bound(const K &key) {
+ return internal_end(internal_upper_bound(key));
+ }
+ template <typename K>
+ const_iterator upper_bound(const K &key) const {
+ return internal_end(internal_upper_bound(key));
+ }
+
+ // Finds the range of values which compare equal to key. The first member of
// the returned pair is equal to lower_bound(key). The second member of the
// pair is equal to upper_bound(key).
- template <typename K>
+ template <typename K>
std::pair<iterator, iterator> equal_range(const K &key);
- template <typename K>
- std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
+ template <typename K>
+ std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
return const_cast<btree *>(this)->equal_range(key);
- }
-
- // Inserts a value into the btree only if it does not already exist. The
- // boolean return value indicates whether insertion succeeded or failed.
- // Requirement: if `key` already exists in the btree, does not consume `args`.
- // Requirement: `key` is never referenced after consuming `args`.
+ }
+
+ // Inserts a value into the btree only if it does not already exist. The
+ // boolean return value indicates whether insertion succeeded or failed.
+ // Requirement: if `key` already exists in the btree, does not consume `args`.
+ // Requirement: `key` is never referenced after consuming `args`.
template <typename K, typename... Args>
std::pair<iterator, bool> insert_unique(const K &key, Args &&... args);
-
- // Inserts with hint. Checks to see if the value should be placed immediately
- // before `position` in the tree. If so, then the insertion will take
- // amortized constant time. If not, the insertion will take amortized
- // logarithmic time as if a call to insert_unique() were made.
- // Requirement: if `key` already exists in the btree, does not consume `args`.
- // Requirement: `key` is never referenced after consuming `args`.
+
+ // Inserts with hint. Checks to see if the value should be placed immediately
+ // before `position` in the tree. If so, then the insertion will take
+ // amortized constant time. If not, the insertion will take amortized
+ // logarithmic time as if a call to insert_unique() were made.
+ // Requirement: if `key` already exists in the btree, does not consume `args`.
+ // Requirement: `key` is never referenced after consuming `args`.
template <typename K, typename... Args>
- std::pair<iterator, bool> insert_hint_unique(iterator position,
+ std::pair<iterator, bool> insert_hint_unique(iterator position,
const K &key,
- Args &&... args);
-
- // Insert a range of values into the btree.
+ Args &&... args);
+
+ // Insert a range of values into the btree.
// Note: the first overload avoids constructing a value_type if the key
// already exists in the btree.
template <typename InputIterator,
@@ -1298,313 +1298,313 @@ class btree {
void insert_iterator_unique(InputIterator b, InputIterator e, int);
// We need the second overload for cases in which we need to construct a
// value_type in order to compare it with the keys already in the btree.
- template <typename InputIterator>
+ template <typename InputIterator>
void insert_iterator_unique(InputIterator b, InputIterator e, char);
-
- // Inserts a value into the btree.
- template <typename ValueType>
- iterator insert_multi(const key_type &key, ValueType &&v);
-
- // Inserts a value into the btree.
- template <typename ValueType>
- iterator insert_multi(ValueType &&v) {
- return insert_multi(params_type::key(v), std::forward<ValueType>(v));
- }
-
- // Insert with hint. Check to see if the value should be placed immediately
- // before position in the tree. If it does, then the insertion will take
- // amortized constant time. If not, the insertion will take amortized
- // logarithmic time as if a call to insert_multi(v) were made.
- template <typename ValueType>
- iterator insert_hint_multi(iterator position, ValueType &&v);
-
- // Insert a range of values into the btree.
- template <typename InputIterator>
- void insert_iterator_multi(InputIterator b, InputIterator e);
-
- // Erase the specified iterator from the btree. The iterator must be valid
- // (i.e. not equal to end()). Return an iterator pointing to the node after
- // the one that was erased (or end() if none exists).
- // Requirement: does not read the value at `*iter`.
- iterator erase(iterator iter);
-
- // Erases range. Returns the number of keys erased and an iterator pointing
- // to the element after the last erased element.
+
+ // Inserts a value into the btree.
+ template <typename ValueType>
+ iterator insert_multi(const key_type &key, ValueType &&v);
+
+ // Inserts a value into the btree.
+ template <typename ValueType>
+ iterator insert_multi(ValueType &&v) {
+ return insert_multi(params_type::key(v), std::forward<ValueType>(v));
+ }
+
+ // Insert with hint. Check to see if the value should be placed immediately
+ // before position in the tree. If it does, then the insertion will take
+ // amortized constant time. If not, the insertion will take amortized
+ // logarithmic time as if a call to insert_multi(v) were made.
+ template <typename ValueType>
+ iterator insert_hint_multi(iterator position, ValueType &&v);
+
+ // Insert a range of values into the btree.
+ template <typename InputIterator>
+ void insert_iterator_multi(InputIterator b, InputIterator e);
+
+ // Erase the specified iterator from the btree. The iterator must be valid
+ // (i.e. not equal to end()). Return an iterator pointing to the node after
+ // the one that was erased (or end() if none exists).
+ // Requirement: does not read the value at `*iter`.
+ iterator erase(iterator iter);
+
+ // Erases range. Returns the number of keys erased and an iterator pointing
+ // to the element after the last erased element.
std::pair<size_type, iterator> erase_range(iterator begin, iterator end);
-
+
// Finds an element with key equivalent to `key` or returns `end()` if `key`
// is not present.
- template <typename K>
- iterator find(const K &key) {
- return internal_end(internal_find(key));
- }
- template <typename K>
- const_iterator find(const K &key) const {
- return internal_end(internal_find(key));
- }
-
- // Clear the btree, deleting all of the values it contains.
- void clear();
-
+ template <typename K>
+ iterator find(const K &key) {
+ return internal_end(internal_find(key));
+ }
+ template <typename K>
+ const_iterator find(const K &key) const {
+ return internal_end(internal_find(key));
+ }
+
+ // Clear the btree, deleting all of the values it contains.
+ void clear();
+
// Swaps the contents of `this` and `other`.
void swap(btree &other);
-
- const key_compare &key_comp() const noexcept {
- return root_.template get<0>();
- }
+
+ const key_compare &key_comp() const noexcept {
+ return root_.template get<0>();
+ }
template <typename K1, typename K2>
bool compare_keys(const K1 &a, const K2 &b) const {
return compare_internal::compare_result_as_less_than(key_comp()(a, b));
- }
-
+ }
+
value_compare value_comp() const {
return value_compare(original_key_compare(key_comp()));
}
-
- // Verifies the structure of the btree.
- void verify() const;
-
- // Size routines.
- size_type size() const { return size_; }
- size_type max_size() const { return (std::numeric_limits<size_type>::max)(); }
- bool empty() const { return size_ == 0; }
-
- // The height of the btree. An empty tree will have height 0.
- size_type height() const {
- size_type h = 0;
- if (!empty()) {
- // Count the length of the chain from the leftmost node up to the
- // root. We actually count from the root back around to the level below
- // the root, but the calculation is the same because of the circularity
- // of that traversal.
- const node_type *n = root();
- do {
- ++h;
- n = n->parent();
- } while (n != root());
- }
- return h;
- }
-
- // The number of internal, leaf and total nodes used by the btree.
+
+ // Verifies the structure of the btree.
+ void verify() const;
+
+ // Size routines.
+ size_type size() const { return size_; }
+ size_type max_size() const { return (std::numeric_limits<size_type>::max)(); }
+ bool empty() const { return size_ == 0; }
+
+ // The height of the btree. An empty tree will have height 0.
+ size_type height() const {
+ size_type h = 0;
+ if (!empty()) {
+ // Count the length of the chain from the leftmost node up to the
+ // root. We actually count from the root back around to the level below
+ // the root, but the calculation is the same because of the circularity
+ // of that traversal.
+ const node_type *n = root();
+ do {
+ ++h;
+ n = n->parent();
+ } while (n != root());
+ }
+ return h;
+ }
+
+ // The number of internal, leaf and total nodes used by the btree.
size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; }
- size_type internal_nodes() const {
- return internal_stats(root()).internal_nodes;
- }
- size_type nodes() const {
- node_stats stats = internal_stats(root());
- return stats.leaf_nodes + stats.internal_nodes;
- }
-
- // The total number of bytes used by the btree.
- size_type bytes_used() const {
- node_stats stats = internal_stats(root());
- if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
+ size_type internal_nodes() const {
+ return internal_stats(root()).internal_nodes;
+ }
+ size_type nodes() const {
+ node_stats stats = internal_stats(root());
+ return stats.leaf_nodes + stats.internal_nodes;
+ }
+
+ // The total number of bytes used by the btree.
+ size_type bytes_used() const {
+ node_stats stats = internal_stats(root());
+ if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
return sizeof(*this) + node_type::LeafSize(root()->max_count());
- } else {
+ } else {
return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() +
- stats.internal_nodes * node_type::InternalSize();
- }
- }
-
+ stats.internal_nodes * node_type::InternalSize();
+ }
+ }
+
// The average number of bytes used per value stored in the btree assuming
// random insertion order.
- static double average_bytes_per_value() {
+ static double average_bytes_per_value() {
// The expected number of values per node with random insertion order is the
// average of the maximum and minimum numbers of values per node.
const double expected_values_per_node =
(kNodeSlots + kMinNodeValues) / 2.0;
return node_type::LeafSize() / expected_values_per_node;
- }
-
- // The fullness of the btree. Computed as the number of elements in the btree
- // divided by the maximum number of elements a tree with the current number
- // of nodes could hold. A value of 1 indicates perfect space
- // utilization. Smaller values indicate space wastage.
- // Returns 0 for empty trees.
- double fullness() const {
- if (empty()) return 0.0;
+ }
+
+ // The fullness of the btree. Computed as the number of elements in the btree
+ // divided by the maximum number of elements a tree with the current number
+ // of nodes could hold. A value of 1 indicates perfect space
+ // utilization. Smaller values indicate space wastage.
+ // Returns 0 for empty trees.
+ double fullness() const {
+ if (empty()) return 0.0;
return static_cast<double>(size()) / (nodes() * kNodeSlots);
- }
- // The overhead of the btree structure in bytes per node. Computed as the
- // total number of bytes used by the btree minus the number of bytes used for
- // storing elements divided by the number of elements.
- // Returns 0 for empty trees.
- double overhead() const {
- if (empty()) return 0.0;
- return (bytes_used() - size() * sizeof(value_type)) /
- static_cast<double>(size());
- }
-
- // The allocator used by the btree.
+ }
+ // The overhead of the btree structure in bytes per node. Computed as the
+ // total number of bytes used by the btree minus the number of bytes used for
+ // storing elements divided by the number of elements.
+ // Returns 0 for empty trees.
+ double overhead() const {
+ if (empty()) return 0.0;
+ return (bytes_used() - size() * sizeof(value_type)) /
+ static_cast<double>(size());
+ }
+
+ // The allocator used by the btree.
allocator_type get_allocator() const { return allocator(); }
-
- private:
- // Internal accessor routines.
- node_type *root() { return root_.template get<2>(); }
- const node_type *root() const { return root_.template get<2>(); }
- node_type *&mutable_root() noexcept { return root_.template get<2>(); }
- key_compare *mutable_key_comp() noexcept { return &root_.template get<0>(); }
-
- // The leftmost node is stored as the parent of the root node.
- node_type *leftmost() { return root()->parent(); }
- const node_type *leftmost() const { return root()->parent(); }
-
- // Allocator routines.
- allocator_type *mutable_allocator() noexcept {
- return &root_.template get<1>();
- }
- const allocator_type &allocator() const noexcept {
- return root_.template get<1>();
- }
-
- // Allocates a correctly aligned node of at least size bytes using the
- // allocator.
- node_type *allocate(const size_type size) {
- return reinterpret_cast<node_type *>(
+
+ private:
+ // Internal accessor routines.
+ node_type *root() { return root_.template get<2>(); }
+ const node_type *root() const { return root_.template get<2>(); }
+ node_type *&mutable_root() noexcept { return root_.template get<2>(); }
+ key_compare *mutable_key_comp() noexcept { return &root_.template get<0>(); }
+
+ // The leftmost node is stored as the parent of the root node.
+ node_type *leftmost() { return root()->parent(); }
+ const node_type *leftmost() const { return root()->parent(); }
+
+ // Allocator routines.
+ allocator_type *mutable_allocator() noexcept {
+ return &root_.template get<1>();
+ }
+ const allocator_type &allocator() const noexcept {
+ return root_.template get<1>();
+ }
+
+ // Allocates a correctly aligned node of at least size bytes using the
+ // allocator.
+ node_type *allocate(const size_type size) {
+ return reinterpret_cast<node_type *>(
y_absl::container_internal::Allocate<node_type::Alignment()>(
- mutable_allocator(), size));
- }
-
- // Node creation/deletion routines.
+ mutable_allocator(), size));
+ }
+
+ // Node creation/deletion routines.
node_type *new_internal_node(node_type *parent) {
node_type *n = allocate(node_type::InternalSize());
n->init_internal(parent);
return n;
- }
+ }
node_type *new_leaf_node(node_type *parent) {
node_type *n = allocate(node_type::LeafSize());
n->init_leaf(parent, kNodeSlots);
return n;
- }
- node_type *new_leaf_root_node(const int max_count) {
+ }
+ node_type *new_leaf_root_node(const int max_count) {
node_type *n = allocate(node_type::LeafSize(max_count));
n->init_leaf(/*parent=*/n, max_count);
return n;
- }
-
- // Deletion helper routines.
- iterator rebalance_after_delete(iterator iter);
-
- // Rebalances or splits the node iter points to.
- void rebalance_or_split(iterator *iter);
-
- // Merges the values of left, right and the delimiting key on their parent
- // onto left, removing the delimiting key and deleting right.
- void merge_nodes(node_type *left, node_type *right);
-
- // Tries to merge node with its left or right sibling, and failing that,
- // rebalance with its left or right sibling. Returns true if a merge
- // occurred, at which point it is no longer valid to access node. Returns
- // false if no merging took place.
- bool try_merge_or_rebalance(iterator *iter);
-
- // Tries to shrink the height of the tree by 1.
- void try_shrink();
-
- iterator internal_end(iterator iter) {
- return iter.node != nullptr ? iter : end();
- }
- const_iterator internal_end(const_iterator iter) const {
- return iter.node != nullptr ? iter : end();
- }
-
- // Emplaces a value into the btree immediately before iter. Requires that
- // key(v) <= iter.key() and (--iter).key() <= key(v).
- template <typename... Args>
- iterator internal_emplace(iterator iter, Args &&... args);
-
- // Returns an iterator pointing to the first value >= the value "iter" is
+ }
+
+ // Deletion helper routines.
+ iterator rebalance_after_delete(iterator iter);
+
+ // Rebalances or splits the node iter points to.
+ void rebalance_or_split(iterator *iter);
+
+ // Merges the values of left, right and the delimiting key on their parent
+ // onto left, removing the delimiting key and deleting right.
+ void merge_nodes(node_type *left, node_type *right);
+
+ // Tries to merge node with its left or right sibling, and failing that,
+ // rebalance with its left or right sibling. Returns true if a merge
+ // occurred, at which point it is no longer valid to access node. Returns
+ // false if no merging took place.
+ bool try_merge_or_rebalance(iterator *iter);
+
+ // Tries to shrink the height of the tree by 1.
+ void try_shrink();
+
+ iterator internal_end(iterator iter) {
+ return iter.node != nullptr ? iter : end();
+ }
+ const_iterator internal_end(const_iterator iter) const {
+ return iter.node != nullptr ? iter : end();
+ }
+
+ // Emplaces a value into the btree immediately before iter. Requires that
+ // key(v) <= iter.key() and (--iter).key() <= key(v).
+ template <typename... Args>
+ iterator internal_emplace(iterator iter, Args &&... args);
+
+ // Returns an iterator pointing to the first value >= the value "iter" is
// pointing at. Note that "iter" might be pointing to an invalid location such
// as iter.position == iter.node->finish(). This routine simply moves iter up
// in the tree to a valid location.
- // Requires: iter.node is non-null.
- template <typename IterType>
- static IterType internal_last(IterType iter);
-
- // Returns an iterator pointing to the leaf position at which key would
+ // Requires: iter.node is non-null.
+ template <typename IterType>
+ static IterType internal_last(IterType iter);
+
+ // Returns an iterator pointing to the leaf position at which key would
// reside in the tree, unless there is an exact match - in which case, the
// result may not be on a leaf. When there's a three-way comparator, we can
// return whether there was an exact match. This allows the caller to avoid a
// subsequent comparison to determine if an exact match was made, which is
// important for keys with expensive comparison, such as strings.
- template <typename K>
- SearchResult<iterator, is_key_compare_to::value> internal_locate(
- const K &key) const;
-
- // Internal routine which implements lower_bound().
- template <typename K>
+ template <typename K>
+ SearchResult<iterator, is_key_compare_to::value> internal_locate(
+ const K &key) const;
+
+ // Internal routine which implements lower_bound().
+ template <typename K>
SearchResult<iterator, is_key_compare_to::value> internal_lower_bound(
const K &key) const;
-
- // Internal routine which implements upper_bound().
- template <typename K>
- iterator internal_upper_bound(const K &key) const;
-
- // Internal routine which implements find().
- template <typename K>
- iterator internal_find(const K &key) const;
-
- // Verifies the tree structure of node.
+
+ // Internal routine which implements upper_bound().
+ template <typename K>
+ iterator internal_upper_bound(const K &key) const;
+
+ // Internal routine which implements find().
+ template <typename K>
+ iterator internal_find(const K &key) const;
+
+ // Verifies the tree structure of node.
int internal_verify(const node_type *node, const key_type *lo,
const key_type *hi) const;
-
- node_stats internal_stats(const node_type *node) const {
- // The root can be a static empty node.
- if (node == nullptr || (node == root() && empty())) {
- return node_stats(0, 0);
- }
- if (node->leaf()) {
- return node_stats(1, 0);
- }
- node_stats res(0, 1);
+
+ node_stats internal_stats(const node_type *node) const {
+ // The root can be a static empty node.
+ if (node == nullptr || (node == root() && empty())) {
+ return node_stats(0, 0);
+ }
+ if (node->leaf()) {
+ return node_stats(1, 0);
+ }
+ node_stats res(0, 1);
for (int i = node->start(); i <= node->finish(); ++i) {
- res += internal_stats(node->child(i));
- }
- return res;
- }
-
- // We use compressed tuple in order to save space because key_compare and
- // allocator_type are usually empty.
+ res += internal_stats(node->child(i));
+ }
+ return res;
+ }
+
+ // We use compressed tuple in order to save space because key_compare and
+ // allocator_type are usually empty.
y_absl::container_internal::CompressedTuple<key_compare, allocator_type,
- node_type *>
- root_;
-
- // A pointer to the rightmost node. Note that the leftmost node is stored as
- // the root's parent.
- node_type *rightmost_;
-
- // Number of values.
- size_type size_;
-};
-
-////
-// btree_node methods
-template <typename P>
-template <typename... Args>
-inline void btree_node<P>::emplace_value(const size_type i,
- allocator_type *alloc,
- Args &&... args) {
+ node_type *>
+ root_;
+
+ // A pointer to the rightmost node. Note that the leftmost node is stored as
+ // the root's parent.
+ node_type *rightmost_;
+
+ // Number of values.
+ size_type size_;
+};
+
+////
+// btree_node methods
+template <typename P>
+template <typename... Args>
+inline void btree_node<P>::emplace_value(const size_type i,
+ allocator_type *alloc,
+ Args &&... args) {
assert(i >= start());
assert(i <= finish());
- // Shift old values to create space for new value and then construct it in
- // place.
+ // Shift old values to create space for new value and then construct it in
+ // place.
if (i < finish()) {
transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this,
alloc);
- }
- value_init(i, alloc, std::forward<Args>(args)...);
+ }
+ value_init(i, alloc, std::forward<Args>(args)...);
set_finish(finish() + 1);
-
+
if (!leaf() && finish() > i + 1) {
for (int j = finish(); j > i + 1; --j) {
- set_child(j, child(j - 1));
- }
- clear_child(i + 1);
- }
-}
-
-template <typename P>
+ set_child(j, child(j - 1));
+ }
+ clear_child(i + 1);
+ }
+}
+
+template <typename P>
inline void btree_node<P>::remove_values(const field_type i,
const field_type to_erase,
allocator_type *alloc) {
@@ -1618,184 +1618,184 @@ inline void btree_node<P>::remove_values(const field_type i,
// Delete all children between begin and end.
for (int j = 0; j < to_erase; ++j) {
clear_and_delete(child(i + j + 1), alloc);
- }
+ }
// Rotate children after end into new positions.
for (int j = i + to_erase + 1; j <= orig_finish; ++j) {
set_child(j - to_erase, child(j));
clear_child(j);
}
- }
+ }
set_finish(orig_finish - to_erase);
-}
-
-template <typename P>
-void btree_node<P>::rebalance_right_to_left(const int to_move,
- btree_node *right,
- allocator_type *alloc) {
- assert(parent() == right->parent());
- assert(position() + 1 == right->position());
- assert(right->count() >= count());
- assert(to_move >= 1);
- assert(to_move <= right->count());
-
- // 1) Move the delimiting value in the parent to the left node.
+}
+
+template <typename P>
+void btree_node<P>::rebalance_right_to_left(const int to_move,
+ btree_node *right,
+ allocator_type *alloc) {
+ assert(parent() == right->parent());
+ assert(position() + 1 == right->position());
+ assert(right->count() >= count());
+ assert(to_move >= 1);
+ assert(to_move <= right->count());
+
+ // 1) Move the delimiting value in the parent to the left node.
transfer(finish(), position(), parent(), alloc);
-
- // 2) Move the (to_move - 1) values from the right node to the left node.
+
+ // 2) Move the (to_move - 1) values from the right node to the left node.
transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc);
-
- // 3) Move the new delimiting value to the parent from the right node.
+
+ // 3) Move the new delimiting value to the parent from the right node.
parent()->transfer(position(), right->start() + to_move - 1, right, alloc);
-
+
// 4) Shift the values in the right node to their correct positions.
right->transfer_n(right->count() - to_move, right->start(),
right->start() + to_move, right, alloc);
-
- if (!leaf()) {
- // Move the child pointers from the right to the left node.
- for (int i = 0; i < to_move; ++i) {
+
+ if (!leaf()) {
+ // Move the child pointers from the right to the left node.
+ for (int i = 0; i < to_move; ++i) {
init_child(finish() + i + 1, right->child(i));
- }
+ }
for (int i = right->start(); i <= right->finish() - to_move; ++i) {
- assert(i + to_move <= right->max_count());
- right->init_child(i, right->child(i + to_move));
- right->clear_child(i + to_move);
- }
- }
-
+ assert(i + to_move <= right->max_count());
+ right->init_child(i, right->child(i + to_move));
+ right->clear_child(i + to_move);
+ }
+ }
+
// Fixup `finish` on the left and right nodes.
set_finish(finish() + to_move);
right->set_finish(right->finish() - to_move);
-}
-
-template <typename P>
-void btree_node<P>::rebalance_left_to_right(const int to_move,
- btree_node *right,
- allocator_type *alloc) {
- assert(parent() == right->parent());
- assert(position() + 1 == right->position());
- assert(count() >= right->count());
- assert(to_move >= 1);
- assert(to_move <= count());
-
- // Values in the right node are shifted to the right to make room for the
- // new to_move values. Then, the delimiting value in the parent and the
- // other (to_move - 1) values in the left node are moved into the right node.
- // Lastly, a new delimiting value is moved from the left node into the
- // parent, and the remaining empty left node entries are destroyed.
-
+}
+
+template <typename P>
+void btree_node<P>::rebalance_left_to_right(const int to_move,
+ btree_node *right,
+ allocator_type *alloc) {
+ assert(parent() == right->parent());
+ assert(position() + 1 == right->position());
+ assert(count() >= right->count());
+ assert(to_move >= 1);
+ assert(to_move <= count());
+
+ // Values in the right node are shifted to the right to make room for the
+ // new to_move values. Then, the delimiting value in the parent and the
+ // other (to_move - 1) values in the left node are moved into the right node.
+ // Lastly, a new delimiting value is moved from the left node into the
+ // parent, and the remaining empty left node entries are destroyed.
+
// 1) Shift existing values in the right node to their correct positions.
right->transfer_n_backward(right->count(), right->start() + to_move,
right->start(), right, alloc);
-
+
// 2) Move the delimiting value in the parent to the right node.
right->transfer(right->start() + to_move - 1, position(), parent(), alloc);
-
+
// 3) Move the (to_move - 1) values from the left node to the right node.
right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this,
alloc);
-
- // 4) Move the new delimiting value to the parent from the left node.
+
+ // 4) Move the new delimiting value to the parent from the left node.
parent()->transfer(position(), finish() - to_move, this, alloc);
-
- if (!leaf()) {
- // Move the child pointers from the left to the right node.
+
+ if (!leaf()) {
+ // Move the child pointers from the left to the right node.
for (int i = right->finish(); i >= right->start(); --i) {
- right->init_child(i + to_move, right->child(i));
- right->clear_child(i);
- }
- for (int i = 1; i <= to_move; ++i) {
+ right->init_child(i + to_move, right->child(i));
+ right->clear_child(i);
+ }
+ for (int i = 1; i <= to_move; ++i) {
right->init_child(i - 1, child(finish() - to_move + i));
clear_child(finish() - to_move + i);
- }
- }
-
- // Fixup the counts on the left and right nodes.
+ }
+ }
+
+ // Fixup the counts on the left and right nodes.
set_finish(finish() - to_move);
right->set_finish(right->finish() + to_move);
-}
-
-template <typename P>
-void btree_node<P>::split(const int insert_position, btree_node *dest,
- allocator_type *alloc) {
- assert(dest->count() == 0);
+}
+
+template <typename P>
+void btree_node<P>::split(const int insert_position, btree_node *dest,
+ allocator_type *alloc) {
+ assert(dest->count() == 0);
assert(max_count() == kNodeSlots);
-
- // We bias the split based on the position being inserted. If we're
- // inserting at the beginning of the left node then bias the split to put
- // more values on the right node. If we're inserting at the end of the
- // right node then bias the split to put more values on the left node.
+
+ // We bias the split based on the position being inserted. If we're
+ // inserting at the beginning of the left node then bias the split to put
+ // more values on the right node. If we're inserting at the end of the
+ // right node then bias the split to put more values on the left node.
if (insert_position == start()) {
dest->set_finish(dest->start() + finish() - 1);
} else if (insert_position == kNodeSlots) {
dest->set_finish(dest->start());
- } else {
+ } else {
dest->set_finish(dest->start() + count() / 2);
- }
+ }
set_finish(finish() - dest->count());
- assert(count() >= 1);
-
- // Move values from the left sibling to the right sibling.
+ assert(count() >= 1);
+
+ // Move values from the left sibling to the right sibling.
dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc);
-
- // The split key is the largest value in the left sibling.
+
+ // The split key is the largest value in the left sibling.
--mutable_finish();
parent()->emplace_value(position(), alloc, finish_slot());
value_destroy(finish(), alloc);
- parent()->init_child(position() + 1, dest);
-
- if (!leaf()) {
+ parent()->init_child(position() + 1, dest);
+
+ if (!leaf()) {
for (int i = dest->start(), j = finish() + 1; i <= dest->finish();
++i, ++j) {
assert(child(j) != nullptr);
dest->init_child(i, child(j));
clear_child(j);
- }
- }
-}
-
-template <typename P>
-void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
- assert(parent() == src->parent());
- assert(position() + 1 == src->position());
-
- // Move the delimiting value to the left node.
+ }
+ }
+}
+
+template <typename P>
+void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
+ assert(parent() == src->parent());
+ assert(position() + 1 == src->position());
+
+ // Move the delimiting value to the left node.
value_init(finish(), alloc, parent()->slot(position()));
-
- // Move the values from the right to the left node.
+
+ // Move the values from the right to the left node.
transfer_n(src->count(), finish() + 1, src->start(), src, alloc);
-
- if (!leaf()) {
- // Move the child pointers from the right to the left node.
+
+ if (!leaf()) {
+ // Move the child pointers from the right to the left node.
for (int i = src->start(), j = finish() + 1; i <= src->finish(); ++i, ++j) {
init_child(j, src->child(i));
- src->clear_child(i);
- }
- }
-
+ src->clear_child(i);
+ }
+ }
+
// Fixup `finish` on the src and dest nodes.
set_finish(start() + 1 + count() + src->count());
src->set_finish(src->start());
-
+
// Remove the value on the parent node and delete the src node.
parent()->remove_values(position(), /*to_erase=*/1, alloc);
-}
-
-template <typename P>
+}
+
+template <typename P>
void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) {
if (node->leaf()) {
node->value_destroy_n(node->start(), node->count(), alloc);
deallocate(LeafSize(node->max_count()), node, alloc);
return;
- }
+ }
if (node->count() == 0) {
deallocate(InternalSize(), node, alloc);
return;
- }
-
+ }
+
// The parent of the root of the subtree we are deleting.
btree_node *delete_root_parent = node->parent();
-
+
// Navigate to the leftmost leaf under node, and then delete upwards.
while (!node->leaf()) node = node->start_child();
// Use `int` because `pos` needs to be able to hold `kNodeSlots+1`, which
@@ -1829,114 +1829,114 @@ void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) {
if (parent == delete_root_parent) return;
++pos;
} while (pos > parent->finish());
- }
-}
-
-////
-// btree_iterator methods
-template <typename N, typename R, typename P>
-void btree_iterator<N, R, P>::increment_slow() {
- if (node->leaf()) {
+ }
+}
+
+////
+// btree_iterator methods
+template <typename N, typename R, typename P>
+void btree_iterator<N, R, P>::increment_slow() {
+ if (node->leaf()) {
assert(position >= node->finish());
- btree_iterator save(*this);
+ btree_iterator save(*this);
while (position == node->finish() && !node->is_root()) {
- assert(node->parent()->child(node->position()) == node);
- position = node->position();
- node = node->parent();
- }
+ assert(node->parent()->child(node->position()) == node);
+ position = node->position();
+ node = node->parent();
+ }
// TODO(ezb): assert we aren't incrementing end() instead of handling.
if (position == node->finish()) {
- *this = save;
- }
- } else {
+ *this = save;
+ }
+ } else {
assert(position < node->finish());
- node = node->child(position + 1);
- while (!node->leaf()) {
+ node = node->child(position + 1);
+ while (!node->leaf()) {
node = node->start_child();
- }
+ }
position = node->start();
- }
-}
-
-template <typename N, typename R, typename P>
-void btree_iterator<N, R, P>::decrement_slow() {
- if (node->leaf()) {
- assert(position <= -1);
- btree_iterator save(*this);
+ }
+}
+
+template <typename N, typename R, typename P>
+void btree_iterator<N, R, P>::decrement_slow() {
+ if (node->leaf()) {
+ assert(position <= -1);
+ btree_iterator save(*this);
while (position < node->start() && !node->is_root()) {
- assert(node->parent()->child(node->position()) == node);
- position = node->position() - 1;
- node = node->parent();
- }
+ assert(node->parent()->child(node->position()) == node);
+ position = node->position() - 1;
+ node = node->parent();
+ }
// TODO(ezb): assert we aren't decrementing begin() instead of handling.
if (position < node->start()) {
- *this = save;
- }
- } else {
+ *this = save;
+ }
+ } else {
assert(position >= node->start());
- node = node->child(position);
- while (!node->leaf()) {
+ node = node->child(position);
+ while (!node->leaf()) {
node = node->child(node->finish());
- }
+ }
position = node->finish() - 1;
- }
-}
-
-////
-// btree methods
-template <typename P>
-template <typename Btree>
+ }
+}
+
+////
+// btree methods
+template <typename P>
+template <typename Btree>
void btree<P>::copy_or_move_values_in_order(Btree &other) {
- static_assert(std::is_same<btree, Btree>::value ||
- std::is_same<const btree, Btree>::value,
- "Btree type must be same or const.");
- assert(empty());
-
- // We can avoid key comparisons because we know the order of the
- // values is the same order we'll store them in.
+ static_assert(std::is_same<btree, Btree>::value ||
+ std::is_same<const btree, Btree>::value,
+ "Btree type must be same or const.");
+ assert(empty());
+
+ // We can avoid key comparisons because we know the order of the
+ // values is the same order we'll store them in.
auto iter = other.begin();
if (iter == other.end()) return;
- insert_multi(maybe_move_from_iterator(iter));
- ++iter;
+ insert_multi(maybe_move_from_iterator(iter));
+ ++iter;
for (; iter != other.end(); ++iter) {
- // If the btree is not empty, we can just insert the new value at the end
- // of the tree.
- internal_emplace(end(), maybe_move_from_iterator(iter));
- }
-}
-
-template <typename P>
-constexpr bool btree<P>::static_assert_validation() {
- static_assert(std::is_nothrow_copy_constructible<key_compare>::value,
- "Key comparison must be nothrow copy constructible");
- static_assert(std::is_nothrow_copy_constructible<allocator_type>::value,
- "Allocator must be nothrow copy constructible");
- static_assert(type_traits_internal::is_trivially_copyable<iterator>::value,
- "iterator not trivially copyable.");
-
- // Note: We assert that kTargetValues, which is computed from
- // Params::kTargetNodeSize, must fit the node_type::field_type.
- static_assert(
+ // If the btree is not empty, we can just insert the new value at the end
+ // of the tree.
+ internal_emplace(end(), maybe_move_from_iterator(iter));
+ }
+}
+
+template <typename P>
+constexpr bool btree<P>::static_assert_validation() {
+ static_assert(std::is_nothrow_copy_constructible<key_compare>::value,
+ "Key comparison must be nothrow copy constructible");
+ static_assert(std::is_nothrow_copy_constructible<allocator_type>::value,
+ "Allocator must be nothrow copy constructible");
+ static_assert(type_traits_internal::is_trivially_copyable<iterator>::value,
+ "iterator not trivially copyable.");
+
+ // Note: We assert that kTargetValues, which is computed from
+ // Params::kTargetNodeSize, must fit the node_type::field_type.
+ static_assert(
kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))),
- "target node size too large");
-
+ "target node size too large");
+
// Verify that key_compare returns an y_absl::{weak,strong}_ordering or bool.
- using compare_result_type =
+ using compare_result_type =
y_absl::result_of_t<key_compare(key_type, key_type)>;
- static_assert(
- std::is_same<compare_result_type, bool>::value ||
+ static_assert(
+ std::is_same<compare_result_type, bool>::value ||
std::is_convertible<compare_result_type, y_absl::weak_ordering>::value,
"key comparison function must return y_absl::{weak,strong}_ordering or "
- "bool.");
-
- // Test the assumption made in setting kNodeValueSpace.
- static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4,
- "node space assumption incorrect");
-
- return true;
-}
-
-template <typename P>
+ "bool.");
+
+ // Test the assumption made in setting kNodeValueSpace.
+ static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4,
+ "node space assumption incorrect");
+
+ return true;
+}
+
+template <typename P>
template <typename K>
auto btree<P>::lower_bound_equal(const K &key) const
-> std::pair<iterator, bool> {
@@ -1948,8 +1948,8 @@ auto btree<P>::lower_bound_equal(const K &key) const
: lower != end() && !compare_keys(key, lower.key());
return {lower, equal};
}
-
-template <typename P>
+
+template <typename P>
template <typename K>
auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> {
const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key);
@@ -1976,68 +1976,68 @@ auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> {
// In this case, we need to call upper_bound() to avoid worst case O(N)
// behavior if we were to iterate over equal keys.
return {lower, upper_bound(key)};
-}
-
-template <typename P>
+}
+
+template <typename P>
template <typename K, typename... Args>
auto btree<P>::insert_unique(const K &key, Args &&... args)
- -> std::pair<iterator, bool> {
- if (empty()) {
- mutable_root() = rightmost_ = new_leaf_root_node(1);
- }
-
+ -> std::pair<iterator, bool> {
+ if (empty()) {
+ mutable_root() = rightmost_ = new_leaf_root_node(1);
+ }
+
SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
iterator iter = res.value;
-
- if (res.HasMatch()) {
- if (res.IsEq()) {
- // The key already exists in the tree, do nothing.
- return {iter, false};
- }
- } else {
- iterator last = internal_last(iter);
- if (last.node && !compare_keys(key, last.key())) {
- // The key already exists in the tree, do nothing.
- return {last, false};
- }
- }
- return {internal_emplace(iter, std::forward<Args>(args)...), true};
-}
-
-template <typename P>
+
+ if (res.HasMatch()) {
+ if (res.IsEq()) {
+ // The key already exists in the tree, do nothing.
+ return {iter, false};
+ }
+ } else {
+ iterator last = internal_last(iter);
+ if (last.node && !compare_keys(key, last.key())) {
+ // The key already exists in the tree, do nothing.
+ return {last, false};
+ }
+ }
+ return {internal_emplace(iter, std::forward<Args>(args)...), true};
+}
+
+template <typename P>
template <typename K, typename... Args>
inline auto btree<P>::insert_hint_unique(iterator position, const K &key,
- Args &&... args)
- -> std::pair<iterator, bool> {
- if (!empty()) {
- if (position == end() || compare_keys(key, position.key())) {
+ Args &&... args)
+ -> std::pair<iterator, bool> {
+ if (!empty()) {
+ if (position == end() || compare_keys(key, position.key())) {
if (position == begin() || compare_keys(std::prev(position).key(), key)) {
- // prev.key() < key < position.key()
- return {internal_emplace(position, std::forward<Args>(args)...), true};
- }
- } else if (compare_keys(position.key(), key)) {
- ++position;
- if (position == end() || compare_keys(key, position.key())) {
- // {original `position`}.key() < key < {current `position`}.key()
- return {internal_emplace(position, std::forward<Args>(args)...), true};
- }
- } else {
- // position.key() == key
- return {position, false};
- }
- }
- return insert_unique(key, std::forward<Args>(args)...);
-}
-
-template <typename P>
+ // prev.key() < key < position.key()
+ return {internal_emplace(position, std::forward<Args>(args)...), true};
+ }
+ } else if (compare_keys(position.key(), key)) {
+ ++position;
+ if (position == end() || compare_keys(key, position.key())) {
+ // {original `position`}.key() < key < {current `position`}.key()
+ return {internal_emplace(position, std::forward<Args>(args)...), true};
+ }
+ } else {
+ // position.key() == key
+ return {position, false};
+ }
+ }
+ return insert_unique(key, std::forward<Args>(args)...);
+}
+
+template <typename P>
template <typename InputIterator, typename>
void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) {
- for (; b != e; ++b) {
- insert_hint_unique(end(), params_type::key(*b), *b);
- }
-}
-
-template <typename P>
+ for (; b != e; ++b) {
+ insert_hint_unique(end(), params_type::key(*b), *b);
+ }
+}
+
+template <typename P>
template <typename InputIterator>
void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) {
for (; b != e; ++b) {
@@ -2047,464 +2047,464 @@ void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) {
}
template <typename P>
-template <typename ValueType>
-auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator {
- if (empty()) {
- mutable_root() = rightmost_ = new_leaf_root_node(1);
- }
-
- iterator iter = internal_upper_bound(key);
- if (iter.node == nullptr) {
- iter = end();
- }
- return internal_emplace(iter, std::forward<ValueType>(v));
-}
-
-template <typename P>
-template <typename ValueType>
-auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator {
- if (!empty()) {
- const key_type &key = params_type::key(v);
- if (position == end() || !compare_keys(position.key(), key)) {
+template <typename ValueType>
+auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator {
+ if (empty()) {
+ mutable_root() = rightmost_ = new_leaf_root_node(1);
+ }
+
+ iterator iter = internal_upper_bound(key);
+ if (iter.node == nullptr) {
+ iter = end();
+ }
+ return internal_emplace(iter, std::forward<ValueType>(v));
+}
+
+template <typename P>
+template <typename ValueType>
+auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator {
+ if (!empty()) {
+ const key_type &key = params_type::key(v);
+ if (position == end() || !compare_keys(position.key(), key)) {
if (position == begin() ||
!compare_keys(key, std::prev(position).key())) {
- // prev.key() <= key <= position.key()
- return internal_emplace(position, std::forward<ValueType>(v));
- }
- } else {
+ // prev.key() <= key <= position.key()
+ return internal_emplace(position, std::forward<ValueType>(v));
+ }
+ } else {
++position;
if (position == end() || !compare_keys(position.key(), key)) {
// {original `position`}.key() < key < {current `position`}.key()
return internal_emplace(position, std::forward<ValueType>(v));
- }
- }
- }
- return insert_multi(std::forward<ValueType>(v));
-}
-
-template <typename P>
-template <typename InputIterator>
-void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) {
- for (; b != e; ++b) {
- insert_hint_multi(end(), *b);
- }
-}
-
-template <typename P>
+ }
+ }
+ }
+ return insert_multi(std::forward<ValueType>(v));
+}
+
+template <typename P>
+template <typename InputIterator>
+void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) {
+ for (; b != e; ++b) {
+ insert_hint_multi(end(), *b);
+ }
+}
+
+template <typename P>
auto btree<P>::operator=(const btree &other) -> btree & {
if (this != &other) {
- clear();
-
+ clear();
+
*mutable_key_comp() = other.key_comp();
if (y_absl::allocator_traits<
- allocator_type>::propagate_on_container_copy_assignment::value) {
+ allocator_type>::propagate_on_container_copy_assignment::value) {
*mutable_allocator() = other.allocator();
- }
-
+ }
+
copy_or_move_values_in_order(other);
- }
- return *this;
-}
-
-template <typename P>
+ }
+ return *this;
+}
+
+template <typename P>
auto btree<P>::operator=(btree &&other) noexcept -> btree & {
if (this != &other) {
- clear();
-
- using std::swap;
+ clear();
+
+ using std::swap;
if (y_absl::allocator_traits<
- allocator_type>::propagate_on_container_copy_assignment::value) {
- // Note: `root_` also contains the allocator and the key comparator.
+ allocator_type>::propagate_on_container_copy_assignment::value) {
+ // Note: `root_` also contains the allocator and the key comparator.
swap(root_, other.root_);
swap(rightmost_, other.rightmost_);
swap(size_, other.size_);
- } else {
+ } else {
if (allocator() == other.allocator()) {
swap(mutable_root(), other.mutable_root());
swap(*mutable_key_comp(), *other.mutable_key_comp());
swap(rightmost_, other.rightmost_);
swap(size_, other.size_);
- } else {
- // We aren't allowed to propagate the allocator and the allocator is
- // different so we can't take over its memory. We must move each element
+ } else {
+ // We aren't allowed to propagate the allocator and the allocator is
+ // different so we can't take over its memory. We must move each element
// individually. We need both `other` and `this` to have `other`s key
// comparator while moving the values so we can't swap the key
// comparators.
*mutable_key_comp() = other.key_comp();
copy_or_move_values_in_order(other);
- }
- }
- }
- return *this;
-}
-
-template <typename P>
-auto btree<P>::erase(iterator iter) -> iterator {
- bool internal_delete = false;
- if (!iter.node->leaf()) {
- // Deletion of a value on an internal node. First, move the largest value
+ }
+ }
+ }
+ return *this;
+}
+
+template <typename P>
+auto btree<P>::erase(iterator iter) -> iterator {
+ bool internal_delete = false;
+ if (!iter.node->leaf()) {
+ // Deletion of a value on an internal node. First, move the largest value
// from our left child here, then delete that position (in remove_values()
- // below). We can get to the largest value from our left child by
- // decrementing iter.
- iterator internal_iter(iter);
- --iter;
- assert(iter.node->leaf());
- params_type::move(mutable_allocator(), iter.node->slot(iter.position),
- internal_iter.node->slot(internal_iter.position));
- internal_delete = true;
- }
-
- // Delete the key from the leaf.
+ // below). We can get to the largest value from our left child by
+ // decrementing iter.
+ iterator internal_iter(iter);
+ --iter;
+ assert(iter.node->leaf());
+ params_type::move(mutable_allocator(), iter.node->slot(iter.position),
+ internal_iter.node->slot(internal_iter.position));
+ internal_delete = true;
+ }
+
+ // Delete the key from the leaf.
iter.node->remove_values(iter.position, /*to_erase=*/1, mutable_allocator());
- --size_;
-
- // We want to return the next value after the one we just erased. If we
- // erased from an internal node (internal_delete == true), then the next
- // value is ++(++iter). If we erased from a leaf node (internal_delete ==
- // false) then the next value is ++iter. Note that ++iter may point to an
- // internal node and the value in the internal node may move to a leaf node
- // (iter.node) when rebalancing is performed at the leaf level.
-
- iterator res = rebalance_after_delete(iter);
-
- // If we erased from an internal node, advance the iterator.
- if (internal_delete) {
- ++res;
- }
- return res;
-}
-
-template <typename P>
-auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
- // Merge/rebalance as we walk back up the tree.
- iterator res(iter);
- bool first_iteration = true;
- for (;;) {
- if (iter.node == root()) {
- try_shrink();
- if (empty()) {
- return end();
- }
- break;
- }
- if (iter.node->count() >= kMinNodeValues) {
- break;
- }
- bool merged = try_merge_or_rebalance(&iter);
- // On the first iteration, we should update `res` with `iter` because `res`
- // may have been invalidated.
- if (first_iteration) {
- res = iter;
- first_iteration = false;
- }
- if (!merged) {
- break;
- }
- iter.position = iter.node->position();
- iter.node = iter.node->parent();
- }
-
- // Adjust our return value. If we're pointing at the end of a node, advance
- // the iterator.
+ --size_;
+
+ // We want to return the next value after the one we just erased. If we
+ // erased from an internal node (internal_delete == true), then the next
+ // value is ++(++iter). If we erased from a leaf node (internal_delete ==
+ // false) then the next value is ++iter. Note that ++iter may point to an
+ // internal node and the value in the internal node may move to a leaf node
+ // (iter.node) when rebalancing is performed at the leaf level.
+
+ iterator res = rebalance_after_delete(iter);
+
+ // If we erased from an internal node, advance the iterator.
+ if (internal_delete) {
+ ++res;
+ }
+ return res;
+}
+
+template <typename P>
+auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
+ // Merge/rebalance as we walk back up the tree.
+ iterator res(iter);
+ bool first_iteration = true;
+ for (;;) {
+ if (iter.node == root()) {
+ try_shrink();
+ if (empty()) {
+ return end();
+ }
+ break;
+ }
+ if (iter.node->count() >= kMinNodeValues) {
+ break;
+ }
+ bool merged = try_merge_or_rebalance(&iter);
+ // On the first iteration, we should update `res` with `iter` because `res`
+ // may have been invalidated.
+ if (first_iteration) {
+ res = iter;
+ first_iteration = false;
+ }
+ if (!merged) {
+ break;
+ }
+ iter.position = iter.node->position();
+ iter.node = iter.node->parent();
+ }
+
+ // Adjust our return value. If we're pointing at the end of a node, advance
+ // the iterator.
if (res.position == res.node->finish()) {
res.position = res.node->finish() - 1;
- ++res;
- }
-
- return res;
-}
-
-template <typename P>
+ ++res;
+ }
+
+ return res;
+}
+
+template <typename P>
auto btree<P>::erase_range(iterator begin, iterator end)
- -> std::pair<size_type, iterator> {
- difference_type count = std::distance(begin, end);
- assert(count >= 0);
-
- if (count == 0) {
- return {0, begin};
- }
-
- if (count == size_) {
- clear();
- return {count, this->end()};
- }
-
- if (begin.node == end.node) {
+ -> std::pair<size_type, iterator> {
+ difference_type count = std::distance(begin, end);
+ assert(count >= 0);
+
+ if (count == 0) {
+ return {0, begin};
+ }
+
+ if (count == size_) {
+ clear();
+ return {count, this->end()};
+ }
+
+ if (begin.node == end.node) {
assert(end.position > begin.position);
begin.node->remove_values(begin.position, end.position - begin.position,
mutable_allocator());
- size_ -= count;
- return {count, rebalance_after_delete(begin)};
- }
-
- const size_type target_size = size_ - count;
- while (size_ > target_size) {
- if (begin.node->leaf()) {
- const size_type remaining_to_erase = size_ - target_size;
+ size_ -= count;
+ return {count, rebalance_after_delete(begin)};
+ }
+
+ const size_type target_size = size_ - count;
+ while (size_ > target_size) {
+ if (begin.node->leaf()) {
+ const size_type remaining_to_erase = size_ - target_size;
const size_type remaining_in_node = begin.node->finish() - begin.position;
const size_type to_erase =
(std::min)(remaining_to_erase, remaining_in_node);
begin.node->remove_values(begin.position, to_erase, mutable_allocator());
size_ -= to_erase;
begin = rebalance_after_delete(begin);
- } else {
- begin = erase(begin);
- }
- }
- return {count, begin};
-}
-
-template <typename P>
-void btree<P>::clear() {
- if (!empty()) {
+ } else {
+ begin = erase(begin);
+ }
+ }
+ return {count, begin};
+}
+
+template <typename P>
+void btree<P>::clear() {
+ if (!empty()) {
node_type::clear_and_delete(root(), mutable_allocator());
- }
- mutable_root() = EmptyNode();
- rightmost_ = EmptyNode();
- size_ = 0;
-}
-
-template <typename P>
+ }
+ mutable_root() = EmptyNode();
+ rightmost_ = EmptyNode();
+ size_ = 0;
+}
+
+template <typename P>
void btree<P>::swap(btree &other) {
- using std::swap;
+ using std::swap;
if (y_absl::allocator_traits<
- allocator_type>::propagate_on_container_swap::value) {
- // Note: `root_` also contains the allocator and the key comparator.
+ allocator_type>::propagate_on_container_swap::value) {
+ // Note: `root_` also contains the allocator and the key comparator.
swap(root_, other.root_);
- } else {
- // It's undefined behavior if the allocators are unequal here.
+ } else {
+ // It's undefined behavior if the allocators are unequal here.
assert(allocator() == other.allocator());
swap(mutable_root(), other.mutable_root());
swap(*mutable_key_comp(), *other.mutable_key_comp());
- }
+ }
swap(rightmost_, other.rightmost_);
swap(size_, other.size_);
-}
-
-template <typename P>
-void btree<P>::verify() const {
- assert(root() != nullptr);
- assert(leftmost() != nullptr);
- assert(rightmost_ != nullptr);
- assert(empty() || size() == internal_verify(root(), nullptr, nullptr));
- assert(leftmost() == (++const_iterator(root(), -1)).node);
+}
+
+template <typename P>
+void btree<P>::verify() const {
+ assert(root() != nullptr);
+ assert(leftmost() != nullptr);
+ assert(rightmost_ != nullptr);
+ assert(empty() || size() == internal_verify(root(), nullptr, nullptr));
+ assert(leftmost() == (++const_iterator(root(), -1)).node);
assert(rightmost_ == (--const_iterator(root(), root()->finish())).node);
- assert(leftmost()->leaf());
- assert(rightmost_->leaf());
-}
-
-template <typename P>
-void btree<P>::rebalance_or_split(iterator *iter) {
- node_type *&node = iter->node;
- int &insert_position = iter->position;
- assert(node->count() == node->max_count());
+ assert(leftmost()->leaf());
+ assert(rightmost_->leaf());
+}
+
+template <typename P>
+void btree<P>::rebalance_or_split(iterator *iter) {
+ node_type *&node = iter->node;
+ int &insert_position = iter->position;
+ assert(node->count() == node->max_count());
assert(kNodeSlots == node->max_count());
-
- // First try to make room on the node by rebalancing.
- node_type *parent = node->parent();
- if (node != root()) {
+
+ // First try to make room on the node by rebalancing.
+ node_type *parent = node->parent();
+ if (node != root()) {
if (node->position() > parent->start()) {
- // Try rebalancing with our left sibling.
- node_type *left = parent->child(node->position() - 1);
+ // Try rebalancing with our left sibling.
+ node_type *left = parent->child(node->position() - 1);
assert(left->max_count() == kNodeSlots);
if (left->count() < kNodeSlots) {
- // We bias rebalancing based on the position being inserted. If we're
- // inserting at the end of the right node then we bias rebalancing to
- // fill up the left node.
+ // We bias rebalancing based on the position being inserted. If we're
+ // inserting at the end of the right node then we bias rebalancing to
+ // fill up the left node.
int to_move = (kNodeSlots - left->count()) /
(1 + (insert_position < static_cast<int>(kNodeSlots)));
- to_move = (std::max)(1, to_move);
-
+ to_move = (std::max)(1, to_move);
+
if (insert_position - to_move >= node->start() ||
left->count() + to_move < static_cast<int>(kNodeSlots)) {
- left->rebalance_right_to_left(to_move, node, mutable_allocator());
-
- assert(node->max_count() - node->count() == to_move);
- insert_position = insert_position - to_move;
+ left->rebalance_right_to_left(to_move, node, mutable_allocator());
+
+ assert(node->max_count() - node->count() == to_move);
+ insert_position = insert_position - to_move;
if (insert_position < node->start()) {
- insert_position = insert_position + left->count() + 1;
- node = left;
- }
-
- assert(node->count() < node->max_count());
- return;
- }
- }
- }
-
+ insert_position = insert_position + left->count() + 1;
+ node = left;
+ }
+
+ assert(node->count() < node->max_count());
+ return;
+ }
+ }
+ }
+
if (node->position() < parent->finish()) {
- // Try rebalancing with our right sibling.
- node_type *right = parent->child(node->position() + 1);
+ // Try rebalancing with our right sibling.
+ node_type *right = parent->child(node->position() + 1);
assert(right->max_count() == kNodeSlots);
if (right->count() < kNodeSlots) {
- // We bias rebalancing based on the position being inserted. If we're
- // inserting at the beginning of the left node then we bias rebalancing
- // to fill up the right node.
+ // We bias rebalancing based on the position being inserted. If we're
+ // inserting at the beginning of the left node then we bias rebalancing
+ // to fill up the right node.
int to_move = (static_cast<int>(kNodeSlots) - right->count()) /
(1 + (insert_position > node->start()));
- to_move = (std::max)(1, to_move);
-
+ to_move = (std::max)(1, to_move);
+
if (insert_position <= node->finish() - to_move ||
right->count() + to_move < static_cast<int>(kNodeSlots)) {
- node->rebalance_left_to_right(to_move, right, mutable_allocator());
-
+ node->rebalance_left_to_right(to_move, right, mutable_allocator());
+
if (insert_position > node->finish()) {
- insert_position = insert_position - node->count() - 1;
- node = right;
- }
-
- assert(node->count() < node->max_count());
- return;
- }
- }
- }
-
- // Rebalancing failed, make sure there is room on the parent node for a new
- // value.
+ insert_position = insert_position - node->count() - 1;
+ node = right;
+ }
+
+ assert(node->count() < node->max_count());
+ return;
+ }
+ }
+ }
+
+ // Rebalancing failed, make sure there is room on the parent node for a new
+ // value.
assert(parent->max_count() == kNodeSlots);
if (parent->count() == kNodeSlots) {
- iterator parent_iter(node->parent(), node->position());
- rebalance_or_split(&parent_iter);
- }
- } else {
- // Rebalancing not possible because this is the root node.
- // Create a new root node and set the current root node as the child of the
- // new root.
- parent = new_internal_node(parent);
+ iterator parent_iter(node->parent(), node->position());
+ rebalance_or_split(&parent_iter);
+ }
+ } else {
+ // Rebalancing not possible because this is the root node.
+ // Create a new root node and set the current root node as the child of the
+ // new root.
+ parent = new_internal_node(parent);
parent->init_child(parent->start(), root());
- mutable_root() = parent;
- // If the former root was a leaf node, then it's now the rightmost node.
+ mutable_root() = parent;
+ // If the former root was a leaf node, then it's now the rightmost node.
assert(!parent->start_child()->leaf() ||
parent->start_child() == rightmost_);
- }
-
- // Split the node.
- node_type *split_node;
- if (node->leaf()) {
- split_node = new_leaf_node(parent);
- node->split(insert_position, split_node, mutable_allocator());
- if (rightmost_ == node) rightmost_ = split_node;
- } else {
- split_node = new_internal_node(parent);
- node->split(insert_position, split_node, mutable_allocator());
- }
-
+ }
+
+ // Split the node.
+ node_type *split_node;
+ if (node->leaf()) {
+ split_node = new_leaf_node(parent);
+ node->split(insert_position, split_node, mutable_allocator());
+ if (rightmost_ == node) rightmost_ = split_node;
+ } else {
+ split_node = new_internal_node(parent);
+ node->split(insert_position, split_node, mutable_allocator());
+ }
+
if (insert_position > node->finish()) {
- insert_position = insert_position - node->count() - 1;
- node = split_node;
- }
-}
-
-template <typename P>
-void btree<P>::merge_nodes(node_type *left, node_type *right) {
- left->merge(right, mutable_allocator());
+ insert_position = insert_position - node->count() - 1;
+ node = split_node;
+ }
+}
+
+template <typename P>
+void btree<P>::merge_nodes(node_type *left, node_type *right) {
+ left->merge(right, mutable_allocator());
if (rightmost_ == right) rightmost_ = left;
-}
-
-template <typename P>
-bool btree<P>::try_merge_or_rebalance(iterator *iter) {
- node_type *parent = iter->node->parent();
+}
+
+template <typename P>
+bool btree<P>::try_merge_or_rebalance(iterator *iter) {
+ node_type *parent = iter->node->parent();
if (iter->node->position() > parent->start()) {
- // Try merging with our left sibling.
- node_type *left = parent->child(iter->node->position() - 1);
+ // Try merging with our left sibling.
+ node_type *left = parent->child(iter->node->position() - 1);
assert(left->max_count() == kNodeSlots);
if (1U + left->count() + iter->node->count() <= kNodeSlots) {
- iter->position += 1 + left->count();
- merge_nodes(left, iter->node);
- iter->node = left;
- return true;
- }
- }
+ iter->position += 1 + left->count();
+ merge_nodes(left, iter->node);
+ iter->node = left;
+ return true;
+ }
+ }
if (iter->node->position() < parent->finish()) {
- // Try merging with our right sibling.
- node_type *right = parent->child(iter->node->position() + 1);
+ // Try merging with our right sibling.
+ node_type *right = parent->child(iter->node->position() + 1);
assert(right->max_count() == kNodeSlots);
if (1U + iter->node->count() + right->count() <= kNodeSlots) {
- merge_nodes(iter->node, right);
- return true;
- }
- // Try rebalancing with our right sibling. We don't perform rebalancing if
- // we deleted the first element from iter->node and the node is not
- // empty. This is a small optimization for the common pattern of deleting
- // from the front of the tree.
+ merge_nodes(iter->node, right);
+ return true;
+ }
+ // Try rebalancing with our right sibling. We don't perform rebalancing if
+ // we deleted the first element from iter->node and the node is not
+ // empty. This is a small optimization for the common pattern of deleting
+ // from the front of the tree.
if (right->count() > kMinNodeValues &&
(iter->node->count() == 0 || iter->position > iter->node->start())) {
- int to_move = (right->count() - iter->node->count()) / 2;
- to_move = (std::min)(to_move, right->count() - 1);
- iter->node->rebalance_right_to_left(to_move, right, mutable_allocator());
- return false;
- }
- }
+ int to_move = (right->count() - iter->node->count()) / 2;
+ to_move = (std::min)(to_move, right->count() - 1);
+ iter->node->rebalance_right_to_left(to_move, right, mutable_allocator());
+ return false;
+ }
+ }
if (iter->node->position() > parent->start()) {
- // Try rebalancing with our left sibling. We don't perform rebalancing if
- // we deleted the last element from iter->node and the node is not
- // empty. This is a small optimization for the common pattern of deleting
- // from the back of the tree.
- node_type *left = parent->child(iter->node->position() - 1);
+ // Try rebalancing with our left sibling. We don't perform rebalancing if
+ // we deleted the last element from iter->node and the node is not
+ // empty. This is a small optimization for the common pattern of deleting
+ // from the back of the tree.
+ node_type *left = parent->child(iter->node->position() - 1);
if (left->count() > kMinNodeValues &&
(iter->node->count() == 0 || iter->position < iter->node->finish())) {
- int to_move = (left->count() - iter->node->count()) / 2;
- to_move = (std::min)(to_move, left->count() - 1);
- left->rebalance_left_to_right(to_move, iter->node, mutable_allocator());
- iter->position += to_move;
- return false;
- }
- }
- return false;
-}
-
-template <typename P>
-void btree<P>::try_shrink() {
+ int to_move = (left->count() - iter->node->count()) / 2;
+ to_move = (std::min)(to_move, left->count() - 1);
+ left->rebalance_left_to_right(to_move, iter->node, mutable_allocator());
+ iter->position += to_move;
+ return false;
+ }
+ }
+ return false;
+}
+
+template <typename P>
+void btree<P>::try_shrink() {
node_type *orig_root = root();
if (orig_root->count() > 0) {
- return;
- }
- // Deleted the last item on the root node, shrink the height of the tree.
+ return;
+ }
+ // Deleted the last item on the root node, shrink the height of the tree.
if (orig_root->leaf()) {
- assert(size() == 0);
+ assert(size() == 0);
mutable_root() = rightmost_ = EmptyNode();
- } else {
+ } else {
node_type *child = orig_root->start_child();
- child->make_root();
- mutable_root() = child;
- }
+ child->make_root();
+ mutable_root() = child;
+ }
node_type::clear_and_delete(orig_root, mutable_allocator());
-}
-
-template <typename P>
-template <typename IterType>
-inline IterType btree<P>::internal_last(IterType iter) {
- assert(iter.node != nullptr);
+}
+
+template <typename P>
+template <typename IterType>
+inline IterType btree<P>::internal_last(IterType iter) {
+ assert(iter.node != nullptr);
while (iter.position == iter.node->finish()) {
- iter.position = iter.node->position();
- iter.node = iter.node->parent();
- if (iter.node->leaf()) {
- iter.node = nullptr;
- break;
- }
- }
- return iter;
-}
-
-template <typename P>
-template <typename... Args>
-inline auto btree<P>::internal_emplace(iterator iter, Args &&... args)
- -> iterator {
- if (!iter.node->leaf()) {
- // We can't insert on an internal node. Instead, we'll insert after the
- // previous value which is guaranteed to be on a leaf node.
- --iter;
- ++iter.position;
- }
+ iter.position = iter.node->position();
+ iter.node = iter.node->parent();
+ if (iter.node->leaf()) {
+ iter.node = nullptr;
+ break;
+ }
+ }
+ return iter;
+}
+
+template <typename P>
+template <typename... Args>
+inline auto btree<P>::internal_emplace(iterator iter, Args &&... args)
+ -> iterator {
+ if (!iter.node->leaf()) {
+ // We can't insert on an internal node. Instead, we'll insert after the
+ // previous value which is guaranteed to be on a leaf node.
+ --iter;
+ ++iter.position;
+ }
const field_type max_count = iter.node->max_count();
allocator_type *alloc = mutable_allocator();
- if (iter.node->count() == max_count) {
- // Make room in the leaf for the new item.
+ if (iter.node->count() == max_count) {
+ // Make room in the leaf for the new item.
if (max_count < kNodeSlots) {
- // Insertion into the root where the root is smaller than the full node
- // size. Simply grow the size of the root node.
- assert(iter.node == root());
- iter.node =
+ // Insertion into the root where the root is smaller than the full node
+ // size. Simply grow the size of the root node.
+ assert(iter.node == root());
+ iter.node =
new_leaf_root_node((std::min<int>)(kNodeSlots, 2 * max_count));
// Transfer the values from the old root to the new root.
node_type *old_root = root();
@@ -2515,43 +2515,43 @@ inline auto btree<P>::internal_emplace(iterator iter, Args &&... args)
old_root->set_finish(old_root->start());
node_type::clear_and_delete(old_root, alloc);
mutable_root() = rightmost_ = new_root;
- } else {
- rebalance_or_split(&iter);
- }
- }
+ } else {
+ rebalance_or_split(&iter);
+ }
+ }
iter.node->emplace_value(iter.position, alloc, std::forward<Args>(args)...);
- ++size_;
- return iter;
-}
-
-template <typename P>
-template <typename K>
-inline auto btree<P>::internal_locate(const K &key) const
- -> SearchResult<iterator, is_key_compare_to::value> {
+ ++size_;
+ return iter;
+}
+
+template <typename P>
+template <typename K>
+inline auto btree<P>::internal_locate(const K &key) const
+ -> SearchResult<iterator, is_key_compare_to::value> {
iterator iter(const_cast<node_type *>(root()));
- for (;;) {
+ for (;;) {
SearchResult<int, is_key_compare_to::value> res =
iter.node->lower_bound(key, key_comp());
- iter.position = res.value;
+ iter.position = res.value;
if (res.IsEq()) {
- return {iter, MatchKind::kEq};
- }
+ return {iter, MatchKind::kEq};
+ }
// Note: in the non-key-compare-to case, we don't need to walk all the way
// down the tree if the keys are equal, but determining equality would
// require doing an extra comparison on each node on the way down, and we
// will need to go all the way to the leaf node in the expected case.
- if (iter.node->leaf()) {
- break;
- }
- iter.node = iter.node->child(iter.position);
- }
+ if (iter.node->leaf()) {
+ break;
+ }
+ iter.node = iter.node->child(iter.position);
+ }
// Note: in the non-key-compare-to case, the key may actually be equivalent
// here (and the MatchKind::kNe is ignored).
- return {iter, MatchKind::kNe};
-}
-
-template <typename P>
-template <typename K>
+ return {iter, MatchKind::kNe};
+}
+
+template <typename P>
+template <typename K>
auto btree<P>::internal_lower_bound(const K &key) const
-> SearchResult<iterator, is_key_compare_to::value> {
if (!params_type::template can_have_multiple_equivalent_keys<K>()) {
@@ -2562,80 +2562,80 @@ auto btree<P>::internal_lower_bound(const K &key) const
iterator iter(const_cast<node_type *>(root()));
SearchResult<int, is_key_compare_to::value> res;
bool seen_eq = false;
- for (;;) {
+ for (;;) {
res = iter.node->lower_bound(key, key_comp());
iter.position = res.value;
- if (iter.node->leaf()) {
- break;
- }
+ if (iter.node->leaf()) {
+ break;
+ }
seen_eq = seen_eq || res.IsEq();
- iter.node = iter.node->child(iter.position);
- }
+ iter.node = iter.node->child(iter.position);
+ }
if (res.IsEq()) return {iter, MatchKind::kEq};
return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe};
-}
-
-template <typename P>
-template <typename K>
-auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
+}
+
+template <typename P>
+template <typename K>
+auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
iterator iter(const_cast<node_type *>(root()));
- for (;;) {
- iter.position = iter.node->upper_bound(key, key_comp());
- if (iter.node->leaf()) {
- break;
- }
- iter.node = iter.node->child(iter.position);
- }
- return internal_last(iter);
-}
-
-template <typename P>
-template <typename K>
-auto btree<P>::internal_find(const K &key) const -> iterator {
+ for (;;) {
+ iter.position = iter.node->upper_bound(key, key_comp());
+ if (iter.node->leaf()) {
+ break;
+ }
+ iter.node = iter.node->child(iter.position);
+ }
+ return internal_last(iter);
+}
+
+template <typename P>
+template <typename K>
+auto btree<P>::internal_find(const K &key) const -> iterator {
SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
- if (res.HasMatch()) {
- if (res.IsEq()) {
- return res.value;
- }
- } else {
- const iterator iter = internal_last(res.value);
- if (iter.node != nullptr && !compare_keys(key, iter.key())) {
- return iter;
- }
- }
- return {nullptr, 0};
-}
-
-template <typename P>
+ if (res.HasMatch()) {
+ if (res.IsEq()) {
+ return res.value;
+ }
+ } else {
+ const iterator iter = internal_last(res.value);
+ if (iter.node != nullptr && !compare_keys(key, iter.key())) {
+ return iter;
+ }
+ }
+ return {nullptr, 0};
+}
+
+template <typename P>
int btree<P>::internal_verify(const node_type *node, const key_type *lo,
const key_type *hi) const {
- assert(node->count() > 0);
- assert(node->count() <= node->max_count());
- if (lo) {
+ assert(node->count() > 0);
+ assert(node->count() <= node->max_count());
+ if (lo) {
assert(!compare_keys(node->key(node->start()), *lo));
- }
- if (hi) {
+ }
+ if (hi) {
assert(!compare_keys(*hi, node->key(node->finish() - 1)));
- }
+ }
for (int i = node->start() + 1; i < node->finish(); ++i) {
- assert(!compare_keys(node->key(i), node->key(i - 1)));
- }
- int count = node->count();
- if (!node->leaf()) {
+ assert(!compare_keys(node->key(i), node->key(i - 1)));
+ }
+ int count = node->count();
+ if (!node->leaf()) {
for (int i = node->start(); i <= node->finish(); ++i) {
- assert(node->child(i) != nullptr);
- assert(node->child(i)->parent() == node);
- assert(node->child(i)->position() == i);
+ assert(node->child(i) != nullptr);
+ assert(node->child(i)->parent() == node);
+ assert(node->child(i)->position() == i);
count += internal_verify(node->child(i),
i == node->start() ? lo : &node->key(i - 1),
i == node->finish() ? hi : &node->key(i));
- }
- }
- return count;
-}
-
-} // namespace container_internal
+ }
+ }
+ return count;
+}
+
+} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace y_absl
-
-#endif // ABSL_CONTAINER_INTERNAL_BTREE_H_
+
+#endif // ABSL_CONTAINER_INTERNAL_BTREE_H_