aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/protobuf/src/google/protobuf/message.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/libs/protobuf/src/google/protobuf/message.h')
-rw-r--r--contrib/libs/protobuf/src/google/protobuf/message.h1320
1 files changed, 660 insertions, 660 deletions
diff --git a/contrib/libs/protobuf/src/google/protobuf/message.h b/contrib/libs/protobuf/src/google/protobuf/message.h
index 9a30d3b4a4..37d92ea393 100644
--- a/contrib/libs/protobuf/src/google/protobuf/message.h
+++ b/contrib/libs/protobuf/src/google/protobuf/message.h
@@ -1,120 +1,120 @@
-// Protocol Buffers - Google's data interchange format
-// Copyright 2008 Google Inc. All rights reserved.
-// https://developers.google.com/protocol-buffers/
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// Author: kenton@google.com (Kenton Varda)
-// Based on original Protocol Buffers design by
-// Sanjay Ghemawat, Jeff Dean, and others.
-//
-// Defines Message, the abstract interface implemented by non-lite
-// protocol message objects. Although it's possible to implement this
-// interface manually, most users will use the protocol compiler to
-// generate implementations.
-//
-// Example usage:
-//
-// Say you have a message defined as:
-//
-// message Foo {
-// optional string text = 1;
-// repeated int32 numbers = 2;
-// }
-//
-// Then, if you used the protocol compiler to generate a class from the above
-// definition, you could use it like so:
-//
+// Protocol Buffers - Google's data interchange format
+// Copyright 2008 Google Inc. All rights reserved.
+// https://developers.google.com/protocol-buffers/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Author: kenton@google.com (Kenton Varda)
+// Based on original Protocol Buffers design by
+// Sanjay Ghemawat, Jeff Dean, and others.
+//
+// Defines Message, the abstract interface implemented by non-lite
+// protocol message objects. Although it's possible to implement this
+// interface manually, most users will use the protocol compiler to
+// generate implementations.
+//
+// Example usage:
+//
+// Say you have a message defined as:
+//
+// message Foo {
+// optional string text = 1;
+// repeated int32 numbers = 2;
+// }
+//
+// Then, if you used the protocol compiler to generate a class from the above
+// definition, you could use it like so:
+//
// TProtoStringType data; // Will store a serialized version of the message.
-//
-// {
-// // Create a message and serialize it.
-// Foo foo;
-// foo.set_text("Hello World!");
-// foo.add_numbers(1);
-// foo.add_numbers(5);
-// foo.add_numbers(42);
-//
-// foo.SerializeToString(&data);
-// }
-//
-// {
-// // Parse the serialized message and check that it contains the
-// // correct data.
-// Foo foo;
-// foo.ParseFromString(data);
-//
-// assert(foo.text() == "Hello World!");
-// assert(foo.numbers_size() == 3);
-// assert(foo.numbers(0) == 1);
-// assert(foo.numbers(1) == 5);
-// assert(foo.numbers(2) == 42);
-// }
-//
-// {
-// // Same as the last block, but do it dynamically via the Message
-// // reflection interface.
-// Message* foo = new Foo;
-// const Descriptor* descriptor = foo->GetDescriptor();
-//
-// // Get the descriptors for the fields we're interested in and verify
-// // their types.
-// const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
+//
+// {
+// // Create a message and serialize it.
+// Foo foo;
+// foo.set_text("Hello World!");
+// foo.add_numbers(1);
+// foo.add_numbers(5);
+// foo.add_numbers(42);
+//
+// foo.SerializeToString(&data);
+// }
+//
+// {
+// // Parse the serialized message and check that it contains the
+// // correct data.
+// Foo foo;
+// foo.ParseFromString(data);
+//
+// assert(foo.text() == "Hello World!");
+// assert(foo.numbers_size() == 3);
+// assert(foo.numbers(0) == 1);
+// assert(foo.numbers(1) == 5);
+// assert(foo.numbers(2) == 42);
+// }
+//
+// {
+// // Same as the last block, but do it dynamically via the Message
+// // reflection interface.
+// Message* foo = new Foo;
+// const Descriptor* descriptor = foo->GetDescriptor();
+//
+// // Get the descriptors for the fields we're interested in and verify
+// // their types.
+// const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
// assert(text_field != nullptr);
-// assert(text_field->type() == FieldDescriptor::TYPE_STRING);
-// assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
-// const FieldDescriptor* numbers_field = descriptor->
-// FindFieldByName("numbers");
+// assert(text_field->type() == FieldDescriptor::TYPE_STRING);
+// assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
+// const FieldDescriptor* numbers_field = descriptor->
+// FindFieldByName("numbers");
// assert(numbers_field != nullptr);
-// assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
-// assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
-//
-// // Parse the message.
-// foo->ParseFromString(data);
-//
-// // Use the reflection interface to examine the contents.
-// const Reflection* reflection = foo->GetReflection();
-// assert(reflection->GetString(*foo, text_field) == "Hello World!");
-// assert(reflection->FieldSize(*foo, numbers_field) == 3);
-// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
-// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
-// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
-//
-// delete foo;
-// }
-
-#ifndef GOOGLE_PROTOBUF_MESSAGE_H__
-#define GOOGLE_PROTOBUF_MESSAGE_H__
-
-#include <iosfwd>
+// assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
+// assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
+//
+// // Parse the message.
+// foo->ParseFromString(data);
+//
+// // Use the reflection interface to examine the contents.
+// const Reflection* reflection = foo->GetReflection();
+// assert(reflection->GetString(*foo, text_field) == "Hello World!");
+// assert(reflection->FieldSize(*foo, numbers_field) == 3);
+// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
+// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
+// assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
+//
+// delete foo;
+// }
+
+#ifndef GOOGLE_PROTOBUF_MESSAGE_H__
+#define GOOGLE_PROTOBUF_MESSAGE_H__
+
+#include <iosfwd>
#include <string>
#include <type_traits>
-#include <vector>
-
+#include <vector>
+
#include <google/protobuf/stubs/casts.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/arena.h>
@@ -125,61 +125,61 @@
#include <google/protobuf/json_util.h>
#include <google/protobuf/messagext.h>
-
-#define GOOGLE_PROTOBUF_HAS_ONEOF
-#define GOOGLE_PROTOBUF_HAS_ARENAS
-
+
+#define GOOGLE_PROTOBUF_HAS_ONEOF
+#define GOOGLE_PROTOBUF_HAS_ARENAS
+
#include <google/protobuf/port_def.inc>
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
-namespace google {
-namespace protobuf {
-
-// Defined in this file.
-class Message;
-class Reflection;
-class MessageFactory;
-
-// Defined in other files.
+namespace google {
+namespace protobuf {
+
+// Defined in this file.
+class Message;
+class Reflection;
+class MessageFactory;
+
+// Defined in other files.
class AssignDescriptorsHelper;
class DynamicMessageFactory;
class GeneratedMessageReflectionTestHelper;
-class MapKey;
+class MapKey;
class MapValueConstRef;
-class MapValueRef;
-class MapIterator;
-class MapReflectionTester;
-
-namespace internal {
+class MapValueRef;
+class MapIterator;
+class MapReflectionTester;
+
+namespace internal {
struct DescriptorTable;
-class MapFieldBase;
+class MapFieldBase;
class SwapFieldHelper;
-}
+}
class UnknownFieldSet; // unknown_field_set.h
-namespace io {
+namespace io {
class ZeroCopyInputStream; // zero_copy_stream.h
class ZeroCopyOutputStream; // zero_copy_stream.h
class CodedInputStream; // coded_stream.h
class CodedOutputStream; // coded_stream.h
} // namespace io
-namespace python {
+namespace python {
class MapReflectionFriend; // scalar_map_container.h
class MessageReflectionFriend;
-}
+}
namespace expr {
class CelMapReflectionFriend; // field_backed_map_impl.cc
}
-
+
namespace internal {
class MapFieldPrinterHelper; // text_format.cc
}
namespace util {
class MessageDifferencer;
}
-
+
namespace internal {
class ReflectionAccessor; // message.cc
@@ -191,16 +191,16 @@ class MapFieldReflectionTest; // map_test.cc
template <typename T>
class RepeatedField; // repeated_field.h
-
+
template <typename T>
-class RepeatedPtrField; // repeated_field.h
-
-// A container to hold message metadata.
-struct Metadata {
- const Descriptor* descriptor;
- const Reflection* reflection;
-};
-
+class RepeatedPtrField; // repeated_field.h
+
+// A container to hold message metadata.
+struct Metadata {
+ const Descriptor* descriptor;
+ const Reflection* reflection;
+};
+
namespace internal {
template <class To>
inline To* GetPointerAtOffset(Message* message, uint32 offset) {
@@ -221,115 +221,115 @@ const To& GetConstRefAtOffset(const Message& message, uint32 offset) {
bool CreateUnknownEnumValues(const FieldDescriptor* field);
} // namespace internal
-// Abstract interface for protocol messages.
-//
-// See also MessageLite, which contains most every-day operations. Message
-// adds descriptors and reflection on top of that.
-//
-// The methods of this class that are virtual but not pure-virtual have
-// default implementations based on reflection. Message classes which are
-// optimized for speed will want to override these with faster implementations,
-// but classes optimized for code size may be happy with keeping them. See
-// the optimize_for option in descriptor.proto.
+// Abstract interface for protocol messages.
+//
+// See also MessageLite, which contains most every-day operations. Message
+// adds descriptors and reflection on top of that.
+//
+// The methods of this class that are virtual but not pure-virtual have
+// default implementations based on reflection. Message classes which are
+// optimized for speed will want to override these with faster implementations,
+// but classes optimized for code size may be happy with keeping them. See
+// the optimize_for option in descriptor.proto.
//
// Users must not derive from this class. Only the protocol compiler and
// the internal library are allowed to create subclasses.
class PROTOBUF_EXPORT Message : public MessageLite {
- public:
+ public:
constexpr Message() {}
-
- // Basic Operations ------------------------------------------------
-
- // Construct a new instance of the same type. Ownership is passed to the
- // caller. (This is also defined in MessageLite, but is defined again here
- // for return-type covariance.)
+
+ // Basic Operations ------------------------------------------------
+
+ // Construct a new instance of the same type. Ownership is passed to the
+ // caller. (This is also defined in MessageLite, but is defined again here
+ // for return-type covariance.)
Message* New() const override = 0;
-
- // Construct a new instance on the arena. Ownership is passed to the caller
+
+ // Construct a new instance on the arena. Ownership is passed to the caller
// if arena is a nullptr. Default implementation allows for API compatibility
- // during the Arena transition.
+ // during the Arena transition.
Message* New(Arena* arena) const override {
- Message* message = New();
+ Message* message = New();
if (arena != nullptr) {
- arena->Own(message);
- }
- return message;
- }
-
- // Make this message into a copy of the given message. The given message
- // must have the same descriptor, but need not necessarily be the same class.
- // By default this is just implemented as "Clear(); MergeFrom(from);".
- virtual void CopyFrom(const Message& from);
-
- // Merge the fields from the given message into this message. Singular
- // fields will be overwritten, if specified in from, except for embedded
- // messages which will be merged. Repeated fields will be concatenated.
- // The given message must be of the same type as this message (i.e. the
- // exact same class).
- virtual void MergeFrom(const Message& from);
-
- // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with
- // a nice error message.
- void CheckInitialized() const;
-
- // Slowly build a list of all required fields that are not set.
- // This is much, much slower than IsInitialized() as it is implemented
- // purely via reflection. Generally, you should not call this unless you
- // have already determined that an error exists by calling IsInitialized().
+ arena->Own(message);
+ }
+ return message;
+ }
+
+ // Make this message into a copy of the given message. The given message
+ // must have the same descriptor, but need not necessarily be the same class.
+ // By default this is just implemented as "Clear(); MergeFrom(from);".
+ virtual void CopyFrom(const Message& from);
+
+ // Merge the fields from the given message into this message. Singular
+ // fields will be overwritten, if specified in from, except for embedded
+ // messages which will be merged. Repeated fields will be concatenated.
+ // The given message must be of the same type as this message (i.e. the
+ // exact same class).
+ virtual void MergeFrom(const Message& from);
+
+ // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with
+ // a nice error message.
+ void CheckInitialized() const;
+
+ // Slowly build a list of all required fields that are not set.
+ // This is much, much slower than IsInitialized() as it is implemented
+ // purely via reflection. Generally, you should not call this unless you
+ // have already determined that an error exists by calling IsInitialized().
void FindInitializationErrors(std::vector<TProtoStringType>* errors) const;
-
- // Like FindInitializationErrors, but joins all the strings, delimited by
- // commas, and returns them.
+
+ // Like FindInitializationErrors, but joins all the strings, delimited by
+ // commas, and returns them.
TProtoStringType InitializationErrorString() const override;
-
- // Clears all unknown fields from this message and all embedded messages.
- // Normally, if unknown tag numbers are encountered when parsing a message,
- // the tag and value are stored in the message's UnknownFieldSet and
- // then written back out when the message is serialized. This allows servers
- // which simply route messages to other servers to pass through messages
- // that have new field definitions which they don't yet know about. However,
- // this behavior can have security implications. To avoid it, call this
- // method after parsing.
- //
- // See Reflection::GetUnknownFields() for more on unknown fields.
- virtual void DiscardUnknownFields();
-
- // Computes (an estimate of) the total number of bytes currently used for
- // storing the message in memory. The default implementation calls the
- // Reflection object's SpaceUsed() method.
- //
- // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
- // using reflection (rather than the generated code implementation for
- // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
- // fields defined for the proto.
+
+ // Clears all unknown fields from this message and all embedded messages.
+ // Normally, if unknown tag numbers are encountered when parsing a message,
+ // the tag and value are stored in the message's UnknownFieldSet and
+ // then written back out when the message is serialized. This allows servers
+ // which simply route messages to other servers to pass through messages
+ // that have new field definitions which they don't yet know about. However,
+ // this behavior can have security implications. To avoid it, call this
+ // method after parsing.
+ //
+ // See Reflection::GetUnknownFields() for more on unknown fields.
+ virtual void DiscardUnknownFields();
+
+ // Computes (an estimate of) the total number of bytes currently used for
+ // storing the message in memory. The default implementation calls the
+ // Reflection object's SpaceUsed() method.
+ //
+ // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
+ // using reflection (rather than the generated code implementation for
+ // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
+ // fields defined for the proto.
virtual size_t SpaceUsedLong() const;
-
+
PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }
- // Debugging & Testing----------------------------------------------
-
- // Generates a human readable form of this message, useful for debugging
- // and other purposes.
+ // Debugging & Testing----------------------------------------------
+
+ // Generates a human readable form of this message, useful for debugging
+ // and other purposes.
TProtoStringType DebugString() const;
- // Like DebugString(), but with less whitespace.
+ // Like DebugString(), but with less whitespace.
TProtoStringType ShortDebugString() const;
- // Like DebugString(), but do not escape UTF-8 byte sequences.
+ // Like DebugString(), but do not escape UTF-8 byte sequences.
TProtoStringType Utf8DebugString() const;
- // Convenience function useful in GDB. Prints DebugString() to stdout.
- void PrintDebugString() const;
-
+ // Convenience function useful in GDB. Prints DebugString() to stdout.
+ void PrintDebugString() const;
+
// Reflection-based methods ----------------------------------------
// These methods are pure-virtual in MessageLite, but Message provides
// reflection-based default implementations.
-
+
TProtoStringType GetTypeName() const override;
void Clear() override;
-
+
// Returns whether all required fields have been set. Note that required
// fields no longer exist starting in proto3.
bool IsInitialized() const override;
-
+
void CheckTypeAndMergeFrom(const MessageLite& other) override;
// Reflective parser
const char* _InternalParse(const char* ptr,
@@ -343,7 +343,7 @@ class PROTOBUF_EXPORT Message : public MessageLite {
bool ParsePartialFromArcadiaStream(IInputStream* input);
bool SerializeToArcadiaStream(IOutputStream* output) const;
bool SerializePartialToArcadiaStream(IOutputStream* output) const;
-
+
virtual void PrintJSON(IOutputStream&) const;
io::TAsJSON<Message> AsJSON() const {
@@ -359,36 +359,36 @@ class PROTOBUF_EXPORT Message : public MessageLite {
}
// End of Yandex-specific
- private:
- // This is called only by the default implementation of ByteSize(), to
- // update the cached size. If you override ByteSize(), you do not need
- // to override this. If you do not override ByteSize(), you MUST override
- // this; the default implementation will crash.
- //
- // The method is private because subclasses should never call it; only
- // override it. Yes, C++ lets you do that. Crazy, huh?
- virtual void SetCachedSize(int size) const;
-
- public:
- // Introspection ---------------------------------------------------
-
-
+ private:
+ // This is called only by the default implementation of ByteSize(), to
+ // update the cached size. If you override ByteSize(), you do not need
+ // to override this. If you do not override ByteSize(), you MUST override
+ // this; the default implementation will crash.
+ //
+ // The method is private because subclasses should never call it; only
+ // override it. Yes, C++ lets you do that. Crazy, huh?
+ virtual void SetCachedSize(int size) const;
+
+ public:
+ // Introspection ---------------------------------------------------
+
+
// Get a non-owning pointer to a Descriptor for this message's type. This
// describes what fields the message contains, the types of those fields, etc.
// This object remains property of the Message.
- const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
-
+ const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
+
// Get a non-owning pointer to the Reflection interface for this Message,
// which can be used to read and modify the fields of the Message dynamically
// (in other words, without knowing the message type at compile time). This
// object remains property of the Message.
const Reflection* GetReflection() const { return GetMetadata().reflection; }
-
- protected:
+
+ protected:
// Get a struct containing the metadata for the Message, which is used in turn
// to implement GetDescriptor() and GetReflection() above.
virtual Metadata GetMetadata() const = 0;
-
+
struct ClassData {
// Note: The order of arguments (to, then from) is chosen so that the ABI
// of this function is the same as the CopyFrom method. That is, the
@@ -402,7 +402,7 @@ class PROTOBUF_EXPORT Message : public MessageLite {
// of the same type.
// TODO(jorg): change to pure virtual
virtual const ClassData* GetClassData() const { return nullptr; }
-
+
// CopyWithSizeCheck calls Clear() and then MergeFrom(), and in debug
// builds, checks that calling Clear() on the destination message doesn't
// alter the size of the source. It assumes the messages are known to be
@@ -416,127 +416,127 @@ class PROTOBUF_EXPORT Message : public MessageLite {
protected:
static uint64 GetInvariantPerBuild(uint64 salt);
- private:
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
-};
-
-namespace internal {
-// Forward-declare interfaces used to implement RepeatedFieldRef.
-// These are protobuf internals that users shouldn't care about.
-class RepeatedFieldAccessor;
-} // namespace internal
-
-// Forward-declare RepeatedFieldRef templates. The second type parameter is
-// used for SFINAE tricks. Users should ignore it.
+ private:
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
+};
+
+namespace internal {
+// Forward-declare interfaces used to implement RepeatedFieldRef.
+// These are protobuf internals that users shouldn't care about.
+class RepeatedFieldAccessor;
+} // namespace internal
+
+// Forward-declare RepeatedFieldRef templates. The second type parameter is
+// used for SFINAE tricks. Users should ignore it.
template <typename T, typename Enable = void>
-class RepeatedFieldRef;
-
+class RepeatedFieldRef;
+
template <typename T, typename Enable = void>
-class MutableRepeatedFieldRef;
-
-// This interface contains methods that can be used to dynamically access
-// and modify the fields of a protocol message. Their semantics are
-// similar to the accessors the protocol compiler generates.
-//
-// To get the Reflection for a given Message, call Message::GetReflection().
-//
-// This interface is separate from Message only for efficiency reasons;
-// the vast majority of implementations of Message will share the same
-// implementation of Reflection (GeneratedMessageReflection,
-// defined in generated_message.h), and all Messages of a particular class
-// should share the same Reflection object (though you should not rely on
-// the latter fact).
-//
-// There are several ways that these methods can be used incorrectly. For
-// example, any of the following conditions will lead to undefined
-// results (probably assertion failures):
-// - The FieldDescriptor is not a field of this message type.
-// - The method called is not appropriate for the field's type. For
-// each field type in FieldDescriptor::TYPE_*, there is only one
-// Get*() method, one Set*() method, and one Add*() method that is
-// valid for that type. It should be obvious which (except maybe
-// for TYPE_BYTES, which are represented using strings in C++).
-// - A Get*() or Set*() method for singular fields is called on a repeated
-// field.
-// - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
-// field.
-// - The Message object passed to any method is not of the right type for
-// this Reflection object (i.e. message.GetReflection() != reflection).
-//
-// You might wonder why there is not any abstract representation for a field
-// of arbitrary type. E.g., why isn't there just a "GetField()" method that
-// returns "const Field&", where "Field" is some class with accessors like
-// "GetInt32Value()". The problem is that someone would have to deal with
-// allocating these Field objects. For generated message classes, having to
-// allocate space for an additional object to wrap every field would at least
-// double the message's memory footprint, probably worse. Allocating the
-// objects on-demand, on the other hand, would be expensive and prone to
-// memory leaks. So, instead we ended up with this flat interface.
+class MutableRepeatedFieldRef;
+
+// This interface contains methods that can be used to dynamically access
+// and modify the fields of a protocol message. Their semantics are
+// similar to the accessors the protocol compiler generates.
+//
+// To get the Reflection for a given Message, call Message::GetReflection().
+//
+// This interface is separate from Message only for efficiency reasons;
+// the vast majority of implementations of Message will share the same
+// implementation of Reflection (GeneratedMessageReflection,
+// defined in generated_message.h), and all Messages of a particular class
+// should share the same Reflection object (though you should not rely on
+// the latter fact).
+//
+// There are several ways that these methods can be used incorrectly. For
+// example, any of the following conditions will lead to undefined
+// results (probably assertion failures):
+// - The FieldDescriptor is not a field of this message type.
+// - The method called is not appropriate for the field's type. For
+// each field type in FieldDescriptor::TYPE_*, there is only one
+// Get*() method, one Set*() method, and one Add*() method that is
+// valid for that type. It should be obvious which (except maybe
+// for TYPE_BYTES, which are represented using strings in C++).
+// - A Get*() or Set*() method for singular fields is called on a repeated
+// field.
+// - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
+// field.
+// - The Message object passed to any method is not of the right type for
+// this Reflection object (i.e. message.GetReflection() != reflection).
+//
+// You might wonder why there is not any abstract representation for a field
+// of arbitrary type. E.g., why isn't there just a "GetField()" method that
+// returns "const Field&", where "Field" is some class with accessors like
+// "GetInt32Value()". The problem is that someone would have to deal with
+// allocating these Field objects. For generated message classes, having to
+// allocate space for an additional object to wrap every field would at least
+// double the message's memory footprint, probably worse. Allocating the
+// objects on-demand, on the other hand, would be expensive and prone to
+// memory leaks. So, instead we ended up with this flat interface.
class PROTOBUF_EXPORT Reflection final {
- public:
- // Get the UnknownFieldSet for the message. This contains fields which
- // were seen when the Message was parsed but were not recognized according
+ public:
+ // Get the UnknownFieldSet for the message. This contains fields which
+ // were seen when the Message was parsed but were not recognized according
// to the Message's definition.
const UnknownFieldSet& GetUnknownFields(const Message& message) const;
- // Get a mutable pointer to the UnknownFieldSet for the message. This
- // contains fields which were seen when the Message was parsed but were not
+ // Get a mutable pointer to the UnknownFieldSet for the message. This
+ // contains fields which were seen when the Message was parsed but were not
// recognized according to the Message's definition.
UnknownFieldSet* MutableUnknownFields(Message* message) const;
-
- // Estimate the amount of memory used by the message object.
+
+ // Estimate the amount of memory used by the message object.
size_t SpaceUsedLong(const Message& message) const;
-
+
PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
int SpaceUsed(const Message& message) const {
return internal::ToIntSize(SpaceUsedLong(message));
}
- // Check if the given non-repeated field is set.
+ // Check if the given non-repeated field is set.
bool HasField(const Message& message, const FieldDescriptor* field) const;
-
- // Get the number of elements of a repeated field.
+
+ // Get the number of elements of a repeated field.
int FieldSize(const Message& message, const FieldDescriptor* field) const;
-
- // Clear the value of a field, so that HasField() returns false or
- // FieldSize() returns zero.
+
+ // Clear the value of a field, so that HasField() returns false or
+ // FieldSize() returns zero.
void ClearField(Message* message, const FieldDescriptor* field) const;
-
- // Check if the oneof is set. Returns true if any field in oneof
- // is set, false otherwise.
+
+ // Check if the oneof is set. Returns true if any field in oneof
+ // is set, false otherwise.
bool HasOneof(const Message& message,
const OneofDescriptor* oneof_descriptor) const;
-
+
void ClearOneof(Message* message,
const OneofDescriptor* oneof_descriptor) const;
-
+
// Returns the field descriptor if the oneof is set. nullptr otherwise.
const FieldDescriptor* GetOneofFieldDescriptor(
const Message& message, const OneofDescriptor* oneof_descriptor) const;
-
- // Removes the last element of a repeated field.
- // We don't provide a way to remove any element other than the last
- // because it invites inefficient use, such as O(n^2) filtering loops
- // that should have been O(n). If you want to remove an element other
- // than the last, the best way to do it is to re-arrange the elements
- // (using Swap()) so that the one you want removed is at the end, then
- // call RemoveLast().
+
+ // Removes the last element of a repeated field.
+ // We don't provide a way to remove any element other than the last
+ // because it invites inefficient use, such as O(n^2) filtering loops
+ // that should have been O(n). If you want to remove an element other
+ // than the last, the best way to do it is to re-arrange the elements
+ // (using Swap()) so that the one you want removed is at the end, then
+ // call RemoveLast().
void RemoveLast(Message* message, const FieldDescriptor* field) const;
- // Removes the last element of a repeated message field, and returns the
- // pointer to the caller. Caller takes ownership of the returned pointer.
+ // Removes the last element of a repeated message field, and returns the
+ // pointer to the caller. Caller takes ownership of the returned pointer.
PROTOBUF_MUST_USE_RESULT Message* ReleaseLast(
Message* message, const FieldDescriptor* field) const;
-
- // Swap the complete contents of two messages.
+
+ // Swap the complete contents of two messages.
void Swap(Message* message1, Message* message2) const;
-
- // Swap fields listed in fields vector of two messages.
+
+ // Swap fields listed in fields vector of two messages.
void SwapFields(Message* message1, Message* message2,
const std::vector<const FieldDescriptor*>& fields) const;
-
- // Swap two elements of a repeated field.
+
+ // Swap two elements of a repeated field.
void SwapElements(Message* message, const FieldDescriptor* field, int index1,
int index2) const;
-
+
// List all fields of the message which are currently set, except for unknown
// fields, but including extension known to the parser (i.e. compiled in).
// Singular fields will only be listed if HasField(field) would return true
@@ -547,11 +547,11 @@ class PROTOBUF_EXPORT Reflection final {
// access to fields/extensions unknown to the parser.
void ListFields(const Message& message,
std::vector<const FieldDescriptor*>* output) const;
-
- // Singular field getters ------------------------------------------
- // These get the value of a non-repeated field. They return the default
- // value for fields that aren't set.
-
+
+ // Singular field getters ------------------------------------------
+ // These get the value of a non-repeated field. They return the default
+ // value for fields that aren't set.
+
int32 GetInt32(const Message& message, const FieldDescriptor* field) const;
int64 GetInt64(const Message& message, const FieldDescriptor* field) const;
uint32 GetUInt32(const Message& message, const FieldDescriptor* field) const;
@@ -563,42 +563,42 @@ class PROTOBUF_EXPORT Reflection final {
const FieldDescriptor* field) const;
const EnumValueDescriptor* GetEnum(const Message& message,
const FieldDescriptor* field) const;
-
- // GetEnumValue() returns an enum field's value as an integer rather than
- // an EnumValueDescriptor*. If the integer value does not correspond to a
- // known value descriptor, a new value descriptor is created. (Such a value
- // will only be present when the new unknown-enum-value semantics are enabled
- // for a message.)
+
+ // GetEnumValue() returns an enum field's value as an integer rather than
+ // an EnumValueDescriptor*. If the integer value does not correspond to a
+ // known value descriptor, a new value descriptor is created. (Such a value
+ // will only be present when the new unknown-enum-value semantics are enabled
+ // for a message.)
int GetEnumValue(const Message& message, const FieldDescriptor* field) const;
-
- // See MutableMessage() for the meaning of the "factory" parameter.
+
+ // See MutableMessage() for the meaning of the "factory" parameter.
const Message& GetMessage(const Message& message,
const FieldDescriptor* field,
MessageFactory* factory = nullptr) const;
-
- // Get a string value without copying, if possible.
- //
- // GetString() necessarily returns a copy of the string. This can be
+
+ // Get a string value without copying, if possible.
+ //
+ // GetString() necessarily returns a copy of the string. This can be
// inefficient when the TProtoStringType is already stored in a TProtoStringType object
// in the underlying message. GetStringReference() will return a reference to
// the underlying TProtoStringType in this case. Otherwise, it will copy the
// string into *scratch and return that.
- //
- // Note: It is perfectly reasonable and useful to write code like:
+ //
+ // Note: It is perfectly reasonable and useful to write code like:
// str = reflection->GetStringReference(message, field, &str);
- // This line would ensure that only one copy of the string is made
- // regardless of the field's underlying representation. When initializing
+ // This line would ensure that only one copy of the string is made
+ // regardless of the field's underlying representation. When initializing
// a newly-constructed string, though, it's just as fast and more
// readable to use code like:
// TProtoStringType str = reflection->GetString(message, field);
const TProtoStringType& GetStringReference(const Message& message,
const FieldDescriptor* field,
TProtoStringType* scratch) const;
-
-
- // Singular field mutators -----------------------------------------
- // These mutate the value of a non-repeated field.
-
+
+
+ // Singular field mutators -----------------------------------------
+ // These mutate the value of a non-repeated field.
+
void SetInt32(Message* message, const FieldDescriptor* field,
int32 value) const;
void SetInt64(Message* message, const FieldDescriptor* field,
@@ -617,7 +617,7 @@ class PROTOBUF_EXPORT Reflection final {
TProtoStringType value) const;
void SetEnum(Message* message, const FieldDescriptor* field,
const EnumValueDescriptor* value) const;
- // Set an enum field's value with an integer rather than EnumValueDescriptor.
+ // Set an enum field's value with an integer rather than EnumValueDescriptor.
// For proto3 this is just setting the enum field to the value specified, for
// proto2 it's more complicated. If value is a known enum value the field is
// set as usual. If the value is unknown then it is added to the unknown field
@@ -626,24 +626,24 @@ class PROTOBUF_EXPORT Reflection final {
// unknown field set in order of the calls.
void SetEnumValue(Message* message, const FieldDescriptor* field,
int value) const;
-
- // Get a mutable pointer to a field with a message type. If a MessageFactory
- // is provided, it will be used to construct instances of the sub-message;
- // otherwise, the default factory is used. If the field is an extension that
- // does not live in the same pool as the containing message's descriptor (e.g.
- // it lives in an overlay pool), then a MessageFactory must be provided.
- // If you have no idea what that meant, then you probably don't need to worry
- // about it (don't provide a MessageFactory). WARNING: If the
- // FieldDescriptor is for a compiled-in extension, then
- // factory->GetPrototype(field->message_type()) MUST return an instance of
- // the compiled-in class for this type, NOT DynamicMessage.
+
+ // Get a mutable pointer to a field with a message type. If a MessageFactory
+ // is provided, it will be used to construct instances of the sub-message;
+ // otherwise, the default factory is used. If the field is an extension that
+ // does not live in the same pool as the containing message's descriptor (e.g.
+ // it lives in an overlay pool), then a MessageFactory must be provided.
+ // If you have no idea what that meant, then you probably don't need to worry
+ // about it (don't provide a MessageFactory). WARNING: If the
+ // FieldDescriptor is for a compiled-in extension, then
+ // factory->GetPrototype(field->message_type()) MUST return an instance of
+ // the compiled-in class for this type, NOT DynamicMessage.
Message* MutableMessage(Message* message, const FieldDescriptor* field,
MessageFactory* factory = nullptr) const;
- // Replaces the message specified by 'field' with the already-allocated object
- // sub_message, passing ownership to the message. If the field contained a
+ // Replaces the message specified by 'field' with the already-allocated object
+ // sub_message, passing ownership to the message. If the field contained a
// message, that message is deleted. If sub_message is nullptr, the field is
- // cleared.
+ // cleared.
void SetAllocatedMessage(Message* message, Message* sub_message,
const FieldDescriptor* field) const;
@@ -653,28 +653,28 @@ class PROTOBUF_EXPORT Reflection final {
void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message,
const FieldDescriptor* field) const;
- // Releases the message specified by 'field' and returns the pointer,
- // ReleaseMessage() will return the message the message object if it exists.
+ // Releases the message specified by 'field' and returns the pointer,
+ // ReleaseMessage() will return the message the message object if it exists.
// Otherwise, it may or may not return nullptr. In any case, if the return
// value is non-null, the caller takes ownership of the pointer.
- // If the field existed (HasField() is true), then the returned pointer will
- // be the same as the pointer returned by MutableMessage().
- // This function has the same effect as ClearField().
+ // If the field existed (HasField() is true), then the returned pointer will
+ // be the same as the pointer returned by MutableMessage().
+ // This function has the same effect as ClearField().
PROTOBUF_MUST_USE_RESULT Message* ReleaseMessage(
Message* message, const FieldDescriptor* field,
MessageFactory* factory = nullptr) const;
-
+
// Similar to `ReleaseMessage`, but omits all internal safety and ownership
// checks. This method should only be used when the objects are on the same
// arena or paired with a call to `UnsafeArenaSetAllocatedMessage`.
Message* UnsafeArenaReleaseMessage(Message* message,
const FieldDescriptor* field,
MessageFactory* factory = nullptr) const;
-
- // Repeated field getters ------------------------------------------
- // These get the value of one element of a repeated field.
-
+
+ // Repeated field getters ------------------------------------------
+ // These get the value of one element of a repeated field.
+
int32 GetRepeatedInt32(const Message& message, const FieldDescriptor* field,
int index) const;
int64 GetRepeatedInt64(const Message& message, const FieldDescriptor* field,
@@ -694,27 +694,27 @@ class PROTOBUF_EXPORT Reflection final {
const EnumValueDescriptor* GetRepeatedEnum(const Message& message,
const FieldDescriptor* field,
int index) const;
- // GetRepeatedEnumValue() returns an enum field's value as an integer rather
- // than an EnumValueDescriptor*. If the integer value does not correspond to a
- // known value descriptor, a new value descriptor is created. (Such a value
- // will only be present when the new unknown-enum-value semantics are enabled
- // for a message.)
+ // GetRepeatedEnumValue() returns an enum field's value as an integer rather
+ // than an EnumValueDescriptor*. If the integer value does not correspond to a
+ // known value descriptor, a new value descriptor is created. (Such a value
+ // will only be present when the new unknown-enum-value semantics are enabled
+ // for a message.)
int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field,
int index) const;
const Message& GetRepeatedMessage(const Message& message,
const FieldDescriptor* field,
int index) const;
-
- // See GetStringReference(), above.
+
+ // See GetStringReference(), above.
const TProtoStringType& GetRepeatedStringReference(const Message& message,
const FieldDescriptor* field,
int index,
TProtoStringType* scratch) const;
-
-
- // Repeated field mutators -----------------------------------------
- // These mutate the value of one element of a repeated field.
-
+
+
+ // Repeated field mutators -----------------------------------------
+ // These mutate the value of one element of a repeated field.
+
void SetRepeatedInt32(Message* message, const FieldDescriptor* field,
int index, int32 value) const;
void SetRepeatedInt64(Message* message, const FieldDescriptor* field,
@@ -733,7 +733,7 @@ class PROTOBUF_EXPORT Reflection final {
int index, TProtoStringType value) const;
void SetRepeatedEnum(Message* message, const FieldDescriptor* field,
int index, const EnumValueDescriptor* value) const;
- // Set an enum field's value with an integer rather than EnumValueDescriptor.
+ // Set an enum field's value with an integer rather than EnumValueDescriptor.
// For proto3 this is just setting the enum field to the value specified, for
// proto2 it's more complicated. If value is a known enum value the field is
// set as usual. If the value is unknown then it is added to the unknown field
@@ -742,16 +742,16 @@ class PROTOBUF_EXPORT Reflection final {
// unknown field set in order of the calls.
void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field,
int index, int value) const;
- // Get a mutable pointer to an element of a repeated field with a message
- // type.
+ // Get a mutable pointer to an element of a repeated field with a message
+ // type.
Message* MutableRepeatedMessage(Message* message,
const FieldDescriptor* field,
int index) const;
-
-
- // Repeated field adders -------------------------------------------
- // These add an element to a repeated field.
-
+
+
+ // Repeated field adders -------------------------------------------
+ // These add an element to a repeated field.
+
void AddInt32(Message* message, const FieldDescriptor* field,
int32 value) const;
void AddInt64(Message* message, const FieldDescriptor* field,
@@ -779,159 +779,159 @@ class PROTOBUF_EXPORT Reflection final {
// added to the unknown field set in order of the calls.
void AddEnumValue(Message* message, const FieldDescriptor* field,
int value) const;
- // See MutableMessage() for comments on the "factory" parameter.
+ // See MutableMessage() for comments on the "factory" parameter.
Message* AddMessage(Message* message, const FieldDescriptor* field,
MessageFactory* factory = nullptr) const;
-
- // Appends an already-allocated object 'new_entry' to the repeated field
+
+ // Appends an already-allocated object 'new_entry' to the repeated field
// specified by 'field' passing ownership to the message.
void AddAllocatedMessage(Message* message, const FieldDescriptor* field,
Message* new_entry) const;
-
-
- // Get a RepeatedFieldRef object that can be used to read the underlying
- // repeated field. The type parameter T must be set according to the
- // field's cpp type. The following table shows the mapping from cpp type
- // to acceptable T.
- //
- // field->cpp_type() T
- // CPPTYPE_INT32 int32
- // CPPTYPE_UINT32 uint32
- // CPPTYPE_INT64 int64
- // CPPTYPE_UINT64 uint64
- // CPPTYPE_DOUBLE double
- // CPPTYPE_FLOAT float
- // CPPTYPE_BOOL bool
- // CPPTYPE_ENUM generated enum type or int32
+
+
+ // Get a RepeatedFieldRef object that can be used to read the underlying
+ // repeated field. The type parameter T must be set according to the
+ // field's cpp type. The following table shows the mapping from cpp type
+ // to acceptable T.
+ //
+ // field->cpp_type() T
+ // CPPTYPE_INT32 int32
+ // CPPTYPE_UINT32 uint32
+ // CPPTYPE_INT64 int64
+ // CPPTYPE_UINT64 uint64
+ // CPPTYPE_DOUBLE double
+ // CPPTYPE_FLOAT float
+ // CPPTYPE_BOOL bool
+ // CPPTYPE_ENUM generated enum type or int32
// CPPTYPE_STRING TProtoStringType
- // CPPTYPE_MESSAGE generated message type or google::protobuf::Message
- //
- // A RepeatedFieldRef object can be copied and the resulted object will point
- // to the same repeated field in the same message. The object can be used as
- // long as the message is not destroyed.
- //
- // Note that to use this method users need to include the header file
+ // CPPTYPE_MESSAGE generated message type or google::protobuf::Message
+ //
+ // A RepeatedFieldRef object can be copied and the resulted object will point
+ // to the same repeated field in the same message. The object can be used as
+ // long as the message is not destroyed.
+ //
+ // Note that to use this method users need to include the header file
// "reflection.h" (which defines the RepeatedFieldRef class templates).
template <typename T>
RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message,
const FieldDescriptor* field) const;
-
- // Like GetRepeatedFieldRef() but return an object that can also be used
- // manipulate the underlying repeated field.
+
+ // Like GetRepeatedFieldRef() but return an object that can also be used
+ // manipulate the underlying repeated field.
template <typename T>
- MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
- Message* message, const FieldDescriptor* field) const;
-
- // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
+ MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
+ Message* message, const FieldDescriptor* field) const;
+
+ // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
// access. The following repeated field accessors will be removed in the
- // future.
- //
- // Repeated field accessors -------------------------------------------------
- // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
- // access to the data in a RepeatedField. The methods below provide aggregate
- // access by exposing the RepeatedField object itself with the Message.
- // Applying these templates to inappropriate types will lead to an undefined
- // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
- // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
- //
- // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
-
- // DEPRECATED. Please use GetRepeatedFieldRef().
- //
- // for T = Cord and all protobuf scalar types except enums.
+ // future.
+ //
+ // Repeated field accessors -------------------------------------------------
+ // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
+ // access to the data in a RepeatedField. The methods below provide aggregate
+ // access by exposing the RepeatedField object itself with the Message.
+ // Applying these templates to inappropriate types will lead to an undefined
+ // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
+ // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
+ //
+ // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
+
+ // DEPRECATED. Please use GetRepeatedFieldRef().
+ //
+ // for T = Cord and all protobuf scalar types except enums.
template <typename T>
PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
const RepeatedField<T>& GetRepeatedField(const Message& msg,
const FieldDescriptor* d) const {
return GetRepeatedFieldInternal<T>(msg, d);
}
-
- // DEPRECATED. Please use GetMutableRepeatedFieldRef().
- //
- // for T = Cord and all protobuf scalar types except enums.
+
+ // DEPRECATED. Please use GetMutableRepeatedFieldRef().
+ //
+ // for T = Cord and all protobuf scalar types except enums.
template <typename T>
PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
RepeatedField<T>* MutableRepeatedField(Message* msg,
const FieldDescriptor* d) const {
return MutableRepeatedFieldInternal<T>(msg, d);
}
-
- // DEPRECATED. Please use GetRepeatedFieldRef().
- //
+
+ // DEPRECATED. Please use GetRepeatedFieldRef().
+ //
// for T = TProtoStringType, google::protobuf::internal::StringPieceField
- // google::protobuf::Message & descendants.
+ // google::protobuf::Message & descendants.
template <typename T>
PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
- const RepeatedPtrField<T>& GetRepeatedPtrField(
+ const RepeatedPtrField<T>& GetRepeatedPtrField(
const Message& msg, const FieldDescriptor* d) const {
return GetRepeatedPtrFieldInternal<T>(msg, d);
}
-
- // DEPRECATED. Please use GetMutableRepeatedFieldRef().
- //
+
+ // DEPRECATED. Please use GetMutableRepeatedFieldRef().
+ //
// for T = TProtoStringType, google::protobuf::internal::StringPieceField
- // google::protobuf::Message & descendants.
+ // google::protobuf::Message & descendants.
template <typename T>
PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
RepeatedPtrField<T>* MutableRepeatedPtrField(Message* msg,
const FieldDescriptor* d) const {
return MutableRepeatedPtrFieldInternal<T>(msg, d);
}
-
- // Extensions ----------------------------------------------------------------
-
- // Try to find an extension of this message type by fully-qualified field
+
+ // Extensions ----------------------------------------------------------------
+
+ // Try to find an extension of this message type by fully-qualified field
// name. Returns nullptr if no extension is known for this name or number.
const FieldDescriptor* FindKnownExtensionByName(
const TProtoStringType& name) const;
-
- // Try to find an extension of this message type by field number.
+
+ // Try to find an extension of this message type by field number.
// Returns nullptr if no extension is known for this name or number.
const FieldDescriptor* FindKnownExtensionByNumber(int number) const;
-
- // Feature Flags -------------------------------------------------------------
-
- // Does this message support storing arbitrary integer values in enum fields?
- // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
- // take arbitrary integer values, and the legacy GetEnum() getter will
- // dynamically create an EnumValueDescriptor for any integer value without
- // one. If |false|, setting an unknown enum value via the integer-based
- // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
- //
- // Generic code that uses reflection to handle messages with enum fields
- // should check this flag before using the integer-based setter, and either
- // downgrade to a compatible value or use the UnknownFieldSet if not. For
- // example:
- //
+
+ // Feature Flags -------------------------------------------------------------
+
+ // Does this message support storing arbitrary integer values in enum fields?
+ // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
+ // take arbitrary integer values, and the legacy GetEnum() getter will
+ // dynamically create an EnumValueDescriptor for any integer value without
+ // one. If |false|, setting an unknown enum value via the integer-based
+ // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
+ //
+ // Generic code that uses reflection to handle messages with enum fields
+ // should check this flag before using the integer-based setter, and either
+ // downgrade to a compatible value or use the UnknownFieldSet if not. For
+ // example:
+ //
// int new_value = GetValueFromApplicationLogic();
// if (reflection->SupportsUnknownEnumValues()) {
- // reflection->SetEnumValue(message, field, new_value);
+ // reflection->SetEnumValue(message, field, new_value);
// } else {
- // if (field_descriptor->enum_type()->
+ // if (field_descriptor->enum_type()->
// FindValueByNumber(new_value) != nullptr) {
// reflection->SetEnumValue(message, field, new_value);
- // } else if (emit_unknown_enum_values) {
+ // } else if (emit_unknown_enum_values) {
// reflection->MutableUnknownFields(message)->AddVarint(
// field->number(), new_value);
- // } else {
+ // } else {
// // convert value to a compatible/default value.
// new_value = CompatibleDowngrade(new_value);
// reflection->SetEnumValue(message, field, new_value);
- // }
+ // }
// }
bool SupportsUnknownEnumValues() const;
-
- // Returns the MessageFactory associated with this message. This can be
- // useful for determining if a message is a generated message or not, for
- // example:
+
+ // Returns the MessageFactory associated with this message. This can be
+ // useful for determining if a message is a generated message or not, for
+ // example:
// if (message->GetReflection()->GetMessageFactory() ==
// google::protobuf::MessageFactory::generated_factory()) {
// // This is a generated message.
// }
- // It can also be used to create more messages of this type, though
- // Message::New() is an easier way to accomplish this.
+ // It can also be used to create more messages of this type, though
+ // Message::New() is an easier way to accomplish this.
MessageFactory* GetMessageFactory() const;
-
+
private:
template <typename T>
const RepeatedField<T>& GetRepeatedFieldInternal(
@@ -945,30 +945,30 @@ class PROTOBUF_EXPORT Reflection final {
template <typename T>
RepeatedPtrField<T>* MutableRepeatedPtrFieldInternal(
Message* message, const FieldDescriptor* field) const;
- // Obtain a pointer to a Repeated Field Structure and do some type checking:
- // on field->cpp_type(),
- // on field->field_option().ctype() (if ctype >= 0)
+ // Obtain a pointer to a Repeated Field Structure and do some type checking:
+ // on field->cpp_type(),
+ // on field->field_option().ctype() (if ctype >= 0)
// of field->message_type() (if message_type != nullptr).
- // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
+ // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field,
FieldDescriptor::CppType, int ctype,
const Descriptor* message_type) const;
-
+
const void* GetRawRepeatedField(const Message& message,
const FieldDescriptor* field,
FieldDescriptor::CppType cpptype, int ctype,
const Descriptor* message_type) const;
-
- // The following methods are used to implement (Mutable)RepeatedFieldRef.
- // A Ref object will store a raw pointer to the repeated field data (obtained
- // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
- // RepeatedFieldAccessor) which will be used to access the raw data.
-
- // Returns a raw pointer to the repeated field
- //
+
+ // The following methods are used to implement (Mutable)RepeatedFieldRef.
+ // A Ref object will store a raw pointer to the repeated field data (obtained
+ // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
+ // RepeatedFieldAccessor) which will be used to access the raw data.
+
+ // Returns a raw pointer to the repeated field
+ //
// "cpp_type" and "message_type" are deduced from the type parameter T passed
- // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
- // "message_type" should be set to its descriptor. Otherwise "message_type"
+ // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
+ // "message_type" should be set to its descriptor. Otherwise "message_type"
// should be set to nullptr. Implementations of this method should check
// whether "cpp_type"/"message_type" is consistent with the actual type of the
// field. We use 1 routine rather than 2 (const vs mutable) because it is
@@ -976,12 +976,12 @@ class PROTOBUF_EXPORT Reflection final {
void* RepeatedFieldData(Message* message, const FieldDescriptor* field,
FieldDescriptor::CppType cpp_type,
const Descriptor* message_type) const;
-
- // The returned pointer should point to a singleton instance which implements
- // the RepeatedFieldAccessor interface.
+
+ // The returned pointer should point to a singleton instance which implements
+ // the RepeatedFieldAccessor interface.
const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
- const FieldDescriptor* field) const;
-
+ const FieldDescriptor* field) const;
+
// Lists all fields of the message which are currently set, except for unknown
// fields and stripped fields. See ListFields for details.
void ListFieldsOmitStripped(
@@ -1027,9 +1027,9 @@ class PROTOBUF_EXPORT Reflection final {
int last_non_weak_field_index_;
template <typename T, typename Enable>
- friend class RepeatedFieldRef;
+ friend class RepeatedFieldRef;
template <typename T, typename Enable>
- friend class MutableRepeatedFieldRef;
+ friend class MutableRepeatedFieldRef;
friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector;
friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper;
friend class DynamicMessageFactory;
@@ -1046,32 +1046,32 @@ class PROTOBUF_EXPORT Reflection final {
friend class internal::SwapFieldHelper;
// Needed for implementing text format for map.
friend class internal::MapFieldPrinterHelper;
-
+
Reflection(const Descriptor* descriptor,
const internal::ReflectionSchema& schema,
const DescriptorPool* pool, MessageFactory* factory);
// Special version for specialized implementations of string. We can't
// call MutableRawRepeatedField directly here because we don't have access to
- // FieldOptions::* which are defined in descriptor.pb.h. Including that
- // file here is not possible because it would cause a circular include cycle.
- // We use 1 routine rather than 2 (const vs mutable) because it is private
- // and mutable a repeated string field doesn't change the message.
+ // FieldOptions::* which are defined in descriptor.pb.h. Including that
+ // file here is not possible because it would cause a circular include cycle.
+ // We use 1 routine rather than 2 (const vs mutable) because it is private
+ // and mutable a repeated string field doesn't change the message.
void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field,
bool is_string) const;
-
- friend class MapReflectionTester;
- // Returns true if key is in map. Returns false if key is not in map field.
+
+ friend class MapReflectionTester;
+ // Returns true if key is in map. Returns false if key is not in map field.
bool ContainsMapKey(const Message& message, const FieldDescriptor* field,
const MapKey& key) const;
-
- // If key is in map field: Saves the value pointer to val and returns
- // false. If key in not in map field: Insert the key into map, saves
+
+ // If key is in map field: Saves the value pointer to val and returns
+ // false. If key in not in map field: Insert the key into map, saves
// value pointer to val and returns true. Users are able to modify the
// map value by MapValueRef.
bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field,
const MapKey& key, MapValueRef* val) const;
-
+
// If key is in map field: Saves the value pointer to val and returns true.
// Returns false if key is not in map field. Users are NOT able to modify
// the value by MapValueConstRef.
@@ -1080,27 +1080,27 @@ class PROTOBUF_EXPORT Reflection final {
bool LookupMapValue(const Message&, const FieldDescriptor*, const MapKey&,
MapValueRef*) const = delete;
- // Delete and returns true if key is in the map field. Returns false
- // otherwise.
+ // Delete and returns true if key is in the map field. Returns false
+ // otherwise.
bool DeleteMapValue(Message* message, const FieldDescriptor* field,
const MapKey& key) const;
-
- // Returns a MapIterator referring to the first element in the map field.
- // If the map field is empty, this function returns the same as
- // reflection::MapEnd. Mutation to the field may invalidate the iterator.
+
+ // Returns a MapIterator referring to the first element in the map field.
+ // If the map field is empty, this function returns the same as
+ // reflection::MapEnd. Mutation to the field may invalidate the iterator.
MapIterator MapBegin(Message* message, const FieldDescriptor* field) const;
-
- // Returns a MapIterator referring to the theoretical element that would
- // follow the last element in the map field. It does not point to any
- // real element. Mutation to the field may invalidate the iterator.
+
+ // Returns a MapIterator referring to the theoretical element that would
+ // follow the last element in the map field. It does not point to any
+ // real element. Mutation to the field may invalidate the iterator.
MapIterator MapEnd(Message* message, const FieldDescriptor* field) const;
-
- // Get the number of <key, value> pair of a map field. The result may be
- // different from FieldSize which can have duplicate keys.
+
+ // Get the number of <key, value> pair of a map field. The result may be
+ // different from FieldSize which can have duplicate keys.
int MapSize(const Message& message, const FieldDescriptor* field) const;
-
- // Help method for MapIterator.
- friend class MapIterator;
+
+ // Help method for MapIterator.
+ friend class MapIterator;
friend class WireFormatForMapFieldTest;
internal::MapFieldBase* MutableMapData(Message* message,
const FieldDescriptor* field) const;
@@ -1132,10 +1132,10 @@ class PROTOBUF_EXPORT Reflection final {
Message* message, const OneofDescriptor* oneof_descriptor) const;
inline bool HasExtensionSet(const Message& /* message */) const {
return schema_.HasExtensionSet();
- }
+ }
const internal::ExtensionSet& GetExtensionSet(const Message& message) const;
internal::ExtensionSet* MutableExtensionSet(Message* message) const;
-
+
inline const internal::InternalMetadata& GetInternalMetadata(
const Message& message) const;
@@ -1239,73 +1239,73 @@ class PROTOBUF_EXPORT Reflection final {
const char* ptr,
internal::ParseContext* ctx);
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
-};
-
-// Abstract interface for a factory for message objects.
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
+};
+
+// Abstract interface for a factory for message objects.
class PROTOBUF_EXPORT MessageFactory {
- public:
- inline MessageFactory() {}
- virtual ~MessageFactory();
-
- // Given a Descriptor, gets or constructs the default (prototype) Message
- // of that type. You can then call that message's New() method to construct
- // a mutable message of that type.
- //
- // Calling this method twice with the same Descriptor returns the same
- // object. The returned object remains property of the factory. Also, any
- // objects created by calling the prototype's New() method share some data
- // with the prototype, so these must be destroyed before the MessageFactory
- // is destroyed.
- //
- // The given descriptor must outlive the returned message, and hence must
- // outlive the MessageFactory.
- //
- // Some implementations do not support all types. GetPrototype() will
+ public:
+ inline MessageFactory() {}
+ virtual ~MessageFactory();
+
+ // Given a Descriptor, gets or constructs the default (prototype) Message
+ // of that type. You can then call that message's New() method to construct
+ // a mutable message of that type.
+ //
+ // Calling this method twice with the same Descriptor returns the same
+ // object. The returned object remains property of the factory. Also, any
+ // objects created by calling the prototype's New() method share some data
+ // with the prototype, so these must be destroyed before the MessageFactory
+ // is destroyed.
+ //
+ // The given descriptor must outlive the returned message, and hence must
+ // outlive the MessageFactory.
+ //
+ // Some implementations do not support all types. GetPrototype() will
// return nullptr if the descriptor passed in is not supported.
- //
- // This method may or may not be thread-safe depending on the implementation.
- // Each implementation should document its own degree thread-safety.
- virtual const Message* GetPrototype(const Descriptor* type) = 0;
-
- // Gets a MessageFactory which supports all generated, compiled-in messages.
- // In other words, for any compiled-in type FooMessage, the following is true:
- // MessageFactory::generated_factory()->GetPrototype(
- // FooMessage::descriptor()) == FooMessage::default_instance()
- // This factory supports all types which are found in
- // DescriptorPool::generated_pool(). If given a descriptor from any other
+ //
+ // This method may or may not be thread-safe depending on the implementation.
+ // Each implementation should document its own degree thread-safety.
+ virtual const Message* GetPrototype(const Descriptor* type) = 0;
+
+ // Gets a MessageFactory which supports all generated, compiled-in messages.
+ // In other words, for any compiled-in type FooMessage, the following is true:
+ // MessageFactory::generated_factory()->GetPrototype(
+ // FooMessage::descriptor()) == FooMessage::default_instance()
+ // This factory supports all types which are found in
+ // DescriptorPool::generated_pool(). If given a descriptor from any other
// pool, GetPrototype() will return nullptr. (You can also check if a
- // descriptor is for a generated message by checking if
- // descriptor->file()->pool() == DescriptorPool::generated_pool().)
- //
- // This factory is 100% thread-safe; calling GetPrototype() does not modify
- // any shared data.
- //
- // This factory is a singleton. The caller must not delete the object.
- static MessageFactory* generated_factory();
-
- // For internal use only: Registers a .proto file at static initialization
- // time, to be placed in generated_factory. The first time GetPrototype()
- // is called with a descriptor from this file, |register_messages| will be
- // called, with the file name as the parameter. It must call
- // InternalRegisterGeneratedMessage() (below) to register each message type
- // in the file. This strange mechanism is necessary because descriptors are
- // built lazily, so we can't register types by their descriptor until we
- // know that the descriptor exists. |filename| must be a permanent string.
- static void InternalRegisterGeneratedFile(
+ // descriptor is for a generated message by checking if
+ // descriptor->file()->pool() == DescriptorPool::generated_pool().)
+ //
+ // This factory is 100% thread-safe; calling GetPrototype() does not modify
+ // any shared data.
+ //
+ // This factory is a singleton. The caller must not delete the object.
+ static MessageFactory* generated_factory();
+
+ // For internal use only: Registers a .proto file at static initialization
+ // time, to be placed in generated_factory. The first time GetPrototype()
+ // is called with a descriptor from this file, |register_messages| will be
+ // called, with the file name as the parameter. It must call
+ // InternalRegisterGeneratedMessage() (below) to register each message type
+ // in the file. This strange mechanism is necessary because descriptors are
+ // built lazily, so we can't register types by their descriptor until we
+ // know that the descriptor exists. |filename| must be a permanent string.
+ static void InternalRegisterGeneratedFile(
const google::protobuf::internal::DescriptorTable* table);
-
- // For internal use only: Registers a message type. Called only by the
- // functions which are registered with InternalRegisterGeneratedFile(),
- // above.
- static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
- const Message* prototype);
-
-
- private:
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
-};
-
+
+ // For internal use only: Registers a message type. Called only by the
+ // functions which are registered with InternalRegisterGeneratedFile(),
+ // above.
+ static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
+ const Message* prototype);
+
+
+ private:
+ GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
+};
+
#define DECLARE_GET_REPEATED_FIELD(TYPE) \
template <> \
PROTOBUF_EXPORT const RepeatedField<TYPE>& \
@@ -1316,17 +1316,17 @@ class PROTOBUF_EXPORT MessageFactory {
PROTOBUF_EXPORT RepeatedField<TYPE>* \
Reflection::MutableRepeatedFieldInternal<TYPE>( \
Message * message, const FieldDescriptor* field) const;
-
-DECLARE_GET_REPEATED_FIELD(int32)
-DECLARE_GET_REPEATED_FIELD(int64)
-DECLARE_GET_REPEATED_FIELD(uint32)
-DECLARE_GET_REPEATED_FIELD(uint64)
-DECLARE_GET_REPEATED_FIELD(float)
-DECLARE_GET_REPEATED_FIELD(double)
-DECLARE_GET_REPEATED_FIELD(bool)
-
-#undef DECLARE_GET_REPEATED_FIELD
-
+
+DECLARE_GET_REPEATED_FIELD(int32)
+DECLARE_GET_REPEATED_FIELD(int64)
+DECLARE_GET_REPEATED_FIELD(uint32)
+DECLARE_GET_REPEATED_FIELD(uint64)
+DECLARE_GET_REPEATED_FIELD(float)
+DECLARE_GET_REPEATED_FIELD(double)
+DECLARE_GET_REPEATED_FIELD(bool)
+
+#undef DECLARE_GET_REPEATED_FIELD
+
// Tries to downcast this message to a generated message type. Returns nullptr
// if this class is not an instance of T. This works even if RTTI is disabled.
//
@@ -1385,69 +1385,69 @@ void LinkMessageReflection() {
internal::StrongReference(T::default_instance);
}
-// =============================================================================
-// Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide
+// =============================================================================
+// Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide
// specializations for <TProtoStringType>, <StringPieceField> and <Message> and
// handle everything else with the default template which will match any type
// having a method with signature "static const google::protobuf::Descriptor*
// descriptor()". Such a type presumably is a descendant of google::protobuf::Message.
-
+
template <>
inline const RepeatedPtrField<TProtoStringType>&
Reflection::GetRepeatedPtrFieldInternal<TProtoStringType>(
- const Message& message, const FieldDescriptor* field) const {
+ const Message& message, const FieldDescriptor* field) const {
return *static_cast<RepeatedPtrField<TProtoStringType>*>(
- MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
-}
-
+ MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
+}
+
template <>
inline RepeatedPtrField<TProtoStringType>*
Reflection::MutableRepeatedPtrFieldInternal<TProtoStringType>(
- Message* message, const FieldDescriptor* field) const {
+ Message* message, const FieldDescriptor* field) const {
return static_cast<RepeatedPtrField<TProtoStringType>*>(
- MutableRawRepeatedString(message, field, true));
-}
-
-
-// -----
-
+ MutableRawRepeatedString(message, field, true));
+}
+
+
+// -----
+
template <>
inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrFieldInternal(
- const Message& message, const FieldDescriptor* field) const {
+ const Message& message, const FieldDescriptor* field) const {
return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField(
message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
-}
-
+}
+
template <>
inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrFieldInternal(
- Message* message, const FieldDescriptor* field) const {
+ Message* message, const FieldDescriptor* field) const {
return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField(
message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
-}
-
+}
+
template <typename PB>
inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrFieldInternal(
- const Message& message, const FieldDescriptor* field) const {
+ const Message& message, const FieldDescriptor* field) const {
return *static_cast<const RepeatedPtrField<PB>*>(
GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1,
PB::default_instance().GetDescriptor()));
-}
-
+}
+
template <typename PB>
inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrFieldInternal(
- Message* message, const FieldDescriptor* field) const {
+ Message* message, const FieldDescriptor* field) const {
return static_cast<RepeatedPtrField<PB>*>(
MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
-1, PB::default_instance().GetDescriptor()));
-}
+}
template <typename Type>
const Type& Reflection::DefaultRaw(const FieldDescriptor* field) const {
return *reinterpret_cast<const Type*>(schema_.GetFieldDefault(field));
}
-} // namespace protobuf
+} // namespace protobuf
} // namespace google
-
+
#include <google/protobuf/port_undef.inc>
-#endif // GOOGLE_PROTOBUF_MESSAGE_H__
+#endif // GOOGLE_PROTOBUF_MESSAGE_H__