diff options
Diffstat (limited to 'contrib/libs/llvm12/tools/llvm-dwarfdump/Statistics.cpp')
-rw-r--r-- | contrib/libs/llvm12/tools/llvm-dwarfdump/Statistics.cpp | 728 |
1 files changed, 728 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/tools/llvm-dwarfdump/Statistics.cpp b/contrib/libs/llvm12/tools/llvm-dwarfdump/Statistics.cpp new file mode 100644 index 0000000000..82da06eab1 --- /dev/null +++ b/contrib/libs/llvm12/tools/llvm-dwarfdump/Statistics.cpp @@ -0,0 +1,728 @@ +//===-- Statistics.cpp - Debug Info quality metrics -----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "llvm-dwarfdump.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringSet.h" +#include "llvm/DebugInfo/DIContext.h" +#include "llvm/DebugInfo/DWARF/DWARFContext.h" +#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h" +#include "llvm/Object/ObjectFile.h" +#include "llvm/Support/JSON.h" + +#define DEBUG_TYPE "dwarfdump" +using namespace llvm; +using namespace llvm::dwarfdump; +using namespace llvm::object; + +/// This represents the number of categories of debug location coverage being +/// calculated. The first category is the number of variables with 0% location +/// coverage, but the last category is the number of variables with 100% +/// location coverage. +constexpr int NumOfCoverageCategories = 12; + +namespace { +/// Holds statistics for one function (or other entity that has a PC range and +/// contains variables, such as a compile unit). +struct PerFunctionStats { + /// Number of inlined instances of this function. + unsigned NumFnInlined = 0; + /// Number of out-of-line instances of this function. + unsigned NumFnOutOfLine = 0; + /// Number of inlined instances that have abstract origins. + unsigned NumAbstractOrigins = 0; + /// Number of variables and parameters with location across all inlined + /// instances. + unsigned TotalVarWithLoc = 0; + /// Number of constants with location across all inlined instances. + unsigned ConstantMembers = 0; + /// Number of arificial variables, parameters or members across all instances. + unsigned NumArtificial = 0; + /// List of all Variables and parameters in this function. + StringSet<> VarsInFunction; + /// Compile units also cover a PC range, but have this flag set to false. + bool IsFunction = false; + /// Function has source location information. + bool HasSourceLocation = false; + /// Number of function parameters. + unsigned NumParams = 0; + /// Number of function parameters with source location. + unsigned NumParamSourceLocations = 0; + /// Number of function parameters with type. + unsigned NumParamTypes = 0; + /// Number of function parameters with a DW_AT_location. + unsigned NumParamLocations = 0; + /// Number of local variables. + unsigned NumLocalVars = 0; + /// Number of local variables with source location. + unsigned NumLocalVarSourceLocations = 0; + /// Number of local variables with type. + unsigned NumLocalVarTypes = 0; + /// Number of local variables with DW_AT_location. + unsigned NumLocalVarLocations = 0; +}; + +/// Holds accumulated global statistics about DIEs. +struct GlobalStats { + /// Total number of PC range bytes covered by DW_AT_locations. + unsigned TotalBytesCovered = 0; + /// Total number of parent DIE PC range bytes covered by DW_AT_Locations. + unsigned ScopeBytesCovered = 0; + /// Total number of PC range bytes in each variable's enclosing scope. + unsigned ScopeBytes = 0; + /// Total number of PC range bytes covered by DW_AT_locations with + /// the debug entry values (DW_OP_entry_value). + unsigned ScopeEntryValueBytesCovered = 0; + /// Total number of PC range bytes covered by DW_AT_locations of + /// formal parameters. + unsigned ParamScopeBytesCovered = 0; + /// Total number of PC range bytes in each parameter's enclosing scope. + unsigned ParamScopeBytes = 0; + /// Total number of PC range bytes covered by DW_AT_locations with + /// the debug entry values (DW_OP_entry_value) (only for parameters). + unsigned ParamScopeEntryValueBytesCovered = 0; + /// Total number of PC range bytes covered by DW_AT_locations (only for local + /// variables). + unsigned LocalVarScopeBytesCovered = 0; + /// Total number of PC range bytes in each local variable's enclosing scope. + unsigned LocalVarScopeBytes = 0; + /// Total number of PC range bytes covered by DW_AT_locations with + /// the debug entry values (DW_OP_entry_value) (only for local variables). + unsigned LocalVarScopeEntryValueBytesCovered = 0; + /// Total number of call site entries (DW_AT_call_file & DW_AT_call_line). + unsigned CallSiteEntries = 0; + /// Total number of call site DIEs (DW_TAG_call_site). + unsigned CallSiteDIEs = 0; + /// Total number of call site parameter DIEs (DW_TAG_call_site_parameter). + unsigned CallSiteParamDIEs = 0; + /// Total byte size of concrete functions. This byte size includes + /// inline functions contained in the concrete functions. + unsigned FunctionSize = 0; + /// Total byte size of inlined functions. This is the total number of bytes + /// for the top inline functions within concrete functions. This can help + /// tune the inline settings when compiling to match user expectations. + unsigned InlineFunctionSize = 0; +}; + +/// Holds accumulated debug location statistics about local variables and +/// formal parameters. +struct LocationStats { + /// Map the scope coverage decile to the number of variables in the decile. + /// The first element of the array (at the index zero) represents the number + /// of variables with the no debug location at all, but the last element + /// in the vector represents the number of fully covered variables within + /// its scope. + std::vector<unsigned> VarParamLocStats{ + std::vector<unsigned>(NumOfCoverageCategories, 0)}; + /// Map non debug entry values coverage. + std::vector<unsigned> VarParamNonEntryValLocStats{ + std::vector<unsigned>(NumOfCoverageCategories, 0)}; + /// The debug location statistics for formal parameters. + std::vector<unsigned> ParamLocStats{ + std::vector<unsigned>(NumOfCoverageCategories, 0)}; + /// Map non debug entry values coverage for formal parameters. + std::vector<unsigned> ParamNonEntryValLocStats{ + std::vector<unsigned>(NumOfCoverageCategories, 0)}; + /// The debug location statistics for local variables. + std::vector<unsigned> LocalVarLocStats{ + std::vector<unsigned>(NumOfCoverageCategories, 0)}; + /// Map non debug entry values coverage for local variables. + std::vector<unsigned> LocalVarNonEntryValLocStats{ + std::vector<unsigned>(NumOfCoverageCategories, 0)}; + /// Total number of local variables and function parameters processed. + unsigned NumVarParam = 0; + /// Total number of formal parameters processed. + unsigned NumParam = 0; + /// Total number of local variables processed. + unsigned NumVar = 0; +}; +} // namespace + +/// Collect debug location statistics for one DIE. +static void collectLocStats(uint64_t ScopeBytesCovered, uint64_t BytesInScope, + std::vector<unsigned> &VarParamLocStats, + std::vector<unsigned> &ParamLocStats, + std::vector<unsigned> &LocalVarLocStats, + bool IsParam, bool IsLocalVar) { + auto getCoverageBucket = [ScopeBytesCovered, BytesInScope]() -> unsigned { + // No debug location at all for the variable. + if (ScopeBytesCovered == 0) + return 0; + // Fully covered variable within its scope. + if (ScopeBytesCovered >= BytesInScope) + return NumOfCoverageCategories - 1; + // Get covered range (e.g. 20%-29%). + unsigned LocBucket = 100 * (double)ScopeBytesCovered / BytesInScope; + LocBucket /= 10; + return LocBucket + 1; + }; + + unsigned CoverageBucket = getCoverageBucket(); + VarParamLocStats[CoverageBucket]++; + if (IsParam) + ParamLocStats[CoverageBucket]++; + else if (IsLocalVar) + LocalVarLocStats[CoverageBucket]++; +} +/// Construct an identifier for a given DIE from its Prefix, Name, DeclFileName +/// and DeclLine. The identifier aims to be unique for any unique entities, +/// but keeping the same among different instances of the same entity. +static std::string constructDieID(DWARFDie Die, + StringRef Prefix = StringRef()) { + std::string IDStr; + llvm::raw_string_ostream ID(IDStr); + ID << Prefix + << Die.getName(DINameKind::LinkageName); + + // Prefix + Name is enough for local variables and parameters. + if (!Prefix.empty() && !Prefix.equals("g")) + return ID.str(); + + auto DeclFile = Die.findRecursively(dwarf::DW_AT_decl_file); + std::string File; + if (DeclFile) { + DWARFUnit *U = Die.getDwarfUnit(); + if (const auto *LT = U->getContext().getLineTableForUnit(U)) + if (LT->getFileNameByIndex( + dwarf::toUnsigned(DeclFile, 0), U->getCompilationDir(), + DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, File)) + File = std::string(sys::path::filename(File)); + } + ID << ":" << (File.empty() ? "/" : File); + ID << ":" + << dwarf::toUnsigned(Die.findRecursively(dwarf::DW_AT_decl_line), 0); + return ID.str(); +} + +/// Return the number of bytes in the overlap of ranges A and B. +static uint64_t calculateOverlap(DWARFAddressRange A, DWARFAddressRange B) { + uint64_t Lower = std::max(A.LowPC, B.LowPC); + uint64_t Upper = std::min(A.HighPC, B.HighPC); + if (Lower >= Upper) + return 0; + return Upper - Lower; +} + +/// Collect debug info quality metrics for one DIE. +static void collectStatsForDie(DWARFDie Die, std::string FnPrefix, + std::string VarPrefix, uint64_t BytesInScope, + uint32_t InlineDepth, + StringMap<PerFunctionStats> &FnStatMap, + GlobalStats &GlobalStats, + LocationStats &LocStats) { + bool HasLoc = false; + bool HasSrcLoc = false; + bool HasType = false; + uint64_t TotalBytesCovered = 0; + uint64_t ScopeBytesCovered = 0; + uint64_t BytesEntryValuesCovered = 0; + auto &FnStats = FnStatMap[FnPrefix]; + bool IsParam = Die.getTag() == dwarf::DW_TAG_formal_parameter; + bool IsLocalVar = Die.getTag() == dwarf::DW_TAG_variable; + bool IsConstantMember = Die.getTag() == dwarf::DW_TAG_member && + Die.find(dwarf::DW_AT_const_value); + + if (Die.getTag() == dwarf::DW_TAG_call_site || + Die.getTag() == dwarf::DW_TAG_GNU_call_site) { + GlobalStats.CallSiteDIEs++; + return; + } + + if (Die.getTag() == dwarf::DW_TAG_call_site_parameter || + Die.getTag() == dwarf::DW_TAG_GNU_call_site_parameter) { + GlobalStats.CallSiteParamDIEs++; + return; + } + + if (!IsParam && !IsLocalVar && !IsConstantMember) { + // Not a variable or constant member. + return; + } + + // Ignore declarations of global variables. + if (IsLocalVar && Die.find(dwarf::DW_AT_declaration)) + return; + + if (Die.findRecursively(dwarf::DW_AT_decl_file) && + Die.findRecursively(dwarf::DW_AT_decl_line)) + HasSrcLoc = true; + + if (Die.findRecursively(dwarf::DW_AT_type)) + HasType = true; + + auto IsEntryValue = [&](ArrayRef<uint8_t> D) -> bool { + DWARFUnit *U = Die.getDwarfUnit(); + DataExtractor Data(toStringRef(D), + Die.getDwarfUnit()->getContext().isLittleEndian(), 0); + DWARFExpression Expression(Data, U->getAddressByteSize(), + U->getFormParams().Format); + // Consider the expression containing the DW_OP_entry_value as + // an entry value. + return llvm::any_of(Expression, [](DWARFExpression::Operation &Op) { + return Op.getCode() == dwarf::DW_OP_entry_value || + Op.getCode() == dwarf::DW_OP_GNU_entry_value; + }); + }; + + if (Die.find(dwarf::DW_AT_const_value)) { + // This catches constant members *and* variables. + HasLoc = true; + ScopeBytesCovered = BytesInScope; + TotalBytesCovered = BytesInScope; + } else { + // Handle variables and function arguments. + Expected<std::vector<DWARFLocationExpression>> Loc = + Die.getLocations(dwarf::DW_AT_location); + if (!Loc) { + consumeError(Loc.takeError()); + } else { + HasLoc = true; + // Get PC coverage. + auto Default = find_if( + *Loc, [](const DWARFLocationExpression &L) { return !L.Range; }); + if (Default != Loc->end()) { + // Assume the entire range is covered by a single location. + ScopeBytesCovered = BytesInScope; + TotalBytesCovered = BytesInScope; + } else { + // Caller checks this Expected result already, it cannot fail. + auto ScopeRanges = cantFail(Die.getParent().getAddressRanges()); + for (auto Entry : *Loc) { + TotalBytesCovered += Entry.Range->HighPC - Entry.Range->LowPC; + uint64_t ScopeBytesCoveredByEntry = 0; + // Calculate how many bytes of the parent scope this entry covers. + // FIXME: In section 2.6.2 of the DWARFv5 spec it says that "The + // address ranges defined by the bounded location descriptions of a + // location list may overlap". So in theory a variable can have + // multiple simultaneous locations, which would make this calculation + // misleading because we will count the overlapped areas + // twice. However, clang does not currently emit DWARF like this. + for (DWARFAddressRange R : ScopeRanges) { + ScopeBytesCoveredByEntry += calculateOverlap(*Entry.Range, R); + } + ScopeBytesCovered += ScopeBytesCoveredByEntry; + if (IsEntryValue(Entry.Expr)) + BytesEntryValuesCovered += ScopeBytesCoveredByEntry; + } + } + } + } + + // Calculate the debug location statistics. + if (BytesInScope) { + LocStats.NumVarParam++; + if (IsParam) + LocStats.NumParam++; + else if (IsLocalVar) + LocStats.NumVar++; + + collectLocStats(ScopeBytesCovered, BytesInScope, LocStats.VarParamLocStats, + LocStats.ParamLocStats, LocStats.LocalVarLocStats, IsParam, + IsLocalVar); + // Non debug entry values coverage statistics. + collectLocStats(ScopeBytesCovered - BytesEntryValuesCovered, BytesInScope, + LocStats.VarParamNonEntryValLocStats, + LocStats.ParamNonEntryValLocStats, + LocStats.LocalVarNonEntryValLocStats, IsParam, IsLocalVar); + } + + // Collect PC range coverage data. + if (DWARFDie D = + Die.getAttributeValueAsReferencedDie(dwarf::DW_AT_abstract_origin)) + Die = D; + + std::string VarID = constructDieID(Die, VarPrefix); + FnStats.VarsInFunction.insert(VarID); + + GlobalStats.TotalBytesCovered += TotalBytesCovered; + if (BytesInScope) { + GlobalStats.ScopeBytesCovered += ScopeBytesCovered; + GlobalStats.ScopeBytes += BytesInScope; + GlobalStats.ScopeEntryValueBytesCovered += BytesEntryValuesCovered; + if (IsParam) { + GlobalStats.ParamScopeBytesCovered += ScopeBytesCovered; + GlobalStats.ParamScopeBytes += BytesInScope; + GlobalStats.ParamScopeEntryValueBytesCovered += BytesEntryValuesCovered; + } else if (IsLocalVar) { + GlobalStats.LocalVarScopeBytesCovered += ScopeBytesCovered; + GlobalStats.LocalVarScopeBytes += BytesInScope; + GlobalStats.LocalVarScopeEntryValueBytesCovered += + BytesEntryValuesCovered; + } + assert(GlobalStats.ScopeBytesCovered <= GlobalStats.ScopeBytes); + } + + if (IsConstantMember) { + FnStats.ConstantMembers++; + return; + } + + FnStats.TotalVarWithLoc += (unsigned)HasLoc; + + if (Die.find(dwarf::DW_AT_artificial)) { + FnStats.NumArtificial++; + return; + } + + if (IsParam) { + FnStats.NumParams++; + if (HasType) + FnStats.NumParamTypes++; + if (HasSrcLoc) + FnStats.NumParamSourceLocations++; + if (HasLoc) + FnStats.NumParamLocations++; + } else if (IsLocalVar) { + FnStats.NumLocalVars++; + if (HasType) + FnStats.NumLocalVarTypes++; + if (HasSrcLoc) + FnStats.NumLocalVarSourceLocations++; + if (HasLoc) + FnStats.NumLocalVarLocations++; + } +} + +/// Recursively collect debug info quality metrics. +static void collectStatsRecursive(DWARFDie Die, std::string FnPrefix, + std::string VarPrefix, uint64_t BytesInScope, + uint32_t InlineDepth, + StringMap<PerFunctionStats> &FnStatMap, + GlobalStats &GlobalStats, + LocationStats &LocStats) { + const dwarf::Tag Tag = Die.getTag(); + // Skip function types. + if (Tag == dwarf::DW_TAG_subroutine_type) + return; + + // Handle any kind of lexical scope. + const bool IsFunction = Tag == dwarf::DW_TAG_subprogram; + const bool IsBlock = Tag == dwarf::DW_TAG_lexical_block; + const bool IsInlinedFunction = Tag == dwarf::DW_TAG_inlined_subroutine; + if (IsFunction || IsInlinedFunction || IsBlock) { + + // Reset VarPrefix when entering a new function. + if (Die.getTag() == dwarf::DW_TAG_subprogram || + Die.getTag() == dwarf::DW_TAG_inlined_subroutine) + VarPrefix = "v"; + + // Ignore forward declarations. + if (Die.find(dwarf::DW_AT_declaration)) + return; + + // Check for call sites. + if (Die.find(dwarf::DW_AT_call_file) && Die.find(dwarf::DW_AT_call_line)) + GlobalStats.CallSiteEntries++; + + // PC Ranges. + auto RangesOrError = Die.getAddressRanges(); + if (!RangesOrError) { + llvm::consumeError(RangesOrError.takeError()); + return; + } + + auto Ranges = RangesOrError.get(); + uint64_t BytesInThisScope = 0; + for (auto Range : Ranges) + BytesInThisScope += Range.HighPC - Range.LowPC; + + // Count the function. + if (!IsBlock) { + // Skip over abstract origins. + if (Die.find(dwarf::DW_AT_inline)) + return; + std::string FnID = constructDieID(Die); + // We've seen an instance of this function. + auto &FnStats = FnStatMap[FnID]; + FnStats.IsFunction = true; + if (IsInlinedFunction) { + FnStats.NumFnInlined++; + if (Die.findRecursively(dwarf::DW_AT_abstract_origin)) + FnStats.NumAbstractOrigins++; + } else { + FnStats.NumFnOutOfLine++; + } + if (Die.findRecursively(dwarf::DW_AT_decl_file) && + Die.findRecursively(dwarf::DW_AT_decl_line)) + FnStats.HasSourceLocation = true; + // Update function prefix. + FnPrefix = FnID; + } + + if (BytesInThisScope) { + BytesInScope = BytesInThisScope; + if (IsFunction) + GlobalStats.FunctionSize += BytesInThisScope; + else if (IsInlinedFunction && InlineDepth == 0) + GlobalStats.InlineFunctionSize += BytesInThisScope; + } + } else { + // Not a scope, visit the Die itself. It could be a variable. + collectStatsForDie(Die, FnPrefix, VarPrefix, BytesInScope, InlineDepth, + FnStatMap, GlobalStats, LocStats); + } + + // Set InlineDepth correctly for child recursion + if (IsFunction) + InlineDepth = 0; + else if (IsInlinedFunction) + ++InlineDepth; + + // Traverse children. + unsigned LexicalBlockIndex = 0; + unsigned FormalParameterIndex = 0; + DWARFDie Child = Die.getFirstChild(); + while (Child) { + std::string ChildVarPrefix = VarPrefix; + if (Child.getTag() == dwarf::DW_TAG_lexical_block) + ChildVarPrefix += toHex(LexicalBlockIndex++) + '.'; + if (Child.getTag() == dwarf::DW_TAG_formal_parameter) + ChildVarPrefix += 'p' + toHex(FormalParameterIndex++) + '.'; + + collectStatsRecursive(Child, FnPrefix, ChildVarPrefix, BytesInScope, + InlineDepth, FnStatMap, GlobalStats, LocStats); + Child = Child.getSibling(); + } +} + +/// Print human-readable output. +/// \{ +static void printDatum(json::OStream &J, const char *Key, json::Value Value) { + J.attribute(Key, Value); + LLVM_DEBUG(llvm::dbgs() << Key << ": " << Value << '\n'); +} + +static void printLocationStats(json::OStream &J, const char *Key, + std::vector<unsigned> &LocationStats) { + J.attribute( + (Twine(Key) + " with 0% of parent scope covered by DW_AT_location").str(), + LocationStats[0]); + LLVM_DEBUG( + llvm::dbgs() << Key + << " with 0% of parent scope covered by DW_AT_location: \\" + << LocationStats[0] << '\n'); + J.attribute( + (Twine(Key) + " with (0%,10%) of parent scope covered by DW_AT_location") + .str(), + LocationStats[1]); + LLVM_DEBUG(llvm::dbgs() + << Key + << " with (0%,10%) of parent scope covered by DW_AT_location: " + << LocationStats[1] << '\n'); + for (unsigned i = 2; i < NumOfCoverageCategories - 1; ++i) { + J.attribute((Twine(Key) + " with [" + Twine((i - 1) * 10) + "%," + + Twine(i * 10) + "%) of parent scope covered by DW_AT_location") + .str(), + LocationStats[i]); + LLVM_DEBUG(llvm::dbgs() + << Key << " with [" << (i - 1) * 10 << "%," << i * 10 + << "%) of parent scope covered by DW_AT_location: " + << LocationStats[i]); + } + J.attribute( + (Twine(Key) + " with 100% of parent scope covered by DW_AT_location") + .str(), + LocationStats[NumOfCoverageCategories - 1]); + LLVM_DEBUG( + llvm::dbgs() << Key + << " with 100% of parent scope covered by DW_AT_location: " + << LocationStats[NumOfCoverageCategories - 1]); +} + +static void printSectionSizes(json::OStream &J, const SectionSizes &Sizes) { + for (const auto &DebugSec : Sizes.DebugSectionSizes) + J.attribute((Twine("#bytes in ") + DebugSec.getKey()).str(), + int64_t(DebugSec.getValue())); +} + +/// \} + +/// Collect debug info quality metrics for an entire DIContext. +/// +/// Do the impossible and reduce the quality of the debug info down to a few +/// numbers. The idea is to condense the data into numbers that can be tracked +/// over time to identify trends in newer compiler versions and gauge the effect +/// of particular optimizations. The raw numbers themselves are not particularly +/// useful, only the delta between compiling the same program with different +/// compilers is. +bool dwarfdump::collectStatsForObjectFile(ObjectFile &Obj, DWARFContext &DICtx, + const Twine &Filename, + raw_ostream &OS) { + StringRef FormatName = Obj.getFileFormatName(); + GlobalStats GlobalStats; + LocationStats LocStats; + StringMap<PerFunctionStats> Statistics; + for (const auto &CU : static_cast<DWARFContext *>(&DICtx)->compile_units()) + if (DWARFDie CUDie = CU->getNonSkeletonUnitDIE(false)) + collectStatsRecursive(CUDie, "/", "g", 0, 0, Statistics, GlobalStats, + LocStats); + + /// Collect the sizes of debug sections. + SectionSizes Sizes; + calculateSectionSizes(Obj, Sizes, Filename); + + /// The version number should be increased every time the algorithm is changed + /// (including bug fixes). New metrics may be added without increasing the + /// version. + unsigned Version = 6; + unsigned VarParamTotal = 0; + unsigned VarParamUnique = 0; + unsigned VarParamWithLoc = 0; + unsigned NumFunctions = 0; + unsigned NumInlinedFunctions = 0; + unsigned NumFuncsWithSrcLoc = 0; + unsigned NumAbstractOrigins = 0; + unsigned ParamTotal = 0; + unsigned ParamWithType = 0; + unsigned ParamWithLoc = 0; + unsigned ParamWithSrcLoc = 0; + unsigned LocalVarTotal = 0; + unsigned LocalVarWithType = 0; + unsigned LocalVarWithSrcLoc = 0; + unsigned LocalVarWithLoc = 0; + for (auto &Entry : Statistics) { + PerFunctionStats &Stats = Entry.getValue(); + unsigned TotalVars = Stats.VarsInFunction.size() * + (Stats.NumFnInlined + Stats.NumFnOutOfLine); + // Count variables in global scope. + if (!Stats.IsFunction) + TotalVars = + Stats.NumLocalVars + Stats.ConstantMembers + Stats.NumArtificial; + unsigned Constants = Stats.ConstantMembers; + VarParamWithLoc += Stats.TotalVarWithLoc + Constants; + VarParamTotal += TotalVars; + VarParamUnique += Stats.VarsInFunction.size(); + LLVM_DEBUG(for (auto &V + : Stats.VarsInFunction) llvm::dbgs() + << Entry.getKey() << ": " << V.getKey() << "\n"); + NumFunctions += Stats.IsFunction; + NumFuncsWithSrcLoc += Stats.HasSourceLocation; + NumInlinedFunctions += Stats.IsFunction * Stats.NumFnInlined; + NumAbstractOrigins += Stats.IsFunction * Stats.NumAbstractOrigins; + ParamTotal += Stats.NumParams; + ParamWithType += Stats.NumParamTypes; + ParamWithLoc += Stats.NumParamLocations; + ParamWithSrcLoc += Stats.NumParamSourceLocations; + LocalVarTotal += Stats.NumLocalVars; + LocalVarWithType += Stats.NumLocalVarTypes; + LocalVarWithLoc += Stats.NumLocalVarLocations; + LocalVarWithSrcLoc += Stats.NumLocalVarSourceLocations; + } + + // Print summary. + OS.SetBufferSize(1024); + json::OStream J(OS, 2); + J.objectBegin(); + J.attribute("version", Version); + LLVM_DEBUG(llvm::dbgs() << "Variable location quality metrics\n"; + llvm::dbgs() << "---------------------------------\n"); + + printDatum(J, "file", Filename.str()); + printDatum(J, "format", FormatName); + + printDatum(J, "#functions", NumFunctions); + printDatum(J, "#functions with location", NumFuncsWithSrcLoc); + printDatum(J, "#inlined functions", NumInlinedFunctions); + printDatum(J, "#inlined functions with abstract origins", NumAbstractOrigins); + + // This includes local variables and formal parameters. + printDatum(J, "#unique source variables", VarParamUnique); + printDatum(J, "#source variables", VarParamTotal); + printDatum(J, "#source variables with location", VarParamWithLoc); + + printDatum(J, "#call site entries", GlobalStats.CallSiteEntries); + printDatum(J, "#call site DIEs", GlobalStats.CallSiteDIEs); + printDatum(J, "#call site parameter DIEs", GlobalStats.CallSiteParamDIEs); + + printDatum(J, "sum_all_variables(#bytes in parent scope)", + GlobalStats.ScopeBytes); + printDatum(J, + "sum_all_variables(#bytes in any scope covered by DW_AT_location)", + GlobalStats.TotalBytesCovered); + printDatum(J, + "sum_all_variables(#bytes in parent scope covered by " + "DW_AT_location)", + GlobalStats.ScopeBytesCovered); + printDatum(J, + "sum_all_variables(#bytes in parent scope covered by " + "DW_OP_entry_value)", + GlobalStats.ScopeEntryValueBytesCovered); + + printDatum(J, "sum_all_params(#bytes in parent scope)", + GlobalStats.ParamScopeBytes); + printDatum(J, + "sum_all_params(#bytes in parent scope covered by DW_AT_location)", + GlobalStats.ParamScopeBytesCovered); + printDatum(J, + "sum_all_params(#bytes in parent scope covered by " + "DW_OP_entry_value)", + GlobalStats.ParamScopeEntryValueBytesCovered); + + printDatum(J, "sum_all_local_vars(#bytes in parent scope)", + GlobalStats.LocalVarScopeBytes); + printDatum(J, + "sum_all_local_vars(#bytes in parent scope covered by " + "DW_AT_location)", + GlobalStats.LocalVarScopeBytesCovered); + printDatum(J, + "sum_all_local_vars(#bytes in parent scope covered by " + "DW_OP_entry_value)", + GlobalStats.LocalVarScopeEntryValueBytesCovered); + + printDatum(J, "#bytes within functions", GlobalStats.FunctionSize); + printDatum(J, "#bytes within inlined functions", + GlobalStats.InlineFunctionSize); + + // Print the summary for formal parameters. + printDatum(J, "#params", ParamTotal); + printDatum(J, "#params with source location", ParamWithSrcLoc); + printDatum(J, "#params with type", ParamWithType); + printDatum(J, "#params with binary location", ParamWithLoc); + + // Print the summary for local variables. + printDatum(J, "#local vars", LocalVarTotal); + printDatum(J, "#local vars with source location", LocalVarWithSrcLoc); + printDatum(J, "#local vars with type", LocalVarWithType); + printDatum(J, "#local vars with binary location", LocalVarWithLoc); + + // Print the debug section sizes. + printSectionSizes(J, Sizes); + + // Print the location statistics for variables (includes local variables + // and formal parameters). + printDatum(J, "#variables processed by location statistics", + LocStats.NumVarParam); + printLocationStats(J, "#variables", LocStats.VarParamLocStats); + printLocationStats(J, "#variables - entry values", + LocStats.VarParamNonEntryValLocStats); + + // Print the location statistics for formal parameters. + printDatum(J, "#params processed by location statistics", LocStats.NumParam); + printLocationStats(J, "#params", LocStats.ParamLocStats); + printLocationStats(J, "#params - entry values", + LocStats.ParamNonEntryValLocStats); + + // Print the location statistics for local variables. + printDatum(J, "#local vars processed by location statistics", + LocStats.NumVar); + printLocationStats(J, "#local vars", LocStats.LocalVarLocStats); + printLocationStats(J, "#local vars - entry values", + LocStats.LocalVarNonEntryValLocStats); + J.objectEnd(); + OS << '\n'; + LLVM_DEBUG( + llvm::dbgs() << "Total Availability: " + << (int)std::round((VarParamWithLoc * 100.0) / VarParamTotal) + << "%\n"; + llvm::dbgs() << "PC Ranges covered: " + << (int)std::round((GlobalStats.ScopeBytesCovered * 100.0) / + GlobalStats.ScopeBytes) + << "%\n"); + return true; +} |