aboutsummaryrefslogtreecommitdiffstats
path: root/library/cpp/linear_regression
diff options
context:
space:
mode:
authorVlad Yaroslavlev <vladon@vladon.com>2022-02-10 16:46:25 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:46:25 +0300
commit344ea37b4a345701ab0e67de2266a1c1bd7baf2d (patch)
tree1a2c5ffcf89eb53ecd79dbc9bc0a195c27404d0c /library/cpp/linear_regression
parent706b83ed7de5a473436620367af31fc0ceecde07 (diff)
downloadydb-344ea37b4a345701ab0e67de2266a1c1bd7baf2d.tar.gz
Restoring authorship annotation for Vlad Yaroslavlev <vladon@vladon.com>. Commit 2 of 2.
Diffstat (limited to 'library/cpp/linear_regression')
-rw-r--r--library/cpp/linear_regression/benchmark/pool.cpp10
-rw-r--r--library/cpp/linear_regression/benchmark/pool.h10
-rw-r--r--library/cpp/linear_regression/linear_regression.cpp58
-rw-r--r--library/cpp/linear_regression/linear_regression.h32
-rw-r--r--library/cpp/linear_regression/linear_regression_ut.cpp32
-rw-r--r--library/cpp/linear_regression/unimodal.cpp14
-rw-r--r--library/cpp/linear_regression/unimodal.h12
7 files changed, 84 insertions, 84 deletions
diff --git a/library/cpp/linear_regression/benchmark/pool.cpp b/library/cpp/linear_regression/benchmark/pool.cpp
index 5e014e575c..7f2c6a7004 100644
--- a/library/cpp/linear_regression/benchmark/pool.cpp
+++ b/library/cpp/linear_regression/benchmark/pool.cpp
@@ -3,7 +3,7 @@
#include <util/string/cast.h>
#include <util/stream/file.h>
-TInstance TInstance::FromFeaturesString(const TString& featuresString) {
+TInstance TInstance::FromFeaturesString(const TString& featuresString) {
TInstance instance;
TStringBuf featuresStringBuf(featuresString);
@@ -29,7 +29,7 @@ TPool::TCVIterator::TCVIterator(const TPool& parentPool, const size_t foldsCount
}
void TPool::TCVIterator::ResetShuffle() {
- TVector<size_t> instanceNumbers(ParentPool.size());
+ TVector<size_t> instanceNumbers(ParentPool.size());
for (size_t instanceNumber = 0; instanceNumber < ParentPool.size(); ++instanceNumber) {
instanceNumbers[instanceNumber] = instanceNumber;
}
@@ -83,9 +83,9 @@ bool TPool::TCVIterator::TakeCurrent() const {
return false;
}
-void TPool::ReadFromFeatures(const TString& featuresPath) {
- TFileInput featuresIn(featuresPath);
- TString featuresString;
+void TPool::ReadFromFeatures(const TString& featuresPath) {
+ TFileInput featuresIn(featuresPath);
+ TString featuresString;
while (featuresIn.ReadLine(featuresString)) {
this->push_back(TInstance::FromFeaturesString(featuresString));
}
diff --git a/library/cpp/linear_regression/benchmark/pool.h b/library/cpp/linear_regression/benchmark/pool.h
index 88140b7dd1..43288319c8 100644
--- a/library/cpp/linear_regression/benchmark/pool.h
+++ b/library/cpp/linear_regression/benchmark/pool.h
@@ -1,17 +1,17 @@
#pragma once
#include <util/generic/vector.h>
-#include <util/generic/string.h>
+#include <util/generic/string.h>
#include <util/random/mersenne.h>
#include <util/random/shuffle.h>
struct TInstance {
- TVector<double> Features;
+ TVector<double> Features;
double Goal;
double Weight;
- static TInstance FromFeaturesString(const TString& featuresString);
+ static TInstance FromFeaturesString(const TString& featuresString);
};
struct TPool: public TVector<TInstance> {
@@ -29,7 +29,7 @@ struct TPool: public TVector<TInstance> {
EIteratorType IteratorType;
size_t TestFoldNumber;
- TVector<size_t> InstanceFoldNumbers;
+ TVector<size_t> InstanceFoldNumbers;
const size_t* Current;
TMersenne<ui64> RandomGenerator;
@@ -54,7 +54,7 @@ struct TPool: public TVector<TInstance> {
bool TakeCurrent() const;
};
- void ReadFromFeatures(const TString& featuresPath);
+ void ReadFromFeatures(const TString& featuresPath);
TCVIterator CrossValidationIterator(const size_t foldsCount, const EIteratorType iteratorType) const;
TPool InjurePool(const double injureFactir, const double injureOffset) const;
diff --git a/library/cpp/linear_regression/linear_regression.cpp b/library/cpp/linear_regression/linear_regression.cpp
index 6fc5a40178..150f9d214e 100644
--- a/library/cpp/linear_regression/linear_regression.cpp
+++ b/library/cpp/linear_regression/linear_regression.cpp
@@ -12,17 +12,17 @@
#include <functional>
namespace {
- inline void AddFeaturesProduct(const double weight, const TVector<double>& features, TVector<double>& linearizedOLSTriangleMatrix);
+ inline void AddFeaturesProduct(const double weight, const TVector<double>& features, TVector<double>& linearizedOLSTriangleMatrix);
- TVector<double> Solve(const TVector<double>& olsMatrix, const TVector<double>& olsVector);
+ TVector<double> Solve(const TVector<double>& olsMatrix, const TVector<double>& olsVector);
- double SumSquaredErrors(const TVector<double>& olsMatrix,
- const TVector<double>& olsVector,
- const TVector<double>& solution,
+ double SumSquaredErrors(const TVector<double>& olsMatrix,
+ const TVector<double>& olsVector,
+ const TVector<double>& solution,
const double goalsDeviation);
}
-bool TFastLinearRegressionSolver::Add(const TVector<double>& features, const double goal, const double weight) {
+bool TFastLinearRegressionSolver::Add(const TVector<double>& features, const double goal, const double weight) {
const size_t featuresCount = features.size();
if (LinearizedOLSMatrix.empty()) {
@@ -45,7 +45,7 @@ bool TFastLinearRegressionSolver::Add(const TVector<double>& features, const dou
return true;
}
-bool TLinearRegressionSolver::Add(const TVector<double>& features, const double goal, const double weight) {
+bool TLinearRegressionSolver::Add(const TVector<double>& features, const double goal, const double weight) {
const size_t featuresCount = features.size();
if (FeatureMeans.empty()) {
@@ -114,7 +114,7 @@ bool TLinearRegressionSolver::Add(const TVector<double>& features, const double
}
TLinearModel TFastLinearRegressionSolver::Solve() const {
- TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
+ TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
double intercept = 0.;
if (!coefficients.empty()) {
@@ -126,7 +126,7 @@ TLinearModel TFastLinearRegressionSolver::Solve() const {
}
TLinearModel TLinearRegressionSolver::Solve() const {
- TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
+ TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
double intercept = GoalsMean;
const size_t featuresCount = OLSVector.size();
@@ -138,12 +138,12 @@ TLinearModel TLinearRegressionSolver::Solve() const {
}
double TFastLinearRegressionSolver::SumSquaredErrors() const {
- const TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
+ const TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
return ::SumSquaredErrors(LinearizedOLSMatrix, OLSVector, coefficients, SumSquaredGoals.Get());
}
double TLinearRegressionSolver::SumSquaredErrors() const {
- const TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
+ const TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
return ::SumSquaredErrors(LinearizedOLSMatrix, OLSVector, coefficients, GoalsDeviation);
}
@@ -194,10 +194,10 @@ double TSLRSolver::SumSquaredErrors(const double regularizationParameter) const
namespace {
// LDL matrix decomposition, see http://en.wikipedia.org/wiki/Cholesky_decomposition#LDL_decomposition_2
- bool LDLDecomposition(const TVector<double>& linearizedOLSMatrix,
+ bool LDLDecomposition(const TVector<double>& linearizedOLSMatrix,
const double regularizationThreshold,
const double regularizationParameter,
- TVector<double>& decompositionTrace,
+ TVector<double>& decompositionTrace,
TVector<TVector<double>>& decompositionMatrix) {
const size_t featuresCount = decompositionTrace.size();
@@ -206,7 +206,7 @@ namespace {
double& decompositionTraceElement = decompositionTrace[rowNumber];
decompositionTraceElement = linearizedOLSMatrix[olsMatrixElementIdx] + regularizationParameter;
- TVector<double>& decompositionRow = decompositionMatrix[rowNumber];
+ TVector<double>& decompositionRow = decompositionMatrix[rowNumber];
for (size_t i = 0; i < rowNumber; ++i) {
decompositionTraceElement -= decompositionRow[i] * decompositionRow[i] * decompositionTrace[i];
}
@@ -218,7 +218,7 @@ namespace {
++olsMatrixElementIdx;
decompositionRow[rowNumber] = 1.;
for (size_t columnNumber = rowNumber + 1; columnNumber < featuresCount; ++columnNumber) {
- TVector<double>& secondDecompositionRow = decompositionMatrix[columnNumber];
+ TVector<double>& secondDecompositionRow = decompositionMatrix[columnNumber];
double& decompositionMatrixElement = secondDecompositionRow[rowNumber];
decompositionMatrixElement = linearizedOLSMatrix[olsMatrixElementIdx];
@@ -237,8 +237,8 @@ namespace {
return true;
}
- void LDLDecomposition(const TVector<double>& linearizedOLSMatrix,
- TVector<double>& decompositionTrace,
+ void LDLDecomposition(const TVector<double>& linearizedOLSMatrix,
+ TVector<double>& decompositionTrace,
TVector<TVector<double>>& decompositionMatrix) {
const double regularizationThreshold = 1e-5;
double regularizationParameter = 0.;
@@ -253,16 +253,16 @@ namespace {
}
TVector<double> SolveLower(const TVector<TVector<double>>& decompositionMatrix,
- const TVector<double>& decompositionTrace,
+ const TVector<double>& decompositionTrace,
const TVector<double>& olsVector) {
const size_t featuresCount = olsVector.size();
- TVector<double> solution(featuresCount);
+ TVector<double> solution(featuresCount);
for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) {
double& solutionElement = solution[featureNumber];
solutionElement = olsVector[featureNumber];
- const TVector<double>& decompositionRow = decompositionMatrix[featureNumber];
+ const TVector<double>& decompositionRow = decompositionMatrix[featureNumber];
for (size_t i = 0; i < featureNumber; ++i) {
solutionElement -= solution[i] * decompositionRow[i];
}
@@ -279,12 +279,12 @@ namespace {
const TVector<double>& lowerSolution) {
const size_t featuresCount = lowerSolution.size();
- TVector<double> solution(featuresCount);
+ TVector<double> solution(featuresCount);
for (size_t featureNumber = featuresCount; featureNumber > 0; --featureNumber) {
double& solutionElement = solution[featureNumber - 1];
solutionElement = lowerSolution[featureNumber - 1];
- const TVector<double>& decompositionRow = decompositionMatrix[featureNumber - 1];
+ const TVector<double>& decompositionRow = decompositionMatrix[featureNumber - 1];
for (size_t i = featureNumber; i < featuresCount; ++i) {
solutionElement -= solution[i] * decompositionRow[i];
}
@@ -293,10 +293,10 @@ namespace {
return solution;
}
- TVector<double> Solve(const TVector<double>& olsMatrix, const TVector<double>& olsVector) {
+ TVector<double> Solve(const TVector<double>& olsMatrix, const TVector<double>& olsVector) {
const size_t featuresCount = olsVector.size();
- TVector<double> decompositionTrace(featuresCount);
+ TVector<double> decompositionTrace(featuresCount);
TVector<TVector<double>> decompositionMatrix(featuresCount, TVector<double>(featuresCount));
LDLDecomposition(olsMatrix, decompositionTrace, decompositionMatrix);
@@ -304,9 +304,9 @@ namespace {
return SolveUpper(decompositionMatrix, SolveLower(decompositionMatrix, decompositionTrace, olsVector));
}
- double SumSquaredErrors(const TVector<double>& olsMatrix,
- const TVector<double>& olsVector,
- const TVector<double>& solution,
+ double SumSquaredErrors(const TVector<double>& olsMatrix,
+ const TVector<double>& olsVector,
+ const TVector<double>& solution,
const double goalsDeviation) {
const size_t featuresCount = olsVector.size();
@@ -325,7 +325,7 @@ namespace {
}
#ifdef _sse2_
- inline void AddFeaturesProduct(const double weight, const TVector<double>& features, TVector<double>& linearizedOLSTriangleMatrix) {
+ inline void AddFeaturesProduct(const double weight, const TVector<double>& features, TVector<double>& linearizedOLSTriangleMatrix) {
const double* leftFeature = features.data();
const double* featuresEnd = features.data() + features.size();
double* matrixElement = linearizedOLSTriangleMatrix.data();
@@ -351,7 +351,7 @@ namespace {
linearizedOLSTriangleMatrix.back() += weight;
}
#else
- inline void AddFeaturesProduct(const double weight, const TVector<double>& features, TVector<double>& linearizedTriangleMatrix) {
+ inline void AddFeaturesProduct(const double weight, const TVector<double>& features, TVector<double>& linearizedTriangleMatrix) {
const double* leftFeature = features.data();
const double* featuresEnd = features.data() + features.size();
double* matrixElement = linearizedTriangleMatrix.data();
diff --git a/library/cpp/linear_regression/linear_regression.h b/library/cpp/linear_regression/linear_regression.h
index f1596fb024..e57de5ff6c 100644
--- a/library/cpp/linear_regression/linear_regression.h
+++ b/library/cpp/linear_regression/linear_regression.h
@@ -13,11 +13,11 @@ class TFastLinearRegressionSolver {
private:
TKahanAccumulator<double> SumSquaredGoals;
- TVector<double> LinearizedOLSMatrix;
- TVector<double> OLSVector;
+ TVector<double> LinearizedOLSMatrix;
+ TVector<double> OLSVector;
public:
- bool Add(const TVector<double>& features, const double goal, const double weight = 1.);
+ bool Add(const TVector<double>& features, const double goal, const double weight = 1.);
TLinearModel Solve() const;
double SumSquaredErrors() const;
};
@@ -27,17 +27,17 @@ private:
double GoalsMean = 0.;
double GoalsDeviation = 0.;
- TVector<double> FeatureMeans;
- TVector<double> LastMeans;
- TVector<double> NewMeans;
- TVector<double> LinearizedOLSMatrix;
+ TVector<double> FeatureMeans;
+ TVector<double> LastMeans;
+ TVector<double> NewMeans;
+ TVector<double> LinearizedOLSMatrix;
- TVector<double> OLSVector;
+ TVector<double> OLSVector;
TKahanAccumulator<double> SumWeights;
public:
- bool Add(const TVector<double>& features, const double goal, const double weight = 1.);
+ bool Add(const TVector<double>& features, const double goal, const double weight = 1.);
TLinearModel Solve() const;
double SumSquaredErrors() const;
};
@@ -145,12 +145,12 @@ public:
bool Add(const double* featuresBegin, const double* featuresEnd, const double* goalsBegin);
bool Add(const double* featuresBegin, const double* featuresEnd, const double* goalsBegin, const double* weightsBegin);
- bool Add(const TVector<double>& features, const TVector<double>& goals) {
+ bool Add(const TVector<double>& features, const TVector<double>& goals) {
Y_ASSERT(features.size() == goals.size());
return Add(features.data(), features.data() + features.size(), goals.data());
}
- bool Add(const TVector<double>& features, const TVector<double>& goals, const TVector<double>& weights) {
+ bool Add(const TVector<double>& features, const TVector<double>& goals, const TVector<double>& weights) {
Y_ASSERT(features.size() == goals.size() && features.size() == weights.size());
return Add(features.data(), features.data() + features.size(), goals.data(), weights.data());
}
@@ -177,10 +177,10 @@ public:
template <typename TSLRSolverType>
class TTypedBestSLRSolver {
private:
- TVector<TSLRSolverType> SLRSolvers;
+ TVector<TSLRSolverType> SLRSolvers;
public:
- bool Add(const TVector<double>& features, const double goal, const double weight = 1.) {
+ bool Add(const TVector<double>& features, const double goal, const double weight = 1.) {
if (SLRSolvers.empty()) {
SLRSolvers.resize(features.size());
}
@@ -200,7 +200,7 @@ public:
}
}
- TVector<double> coefficients(SLRSolvers.size());
+ TVector<double> coefficients(SLRSolvers.size());
double intercept = 0.0;
if (bestSolver) {
bestSolver->Solve(coefficients[bestSolver - SLRSolvers.begin()], intercept, regularizationParameter);
@@ -289,7 +289,7 @@ private:
float MaximalArgument = Min<float>();
ETransformationType TransformationType;
- TVector<TPoint> Points;
+ TVector<TPoint> Points;
public:
TFeaturesTransformerLearner(const ETransformationType transformationType)
@@ -315,7 +315,7 @@ private:
TMeanCalculator TargetsMean;
};
- THashMap<double, TBucket> Buckets;
+ THashMap<double, TBucket> Buckets;
double Step;
public:
diff --git a/library/cpp/linear_regression/linear_regression_ut.cpp b/library/cpp/linear_regression/linear_regression_ut.cpp
index 6915c3821d..e71a16b67a 100644
--- a/library/cpp/linear_regression/linear_regression_ut.cpp
+++ b/library/cpp/linear_regression/linear_regression_ut.cpp
@@ -15,8 +15,8 @@ namespace {
Y_UNIT_TEST_SUITE(TLinearRegressionTest) {
Y_UNIT_TEST(MeanAndDeviationTest) {
- TVector<double> arguments;
- TVector<double> weights;
+ TVector<double> arguments;
+ TVector<double> weights;
const size_t argumentsCount = 100;
for (size_t i = 0; i < argumentsCount; ++i) {
@@ -78,9 +78,9 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) {
}
Y_UNIT_TEST(CovariationTest) {
- TVector<double> firstValues;
- TVector<double> secondValues;
- TVector<double> weights;
+ TVector<double> firstValues;
+ TVector<double> secondValues;
+ TVector<double> weights;
const size_t argumentsCount = 100;
for (size_t i = 0; i < argumentsCount; ++i) {
@@ -130,9 +130,9 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) {
template <typename TSLRSolverType>
void SLRTest() {
- TVector<double> arguments;
- TVector<double> weights;
- TVector<double> goals;
+ TVector<double> arguments;
+ TVector<double> weights;
+ TVector<double> goals;
const double factor = 2.;
const double intercept = 105.;
@@ -194,18 +194,18 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) {
const size_t instancesCount = 10000;
const double randomError = 0.01;
- TVector<double> coefficients;
+ TVector<double> coefficients;
for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) {
coefficients.push_back(featureNumber);
}
const double intercept = 10;
TVector<TVector<double>> featuresMatrix;
- TVector<double> goals;
- TVector<double> weights;
+ TVector<double> goals;
+ TVector<double> weights;
for (size_t instanceNumber = 0; instanceNumber < instancesCount; ++instanceNumber) {
- TVector<double> features;
+ TVector<double> features;
for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) {
features.push_back(RandomNumber<double>());
}
@@ -240,8 +240,8 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) {
}
void TransformationTest(const ETransformationType transformationType, const size_t pointsCount) {
- TVector<float> arguments;
- TVector<float> goals;
+ TVector<float> arguments;
+ TVector<float> goals;
const double regressionFactor = 10.;
const double regressionIntercept = 100;
@@ -300,8 +300,8 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) {
}
Y_UNIT_TEST(ResetCalculatorTest) {
- TVector<double> arguments;
- TVector<double> weights;
+ TVector<double> arguments;
+ TVector<double> weights;
const double eps = 1e-10;
const size_t argumentsCount = 100;
diff --git a/library/cpp/linear_regression/unimodal.cpp b/library/cpp/linear_regression/unimodal.cpp
index bbca9e9463..729011012a 100644
--- a/library/cpp/linear_regression/unimodal.cpp
+++ b/library/cpp/linear_regression/unimodal.cpp
@@ -22,7 +22,7 @@ namespace {
double SSE = 0.;
- TOptimizationState(const TVector<double>& values) {
+ TOptimizationState(const TVector<double>& values) {
SSE = InnerProduct(values, values);
}
@@ -44,7 +44,7 @@ double TGreedyParams::Point(const size_t step) const {
return LowerBound * (1 - alpha) + UpperBound * alpha;
}
-double MakeUnimodal(TVector<double>& values, const TOptimizationParams& optimizationParams) {
+double MakeUnimodal(TVector<double>& values, const TOptimizationParams& optimizationParams) {
TOptimizationState state(values);
TOptimizationState bestState = state;
@@ -80,19 +80,19 @@ double MakeUnimodal(TVector<double>& values, const TOptimizationParams& optimiza
return determination;
}
-double MakeUnimodal(TVector<double>& values) {
+double MakeUnimodal(TVector<double>& values) {
return MakeUnimodal(values, TOptimizationParams::Default(values));
}
-double MakeUnimodal(TVector<double>& values, const TVector<double>& arguments, const TOptimizationParams& optimizationParams) {
+double MakeUnimodal(TVector<double>& values, const TVector<double>& arguments, const TOptimizationParams& optimizationParams) {
Y_ASSERT(values.size() == arguments.size());
- TMap<double, double> mapping;
+ TMap<double, double> mapping;
for (size_t i = 0; i < values.size(); ++i) {
mapping[arguments[i]] = values[i];
}
- TVector<double> preparedValues;
+ TVector<double> preparedValues;
preparedValues.reserve(mapping.size());
for (auto&& argWithValue : mapping) {
@@ -113,6 +113,6 @@ double MakeUnimodal(TVector<double>& values, const TVector<double>& arguments, c
return result;
}
-double MakeUnimodal(TVector<double>& values, const TVector<double>& arguments) {
+double MakeUnimodal(TVector<double>& values, const TVector<double>& arguments) {
return MakeUnimodal(values, arguments, TOptimizationParams::Default(values, arguments));
}
diff --git a/library/cpp/linear_regression/unimodal.h b/library/cpp/linear_regression/unimodal.h
index 21d6ae8782..e11b1118f6 100644
--- a/library/cpp/linear_regression/unimodal.h
+++ b/library/cpp/linear_regression/unimodal.h
@@ -21,7 +21,7 @@ struct TOptimizationParams {
TOptimizationParams() = default;
- static TOptimizationParams Default(const TVector<double>& values) {
+ static TOptimizationParams Default(const TVector<double>& values) {
TOptimizationParams optimizationParams;
optimizationParams.ModeParams.LowerBound = 0;
@@ -35,7 +35,7 @@ struct TOptimizationParams {
return optimizationParams;
}
- static TOptimizationParams Default(const TVector<double>& values, const TVector<double>& arguments) {
+ static TOptimizationParams Default(const TVector<double>& values, const TVector<double>& arguments) {
Y_ASSERT(values.size() == arguments.size());
TOptimizationParams optimizationParams;
@@ -52,8 +52,8 @@ struct TOptimizationParams {
}
};
-double MakeUnimodal(TVector<double>& values, const TOptimizationParams& optimizationParams);
-double MakeUnimodal(TVector<double>& values);
+double MakeUnimodal(TVector<double>& values, const TOptimizationParams& optimizationParams);
+double MakeUnimodal(TVector<double>& values);
-double MakeUnimodal(TVector<double>& values, const TVector<double>& arguments, const TOptimizationParams& optimizationParams);
-double MakeUnimodal(TVector<double>& values, const TVector<double>& arguments);
+double MakeUnimodal(TVector<double>& values, const TVector<double>& arguments, const TOptimizationParams& optimizationParams);
+double MakeUnimodal(TVector<double>& values, const TVector<double>& arguments);