aboutsummaryrefslogtreecommitdiffstats
path: root/library/cpp/linear_regression/unimodal.cpp
diff options
context:
space:
mode:
authorDevtools Arcadia <arcadia-devtools@yandex-team.ru>2022-02-07 18:08:42 +0300
committerDevtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net>2022-02-07 18:08:42 +0300
commit1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch)
treee26c9fed0de5d9873cce7e00bc214573dc2195b7 /library/cpp/linear_regression/unimodal.cpp
downloadydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'library/cpp/linear_regression/unimodal.cpp')
-rw-r--r--library/cpp/linear_regression/unimodal.cpp118
1 files changed, 118 insertions, 0 deletions
diff --git a/library/cpp/linear_regression/unimodal.cpp b/library/cpp/linear_regression/unimodal.cpp
new file mode 100644
index 0000000000..729011012a
--- /dev/null
+++ b/library/cpp/linear_regression/unimodal.cpp
@@ -0,0 +1,118 @@
+#include "unimodal.h"
+
+#include "linear_regression.h"
+
+#include <util/generic/map.h>
+#include <util/generic/ymath.h>
+
+namespace {
+ double SimpleUnimodal(const double value) {
+ if (value > 5) {
+ return 0.;
+ }
+ return 1. / (value * value + 1.);
+ }
+
+ struct TOptimizationState {
+ double Mode = 0.;
+ double Normalizer = 1.;
+
+ double RegressionFactor = 0.;
+ double RegressionIntercept = 0.;
+
+ double SSE = 0.;
+
+ TOptimizationState(const TVector<double>& values) {
+ SSE = InnerProduct(values, values);
+ }
+
+ double NoRegressionTransform(const double value) const {
+ const double arg = (value - Mode) / Normalizer;
+ return SimpleUnimodal(arg);
+ }
+
+ double RegressionTransform(const double value) const {
+ return NoRegressionTransform(value) * RegressionFactor + RegressionIntercept;
+ }
+ };
+}
+
+double TGreedyParams::Point(const size_t step) const {
+ Y_ASSERT(step <= StepsCount);
+
+ const double alpha = (double)step / StepsCount;
+ return LowerBound * (1 - alpha) + UpperBound * alpha;
+}
+
+double MakeUnimodal(TVector<double>& values, const TOptimizationParams& optimizationParams) {
+ TOptimizationState state(values);
+ TOptimizationState bestState = state;
+
+ for (size_t modeStep = 0; modeStep <= optimizationParams.ModeParams.StepsCount; ++modeStep) {
+ state.Mode = optimizationParams.ModeParams.Point(modeStep);
+ for (size_t normalizerStep = 0; normalizerStep <= optimizationParams.NormalizerParams.StepsCount; ++normalizerStep) {
+ state.Normalizer = optimizationParams.NormalizerParams.Point(normalizerStep);
+
+ TSLRSolver solver;
+ for (size_t i = 0; i < values.size(); ++i) {
+ solver.Add(state.NoRegressionTransform(i), values[i]);
+ }
+
+ state.SSE = solver.SumSquaredErrors(optimizationParams.RegressionShrinkage);
+ if (state.SSE >= bestState.SSE) {
+ continue;
+ }
+
+ bestState = state;
+ solver.Solve(bestState.RegressionFactor, bestState.RegressionIntercept, optimizationParams.RegressionShrinkage);
+ }
+ }
+
+ for (size_t i = 0; i < values.size(); ++i) {
+ values[i] = bestState.RegressionTransform(i);
+ }
+
+ const double residualSSE = bestState.SSE;
+ const double totalSSE = InnerProduct(values, values);
+
+ const double determination = 1. - residualSSE / totalSSE;
+
+ return determination;
+}
+
+double MakeUnimodal(TVector<double>& values) {
+ return MakeUnimodal(values, TOptimizationParams::Default(values));
+}
+
+double MakeUnimodal(TVector<double>& values, const TVector<double>& arguments, const TOptimizationParams& optimizationParams) {
+ Y_ASSERT(values.size() == arguments.size());
+
+ TMap<double, double> mapping;
+ for (size_t i = 0; i < values.size(); ++i) {
+ mapping[arguments[i]] = values[i];
+ }
+
+ TVector<double> preparedValues;
+ preparedValues.reserve(mapping.size());
+
+ for (auto&& argWithValue : mapping) {
+ preparedValues.push_back(argWithValue.second);
+ }
+
+ const double result = MakeUnimodal(preparedValues, optimizationParams);
+
+ size_t pos = 0;
+ for (auto&& argWithValue : mapping) {
+ argWithValue.second = preparedValues[pos++];
+ }
+
+ for (size_t i = 0; i < values.size(); ++i) {
+ values[i] = mapping[arguments[i]];
+ }
+
+ return result;
+}
+
+double MakeUnimodal(TVector<double>& values, const TVector<double>& arguments) {
+ return MakeUnimodal(values, arguments, TOptimizationParams::Default(values, arguments));
+}