diff options
author | Vlad Yaroslavlev <vladon@vladon.com> | 2022-02-10 16:46:23 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:46:23 +0300 |
commit | 706b83ed7de5a473436620367af31fc0ceecde07 (patch) | |
tree | 103305d30dec77e8f6367753367f59b3cd68f9f1 /library/cpp/linear_regression/linear_regression_ut.cpp | |
parent | 918e8a1574070d0ec733f0b76cfad8f8892ad2e5 (diff) | |
download | ydb-706b83ed7de5a473436620367af31fc0ceecde07.tar.gz |
Restoring authorship annotation for Vlad Yaroslavlev <vladon@vladon.com>. Commit 1 of 2.
Diffstat (limited to 'library/cpp/linear_regression/linear_regression_ut.cpp')
-rw-r--r-- | library/cpp/linear_regression/linear_regression_ut.cpp | 32 |
1 files changed, 16 insertions, 16 deletions
diff --git a/library/cpp/linear_regression/linear_regression_ut.cpp b/library/cpp/linear_regression/linear_regression_ut.cpp index e71a16b67a..6915c3821d 100644 --- a/library/cpp/linear_regression/linear_regression_ut.cpp +++ b/library/cpp/linear_regression/linear_regression_ut.cpp @@ -15,8 +15,8 @@ namespace { Y_UNIT_TEST_SUITE(TLinearRegressionTest) { Y_UNIT_TEST(MeanAndDeviationTest) { - TVector<double> arguments; - TVector<double> weights; + TVector<double> arguments; + TVector<double> weights; const size_t argumentsCount = 100; for (size_t i = 0; i < argumentsCount; ++i) { @@ -78,9 +78,9 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) { } Y_UNIT_TEST(CovariationTest) { - TVector<double> firstValues; - TVector<double> secondValues; - TVector<double> weights; + TVector<double> firstValues; + TVector<double> secondValues; + TVector<double> weights; const size_t argumentsCount = 100; for (size_t i = 0; i < argumentsCount; ++i) { @@ -130,9 +130,9 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) { template <typename TSLRSolverType> void SLRTest() { - TVector<double> arguments; - TVector<double> weights; - TVector<double> goals; + TVector<double> arguments; + TVector<double> weights; + TVector<double> goals; const double factor = 2.; const double intercept = 105.; @@ -194,18 +194,18 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) { const size_t instancesCount = 10000; const double randomError = 0.01; - TVector<double> coefficients; + TVector<double> coefficients; for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) { coefficients.push_back(featureNumber); } const double intercept = 10; TVector<TVector<double>> featuresMatrix; - TVector<double> goals; - TVector<double> weights; + TVector<double> goals; + TVector<double> weights; for (size_t instanceNumber = 0; instanceNumber < instancesCount; ++instanceNumber) { - TVector<double> features; + TVector<double> features; for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) { features.push_back(RandomNumber<double>()); } @@ -240,8 +240,8 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) { } void TransformationTest(const ETransformationType transformationType, const size_t pointsCount) { - TVector<float> arguments; - TVector<float> goals; + TVector<float> arguments; + TVector<float> goals; const double regressionFactor = 10.; const double regressionIntercept = 100; @@ -300,8 +300,8 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) { } Y_UNIT_TEST(ResetCalculatorTest) { - TVector<double> arguments; - TVector<double> weights; + TVector<double> arguments; + TVector<double> weights; const double eps = 1e-10; const size_t argumentsCount = 100; |