aboutsummaryrefslogtreecommitdiffstats
path: root/library/cpp/linear_regression/linear_regression_ut.cpp
diff options
context:
space:
mode:
authornkmakarov <nkmakarov@yandex-team.ru>2022-02-10 16:49:06 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:49:06 +0300
commit324348a37ed08cf66897faefb0ec4bebfe7804e1 (patch)
tree8736a3afd6953763bf57544746bf1b8b5404dec6 /library/cpp/linear_regression/linear_regression_ut.cpp
parent5eddcf9f19515e4be1e49ba1482d920e007a07d1 (diff)
downloadydb-324348a37ed08cf66897faefb0ec4bebfe7804e1.tar.gz
Restoring authorship annotation for <nkmakarov@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'library/cpp/linear_regression/linear_regression_ut.cpp')
-rw-r--r--library/cpp/linear_regression/linear_regression_ut.cpp140
1 files changed, 70 insertions, 70 deletions
diff --git a/library/cpp/linear_regression/linear_regression_ut.cpp b/library/cpp/linear_regression/linear_regression_ut.cpp
index e71a16b67a..0a31a6e25c 100644
--- a/library/cpp/linear_regression/linear_regression_ut.cpp
+++ b/library/cpp/linear_regression/linear_regression_ut.cpp
@@ -298,77 +298,77 @@ Y_UNIT_TEST_SUITE(TLinearRegressionTest) {
Y_UNIT_TEST(SigmaTest10000000) {
TransformationTest(ETransformationType::TT_SIGMA, 10000000);
}
-
+
Y_UNIT_TEST(ResetCalculatorTest) {
TVector<double> arguments;
TVector<double> weights;
- const double eps = 1e-10;
-
- const size_t argumentsCount = 100;
- for (size_t i = 0; i < argumentsCount; ++i) {
- arguments.push_back(i);
- weights.push_back(i);
- }
-
- TDeviationCalculator deviationCalculator1, deviationCalculator2;
- TMeanCalculator meanCalculator1, meanCalculator2;
- TCovariationCalculator covariationCalculator1, covariationCalculator2;
- for (size_t i = 0; i < arguments.size(); ++i) {
- meanCalculator1.Add(arguments[i], weights[i]);
- meanCalculator2.Add(arguments[i], weights[i]);
- deviationCalculator1.Add(arguments[i], weights[i]);
- deviationCalculator2.Add(arguments[i], weights[i]);
- covariationCalculator1.Add(arguments[i], arguments[arguments.size() - i - 1], weights[i]);
- covariationCalculator2.Add(arguments[i], arguments[arguments.size() - i - 1], weights[i]);
- }
-
- UNIT_ASSERT_DOUBLES_EQUAL(meanCalculator1.GetMean(), meanCalculator2.GetMean(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(meanCalculator1.GetSumWeights(), meanCalculator2.GetSumWeights(), eps);
-
- UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetMean(), deviationCalculator2.GetMean(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetDeviation(), deviationCalculator2.GetDeviation(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetStdDev(), deviationCalculator2.GetStdDev(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetSumWeights(), deviationCalculator2.GetSumWeights(), eps);
-
- UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetFirstValueMean(), covariationCalculator2.GetFirstValueMean(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetSecondValueMean(), covariationCalculator2.GetSecondValueMean(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetCovariation(), covariationCalculator2.GetCovariation(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetSumWeights(), covariationCalculator2.GetSumWeights(), eps);
-
- meanCalculator2.Reset();
- deviationCalculator2.Reset();
- covariationCalculator2.Reset();
-
- UNIT_ASSERT_DOUBLES_EQUAL(0.0, meanCalculator2.GetMean(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(0.0, meanCalculator2.GetSumWeights(), eps);
-
- UNIT_ASSERT_DOUBLES_EQUAL(0.0, deviationCalculator2.GetMean(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(0.0, deviationCalculator2.GetDeviation(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(0.0, deviationCalculator2.GetStdDev(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(0.0, deviationCalculator2.GetSumWeights(), eps);
-
- UNIT_ASSERT_DOUBLES_EQUAL(0.0, covariationCalculator2.GetFirstValueMean(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(0.0, covariationCalculator2.GetSecondValueMean(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(0.0, covariationCalculator2.GetCovariation(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(0.0, covariationCalculator2.GetSumWeights(), eps);
-
- for (size_t i = 0; i < arguments.size(); ++i) {
- meanCalculator2.Add(arguments[i], weights[i]);
- deviationCalculator2.Add(arguments[i], weights[i]);
- covariationCalculator2.Add(arguments[i], arguments[arguments.size() - i - 1], weights[i]);
- }
-
- UNIT_ASSERT_DOUBLES_EQUAL(meanCalculator1.GetMean(), meanCalculator2.GetMean(), 1e-10);
- UNIT_ASSERT_DOUBLES_EQUAL(meanCalculator1.GetSumWeights(), meanCalculator2.GetSumWeights(), 1e-10);
-
- UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetMean(), deviationCalculator2.GetMean(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetDeviation(), deviationCalculator2.GetDeviation(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetStdDev(), deviationCalculator2.GetStdDev(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetSumWeights(), deviationCalculator2.GetSumWeights(), eps);
-
- UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetFirstValueMean(), covariationCalculator2.GetFirstValueMean(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetSecondValueMean(), covariationCalculator2.GetSecondValueMean(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetCovariation(), covariationCalculator2.GetCovariation(), eps);
- UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetSumWeights(), covariationCalculator2.GetSumWeights(), eps);
- }
+ const double eps = 1e-10;
+
+ const size_t argumentsCount = 100;
+ for (size_t i = 0; i < argumentsCount; ++i) {
+ arguments.push_back(i);
+ weights.push_back(i);
+ }
+
+ TDeviationCalculator deviationCalculator1, deviationCalculator2;
+ TMeanCalculator meanCalculator1, meanCalculator2;
+ TCovariationCalculator covariationCalculator1, covariationCalculator2;
+ for (size_t i = 0; i < arguments.size(); ++i) {
+ meanCalculator1.Add(arguments[i], weights[i]);
+ meanCalculator2.Add(arguments[i], weights[i]);
+ deviationCalculator1.Add(arguments[i], weights[i]);
+ deviationCalculator2.Add(arguments[i], weights[i]);
+ covariationCalculator1.Add(arguments[i], arguments[arguments.size() - i - 1], weights[i]);
+ covariationCalculator2.Add(arguments[i], arguments[arguments.size() - i - 1], weights[i]);
+ }
+
+ UNIT_ASSERT_DOUBLES_EQUAL(meanCalculator1.GetMean(), meanCalculator2.GetMean(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(meanCalculator1.GetSumWeights(), meanCalculator2.GetSumWeights(), eps);
+
+ UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetMean(), deviationCalculator2.GetMean(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetDeviation(), deviationCalculator2.GetDeviation(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetStdDev(), deviationCalculator2.GetStdDev(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetSumWeights(), deviationCalculator2.GetSumWeights(), eps);
+
+ UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetFirstValueMean(), covariationCalculator2.GetFirstValueMean(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetSecondValueMean(), covariationCalculator2.GetSecondValueMean(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetCovariation(), covariationCalculator2.GetCovariation(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetSumWeights(), covariationCalculator2.GetSumWeights(), eps);
+
+ meanCalculator2.Reset();
+ deviationCalculator2.Reset();
+ covariationCalculator2.Reset();
+
+ UNIT_ASSERT_DOUBLES_EQUAL(0.0, meanCalculator2.GetMean(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(0.0, meanCalculator2.GetSumWeights(), eps);
+
+ UNIT_ASSERT_DOUBLES_EQUAL(0.0, deviationCalculator2.GetMean(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(0.0, deviationCalculator2.GetDeviation(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(0.0, deviationCalculator2.GetStdDev(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(0.0, deviationCalculator2.GetSumWeights(), eps);
+
+ UNIT_ASSERT_DOUBLES_EQUAL(0.0, covariationCalculator2.GetFirstValueMean(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(0.0, covariationCalculator2.GetSecondValueMean(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(0.0, covariationCalculator2.GetCovariation(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(0.0, covariationCalculator2.GetSumWeights(), eps);
+
+ for (size_t i = 0; i < arguments.size(); ++i) {
+ meanCalculator2.Add(arguments[i], weights[i]);
+ deviationCalculator2.Add(arguments[i], weights[i]);
+ covariationCalculator2.Add(arguments[i], arguments[arguments.size() - i - 1], weights[i]);
+ }
+
+ UNIT_ASSERT_DOUBLES_EQUAL(meanCalculator1.GetMean(), meanCalculator2.GetMean(), 1e-10);
+ UNIT_ASSERT_DOUBLES_EQUAL(meanCalculator1.GetSumWeights(), meanCalculator2.GetSumWeights(), 1e-10);
+
+ UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetMean(), deviationCalculator2.GetMean(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetDeviation(), deviationCalculator2.GetDeviation(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetStdDev(), deviationCalculator2.GetStdDev(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(deviationCalculator1.GetSumWeights(), deviationCalculator2.GetSumWeights(), eps);
+
+ UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetFirstValueMean(), covariationCalculator2.GetFirstValueMean(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetSecondValueMean(), covariationCalculator2.GetSecondValueMean(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetCovariation(), covariationCalculator2.GetCovariation(), eps);
+ UNIT_ASSERT_DOUBLES_EQUAL(covariationCalculator1.GetSumWeights(), covariationCalculator2.GetSumWeights(), eps);
+ }
}