aboutsummaryrefslogtreecommitdiffstats
path: root/library/cpp/linear_regression/linear_regression.h
diff options
context:
space:
mode:
authorVlad Yaroslavlev <vladon@vladon.com>2022-02-10 16:46:23 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:46:23 +0300
commit706b83ed7de5a473436620367af31fc0ceecde07 (patch)
tree103305d30dec77e8f6367753367f59b3cd68f9f1 /library/cpp/linear_regression/linear_regression.h
parent918e8a1574070d0ec733f0b76cfad8f8892ad2e5 (diff)
downloadydb-706b83ed7de5a473436620367af31fc0ceecde07.tar.gz
Restoring authorship annotation for Vlad Yaroslavlev <vladon@vladon.com>. Commit 1 of 2.
Diffstat (limited to 'library/cpp/linear_regression/linear_regression.h')
-rw-r--r--library/cpp/linear_regression/linear_regression.h32
1 files changed, 16 insertions, 16 deletions
diff --git a/library/cpp/linear_regression/linear_regression.h b/library/cpp/linear_regression/linear_regression.h
index e57de5ff6c..f1596fb024 100644
--- a/library/cpp/linear_regression/linear_regression.h
+++ b/library/cpp/linear_regression/linear_regression.h
@@ -13,11 +13,11 @@ class TFastLinearRegressionSolver {
private:
TKahanAccumulator<double> SumSquaredGoals;
- TVector<double> LinearizedOLSMatrix;
- TVector<double> OLSVector;
+ TVector<double> LinearizedOLSMatrix;
+ TVector<double> OLSVector;
public:
- bool Add(const TVector<double>& features, const double goal, const double weight = 1.);
+ bool Add(const TVector<double>& features, const double goal, const double weight = 1.);
TLinearModel Solve() const;
double SumSquaredErrors() const;
};
@@ -27,17 +27,17 @@ private:
double GoalsMean = 0.;
double GoalsDeviation = 0.;
- TVector<double> FeatureMeans;
- TVector<double> LastMeans;
- TVector<double> NewMeans;
- TVector<double> LinearizedOLSMatrix;
+ TVector<double> FeatureMeans;
+ TVector<double> LastMeans;
+ TVector<double> NewMeans;
+ TVector<double> LinearizedOLSMatrix;
- TVector<double> OLSVector;
+ TVector<double> OLSVector;
TKahanAccumulator<double> SumWeights;
public:
- bool Add(const TVector<double>& features, const double goal, const double weight = 1.);
+ bool Add(const TVector<double>& features, const double goal, const double weight = 1.);
TLinearModel Solve() const;
double SumSquaredErrors() const;
};
@@ -145,12 +145,12 @@ public:
bool Add(const double* featuresBegin, const double* featuresEnd, const double* goalsBegin);
bool Add(const double* featuresBegin, const double* featuresEnd, const double* goalsBegin, const double* weightsBegin);
- bool Add(const TVector<double>& features, const TVector<double>& goals) {
+ bool Add(const TVector<double>& features, const TVector<double>& goals) {
Y_ASSERT(features.size() == goals.size());
return Add(features.data(), features.data() + features.size(), goals.data());
}
- bool Add(const TVector<double>& features, const TVector<double>& goals, const TVector<double>& weights) {
+ bool Add(const TVector<double>& features, const TVector<double>& goals, const TVector<double>& weights) {
Y_ASSERT(features.size() == goals.size() && features.size() == weights.size());
return Add(features.data(), features.data() + features.size(), goals.data(), weights.data());
}
@@ -177,10 +177,10 @@ public:
template <typename TSLRSolverType>
class TTypedBestSLRSolver {
private:
- TVector<TSLRSolverType> SLRSolvers;
+ TVector<TSLRSolverType> SLRSolvers;
public:
- bool Add(const TVector<double>& features, const double goal, const double weight = 1.) {
+ bool Add(const TVector<double>& features, const double goal, const double weight = 1.) {
if (SLRSolvers.empty()) {
SLRSolvers.resize(features.size());
}
@@ -200,7 +200,7 @@ public:
}
}
- TVector<double> coefficients(SLRSolvers.size());
+ TVector<double> coefficients(SLRSolvers.size());
double intercept = 0.0;
if (bestSolver) {
bestSolver->Solve(coefficients[bestSolver - SLRSolvers.begin()], intercept, regularizationParameter);
@@ -289,7 +289,7 @@ private:
float MaximalArgument = Min<float>();
ETransformationType TransformationType;
- TVector<TPoint> Points;
+ TVector<TPoint> Points;
public:
TFeaturesTransformerLearner(const ETransformationType transformationType)
@@ -315,7 +315,7 @@ private:
TMeanCalculator TargetsMean;
};
- THashMap<double, TBucket> Buckets;
+ THashMap<double, TBucket> Buckets;
double Step;
public: