aboutsummaryrefslogtreecommitdiffstats
path: root/contrib
diff options
context:
space:
mode:
authortrivias <trivias@yandex-team.ru>2022-02-10 16:46:12 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:46:12 +0300
commit11ab7328455192b9cdb4bbb79f8615bf356182ca (patch)
treee0efa000afff888a01a2c43e28784c44829472a5 /contrib
parent6d9304bc5310ea888178fc8640d175001436d29d (diff)
downloadydb-11ab7328455192b9cdb4bbb79f8615bf356182ca.tar.gz
Restoring authorship annotation for <trivias@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib')
-rw-r--r--contrib/libs/cxxsupp/system_stl/ya.make6
-rw-r--r--contrib/libs/flatbuffers/include/flatbuffers/flatbuffers_iter.h1278
-rw-r--r--contrib/libs/flatbuffers/include/flatbuffers/idl.h18
-rw-r--r--contrib/libs/zlib/ya.make2
-rw-r--r--contrib/libs/zlib/zconf.h14
-rw-r--r--contrib/restricted/boost/boost/regex/v4/instances.hpp2
-rw-r--r--contrib/restricted/boost/boost_common.inc36
-rw-r--r--contrib/restricted/boost/libs/container/src/alloc_lib.c52
-rw-r--r--contrib/restricted/boost/libs/container/src/dlmalloc.cpp216
-rw-r--r--contrib/restricted/boost/libs/container/src/dlmalloc_2_8_6.c12560
-rw-r--r--contrib/restricted/boost/libs/container/src/dlmalloc_ext_2_8_6.c2918
-rw-r--r--contrib/restricted/boost/libs/container/src/global_resource.cpp212
-rw-r--r--contrib/restricted/boost/libs/container/src/monotonic_buffer_resource.cpp318
-rw-r--r--contrib/restricted/boost/libs/container/src/pool_resource.cpp582
-rw-r--r--contrib/restricted/boost/libs/container/src/synchronized_pool_resource.cpp246
-rw-r--r--contrib/restricted/boost/libs/container/src/unsynchronized_pool_resource.cpp158
-rw-r--r--contrib/restricted/boost/libs/container/ya.make30
-rw-r--r--contrib/restricted/boost/libs/context/src/asm/jump_i386_sysv_elf_gas.S54
-rw-r--r--contrib/restricted/boost/libs/context/src/asm/jump_x86_64_sysv_elf_gas.S68
-rw-r--r--contrib/restricted/boost/libs/context/src/asm/make_i386_sysv_elf_gas.S30
-rw-r--r--contrib/restricted/boost/libs/context/src/asm/make_x86_64_sysv_elf_gas.S38
-rw-r--r--contrib/restricted/boost/libs/context/src/asm/ontop_i386_sysv_elf_gas.S58
-rw-r--r--contrib/restricted/boost/libs/context/src/asm/ontop_x86_64_sysv_elf_gas.S68
-rw-r--r--contrib/restricted/boost/libs/coroutine/ya.make6
-rw-r--r--contrib/restricted/boost/libs/filesystem/ya.make6
-rw-r--r--contrib/restricted/boost/libs/ya.make42
-rw-r--r--contrib/restricted/boost/ya.make8
27 files changed, 9513 insertions, 9513 deletions
diff --git a/contrib/libs/cxxsupp/system_stl/ya.make b/contrib/libs/cxxsupp/system_stl/ya.make
index 75317898ac..b032d2fa04 100644
--- a/contrib/libs/cxxsupp/system_stl/ya.make
+++ b/contrib/libs/cxxsupp/system_stl/ya.make
@@ -29,11 +29,11 @@ ELSE()
# libatomic.a is needed in order to make atomic operations work
LDFLAGS(-l:libatomic.a)
- IF (STATIC_STL)
+ IF (STATIC_STL)
LDFLAGS(-l:libstdc++.a)
- ELSE()
+ ELSE()
LDFLAGS(-lstdc++)
- ENDIF()
+ ENDIF()
ENDIF()
END()
diff --git a/contrib/libs/flatbuffers/include/flatbuffers/flatbuffers_iter.h b/contrib/libs/flatbuffers/include/flatbuffers/flatbuffers_iter.h
index a770983dca..9753506483 100644
--- a/contrib/libs/flatbuffers/include/flatbuffers/flatbuffers_iter.h
+++ b/contrib/libs/flatbuffers/include/flatbuffers/flatbuffers_iter.h
@@ -1,640 +1,640 @@
-/*
- * Copyright 2014 Google Inc. All rights reserved.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#ifndef FLATBUFFERS_ITER_H_
-#define FLATBUFFERS_ITER_H_
-
-#include "flatbuffers.h"
-#include <optional>
-
-/// @file
-namespace yandex {
-namespace maps {
-namespace flatbuffers_iter {
-
-#define FLATBUFFERS_FILE_IDENTIFIER_LENGTH 4
-
-using flatbuffers::uoffset_t;
-using flatbuffers::soffset_t;
-using flatbuffers::voffset_t;
-using flatbuffers::EndianScalar;
-
-// Wrapper for uoffset_t to allow safe template specialization.
-template<typename T> struct Offset {
- uoffset_t o;
- Offset() : o(0) {}
- Offset(uoffset_t _o) : o(_o) {}
- Offset<void> Union() const { return Offset<void>(o); }
-};
-
-template<typename Iter>
-inline bool hasContiguous(const Iter& spot, uoffset_t length)
-{
- return spot.hasContiguous(length);
-}
-
+/*
+ * Copyright 2014 Google Inc. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef FLATBUFFERS_ITER_H_
+#define FLATBUFFERS_ITER_H_
+
+#include "flatbuffers.h"
+#include <optional>
+
+/// @file
+namespace yandex {
+namespace maps {
+namespace flatbuffers_iter {
+
+#define FLATBUFFERS_FILE_IDENTIFIER_LENGTH 4
+
+using flatbuffers::uoffset_t;
+using flatbuffers::soffset_t;
+using flatbuffers::voffset_t;
+using flatbuffers::EndianScalar;
+
+// Wrapper for uoffset_t to allow safe template specialization.
+template<typename T> struct Offset {
+ uoffset_t o;
+ Offset() : o(0) {}
+ Offset(uoffset_t _o) : o(_o) {}
+ Offset<void> Union() const { return Offset<void>(o); }
+};
+
+template<typename Iter>
+inline bool hasContiguous(const Iter& spot, uoffset_t length)
+{
+ return spot.hasContiguous(length);
+}
+
inline bool hasContiguous(const uint8_t* /* spot */, uoffset_t /* length */)
-{
- return true;
-}
-
-template <typename Iter>
-inline const uint8_t* getRawPointer(const Iter& spot)
-{
- return spot.rawPointer();
-}
-
-inline const uint8_t* getRawPointer(const uint8_t* spot)
-{
- return spot;
-}
-
-template<typename T, typename Iter>
-typename std::enable_if<sizeof(T) == 1, T>::type extractValue(const Iter& spot)
-{
- typename std::remove_cv<T>::type ret;
- std::memcpy(&ret, getRawPointer(spot), 1);
- return ret;
-}
-
-template<typename T, typename Iter>
-typename std::enable_if<sizeof(T) != 1, T>::type extractValue(const Iter& spot)
-{
- if (hasContiguous(spot, sizeof(T))) {
- typename std::remove_cv<T>::type ret;
- std::memcpy(&ret, getRawPointer(spot), sizeof(T));
- return ret;
- }
- Iter itr = spot;
- alignas(T) uint8_t buf[sizeof(T)];
- for (std::size_t i = 0; i < sizeof(T); ++i) {
- buf[i] = *itr;
- ++itr;
- }
- return *reinterpret_cast<T*>(buf);
-}
-
-template<typename T, typename Iter> T ReadScalar(Iter p) {
- return EndianScalar(extractValue<T>(p));
-}
-
-// When we read serialized data from memory, in the case of most scalars,
-// we want to just read T, but in the case of Offset, we want to actually
-// perform the indirection and return a pointer.
-// The template specialization below does just that.
-// It is wrapped in a struct since function templates can't overload on the
-// return type like this.
-// The typedef is for the convenience of callers of this function
-// (avoiding the need for a trailing return decltype)
-template<typename T> struct IndirectHelper {
- typedef T return_type;
- typedef T mutable_return_type;
- static const size_t element_stride = sizeof(T);
- template<typename Iter>
- static return_type Read(const Iter& p, uoffset_t i) {
- return i ? EndianScalar(extractValue<return_type>(p+sizeof(return_type)*i)) : EndianScalar(extractValue<return_type>(p));
- }
-};
-template<typename T> struct IndirectHelper<Offset<T>> {
- typedef std::optional<T> return_type;
- typedef std::optional<T> mutable_return_type;
- static const size_t element_stride = sizeof(uoffset_t);
- template<typename Iter>
- static return_type Read(Iter p, uoffset_t i) {
- p += i * sizeof(uoffset_t);
- return return_type(T(p + ReadScalar<uoffset_t>(p)));
- }
-};
-template<typename T> struct IndirectHelper<const T *> {
-};
-
-
-// An STL compatible iterator implementation for Vector below, effectively
-// calling Get() for every element.
-template<typename T, typename IT, typename Iter>
-struct VectorIterator
- : public std::iterator<std::random_access_iterator_tag, IT, uoffset_t> {
-
- typedef std::iterator<std::random_access_iterator_tag, IT, uoffset_t> super_type;
-
-public:
- VectorIterator(const Iter& data, uoffset_t i) :
- data_(data + IndirectHelper<T>::element_stride * i) {}
- VectorIterator(const VectorIterator &other) : data_(other.data_) {}
- #ifndef FLATBUFFERS_CPP98_STL
- VectorIterator(VectorIterator &&other) : data_(std::move(other.data_)) {}
- #endif
-
- VectorIterator &operator=(const VectorIterator &other) {
- data_ = other.data_;
- return *this;
- }
-
- VectorIterator &operator=(VectorIterator &&other) {
- data_ = other.data_;
- return *this;
- }
-
- bool operator==(const VectorIterator &other) const {
- return data_ == other.data_;
- }
-
- bool operator!=(const VectorIterator &other) const {
- return data_ != other.data_;
- }
-
- ptrdiff_t operator-(const VectorIterator &other) const {
- return (data_ - other.data_) / IndirectHelper<T>::element_stride;
- }
-
- typename super_type::value_type operator *() const {
- return IndirectHelper<T>::Read(data_, 0);
- }
-
- typename super_type::value_type operator->() const {
- return IndirectHelper<T>::Read(data_, 0);
- }
-
- VectorIterator &operator++() {
- data_ += IndirectHelper<T>::element_stride;
- return *this;
- }
-
- VectorIterator operator++(int) {
- VectorIterator temp(data_, 0);
- data_ += IndirectHelper<T>::element_stride;
- return temp;
- }
-
- VectorIterator operator+(const uoffset_t &offset) {
- return VectorIterator(data_ + offset * IndirectHelper<T>::element_stride, 0);
- }
-
- VectorIterator& operator+=(const uoffset_t &offset) {
- data_ += offset * IndirectHelper<T>::element_stride;
- return *this;
- }
-
- VectorIterator &operator--() {
- data_ -= IndirectHelper<T>::element_stride;
- return *this;
- }
-
- VectorIterator operator--(int) {
- VectorIterator temp(data_, 0);
- data_ -= IndirectHelper<T>::element_stride;
- return temp;
- }
-
- VectorIterator operator-(const uoffset_t &offset) {
- return VectorIterator(data_ - offset * IndirectHelper<T>::element_stride, 0);
- }
-
- VectorIterator& operator-=(const uoffset_t &offset) {
- data_ -= offset * IndirectHelper<T>::element_stride;
- return *this;
- }
-
-private:
- Iter data_;
-};
-
-// This is used as a helper type for accessing vectors.
-// Vector::data() assumes the vector elements start after the length field.
-template<typename T, typename Iter> class Vector {
-public:
- typedef VectorIterator<T, typename IndirectHelper<T>::mutable_return_type, Iter>
- iterator;
- typedef VectorIterator<T, typename IndirectHelper<T>::return_type, Iter>
- const_iterator;
-
- Vector(Iter data):
- data_(data)
- {}
-
- uoffset_t size() const { return EndianScalar(extractValue<uoffset_t>(data_)); }
-
- // Deprecated: use size(). Here for backwards compatibility.
- uoffset_t Length() const { return size(); }
-
- typedef typename IndirectHelper<T>::return_type return_type;
- typedef typename IndirectHelper<T>::mutable_return_type mutable_return_type;
-
- return_type Get(uoffset_t i) const {
- assert(i < size());
- return IndirectHelper<T>::Read(Data(), i);
- }
-
- return_type operator[](uoffset_t i) const { return Get(i); }
-
- // If this is a Vector of enums, T will be its storage type, not the enum
- // type. This function makes it convenient to retrieve value with enum
- // type E.
- template<typename E> E GetEnum(uoffset_t i) const {
- return static_cast<E>(Get(i));
- }
-
- const Iter GetStructFromOffset(size_t o) const {
- return Data() + o;
- }
-
- iterator begin() { return iterator(Data(), 0); }
- const_iterator begin() const { return const_iterator(Data(), 0); }
-
- iterator end() { return iterator(Data(), size()); }
- const_iterator end() const { return const_iterator(Data(), size()); }
-
- // The raw data in little endian format. Use with care.
- const Iter Data() const {
- return data_ + sizeof(uoffset_t);
- }
-
- Iter Data() {
- return data_ + sizeof(uoffset_t);
- }
-
- template<typename K> return_type LookupByKey(K key) const {
- auto search_result = std::lower_bound(begin(), end(), key, KeyCompare<K>);
-
- if (search_result == end() || (*search_result)->KeyCompareWithValue(key) != 0) {
- return std::nullopt; // Key not found.
- }
-
- return *search_result;
- }
-
- operator Iter() const
- {
- return data_;
- }
-
-protected:
- Iter data_;
-
-private:
- template<typename K> static int KeyCompare(const return_type& ap, const K& bp) {
- return ap->KeyCompareWithValue(bp) < 0;
- }
-};
-
-// Represent a vector much like the template above, but in this case we
-// don't know what the element types are (used with reflection.h).
-template <typename Iter>
-class VectorOfAny {
-public:
- VectorOfAny(Iter data):
- data_(data)
- {}
-
- uoffset_t size() const { return EndianScalar(extractValue<uoffset_t>(data_)); }
-
- const Iter Data() const {
- return data_;
- }
- Iter Data() {
- return data_;
- }
-protected:
-
- Iter data_;
-};
-
-// Convenient helper function to get the length of any vector, regardless
-// of wether it is null or not (the field is not set).
-template<typename T, typename Iter> static inline size_t VectorLength(const std::optional<Vector<T, Iter>> &v) {
- return v ? v->Length() : 0;
-}
-
-template <typename Iter> struct String : public Vector<char, Iter> {
- using Vector<char,Iter>::Vector;
- using Vector<char,Iter>::data_;
-
- std::string str() const {
- if (hasContiguous(data_, sizeof(uoffset_t) + this->Length()))
- return std::string(reinterpret_cast<const char*>(getRawPointer(data_)) + sizeof(uoffset_t), this->Length());
- return std::string(this->begin(), this->begin() + this->Length()); }
-
- bool operator <(const String &o) const {
- return str() < o.str();
- }
-};
-
-// Converts a Field ID to a virtual table offset.
-inline voffset_t FieldIndexToOffset(voffset_t field_id) {
- // Should correspond to what EndTable() below builds up.
- const int fixed_fields = 2; // Vtable size and Object Size.
- return static_cast<voffset_t>((field_id + fixed_fields) * sizeof(voffset_t));
-}
-
-/// @endcond
-
-/// @cond FLATBUFFERS_INTERNAL
-template<typename T, typename Iter> std::optional<T> GetMutableRoot(Iter begin) {
- flatbuffers::EndianCheck();
- return T(begin + EndianScalar(extractValue<uoffset_t>(begin)));
-}
-
-template<typename T, typename Iter> std::optional<T> GetRoot(Iter begin) {
- return GetMutableRoot<T, Iter>(begin);
-}
-
-template<typename T, typename Iter> std::optional<T> GetSizePrefixedRoot(Iter buf) {
- return GetRoot<T, Iter>(buf + sizeof(uoffset_t));
-}
-
-// Helper to see if the identifier in a buffer has the expected value.
-
-template <typename Iter> inline bool BufferHasIdentifier(const Iter& buf, const char *identifier) {
- return std::equal(
- identifier,
- identifier + std::min(std::strlen(identifier) + 1, static_cast<std::size_t>(FLATBUFFERS_FILE_IDENTIFIER_LENGTH)),
- buf + sizeof(uoffset_t));
-}
-
-// Helper class to verify the integrity of a FlatBuffer
-template <typename Iter>
-class Verifier FLATBUFFERS_FINAL_CLASS {
- public:
- Verifier(const Iter& buf, size_t buf_len, size_t _max_depth = 64,
- size_t _max_tables = 1000000)
- : buf_(buf), end_(buf + buf_len), depth_(0), max_depth_(_max_depth),
- num_tables_(0), max_tables_(_max_tables)
- #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
- , upper_bound_(buf)
- #endif
- {}
-
- // Central location where any verification failures register.
- bool Check(bool ok) const {
- #ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE
- assert(ok);
- #endif
- #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
- if (!ok)
- upper_bound_ = buf_;
- #endif
- return ok;
- }
-
- // Verify any range within the buffer.
- bool Verify(const Iter& elem, size_t elem_len) const {
- #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
- auto upper_bound = elem + elem_len;
- if (upper_bound_ < upper_bound)
- upper_bound_ = upper_bound;
- #endif
- return Check(elem_len <= (size_t) (end_ - buf_) &&
- elem >= buf_ &&
- elem <= end_ - elem_len);
- }
-
- // Verify a range indicated by sizeof(T).
- template<typename T> bool Verify(const Iter& elem) const {
- return Verify(elem, sizeof(T));
- }
-
- template<typename T> bool VerifyTable(const std::optional<T>& table) {
- return !table || table->Verify(*this);
- }
-
- template<typename T> bool Verify(const std::optional<Vector<T, Iter>>& vec) const {
- Iter end;
- return !vec ||
- VerifyVector(static_cast<Iter>(*vec), sizeof(T),
- &end);
- }
-
- template<typename T> bool Verify(const std::optional<Vector<const T, Iter>>& vec) const {
- return Verify(*reinterpret_cast<const std::optional<Vector<T, Iter>> *>(&vec));
- }
-
- bool Verify(const std::optional<String<Iter>>& str) const {
- Iter end;
- return !str ||
- (VerifyVector(static_cast<Iter>(*str), 1, &end) &&
- Verify(end, 1) && // Must have terminator
- Check(*end == '\0')); // Terminating byte must be 0.
- }
-
- // Common code between vectors and strings.
- bool VerifyVector(const Iter& vec, size_t elem_size,
- Iter *end) const {
- // Check we can read the size field.
- if (!Verify<uoffset_t>(vec)) return false;
- // Check the whole array. If this is a string, the byte past the array
- // must be 0.
- auto size = ReadScalar<uoffset_t>(vec);
- auto max_elems = FLATBUFFERS_MAX_BUFFER_SIZE / elem_size;
- if (!Check(size < max_elems))
- return false; // Protect against byte_size overflowing.
- auto byte_size = sizeof(size) + elem_size * size;
- *end = vec + byte_size;
- return Verify(vec, byte_size);
- }
-
- // Special case for string contents, after the above has been called.
- bool VerifyVectorOfStrings(const std::optional<Vector<Offset<String<Iter>>, Iter>>& vec) const {
- if (vec) {
- for (uoffset_t i = 0; i < vec->size(); i++) {
- if (!Verify(vec->Get(i))) return false;
- }
- }
- return true;
- }
-
- // Special case for table contents, after the above has been called.
- template<typename T> bool VerifyVectorOfTables(const std::optional<Vector<Offset<T>, Iter>>& vec) {
- if (vec) {
- for (uoffset_t i = 0; i < vec->size(); i++) {
- if (!vec->Get(i)->Verify(*this)) return false;
- }
- }
- return true;
- }
-
- template<typename T> bool VerifyBufferFromStart(const char *identifier,
- const Iter& start) {
- if (identifier &&
- (static_cast<std::size_t>(end_ - start) < 2 * sizeof(flatbuffers_iter::uoffset_t) ||
- !BufferHasIdentifier(start, identifier))) {
- return false;
- }
-
- // Call T::Verify, which must be in the generated code for this type.
- return Verify<uoffset_t>(start) &&
- T(start + ReadScalar<uoffset_t>(start)).
- Verify(*this)
- #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
- && GetComputedSize()
- #endif
- ;
- }
-
- // Verify this whole buffer, starting with root type T.
- template<typename T> bool VerifyBuffer(const char *identifier) {
- return VerifyBufferFromStart<T>(identifier, buf_);
- }
-
- template<typename T> bool VerifySizePrefixedBuffer(const char *identifier) {
- return Verify<uoffset_t>(buf_) &&
- ReadScalar<uoffset_t>(buf_) == end_ - buf_ - sizeof(uoffset_t) &&
- VerifyBufferFromStart<T>(identifier, buf_ + sizeof(uoffset_t));
- }
-
- // Called at the start of a table to increase counters measuring data
- // structure depth and amount, and possibly bails out with false if
- // limits set by the constructor have been hit. Needs to be balanced
- // with EndTable().
- bool VerifyComplexity() {
- depth_++;
- num_tables_++;
- return Check(depth_ <= max_depth_ && num_tables_ <= max_tables_);
- }
-
- // Called at the end of a table to pop the depth count.
- bool EndTable() {
- depth_--;
- return true;
- }
-
- #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
- // Returns the message size in bytes
- size_t GetComputedSize() const {
- uintptr_t size = upper_bound_ - buf_;
- // Align the size to uoffset_t
- size = (size - 1 + sizeof(uoffset_t)) & ~(sizeof(uoffset_t) - 1);
- return (buf_ + size > end_) ? 0 : size;
- }
- #endif
-
- private:
- const Iter buf_;
- const Iter end_;
- size_t depth_;
- size_t max_depth_;
- size_t num_tables_;
- size_t max_tables_;
-#ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
- mutable const Iter upper_bound_;
-#endif
-};
-
-// "structs" are flat structures that do not have an offset table, thus
-// always have all members present and do not support forwards/backwards
-// compatible extensions.
-template <typename Iter>
-class Struct FLATBUFFERS_FINAL_CLASS {
- public:
- template<typename T> T GetField(uoffset_t o) const {
- return ReadScalar<T>(data_ + o);
- }
-
- template<typename T> T GetStruct(uoffset_t o) const {
- return T(data_ + o);
- }
-
- private:
- Iter data_;
-};
-
-// "tables" use an offset table (possibly shared) that allows fields to be
-// omitted and added at will, but uses an extra indirection to read.
-template<typename Iter>
-class Table {
- public:
- Table(Iter data): data_(data) {}
-
- const Iter GetVTable() const {
- return data_ - ReadScalar<soffset_t>(data_);
- }
-
- // This gets the field offset for any of the functions below it, or 0
- // if the field was not present.
- voffset_t GetOptionalFieldOffset(voffset_t field) const {
- // The vtable offset is always at the start.
- auto vtable = GetVTable();
- // The first element is the size of the vtable (fields + type id + itself).
- auto vtsize = ReadScalar<voffset_t>(vtable);
- // If the field we're accessing is outside the vtable, we're reading older
- // data, so it's the same as if the offset was 0 (not present).
- return field < vtsize ? ReadScalar<voffset_t>(vtable + field) : 0;
- }
-
- template<typename T> T GetField(voffset_t field, T defaultval) const {
- auto field_offset = GetOptionalFieldOffset(field);
- return field_offset ? ReadScalar<T>(data_ + field_offset) : defaultval;
- }
-
- template<typename P> std::optional<P> GetPointer(voffset_t field) {
- auto field_offset = GetOptionalFieldOffset(field);
- auto p = data_ + field_offset;
- return field_offset ? std::optional<P>(P(p + ReadScalar<uoffset_t>(p))) : std::nullopt;
- }
-
- template<typename P> std::optional<P> GetPointer(voffset_t field) const {
- return const_cast<Table *>(this)->template GetPointer<P>(field);
- }
-
- template<typename P> P GetStruct(voffset_t field) const {
- auto field_offset = GetOptionalFieldOffset(field);
- auto p = data_ + field_offset;
- return extractValue<P>(p);
- }
-
- bool CheckField(voffset_t field) const {
- return GetOptionalFieldOffset(field) != 0;
- }
-
- // Verify the vtable of this table.
- // Call this once per table, followed by VerifyField once per field.
- bool VerifyTableStart(Verifier<Iter> &verifier) const {
- // Check the vtable offset.
- if (!verifier.template Verify<soffset_t>(data_)) return false;
- auto vtable = GetVTable();
- // Check the vtable size field, then check vtable fits in its entirety.
- return verifier.VerifyComplexity() &&
- verifier.template Verify<voffset_t>(vtable) &&
- (ReadScalar<voffset_t>(vtable) & (sizeof(voffset_t) - 1)) == 0 &&
- verifier.Verify(vtable, ReadScalar<voffset_t>(vtable));
- }
-
- // Verify a particular field.
- template<typename T> bool VerifyField(const Verifier<Iter> &verifier,
- voffset_t field) const {
- // Calling GetOptionalFieldOffset should be safe now thanks to
- // VerifyTable().
- auto field_offset = GetOptionalFieldOffset(field);
- // Check the actual field.
- return !field_offset || verifier.template Verify<T>(data_ + field_offset);
- }
-
- // VerifyField for required fields.
- template<typename T> bool VerifyFieldRequired(const Verifier<Iter> &verifier,
- voffset_t field) const {
- auto field_offset = GetOptionalFieldOffset(field);
- return verifier.Check(field_offset != 0) &&
- verifier.template Verify<T>(data_ + field_offset);
- }
-
- private:
- Iter data_;
-};
-/// @endcond
-} // namespace flatbuffers_iter
-} // namespace maps
-} // namespace yandex
-
-#endif // FLATBUFFERS_H_
+{
+ return true;
+}
+
+template <typename Iter>
+inline const uint8_t* getRawPointer(const Iter& spot)
+{
+ return spot.rawPointer();
+}
+
+inline const uint8_t* getRawPointer(const uint8_t* spot)
+{
+ return spot;
+}
+
+template<typename T, typename Iter>
+typename std::enable_if<sizeof(T) == 1, T>::type extractValue(const Iter& spot)
+{
+ typename std::remove_cv<T>::type ret;
+ std::memcpy(&ret, getRawPointer(spot), 1);
+ return ret;
+}
+
+template<typename T, typename Iter>
+typename std::enable_if<sizeof(T) != 1, T>::type extractValue(const Iter& spot)
+{
+ if (hasContiguous(spot, sizeof(T))) {
+ typename std::remove_cv<T>::type ret;
+ std::memcpy(&ret, getRawPointer(spot), sizeof(T));
+ return ret;
+ }
+ Iter itr = spot;
+ alignas(T) uint8_t buf[sizeof(T)];
+ for (std::size_t i = 0; i < sizeof(T); ++i) {
+ buf[i] = *itr;
+ ++itr;
+ }
+ return *reinterpret_cast<T*>(buf);
+}
+
+template<typename T, typename Iter> T ReadScalar(Iter p) {
+ return EndianScalar(extractValue<T>(p));
+}
+
+// When we read serialized data from memory, in the case of most scalars,
+// we want to just read T, but in the case of Offset, we want to actually
+// perform the indirection and return a pointer.
+// The template specialization below does just that.
+// It is wrapped in a struct since function templates can't overload on the
+// return type like this.
+// The typedef is for the convenience of callers of this function
+// (avoiding the need for a trailing return decltype)
+template<typename T> struct IndirectHelper {
+ typedef T return_type;
+ typedef T mutable_return_type;
+ static const size_t element_stride = sizeof(T);
+ template<typename Iter>
+ static return_type Read(const Iter& p, uoffset_t i) {
+ return i ? EndianScalar(extractValue<return_type>(p+sizeof(return_type)*i)) : EndianScalar(extractValue<return_type>(p));
+ }
+};
+template<typename T> struct IndirectHelper<Offset<T>> {
+ typedef std::optional<T> return_type;
+ typedef std::optional<T> mutable_return_type;
+ static const size_t element_stride = sizeof(uoffset_t);
+ template<typename Iter>
+ static return_type Read(Iter p, uoffset_t i) {
+ p += i * sizeof(uoffset_t);
+ return return_type(T(p + ReadScalar<uoffset_t>(p)));
+ }
+};
+template<typename T> struct IndirectHelper<const T *> {
+};
+
+
+// An STL compatible iterator implementation for Vector below, effectively
+// calling Get() for every element.
+template<typename T, typename IT, typename Iter>
+struct VectorIterator
+ : public std::iterator<std::random_access_iterator_tag, IT, uoffset_t> {
+
+ typedef std::iterator<std::random_access_iterator_tag, IT, uoffset_t> super_type;
+
+public:
+ VectorIterator(const Iter& data, uoffset_t i) :
+ data_(data + IndirectHelper<T>::element_stride * i) {}
+ VectorIterator(const VectorIterator &other) : data_(other.data_) {}
+ #ifndef FLATBUFFERS_CPP98_STL
+ VectorIterator(VectorIterator &&other) : data_(std::move(other.data_)) {}
+ #endif
+
+ VectorIterator &operator=(const VectorIterator &other) {
+ data_ = other.data_;
+ return *this;
+ }
+
+ VectorIterator &operator=(VectorIterator &&other) {
+ data_ = other.data_;
+ return *this;
+ }
+
+ bool operator==(const VectorIterator &other) const {
+ return data_ == other.data_;
+ }
+
+ bool operator!=(const VectorIterator &other) const {
+ return data_ != other.data_;
+ }
+
+ ptrdiff_t operator-(const VectorIterator &other) const {
+ return (data_ - other.data_) / IndirectHelper<T>::element_stride;
+ }
+
+ typename super_type::value_type operator *() const {
+ return IndirectHelper<T>::Read(data_, 0);
+ }
+
+ typename super_type::value_type operator->() const {
+ return IndirectHelper<T>::Read(data_, 0);
+ }
+
+ VectorIterator &operator++() {
+ data_ += IndirectHelper<T>::element_stride;
+ return *this;
+ }
+
+ VectorIterator operator++(int) {
+ VectorIterator temp(data_, 0);
+ data_ += IndirectHelper<T>::element_stride;
+ return temp;
+ }
+
+ VectorIterator operator+(const uoffset_t &offset) {
+ return VectorIterator(data_ + offset * IndirectHelper<T>::element_stride, 0);
+ }
+
+ VectorIterator& operator+=(const uoffset_t &offset) {
+ data_ += offset * IndirectHelper<T>::element_stride;
+ return *this;
+ }
+
+ VectorIterator &operator--() {
+ data_ -= IndirectHelper<T>::element_stride;
+ return *this;
+ }
+
+ VectorIterator operator--(int) {
+ VectorIterator temp(data_, 0);
+ data_ -= IndirectHelper<T>::element_stride;
+ return temp;
+ }
+
+ VectorIterator operator-(const uoffset_t &offset) {
+ return VectorIterator(data_ - offset * IndirectHelper<T>::element_stride, 0);
+ }
+
+ VectorIterator& operator-=(const uoffset_t &offset) {
+ data_ -= offset * IndirectHelper<T>::element_stride;
+ return *this;
+ }
+
+private:
+ Iter data_;
+};
+
+// This is used as a helper type for accessing vectors.
+// Vector::data() assumes the vector elements start after the length field.
+template<typename T, typename Iter> class Vector {
+public:
+ typedef VectorIterator<T, typename IndirectHelper<T>::mutable_return_type, Iter>
+ iterator;
+ typedef VectorIterator<T, typename IndirectHelper<T>::return_type, Iter>
+ const_iterator;
+
+ Vector(Iter data):
+ data_(data)
+ {}
+
+ uoffset_t size() const { return EndianScalar(extractValue<uoffset_t>(data_)); }
+
+ // Deprecated: use size(). Here for backwards compatibility.
+ uoffset_t Length() const { return size(); }
+
+ typedef typename IndirectHelper<T>::return_type return_type;
+ typedef typename IndirectHelper<T>::mutable_return_type mutable_return_type;
+
+ return_type Get(uoffset_t i) const {
+ assert(i < size());
+ return IndirectHelper<T>::Read(Data(), i);
+ }
+
+ return_type operator[](uoffset_t i) const { return Get(i); }
+
+ // If this is a Vector of enums, T will be its storage type, not the enum
+ // type. This function makes it convenient to retrieve value with enum
+ // type E.
+ template<typename E> E GetEnum(uoffset_t i) const {
+ return static_cast<E>(Get(i));
+ }
+
+ const Iter GetStructFromOffset(size_t o) const {
+ return Data() + o;
+ }
+
+ iterator begin() { return iterator(Data(), 0); }
+ const_iterator begin() const { return const_iterator(Data(), 0); }
+
+ iterator end() { return iterator(Data(), size()); }
+ const_iterator end() const { return const_iterator(Data(), size()); }
+
+ // The raw data in little endian format. Use with care.
+ const Iter Data() const {
+ return data_ + sizeof(uoffset_t);
+ }
+
+ Iter Data() {
+ return data_ + sizeof(uoffset_t);
+ }
+
+ template<typename K> return_type LookupByKey(K key) const {
+ auto search_result = std::lower_bound(begin(), end(), key, KeyCompare<K>);
+
+ if (search_result == end() || (*search_result)->KeyCompareWithValue(key) != 0) {
+ return std::nullopt; // Key not found.
+ }
+
+ return *search_result;
+ }
+
+ operator Iter() const
+ {
+ return data_;
+ }
+
+protected:
+ Iter data_;
+
+private:
+ template<typename K> static int KeyCompare(const return_type& ap, const K& bp) {
+ return ap->KeyCompareWithValue(bp) < 0;
+ }
+};
+
+// Represent a vector much like the template above, but in this case we
+// don't know what the element types are (used with reflection.h).
+template <typename Iter>
+class VectorOfAny {
+public:
+ VectorOfAny(Iter data):
+ data_(data)
+ {}
+
+ uoffset_t size() const { return EndianScalar(extractValue<uoffset_t>(data_)); }
+
+ const Iter Data() const {
+ return data_;
+ }
+ Iter Data() {
+ return data_;
+ }
+protected:
+
+ Iter data_;
+};
+
+// Convenient helper function to get the length of any vector, regardless
+// of wether it is null or not (the field is not set).
+template<typename T, typename Iter> static inline size_t VectorLength(const std::optional<Vector<T, Iter>> &v) {
+ return v ? v->Length() : 0;
+}
+
+template <typename Iter> struct String : public Vector<char, Iter> {
+ using Vector<char,Iter>::Vector;
+ using Vector<char,Iter>::data_;
+
+ std::string str() const {
+ if (hasContiguous(data_, sizeof(uoffset_t) + this->Length()))
+ return std::string(reinterpret_cast<const char*>(getRawPointer(data_)) + sizeof(uoffset_t), this->Length());
+ return std::string(this->begin(), this->begin() + this->Length()); }
+
+ bool operator <(const String &o) const {
+ return str() < o.str();
+ }
+};
+
+// Converts a Field ID to a virtual table offset.
+inline voffset_t FieldIndexToOffset(voffset_t field_id) {
+ // Should correspond to what EndTable() below builds up.
+ const int fixed_fields = 2; // Vtable size and Object Size.
+ return static_cast<voffset_t>((field_id + fixed_fields) * sizeof(voffset_t));
+}
+
+/// @endcond
+
+/// @cond FLATBUFFERS_INTERNAL
+template<typename T, typename Iter> std::optional<T> GetMutableRoot(Iter begin) {
+ flatbuffers::EndianCheck();
+ return T(begin + EndianScalar(extractValue<uoffset_t>(begin)));
+}
+
+template<typename T, typename Iter> std::optional<T> GetRoot(Iter begin) {
+ return GetMutableRoot<T, Iter>(begin);
+}
+
+template<typename T, typename Iter> std::optional<T> GetSizePrefixedRoot(Iter buf) {
+ return GetRoot<T, Iter>(buf + sizeof(uoffset_t));
+}
+
+// Helper to see if the identifier in a buffer has the expected value.
+
+template <typename Iter> inline bool BufferHasIdentifier(const Iter& buf, const char *identifier) {
+ return std::equal(
+ identifier,
+ identifier + std::min(std::strlen(identifier) + 1, static_cast<std::size_t>(FLATBUFFERS_FILE_IDENTIFIER_LENGTH)),
+ buf + sizeof(uoffset_t));
+}
+
+// Helper class to verify the integrity of a FlatBuffer
+template <typename Iter>
+class Verifier FLATBUFFERS_FINAL_CLASS {
+ public:
+ Verifier(const Iter& buf, size_t buf_len, size_t _max_depth = 64,
+ size_t _max_tables = 1000000)
+ : buf_(buf), end_(buf + buf_len), depth_(0), max_depth_(_max_depth),
+ num_tables_(0), max_tables_(_max_tables)
+ #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
+ , upper_bound_(buf)
+ #endif
+ {}
+
+ // Central location where any verification failures register.
+ bool Check(bool ok) const {
+ #ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE
+ assert(ok);
+ #endif
+ #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
+ if (!ok)
+ upper_bound_ = buf_;
+ #endif
+ return ok;
+ }
+
+ // Verify any range within the buffer.
+ bool Verify(const Iter& elem, size_t elem_len) const {
+ #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
+ auto upper_bound = elem + elem_len;
+ if (upper_bound_ < upper_bound)
+ upper_bound_ = upper_bound;
+ #endif
+ return Check(elem_len <= (size_t) (end_ - buf_) &&
+ elem >= buf_ &&
+ elem <= end_ - elem_len);
+ }
+
+ // Verify a range indicated by sizeof(T).
+ template<typename T> bool Verify(const Iter& elem) const {
+ return Verify(elem, sizeof(T));
+ }
+
+ template<typename T> bool VerifyTable(const std::optional<T>& table) {
+ return !table || table->Verify(*this);
+ }
+
+ template<typename T> bool Verify(const std::optional<Vector<T, Iter>>& vec) const {
+ Iter end;
+ return !vec ||
+ VerifyVector(static_cast<Iter>(*vec), sizeof(T),
+ &end);
+ }
+
+ template<typename T> bool Verify(const std::optional<Vector<const T, Iter>>& vec) const {
+ return Verify(*reinterpret_cast<const std::optional<Vector<T, Iter>> *>(&vec));
+ }
+
+ bool Verify(const std::optional<String<Iter>>& str) const {
+ Iter end;
+ return !str ||
+ (VerifyVector(static_cast<Iter>(*str), 1, &end) &&
+ Verify(end, 1) && // Must have terminator
+ Check(*end == '\0')); // Terminating byte must be 0.
+ }
+
+ // Common code between vectors and strings.
+ bool VerifyVector(const Iter& vec, size_t elem_size,
+ Iter *end) const {
+ // Check we can read the size field.
+ if (!Verify<uoffset_t>(vec)) return false;
+ // Check the whole array. If this is a string, the byte past the array
+ // must be 0.
+ auto size = ReadScalar<uoffset_t>(vec);
+ auto max_elems = FLATBUFFERS_MAX_BUFFER_SIZE / elem_size;
+ if (!Check(size < max_elems))
+ return false; // Protect against byte_size overflowing.
+ auto byte_size = sizeof(size) + elem_size * size;
+ *end = vec + byte_size;
+ return Verify(vec, byte_size);
+ }
+
+ // Special case for string contents, after the above has been called.
+ bool VerifyVectorOfStrings(const std::optional<Vector<Offset<String<Iter>>, Iter>>& vec) const {
+ if (vec) {
+ for (uoffset_t i = 0; i < vec->size(); i++) {
+ if (!Verify(vec->Get(i))) return false;
+ }
+ }
+ return true;
+ }
+
+ // Special case for table contents, after the above has been called.
+ template<typename T> bool VerifyVectorOfTables(const std::optional<Vector<Offset<T>, Iter>>& vec) {
+ if (vec) {
+ for (uoffset_t i = 0; i < vec->size(); i++) {
+ if (!vec->Get(i)->Verify(*this)) return false;
+ }
+ }
+ return true;
+ }
+
+ template<typename T> bool VerifyBufferFromStart(const char *identifier,
+ const Iter& start) {
+ if (identifier &&
+ (static_cast<std::size_t>(end_ - start) < 2 * sizeof(flatbuffers_iter::uoffset_t) ||
+ !BufferHasIdentifier(start, identifier))) {
+ return false;
+ }
+
+ // Call T::Verify, which must be in the generated code for this type.
+ return Verify<uoffset_t>(start) &&
+ T(start + ReadScalar<uoffset_t>(start)).
+ Verify(*this)
+ #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
+ && GetComputedSize()
+ #endif
+ ;
+ }
+
+ // Verify this whole buffer, starting with root type T.
+ template<typename T> bool VerifyBuffer(const char *identifier) {
+ return VerifyBufferFromStart<T>(identifier, buf_);
+ }
+
+ template<typename T> bool VerifySizePrefixedBuffer(const char *identifier) {
+ return Verify<uoffset_t>(buf_) &&
+ ReadScalar<uoffset_t>(buf_) == end_ - buf_ - sizeof(uoffset_t) &&
+ VerifyBufferFromStart<T>(identifier, buf_ + sizeof(uoffset_t));
+ }
+
+ // Called at the start of a table to increase counters measuring data
+ // structure depth and amount, and possibly bails out with false if
+ // limits set by the constructor have been hit. Needs to be balanced
+ // with EndTable().
+ bool VerifyComplexity() {
+ depth_++;
+ num_tables_++;
+ return Check(depth_ <= max_depth_ && num_tables_ <= max_tables_);
+ }
+
+ // Called at the end of a table to pop the depth count.
+ bool EndTable() {
+ depth_--;
+ return true;
+ }
+
+ #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
+ // Returns the message size in bytes
+ size_t GetComputedSize() const {
+ uintptr_t size = upper_bound_ - buf_;
+ // Align the size to uoffset_t
+ size = (size - 1 + sizeof(uoffset_t)) & ~(sizeof(uoffset_t) - 1);
+ return (buf_ + size > end_) ? 0 : size;
+ }
+ #endif
+
+ private:
+ const Iter buf_;
+ const Iter end_;
+ size_t depth_;
+ size_t max_depth_;
+ size_t num_tables_;
+ size_t max_tables_;
+#ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
+ mutable const Iter upper_bound_;
+#endif
+};
+
+// "structs" are flat structures that do not have an offset table, thus
+// always have all members present and do not support forwards/backwards
+// compatible extensions.
+template <typename Iter>
+class Struct FLATBUFFERS_FINAL_CLASS {
+ public:
+ template<typename T> T GetField(uoffset_t o) const {
+ return ReadScalar<T>(data_ + o);
+ }
+
+ template<typename T> T GetStruct(uoffset_t o) const {
+ return T(data_ + o);
+ }
+
+ private:
+ Iter data_;
+};
+
+// "tables" use an offset table (possibly shared) that allows fields to be
+// omitted and added at will, but uses an extra indirection to read.
+template<typename Iter>
+class Table {
+ public:
+ Table(Iter data): data_(data) {}
+
+ const Iter GetVTable() const {
+ return data_ - ReadScalar<soffset_t>(data_);
+ }
+
+ // This gets the field offset for any of the functions below it, or 0
+ // if the field was not present.
+ voffset_t GetOptionalFieldOffset(voffset_t field) const {
+ // The vtable offset is always at the start.
+ auto vtable = GetVTable();
+ // The first element is the size of the vtable (fields + type id + itself).
+ auto vtsize = ReadScalar<voffset_t>(vtable);
+ // If the field we're accessing is outside the vtable, we're reading older
+ // data, so it's the same as if the offset was 0 (not present).
+ return field < vtsize ? ReadScalar<voffset_t>(vtable + field) : 0;
+ }
+
+ template<typename T> T GetField(voffset_t field, T defaultval) const {
+ auto field_offset = GetOptionalFieldOffset(field);
+ return field_offset ? ReadScalar<T>(data_ + field_offset) : defaultval;
+ }
+
+ template<typename P> std::optional<P> GetPointer(voffset_t field) {
+ auto field_offset = GetOptionalFieldOffset(field);
+ auto p = data_ + field_offset;
+ return field_offset ? std::optional<P>(P(p + ReadScalar<uoffset_t>(p))) : std::nullopt;
+ }
+
+ template<typename P> std::optional<P> GetPointer(voffset_t field) const {
+ return const_cast<Table *>(this)->template GetPointer<P>(field);
+ }
+
+ template<typename P> P GetStruct(voffset_t field) const {
+ auto field_offset = GetOptionalFieldOffset(field);
+ auto p = data_ + field_offset;
+ return extractValue<P>(p);
+ }
+
+ bool CheckField(voffset_t field) const {
+ return GetOptionalFieldOffset(field) != 0;
+ }
+
+ // Verify the vtable of this table.
+ // Call this once per table, followed by VerifyField once per field.
+ bool VerifyTableStart(Verifier<Iter> &verifier) const {
+ // Check the vtable offset.
+ if (!verifier.template Verify<soffset_t>(data_)) return false;
+ auto vtable = GetVTable();
+ // Check the vtable size field, then check vtable fits in its entirety.
+ return verifier.VerifyComplexity() &&
+ verifier.template Verify<voffset_t>(vtable) &&
+ (ReadScalar<voffset_t>(vtable) & (sizeof(voffset_t) - 1)) == 0 &&
+ verifier.Verify(vtable, ReadScalar<voffset_t>(vtable));
+ }
+
+ // Verify a particular field.
+ template<typename T> bool VerifyField(const Verifier<Iter> &verifier,
+ voffset_t field) const {
+ // Calling GetOptionalFieldOffset should be safe now thanks to
+ // VerifyTable().
+ auto field_offset = GetOptionalFieldOffset(field);
+ // Check the actual field.
+ return !field_offset || verifier.template Verify<T>(data_ + field_offset);
+ }
+
+ // VerifyField for required fields.
+ template<typename T> bool VerifyFieldRequired(const Verifier<Iter> &verifier,
+ voffset_t field) const {
+ auto field_offset = GetOptionalFieldOffset(field);
+ return verifier.Check(field_offset != 0) &&
+ verifier.template Verify<T>(data_ + field_offset);
+ }
+
+ private:
+ Iter data_;
+};
+/// @endcond
+} // namespace flatbuffers_iter
+} // namespace maps
+} // namespace yandex
+
+#endif // FLATBUFFERS_H_
diff --git a/contrib/libs/flatbuffers/include/flatbuffers/idl.h b/contrib/libs/flatbuffers/include/flatbuffers/idl.h
index a82ff8a694..6695bfab1e 100644
--- a/contrib/libs/flatbuffers/include/flatbuffers/idl.h
+++ b/contrib/libs/flatbuffers/include/flatbuffers/idl.h
@@ -1131,15 +1131,15 @@ extern std::string GenerateFBS(const Parser &parser,
extern bool GenerateFBS(const Parser &parser, const std::string &path,
const std::string &file_name);
-// Generate a C++ header for reading with templated file iterator from
-// the definitions in the Parser object.
-// See idl_gen_cpp_yandex_maps_iter.cpp.
-extern std::string GenerateCPPYandexMapsIter(const Parser &parser,
- const std::string &include_guard_ident);
-extern bool GenerateCPPYandexMapsIter(const Parser &parser,
- const std::string &path,
- const std::string &file_name);
-
+// Generate a C++ header for reading with templated file iterator from
+// the definitions in the Parser object.
+// See idl_gen_cpp_yandex_maps_iter.cpp.
+extern std::string GenerateCPPYandexMapsIter(const Parser &parser,
+ const std::string &include_guard_ident);
+extern bool GenerateCPPYandexMapsIter(const Parser &parser,
+ const std::string &path,
+ const std::string &file_name);
+
// Generate a make rule for the generated TypeScript code.
// See idl_gen_ts.cpp.
extern std::string TSMakeRule(const Parser &parser, const std::string &path,
diff --git a/contrib/libs/zlib/ya.make b/contrib/libs/zlib/ya.make
index ced6573475..ba085df337 100644
--- a/contrib/libs/zlib/ya.make
+++ b/contrib/libs/zlib/ya.make
@@ -23,7 +23,7 @@ ADDINCL(
NO_COMPILER_WARNINGS()
-NO_RUNTIME()
+NO_RUNTIME()
SRCS(
adler32.c
diff --git a/contrib/libs/zlib/zconf.h b/contrib/libs/zlib/zconf.h
index b73be42ba5..c39dd79ab5 100644
--- a/contrib/libs/zlib/zconf.h
+++ b/contrib/libs/zlib/zconf.h
@@ -373,13 +373,13 @@
# endif
#endif
-#if !defined(WINDOWS) && !defined(WIN32) && !defined(__BEOS__)
-# ifdef ZLIB_DLL
-# define ZEXPORT __attribute__((visibility("default")))
-# define ZEXPORTVA __attribute__((visibility("default")))
-# endif
-#endif
-
+#if !defined(WINDOWS) && !defined(WIN32) && !defined(__BEOS__)
+# ifdef ZLIB_DLL
+# define ZEXPORT __attribute__((visibility("default")))
+# define ZEXPORTVA __attribute__((visibility("default")))
+# endif
+#endif
+
#ifndef ZEXTERN
# define ZEXTERN extern
#endif
diff --git a/contrib/restricted/boost/boost/regex/v4/instances.hpp b/contrib/restricted/boost/boost/regex/v4/instances.hpp
index d453ea5c66..cedeb1c179 100644
--- a/contrib/restricted/boost/boost/regex/v4/instances.hpp
+++ b/contrib/restricted/boost/boost/regex/v4/instances.hpp
@@ -34,7 +34,7 @@ namespace boost{
#endif
#ifndef BOOST_REGEX_TRAITS_T
-template struct BOOST_REGEX_DECL boost::regex_traits<BOOST_REGEX_CHAR_T>;
+template struct BOOST_REGEX_DECL boost::regex_traits<BOOST_REGEX_CHAR_T>;
# define BOOST_REGEX_TRAITS_T , boost::regex_traits<BOOST_REGEX_CHAR_T >
#endif
diff --git a/contrib/restricted/boost/boost_common.inc b/contrib/restricted/boost/boost_common.inc
index 892bae5b39..d9bd983d8c 100644
--- a/contrib/restricted/boost/boost_common.inc
+++ b/contrib/restricted/boost/boost_common.inc
@@ -17,24 +17,24 @@ ADDINCL(
# XXX: fix selective checkout
SRCDIR(${BOOST_ROOT}/boost)
-IF (DYNAMIC_BOOST)
- CFLAGS(
- -DBOOST_ATOMIC_DYN_LINK=1
- -DBOOST_All_DYN_LINK=1
- -DBOOST_CHRONO_DYN_LINK=1
- -DBOOST_SYSTEM_DYN_LINK=1
- -DBOOST_TIMER_DYN_LINK=1
- )
-ELSE()
- CFLAGS(
- -DBOOST_ATOMIC_STATIC_LINK=1
- -DBOOST_All_STATIC_LINK=1
- -DBOOST_CHRONO_STATIC_LINK=1
- -DBOOST_SYSTEM_STATIC_LINK=1
- -DBOOST_TIMER_STATIC_LINK=1
- )
-ENDIF()
-
+IF (DYNAMIC_BOOST)
+ CFLAGS(
+ -DBOOST_ATOMIC_DYN_LINK=1
+ -DBOOST_All_DYN_LINK=1
+ -DBOOST_CHRONO_DYN_LINK=1
+ -DBOOST_SYSTEM_DYN_LINK=1
+ -DBOOST_TIMER_DYN_LINK=1
+ )
+ELSE()
+ CFLAGS(
+ -DBOOST_ATOMIC_STATIC_LINK=1
+ -DBOOST_All_STATIC_LINK=1
+ -DBOOST_CHRONO_STATIC_LINK=1
+ -DBOOST_SYSTEM_STATIC_LINK=1
+ -DBOOST_TIMER_STATIC_LINK=1
+ )
+ENDIF()
+
CFLAGS(
-DBOOST_ALL_NO_LIB=1
-DBOOST_ATOMIC_SOURCE
diff --git a/contrib/restricted/boost/libs/container/src/alloc_lib.c b/contrib/restricted/boost/libs/container/src/alloc_lib.c
index 077768b946..e70dd5103d 100644
--- a/contrib/restricted/boost/libs/container/src/alloc_lib.c
+++ b/contrib/restricted/boost/libs/container/src/alloc_lib.c
@@ -1,27 +1,27 @@
-//////////////////////////////////////////////////////////////////////////////
-//
-// (C) Copyright Ion Gaztanaga 2012-2013. Distributed under the Boost
-// Software License, Version 1.0. (See accompanying file
-// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-//
-// See http://www.boost.org/libs/container for documentation.
-//
-//////////////////////////////////////////////////////////////////////////////
-
-
-#define DLMALLOC_VERSION 286
-
-#ifndef DLMALLOC_VERSION
- #error "DLMALLOC_VERSION undefined"
-#endif
-
-#ifdef __VXWORKS__
-// no sbrk() in VxWorks, configure dlmalloc to use only mmap()
-#define HAVE_MORECORE 0
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2012-2013. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/container for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+
+#define DLMALLOC_VERSION 286
+
+#ifndef DLMALLOC_VERSION
+ #error "DLMALLOC_VERSION undefined"
+#endif
+
+#ifdef __VXWORKS__
+// no sbrk() in VxWorks, configure dlmalloc to use only mmap()
+#define HAVE_MORECORE 0
+#endif
+
+#if DLMALLOC_VERSION == 286
+ #include "dlmalloc_ext_2_8_6.c"
+#else
+ #error "Unsupported boost_cont_VERSION version"
#endif
-
-#if DLMALLOC_VERSION == 286
- #include "dlmalloc_ext_2_8_6.c"
-#else
- #error "Unsupported boost_cont_VERSION version"
-#endif
diff --git a/contrib/restricted/boost/libs/container/src/dlmalloc.cpp b/contrib/restricted/boost/libs/container/src/dlmalloc.cpp
index 6ab6de3a53..a8dfc15e99 100644
--- a/contrib/restricted/boost/libs/container/src/dlmalloc.cpp
+++ b/contrib/restricted/boost/libs/container/src/dlmalloc.cpp
@@ -1,108 +1,108 @@
-//////////////////////////////////////////////////////////////////////////////
-//
-// (C) Copyright Ion Gaztanaga 2012-2013. Distributed under the Boost
-// Software License, Version 1.0. (See accompanying file
-// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-//
-// See http://www.boost.org/libs/container for documentation.
-//
-//////////////////////////////////////////////////////////////////////////////
-
-#define BOOST_CONTAINER_SOURCE
-#include <boost/container/detail/dlmalloc.hpp>
-
-namespace boost{
-namespace container{
-
-BOOST_CONTAINER_DECL size_t dlmalloc_size(const void *p)
-{ return boost_cont_size(p); }
-
-BOOST_CONTAINER_DECL void* dlmalloc_malloc(size_t bytes)
-{ return boost_cont_malloc(bytes); }
-
-BOOST_CONTAINER_DECL void dlmalloc_free(void* mem)
-{ return boost_cont_free(mem); }
-
-BOOST_CONTAINER_DECL void* dlmalloc_memalign(size_t bytes, size_t alignment)
-{ return boost_cont_memalign(bytes, alignment); }
-
-BOOST_CONTAINER_DECL int dlmalloc_multialloc_nodes
- (size_t n_elements, size_t elem_size, size_t contiguous_elements, boost_cont_memchain *pchain)
-{ return boost_cont_multialloc_nodes(n_elements, elem_size, contiguous_elements, pchain); }
-
-BOOST_CONTAINER_DECL int dlmalloc_multialloc_arrays
- (size_t n_elements, const size_t *sizes, size_t sizeof_element, size_t contiguous_elements, boost_cont_memchain *pchain)
-{ return boost_cont_multialloc_arrays(n_elements, sizes, sizeof_element, contiguous_elements, pchain); }
-
-BOOST_CONTAINER_DECL void dlmalloc_multidealloc(boost_cont_memchain *pchain)
-{ return boost_cont_multidealloc(pchain); }
-
-BOOST_CONTAINER_DECL size_t dlmalloc_footprint()
-{ return boost_cont_footprint(); }
-
-BOOST_CONTAINER_DECL size_t dlmalloc_allocated_memory()
-{ return boost_cont_allocated_memory(); }
-
-BOOST_CONTAINER_DECL size_t dlmalloc_chunksize(const void *p)
-{ return boost_cont_chunksize(p); }
-
-BOOST_CONTAINER_DECL int dlmalloc_all_deallocated()
-{ return boost_cont_all_deallocated(); }
-
-BOOST_CONTAINER_DECL boost_cont_malloc_stats_t dlmalloc_malloc_stats()
-{ return boost_cont_malloc_stats(); }
-
-BOOST_CONTAINER_DECL size_t dlmalloc_in_use_memory()
-{ return boost_cont_in_use_memory(); }
-
-BOOST_CONTAINER_DECL int dlmalloc_trim(size_t pad)
-{ return boost_cont_trim(pad); }
-
-BOOST_CONTAINER_DECL int dlmalloc_mallopt(int parameter_number, int parameter_value)
-{ return boost_cont_mallopt(parameter_number, parameter_value); }
-
-BOOST_CONTAINER_DECL int dlmalloc_grow
- (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received)
-{ return boost_cont_grow(oldmem, minbytes, maxbytes, received); }
-
-BOOST_CONTAINER_DECL int dlmalloc_shrink
- (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received, int do_commit)
-{ return boost_cont_shrink(oldmem, minbytes, maxbytes, received, do_commit); }
-
-BOOST_CONTAINER_DECL void* dlmalloc_alloc
- (size_t minbytes, size_t preferred_bytes, size_t *received_bytes)
-{ return boost_cont_alloc(minbytes, preferred_bytes, received_bytes); }
-
-BOOST_CONTAINER_DECL int dlmalloc_malloc_check()
-{ return boost_cont_malloc_check(); }
-
-BOOST_CONTAINER_DECL boost_cont_command_ret_t dlmalloc_allocation_command
- ( allocation_type command
- , size_t sizeof_object
- , size_t limit_objects
- , size_t preferred_objects
- , size_t *received_objects
- , void *reuse_ptr
- )
-{ return boost_cont_allocation_command(command, sizeof_object, limit_objects, preferred_objects, received_objects, reuse_ptr); }
-
-BOOST_CONTAINER_DECL void *dlmalloc_sync_create()
-{ return boost_cont_sync_create(); }
-
-BOOST_CONTAINER_DECL void dlmalloc_sync_destroy(void *sync)
-{ return boost_cont_sync_destroy(sync); }
-
-BOOST_CONTAINER_DECL bool dlmalloc_sync_lock(void *sync)
-{ return boost_cont_sync_lock(sync) != 0; }
-
-BOOST_CONTAINER_DECL void dlmalloc_sync_unlock(void *sync)
-{ return boost_cont_sync_unlock(sync); }
-
-BOOST_CONTAINER_DECL bool dlmalloc_global_sync_lock()
-{ return boost_cont_global_sync_lock() != 0; }
-
-BOOST_CONTAINER_DECL void dlmalloc_global_sync_unlock()
-{ return boost_cont_global_sync_unlock(); }
-
-} //namespace container{
-} //namespace boost{
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2012-2013. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/container for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#define BOOST_CONTAINER_SOURCE
+#include <boost/container/detail/dlmalloc.hpp>
+
+namespace boost{
+namespace container{
+
+BOOST_CONTAINER_DECL size_t dlmalloc_size(const void *p)
+{ return boost_cont_size(p); }
+
+BOOST_CONTAINER_DECL void* dlmalloc_malloc(size_t bytes)
+{ return boost_cont_malloc(bytes); }
+
+BOOST_CONTAINER_DECL void dlmalloc_free(void* mem)
+{ return boost_cont_free(mem); }
+
+BOOST_CONTAINER_DECL void* dlmalloc_memalign(size_t bytes, size_t alignment)
+{ return boost_cont_memalign(bytes, alignment); }
+
+BOOST_CONTAINER_DECL int dlmalloc_multialloc_nodes
+ (size_t n_elements, size_t elem_size, size_t contiguous_elements, boost_cont_memchain *pchain)
+{ return boost_cont_multialloc_nodes(n_elements, elem_size, contiguous_elements, pchain); }
+
+BOOST_CONTAINER_DECL int dlmalloc_multialloc_arrays
+ (size_t n_elements, const size_t *sizes, size_t sizeof_element, size_t contiguous_elements, boost_cont_memchain *pchain)
+{ return boost_cont_multialloc_arrays(n_elements, sizes, sizeof_element, contiguous_elements, pchain); }
+
+BOOST_CONTAINER_DECL void dlmalloc_multidealloc(boost_cont_memchain *pchain)
+{ return boost_cont_multidealloc(pchain); }
+
+BOOST_CONTAINER_DECL size_t dlmalloc_footprint()
+{ return boost_cont_footprint(); }
+
+BOOST_CONTAINER_DECL size_t dlmalloc_allocated_memory()
+{ return boost_cont_allocated_memory(); }
+
+BOOST_CONTAINER_DECL size_t dlmalloc_chunksize(const void *p)
+{ return boost_cont_chunksize(p); }
+
+BOOST_CONTAINER_DECL int dlmalloc_all_deallocated()
+{ return boost_cont_all_deallocated(); }
+
+BOOST_CONTAINER_DECL boost_cont_malloc_stats_t dlmalloc_malloc_stats()
+{ return boost_cont_malloc_stats(); }
+
+BOOST_CONTAINER_DECL size_t dlmalloc_in_use_memory()
+{ return boost_cont_in_use_memory(); }
+
+BOOST_CONTAINER_DECL int dlmalloc_trim(size_t pad)
+{ return boost_cont_trim(pad); }
+
+BOOST_CONTAINER_DECL int dlmalloc_mallopt(int parameter_number, int parameter_value)
+{ return boost_cont_mallopt(parameter_number, parameter_value); }
+
+BOOST_CONTAINER_DECL int dlmalloc_grow
+ (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received)
+{ return boost_cont_grow(oldmem, minbytes, maxbytes, received); }
+
+BOOST_CONTAINER_DECL int dlmalloc_shrink
+ (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received, int do_commit)
+{ return boost_cont_shrink(oldmem, minbytes, maxbytes, received, do_commit); }
+
+BOOST_CONTAINER_DECL void* dlmalloc_alloc
+ (size_t minbytes, size_t preferred_bytes, size_t *received_bytes)
+{ return boost_cont_alloc(minbytes, preferred_bytes, received_bytes); }
+
+BOOST_CONTAINER_DECL int dlmalloc_malloc_check()
+{ return boost_cont_malloc_check(); }
+
+BOOST_CONTAINER_DECL boost_cont_command_ret_t dlmalloc_allocation_command
+ ( allocation_type command
+ , size_t sizeof_object
+ , size_t limit_objects
+ , size_t preferred_objects
+ , size_t *received_objects
+ , void *reuse_ptr
+ )
+{ return boost_cont_allocation_command(command, sizeof_object, limit_objects, preferred_objects, received_objects, reuse_ptr); }
+
+BOOST_CONTAINER_DECL void *dlmalloc_sync_create()
+{ return boost_cont_sync_create(); }
+
+BOOST_CONTAINER_DECL void dlmalloc_sync_destroy(void *sync)
+{ return boost_cont_sync_destroy(sync); }
+
+BOOST_CONTAINER_DECL bool dlmalloc_sync_lock(void *sync)
+{ return boost_cont_sync_lock(sync) != 0; }
+
+BOOST_CONTAINER_DECL void dlmalloc_sync_unlock(void *sync)
+{ return boost_cont_sync_unlock(sync); }
+
+BOOST_CONTAINER_DECL bool dlmalloc_global_sync_lock()
+{ return boost_cont_global_sync_lock() != 0; }
+
+BOOST_CONTAINER_DECL void dlmalloc_global_sync_unlock()
+{ return boost_cont_global_sync_unlock(); }
+
+} //namespace container{
+} //namespace boost{
diff --git a/contrib/restricted/boost/libs/container/src/dlmalloc_2_8_6.c b/contrib/restricted/boost/libs/container/src/dlmalloc_2_8_6.c
index bb105b63fb..74bd11ec44 100644
--- a/contrib/restricted/boost/libs/container/src/dlmalloc_2_8_6.c
+++ b/contrib/restricted/boost/libs/container/src/dlmalloc_2_8_6.c
@@ -1,6280 +1,6280 @@
-/*
- This is a version (aka dlmalloc) of malloc/free/realloc written by
- Doug Lea and released to the public domain, as explained at
- http://creativecommons.org/publicdomain/zero/1.0/ Send questions,
- comments, complaints, performance data, etc to dl@cs.oswego.edu
-
-* Version 2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea
- Note: There may be an updated version of this malloc obtainable at
- ftp://gee.cs.oswego.edu/pub/misc/malloc.c
- Check before installing!
-
-* Quickstart
-
- This library is all in one file to simplify the most common usage:
- ftp it, compile it (-O3), and link it into another program. All of
- the compile-time options default to reasonable values for use on
- most platforms. You might later want to step through various
- compile-time and dynamic tuning options.
-
- For convenience, an include file for code using this malloc is at:
- ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.6.h
- You don't really need this .h file unless you call functions not
- defined in your system include files. The .h file contains only the
- excerpts from this file needed for using this malloc on ANSI C/C++
- systems, so long as you haven't changed compile-time options about
- naming and tuning parameters. If you do, then you can create your
- own malloc.h that does include all settings by cutting at the point
- indicated below. Note that you may already by default be using a C
- library containing a malloc that is based on some version of this
- malloc (for example in linux). You might still want to use the one
- in this file to customize settings or to avoid overheads associated
- with library versions.
-
-* Vital statistics:
-
- Supported pointer/size_t representation: 4 or 8 bytes
- size_t MUST be an unsigned type of the same width as
- pointers. (If you are using an ancient system that declares
- size_t as a signed type, or need it to be a different width
- than pointers, you can use a previous release of this malloc
- (e.g. 2.7.2) supporting these.)
-
- Alignment: 8 bytes (minimum)
- This suffices for nearly all current machines and C compilers.
- However, you can define MALLOC_ALIGNMENT to be wider than this
- if necessary (up to 128bytes), at the expense of using more space.
-
- Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
- 8 or 16 bytes (if 8byte sizes)
- Each malloced chunk has a hidden word of overhead holding size
- and status information, and additional cross-check word
- if FOOTERS is defined.
-
- Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
- 8-byte ptrs: 32 bytes (including overhead)
-
- Even a request for zero bytes (i.e., malloc(0)) returns a
- pointer to something of the minimum allocatable size.
- The maximum overhead wastage (i.e., number of extra bytes
- allocated than were requested in malloc) is less than or equal
- to the minimum size, except for requests >= mmap_threshold that
- are serviced via mmap(), where the worst case wastage is about
- 32 bytes plus the remainder from a system page (the minimal
- mmap unit); typically 4096 or 8192 bytes.
-
- Security: static-safe; optionally more or less
- The "security" of malloc refers to the ability of malicious
- code to accentuate the effects of errors (for example, freeing
- space that is not currently malloc'ed or overwriting past the
- ends of chunks) in code that calls malloc. This malloc
- guarantees not to modify any memory locations below the base of
- heap, i.e., static variables, even in the presence of usage
- errors. The routines additionally detect most improper frees
- and reallocs. All this holds as long as the static bookkeeping
- for malloc itself is not corrupted by some other means. This
- is only one aspect of security -- these checks do not, and
- cannot, detect all possible programming errors.
-
- If FOOTERS is defined nonzero, then each allocated chunk
- carries an additional check word to verify that it was malloced
- from its space. These check words are the same within each
- execution of a program using malloc, but differ across
- executions, so externally crafted fake chunks cannot be
- freed. This improves security by rejecting frees/reallocs that
- could corrupt heap memory, in addition to the checks preventing
- writes to statics that are always on. This may further improve
- security at the expense of time and space overhead. (Note that
- FOOTERS may also be worth using with MSPACES.)
-
- By default detected errors cause the program to abort (calling
- "abort()"). You can override this to instead proceed past
- errors by defining PROCEED_ON_ERROR. In this case, a bad free
- has no effect, and a malloc that encounters a bad address
- caused by user overwrites will ignore the bad address by
- dropping pointers and indices to all known memory. This may
- be appropriate for programs that should continue if at all
- possible in the face of programming errors, although they may
- run out of memory because dropped memory is never reclaimed.
-
- If you don't like either of these options, you can define
- CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
- else. And if if you are sure that your program using malloc has
- no errors or vulnerabilities, you can define INSECURE to 1,
- which might (or might not) provide a small performance improvement.
-
- It is also possible to limit the maximum total allocatable
- space, using malloc_set_footprint_limit. This is not
- designed as a security feature in itself (calls to set limits
- are not screened or privileged), but may be useful as one
- aspect of a secure implementation.
-
- Thread-safety: NOT thread-safe unless USE_LOCKS defined non-zero
- When USE_LOCKS is defined, each public call to malloc, free,
- etc is surrounded with a lock. By default, this uses a plain
- pthread mutex, win32 critical section, or a spin-lock if if
- available for the platform and not disabled by setting
- USE_SPIN_LOCKS=0. However, if USE_RECURSIVE_LOCKS is defined,
- recursive versions are used instead (which are not required for
- base functionality but may be needed in layered extensions).
- Using a global lock is not especially fast, and can be a major
- bottleneck. It is designed only to provide minimal protection
- in concurrent environments, and to provide a basis for
- extensions. If you are using malloc in a concurrent program,
- consider instead using nedmalloc
- (http://www.nedprod.com/programs/portable/nedmalloc/) or
- ptmalloc (See http://www.malloc.de), which are derived from
- versions of this malloc.
-
- System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
- This malloc can use unix sbrk or any emulation (invoked using
- the CALL_MORECORE macro) and/or mmap/munmap or any emulation
- (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
- memory. On most unix systems, it tends to work best if both
- MORECORE and MMAP are enabled. On Win32, it uses emulations
- based on VirtualAlloc. It also uses common C library functions
- like memset.
-
- Compliance: I believe it is compliant with the Single Unix Specification
- (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
- others as well.
-
-* Overview of algorithms
-
- This is not the fastest, most space-conserving, most portable, or
- most tunable malloc ever written. However it is among the fastest
- while also being among the most space-conserving, portable and
- tunable. Consistent balance across these factors results in a good
- general-purpose allocator for malloc-intensive programs.
-
- In most ways, this malloc is a best-fit allocator. Generally, it
- chooses the best-fitting existing chunk for a request, with ties
- broken in approximately least-recently-used order. (This strategy
- normally maintains low fragmentation.) However, for requests less
- than 256bytes, it deviates from best-fit when there is not an
- exactly fitting available chunk by preferring to use space adjacent
- to that used for the previous small request, as well as by breaking
- ties in approximately most-recently-used order. (These enhance
- locality of series of small allocations.) And for very large requests
- (>= 256Kb by default), it relies on system memory mapping
- facilities, if supported. (This helps avoid carrying around and
- possibly fragmenting memory used only for large chunks.)
-
- All operations (except malloc_stats and mallinfo) have execution
- times that are bounded by a constant factor of the number of bits in
- a size_t, not counting any clearing in calloc or copying in realloc,
- or actions surrounding MORECORE and MMAP that have times
- proportional to the number of non-contiguous regions returned by
- system allocation routines, which is often just 1. In real-time
- applications, you can optionally suppress segment traversals using
- NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
- system allocators return non-contiguous spaces, at the typical
- expense of carrying around more memory and increased fragmentation.
-
- The implementation is not very modular and seriously overuses
- macros. Perhaps someday all C compilers will do as good a job
- inlining modular code as can now be done by brute-force expansion,
- but now, enough of them seem not to.
-
- Some compilers issue a lot of warnings about code that is
- dead/unreachable only on some platforms, and also about intentional
- uses of negation on unsigned types. All known cases of each can be
- ignored.
-
- For a longer but out of date high-level description, see
- http://gee.cs.oswego.edu/dl/html/malloc.html
-
-* MSPACES
- If MSPACES is defined, then in addition to malloc, free, etc.,
- this file also defines mspace_malloc, mspace_free, etc. These
- are versions of malloc routines that take an "mspace" argument
- obtained using create_mspace, to control all internal bookkeeping.
- If ONLY_MSPACES is defined, only these versions are compiled.
- So if you would like to use this allocator for only some allocations,
- and your system malloc for others, you can compile with
- ONLY_MSPACES and then do something like...
- static mspace mymspace = create_mspace(0,0); // for example
- #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
-
- (Note: If you only need one instance of an mspace, you can instead
- use "USE_DL_PREFIX" to relabel the global malloc.)
-
- You can similarly create thread-local allocators by storing
- mspaces as thread-locals. For example:
- static __thread mspace tlms = 0;
- void* tlmalloc(size_t bytes) {
- if (tlms == 0) tlms = create_mspace(0, 0);
- return mspace_malloc(tlms, bytes);
- }
- void tlfree(void* mem) { mspace_free(tlms, mem); }
-
- Unless FOOTERS is defined, each mspace is completely independent.
- You cannot allocate from one and free to another (although
- conformance is only weakly checked, so usage errors are not always
- caught). If FOOTERS is defined, then each chunk carries around a tag
- indicating its originating mspace, and frees are directed to their
- originating spaces. Normally, this requires use of locks.
-
- ------------------------- Compile-time options ---------------------------
-
-Be careful in setting #define values for numerical constants of type
-size_t. On some systems, literal values are not automatically extended
-to size_t precision unless they are explicitly casted. You can also
-use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
-
-WIN32 default: defined if _WIN32 defined
- Defining WIN32 sets up defaults for MS environment and compilers.
- Otherwise defaults are for unix. Beware that there seem to be some
- cases where this malloc might not be a pure drop-in replacement for
- Win32 malloc: Random-looking failures from Win32 GDI API's (eg;
- SetDIBits()) may be due to bugs in some video driver implementations
- when pixel buffers are malloc()ed, and the region spans more than
- one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb)
- default granularity, pixel buffers may straddle virtual allocation
- regions more often than when using the Microsoft allocator. You can
- avoid this by using VirtualAlloc() and VirtualFree() for all pixel
- buffers rather than using malloc(). If this is not possible,
- recompile this malloc with a larger DEFAULT_GRANULARITY. Note:
- in cases where MSC and gcc (cygwin) are known to differ on WIN32,
- conditions use _MSC_VER to distinguish them.
-
-DLMALLOC_EXPORT default: extern
- Defines how public APIs are declared. If you want to export via a
- Windows DLL, you might define this as
- #define DLMALLOC_EXPORT extern __declspec(dllexport)
- If you want a POSIX ELF shared object, you might use
- #define DLMALLOC_EXPORT extern __attribute__((visibility("default")))
-
-MALLOC_ALIGNMENT default: (size_t)(2 * sizeof(void *))
- Controls the minimum alignment for malloc'ed chunks. It must be a
- power of two and at least 8, even on machines for which smaller
- alignments would suffice. It may be defined as larger than this
- though. Note however that code and data structures are optimized for
- the case of 8-byte alignment.
-
-MSPACES default: 0 (false)
- If true, compile in support for independent allocation spaces.
- This is only supported if HAVE_MMAP is true.
-
-ONLY_MSPACES default: 0 (false)
- If true, only compile in mspace versions, not regular versions.
-
-USE_LOCKS default: 0 (false)
- Causes each call to each public routine to be surrounded with
- pthread or WIN32 mutex lock/unlock. (If set true, this can be
- overridden on a per-mspace basis for mspace versions.) If set to a
- non-zero value other than 1, locks are used, but their
- implementation is left out, so lock functions must be supplied manually,
- as described below.
-
-USE_SPIN_LOCKS default: 1 iff USE_LOCKS and spin locks available
- If true, uses custom spin locks for locking. This is currently
- supported only gcc >= 4.1, older gccs on x86 platforms, and recent
- MS compilers. Otherwise, posix locks or win32 critical sections are
- used.
-
-USE_RECURSIVE_LOCKS default: not defined
- If defined nonzero, uses recursive (aka reentrant) locks, otherwise
- uses plain mutexes. This is not required for malloc proper, but may
- be needed for layered allocators such as nedmalloc.
-
-LOCK_AT_FORK default: not defined
- If defined nonzero, performs pthread_atfork upon initialization
- to initialize child lock while holding parent lock. The implementation
- assumes that pthread locks (not custom locks) are being used. In other
- cases, you may need to customize the implementation.
-
-FOOTERS default: 0
- If true, provide extra checking and dispatching by placing
- information in the footers of allocated chunks. This adds
- space and time overhead.
-
-INSECURE default: 0
- If true, omit checks for usage errors and heap space overwrites.
-
-USE_DL_PREFIX default: NOT defined
- Causes compiler to prefix all public routines with the string 'dl'.
- This can be useful when you only want to use this malloc in one part
- of a program, using your regular system malloc elsewhere.
-
-MALLOC_INSPECT_ALL default: NOT defined
- If defined, compiles malloc_inspect_all and mspace_inspect_all, that
- perform traversal of all heap space. Unless access to these
- functions is otherwise restricted, you probably do not want to
- include them in secure implementations.
-
-ABORT default: defined as abort()
- Defines how to abort on failed checks. On most systems, a failed
- check cannot die with an "assert" or even print an informative
- message, because the underlying print routines in turn call malloc,
- which will fail again. Generally, the best policy is to simply call
- abort(). It's not very useful to do more than this because many
- errors due to overwriting will show up as address faults (null, odd
- addresses etc) rather than malloc-triggered checks, so will also
- abort. Also, most compilers know that abort() does not return, so
- can better optimize code conditionally calling it.
-
-PROCEED_ON_ERROR default: defined as 0 (false)
- Controls whether detected bad addresses cause them to bypassed
- rather than aborting. If set, detected bad arguments to free and
- realloc are ignored. And all bookkeeping information is zeroed out
- upon a detected overwrite of freed heap space, thus losing the
- ability to ever return it from malloc again, but enabling the
- application to proceed. If PROCEED_ON_ERROR is defined, the
- static variable malloc_corruption_error_count is compiled in
- and can be examined to see if errors have occurred. This option
- generates slower code than the default abort policy.
-
-DEBUG default: NOT defined
- The DEBUG setting is mainly intended for people trying to modify
- this code or diagnose problems when porting to new platforms.
- However, it may also be able to better isolate user errors than just
- using runtime checks. The assertions in the check routines spell
- out in more detail the assumptions and invariants underlying the
- algorithms. The checking is fairly extensive, and will slow down
- execution noticeably. Calling malloc_stats or mallinfo with DEBUG
- set will attempt to check every non-mmapped allocated and free chunk
- in the course of computing the summaries.
-
-ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
- Debugging assertion failures can be nearly impossible if your
- version of the assert macro causes malloc to be called, which will
- lead to a cascade of further failures, blowing the runtime stack.
- ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
- which will usually make debugging easier.
-
-MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
- The action to take before "return 0" when malloc fails to be able to
- return memory because there is none available.
-
-HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
- True if this system supports sbrk or an emulation of it.
-
-MORECORE default: sbrk
- The name of the sbrk-style system routine to call to obtain more
- memory. See below for guidance on writing custom MORECORE
- functions. The type of the argument to sbrk/MORECORE varies across
- systems. It cannot be size_t, because it supports negative
- arguments, so it is normally the signed type of the same width as
- size_t (sometimes declared as "intptr_t"). It doesn't much matter
- though. Internally, we only call it with arguments less than half
- the max value of a size_t, which should work across all reasonable
- possibilities, although sometimes generating compiler warnings.
-
-MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE
- If true, take advantage of fact that consecutive calls to MORECORE
- with positive arguments always return contiguous increasing
- addresses. This is true of unix sbrk. It does not hurt too much to
- set it true anyway, since malloc copes with non-contiguities.
- Setting it false when definitely non-contiguous saves time
- and possibly wasted space it would take to discover this though.
-
-MORECORE_CANNOT_TRIM default: NOT defined
- True if MORECORE cannot release space back to the system when given
- negative arguments. This is generally necessary only if you are
- using a hand-crafted MORECORE function that cannot handle negative
- arguments.
-
-NO_SEGMENT_TRAVERSAL default: 0
- If non-zero, suppresses traversals of memory segments
- returned by either MORECORE or CALL_MMAP. This disables
- merging of segments that are contiguous, and selectively
- releasing them to the OS if unused, but bounds execution times.
-
-HAVE_MMAP default: 1 (true)
- True if this system supports mmap or an emulation of it. If so, and
- HAVE_MORECORE is not true, MMAP is used for all system
- allocation. If set and HAVE_MORECORE is true as well, MMAP is
- primarily used to directly allocate very large blocks. It is also
- used as a backup strategy in cases where MORECORE fails to provide
- space from system. Note: A single call to MUNMAP is assumed to be
- able to unmap memory that may have be allocated using multiple calls
- to MMAP, so long as they are adjacent.
-
-HAVE_MREMAP default: 1 on linux, else 0
- If true realloc() uses mremap() to re-allocate large blocks and
- extend or shrink allocation spaces.
-
-MMAP_CLEARS default: 1 except on WINCE.
- True if mmap clears memory so calloc doesn't need to. This is true
- for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
-
-USE_BUILTIN_FFS default: 0 (i.e., not used)
- Causes malloc to use the builtin ffs() function to compute indices.
- Some compilers may recognize and intrinsify ffs to be faster than the
- supplied C version. Also, the case of x86 using gcc is special-cased
- to an asm instruction, so is already as fast as it can be, and so
- this setting has no effect. Similarly for Win32 under recent MS compilers.
- (On most x86s, the asm version is only slightly faster than the C version.)
-
-malloc_getpagesize default: derive from system includes, or 4096.
- The system page size. To the extent possible, this malloc manages
- memory from the system in page-size units. This may be (and
- usually is) a function rather than a constant. This is ignored
- if WIN32, where page size is determined using getSystemInfo during
- initialization.
-
-USE_DEV_RANDOM default: 0 (i.e., not used)
- Causes malloc to use /dev/random to initialize secure magic seed for
- stamping footers. Otherwise, the current time is used.
-
-NO_MALLINFO default: 0
- If defined, don't compile "mallinfo". This can be a simple way
- of dealing with mismatches between system declarations and
- those in this file.
-
-MALLINFO_FIELD_TYPE default: size_t
- The type of the fields in the mallinfo struct. This was originally
- defined as "int" in SVID etc, but is more usefully defined as
- size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
-
-NO_MALLOC_STATS default: 0
- If defined, don't compile "malloc_stats". This avoids calls to
- fprintf and bringing in stdio dependencies you might not want.
-
-REALLOC_ZERO_BYTES_FREES default: not defined
- This should be set if a call to realloc with zero bytes should
- be the same as a call to free. Some people think it should. Otherwise,
- since this malloc returns a unique pointer for malloc(0), so does
- realloc(p, 0).
-
-LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
-LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
-LACKS_STDLIB_H LACKS_SCHED_H LACKS_TIME_H default: NOT defined unless on WIN32
- Define these if your system does not have these header files.
- You might need to manually insert some of the declarations they provide.
-
-DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
- system_info.dwAllocationGranularity in WIN32,
- otherwise 64K.
- Also settable using mallopt(M_GRANULARITY, x)
- The unit for allocating and deallocating memory from the system. On
- most systems with contiguous MORECORE, there is no reason to
- make this more than a page. However, systems with MMAP tend to
- either require or encourage larger granularities. You can increase
- this value to prevent system allocation functions to be called so
- often, especially if they are slow. The value must be at least one
- page and must be a power of two. Setting to 0 causes initialization
- to either page size or win32 region size. (Note: In previous
- versions of malloc, the equivalent of this option was called
- "TOP_PAD")
-
-DEFAULT_TRIM_THRESHOLD default: 2MB
- Also settable using mallopt(M_TRIM_THRESHOLD, x)
- The maximum amount of unused top-most memory to keep before
- releasing via malloc_trim in free(). Automatic trimming is mainly
- useful in long-lived programs using contiguous MORECORE. Because
- trimming via sbrk can be slow on some systems, and can sometimes be
- wasteful (in cases where programs immediately afterward allocate
- more large chunks) the value should be high enough so that your
- overall system performance would improve by releasing this much
- memory. As a rough guide, you might set to a value close to the
- average size of a process (program) running on your system.
- Releasing this much memory would allow such a process to run in
- memory. Generally, it is worth tuning trim thresholds when a
- program undergoes phases where several large chunks are allocated
- and released in ways that can reuse each other's storage, perhaps
- mixed with phases where there are no such chunks at all. The trim
- value must be greater than page size to have any useful effect. To
- disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
- some people use of mallocing a huge space and then freeing it at
- program startup, in an attempt to reserve system memory, doesn't
- have the intended effect under automatic trimming, since that memory
- will immediately be returned to the system.
-
-DEFAULT_MMAP_THRESHOLD default: 256K
- Also settable using mallopt(M_MMAP_THRESHOLD, x)
- The request size threshold for using MMAP to directly service a
- request. Requests of at least this size that cannot be allocated
- using already-existing space will be serviced via mmap. (If enough
- normal freed space already exists it is used instead.) Using mmap
- segregates relatively large chunks of memory so that they can be
- individually obtained and released from the host system. A request
- serviced through mmap is never reused by any other request (at least
- not directly; the system may just so happen to remap successive
- requests to the same locations). Segregating space in this way has
- the benefits that: Mmapped space can always be individually released
- back to the system, which helps keep the system level memory demands
- of a long-lived program low. Also, mapped memory doesn't become
- `locked' between other chunks, as can happen with normally allocated
- chunks, which means that even trimming via malloc_trim would not
- release them. However, it has the disadvantage that the space
- cannot be reclaimed, consolidated, and then used to service later
- requests, as happens with normal chunks. The advantages of mmap
- nearly always outweigh disadvantages for "large" chunks, but the
- value of "large" may vary across systems. The default is an
- empirically derived value that works well in most systems. You can
- disable mmap by setting to MAX_SIZE_T.
-
-MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP
- The number of consolidated frees between checks to release
- unused segments when freeing. When using non-contiguous segments,
- especially with multiple mspaces, checking only for topmost space
- doesn't always suffice to trigger trimming. To compensate for this,
- free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
- current number of segments, if greater) try to release unused
- segments to the OS when freeing chunks that result in
- consolidation. The best value for this parameter is a compromise
- between slowing down frees with relatively costly checks that
- rarely trigger versus holding on to unused memory. To effectively
- disable, set to MAX_SIZE_T. This may lead to a very slight speed
- improvement at the expense of carrying around more memory.
-*/
-
-/* Version identifier to allow people to support multiple versions */
-#ifndef DLMALLOC_VERSION
-#define DLMALLOC_VERSION 20806
-#endif /* DLMALLOC_VERSION */
-
-#ifndef DLMALLOC_EXPORT
-#define DLMALLOC_EXPORT extern
-#endif
-
-#ifndef WIN32
-#ifdef _WIN32
-#define WIN32 1
-#endif /* _WIN32 */
-#ifdef _WIN32_WCE
-#define LACKS_FCNTL_H
-#define WIN32 1
-#endif /* _WIN32_WCE */
-#endif /* WIN32 */
-#ifdef WIN32
-#define WIN32_LEAN_AND_MEAN
-#include <windows.h>
-#include <tchar.h>
-#define HAVE_MMAP 1
-#define HAVE_MORECORE 0
-#define LACKS_UNISTD_H
-#define LACKS_SYS_PARAM_H
-#define LACKS_SYS_MMAN_H
-#define LACKS_STRING_H
-#define LACKS_STRINGS_H
-#define LACKS_SYS_TYPES_H
-#define LACKS_ERRNO_H
-#define LACKS_SCHED_H
-#ifndef MALLOC_FAILURE_ACTION
-#define MALLOC_FAILURE_ACTION
-#endif /* MALLOC_FAILURE_ACTION */
-#ifndef MMAP_CLEARS
-#ifdef _WIN32_WCE /* WINCE reportedly does not clear */
-#define MMAP_CLEARS 0
-#else
-#define MMAP_CLEARS 1
-#endif /* _WIN32_WCE */
-#endif /*MMAP_CLEARS */
-#endif /* WIN32 */
-
-#if defined(DARWIN) || defined(_DARWIN)
-/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
-#ifndef HAVE_MORECORE
-#define HAVE_MORECORE 0
-#define HAVE_MMAP 1
-/* OSX allocators provide 16 byte alignment */
-#ifndef MALLOC_ALIGNMENT
-#define MALLOC_ALIGNMENT ((size_t)16U)
-#endif
-#endif /* HAVE_MORECORE */
-#endif /* DARWIN */
-
-#ifndef LACKS_SYS_TYPES_H
-#include <sys/types.h> /* For size_t */
-#endif /* LACKS_SYS_TYPES_H */
-
-/* The maximum possible size_t value has all bits set */
-#define MAX_SIZE_T (~(size_t)0)
-
-#ifndef USE_LOCKS /* ensure true if spin or recursive locks set */
-#define USE_LOCKS ((defined(USE_SPIN_LOCKS) && USE_SPIN_LOCKS != 0) || \
- (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0))
-#endif /* USE_LOCKS */
-
-#if USE_LOCKS /* Spin locks for gcc >= 4.1, older gcc on x86, MSC >= 1310 */
-#if ((defined(__GNUC__) && \
- ((__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) || \
- defined(__i386__) || defined(__x86_64__))) || \
- (defined(_MSC_VER) && _MSC_VER>=1310))
-#ifndef USE_SPIN_LOCKS
-#define USE_SPIN_LOCKS 1
-#endif /* USE_SPIN_LOCKS */
-#elif USE_SPIN_LOCKS
-#error "USE_SPIN_LOCKS defined without implementation"
-#endif /* ... locks available... */
-#elif !defined(USE_SPIN_LOCKS)
-#define USE_SPIN_LOCKS 0
-#endif /* USE_LOCKS */
-
-#ifndef ONLY_MSPACES
-#define ONLY_MSPACES 0
-#endif /* ONLY_MSPACES */
-#ifndef MSPACES
-#if ONLY_MSPACES
-#define MSPACES 1
-#else /* ONLY_MSPACES */
-#define MSPACES 0
-#endif /* ONLY_MSPACES */
-#endif /* MSPACES */
-#ifndef MALLOC_ALIGNMENT
-#define MALLOC_ALIGNMENT ((size_t)(2 * sizeof(void *)))
-#endif /* MALLOC_ALIGNMENT */
-#ifndef FOOTERS
-#define FOOTERS 0
-#endif /* FOOTERS */
-#ifndef ABORT
-#define ABORT abort()
-#endif /* ABORT */
-#ifndef ABORT_ON_ASSERT_FAILURE
-#define ABORT_ON_ASSERT_FAILURE 1
-#endif /* ABORT_ON_ASSERT_FAILURE */
-#ifndef PROCEED_ON_ERROR
-#define PROCEED_ON_ERROR 0
-#endif /* PROCEED_ON_ERROR */
-
-#ifndef INSECURE
-#define INSECURE 0
-#endif /* INSECURE */
-#ifndef MALLOC_INSPECT_ALL
-#define MALLOC_INSPECT_ALL 0
-#endif /* MALLOC_INSPECT_ALL */
-#ifndef HAVE_MMAP
-#define HAVE_MMAP 1
-#endif /* HAVE_MMAP */
-#ifndef MMAP_CLEARS
-#define MMAP_CLEARS 1
-#endif /* MMAP_CLEARS */
-#ifndef HAVE_MREMAP
-#ifdef linux
-#define HAVE_MREMAP 1
-#define _GNU_SOURCE /* Turns on mremap() definition */
-#else /* linux */
-#define HAVE_MREMAP 0
-#endif /* linux */
-#endif /* HAVE_MREMAP */
-#ifndef MALLOC_FAILURE_ACTION
-#define MALLOC_FAILURE_ACTION errno = ENOMEM;
-#endif /* MALLOC_FAILURE_ACTION */
-#ifndef HAVE_MORECORE
-#if ONLY_MSPACES
-#define HAVE_MORECORE 0
-#else /* ONLY_MSPACES */
-#define HAVE_MORECORE 1
-#endif /* ONLY_MSPACES */
-#endif /* HAVE_MORECORE */
-#if !HAVE_MORECORE
-#define MORECORE_CONTIGUOUS 0
-#else /* !HAVE_MORECORE */
-#define MORECORE_DEFAULT sbrk
-#ifndef MORECORE_CONTIGUOUS
-#define MORECORE_CONTIGUOUS 1
-#endif /* MORECORE_CONTIGUOUS */
-#endif /* HAVE_MORECORE */
-#ifndef DEFAULT_GRANULARITY
-#if (MORECORE_CONTIGUOUS || defined(WIN32))
-#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
-#else /* MORECORE_CONTIGUOUS */
-#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
-#endif /* MORECORE_CONTIGUOUS */
-#endif /* DEFAULT_GRANULARITY */
-#ifndef DEFAULT_TRIM_THRESHOLD
-#ifndef MORECORE_CANNOT_TRIM
-#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
-#else /* MORECORE_CANNOT_TRIM */
-#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
-#endif /* MORECORE_CANNOT_TRIM */
-#endif /* DEFAULT_TRIM_THRESHOLD */
-#ifndef DEFAULT_MMAP_THRESHOLD
-#if HAVE_MMAP
-#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
-#else /* HAVE_MMAP */
-#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
-#endif /* HAVE_MMAP */
-#endif /* DEFAULT_MMAP_THRESHOLD */
-#ifndef MAX_RELEASE_CHECK_RATE
-#if HAVE_MMAP
-#define MAX_RELEASE_CHECK_RATE 4095
-#else
-#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
-#endif /* HAVE_MMAP */
-#endif /* MAX_RELEASE_CHECK_RATE */
-#ifndef USE_BUILTIN_FFS
-#define USE_BUILTIN_FFS 0
-#endif /* USE_BUILTIN_FFS */
-#ifndef USE_DEV_RANDOM
-#define USE_DEV_RANDOM 0
-#endif /* USE_DEV_RANDOM */
-#ifndef NO_MALLINFO
-#define NO_MALLINFO 0
-#endif /* NO_MALLINFO */
-#ifndef MALLINFO_FIELD_TYPE
-#define MALLINFO_FIELD_TYPE size_t
-#endif /* MALLINFO_FIELD_TYPE */
-#ifndef NO_MALLOC_STATS
-#define NO_MALLOC_STATS 0
-#endif /* NO_MALLOC_STATS */
-#ifndef NO_SEGMENT_TRAVERSAL
-#define NO_SEGMENT_TRAVERSAL 0
-#endif /* NO_SEGMENT_TRAVERSAL */
-
-/*
- mallopt tuning options. SVID/XPG defines four standard parameter
- numbers for mallopt, normally defined in malloc.h. None of these
- are used in this malloc, so setting them has no effect. But this
- malloc does support the following options.
-*/
-
-#define M_TRIM_THRESHOLD (-1)
-#define M_GRANULARITY (-2)
-#define M_MMAP_THRESHOLD (-3)
-
-/* ------------------------ Mallinfo declarations ------------------------ */
-
-#if !NO_MALLINFO
-/*
- This version of malloc supports the standard SVID/XPG mallinfo
- routine that returns a struct containing usage properties and
- statistics. It should work on any system that has a
- /usr/include/malloc.h defining struct mallinfo. The main
- declaration needed is the mallinfo struct that is returned (by-copy)
- by mallinfo(). The malloinfo struct contains a bunch of fields that
- are not even meaningful in this version of malloc. These fields are
- are instead filled by mallinfo() with other numbers that might be of
- interest.
-
- HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
- /usr/include/malloc.h file that includes a declaration of struct
- mallinfo. If so, it is included; else a compliant version is
- declared below. These must be precisely the same for mallinfo() to
- work. The original SVID version of this struct, defined on most
- systems with mallinfo, declares all fields as ints. But some others
- define as unsigned long. If your system defines the fields using a
- type of different width than listed here, you MUST #include your
- system version and #define HAVE_USR_INCLUDE_MALLOC_H.
-*/
-
-/* #define HAVE_USR_INCLUDE_MALLOC_H */
-
-#ifdef HAVE_USR_INCLUDE_MALLOC_H
-#error #include "/usr/include/malloc.h"
-#else /* HAVE_USR_INCLUDE_MALLOC_H */
-#ifndef STRUCT_MALLINFO_DECLARED
-/* HP-UX (and others?) redefines mallinfo unless _STRUCT_MALLINFO is defined */
-#define _STRUCT_MALLINFO
-#define STRUCT_MALLINFO_DECLARED 1
-struct mallinfo {
- MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
- MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
- MALLINFO_FIELD_TYPE smblks; /* always 0 */
- MALLINFO_FIELD_TYPE hblks; /* always 0 */
- MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
- MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
- MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
- MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
- MALLINFO_FIELD_TYPE fordblks; /* total free space */
- MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
-};
-#endif /* STRUCT_MALLINFO_DECLARED */
-#endif /* HAVE_USR_INCLUDE_MALLOC_H */
-#endif /* NO_MALLINFO */
-
-/*
- Try to persuade compilers to inline. The most critical functions for
- inlining are defined as macros, so these aren't used for them.
-*/
-
-#ifndef FORCEINLINE
- #if defined(__GNUC__)
-#define FORCEINLINE __inline __attribute__ ((always_inline))
- #elif defined(_MSC_VER)
- #define FORCEINLINE __forceinline
- #endif
-#endif
-#ifndef NOINLINE
- #if defined(__GNUC__)
- #define NOINLINE __attribute__ ((noinline))
- #elif defined(_MSC_VER)
- #define NOINLINE __declspec(noinline)
- #else
- #define NOINLINE
- #endif
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-#ifndef FORCEINLINE
- #define FORCEINLINE inline
-#endif
-#endif /* __cplusplus */
-#ifndef FORCEINLINE
- #define FORCEINLINE
-#endif
-
-#if !ONLY_MSPACES
-
-/* ------------------- Declarations of public routines ------------------- */
-
-#ifndef USE_DL_PREFIX
-#define dlcalloc calloc
-#define dlfree free
-#define dlmalloc malloc
-#define dlmemalign memalign
-#define dlposix_memalign posix_memalign
-#define dlrealloc realloc
-#define dlrealloc_in_place realloc_in_place
-#define dlvalloc valloc
-#define dlpvalloc pvalloc
-#define dlmallinfo mallinfo
-#define dlmallopt mallopt
-#define dlmalloc_trim malloc_trim
-#define dlmalloc_stats malloc_stats
-#define dlmalloc_usable_size malloc_usable_size
-#define dlmalloc_footprint malloc_footprint
-#define dlmalloc_max_footprint malloc_max_footprint
-#define dlmalloc_footprint_limit malloc_footprint_limit
-#define dlmalloc_set_footprint_limit malloc_set_footprint_limit
-#define dlmalloc_inspect_all malloc_inspect_all
-#define dlindependent_calloc independent_calloc
-#define dlindependent_comalloc independent_comalloc
-#define dlbulk_free bulk_free
-#endif /* USE_DL_PREFIX */
-
-/*
- malloc(size_t n)
- Returns a pointer to a newly allocated chunk of at least n bytes, or
- null if no space is available, in which case errno is set to ENOMEM
- on ANSI C systems.
-
- If n is zero, malloc returns a minimum-sized chunk. (The minimum
- size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
- systems.) Note that size_t is an unsigned type, so calls with
- arguments that would be negative if signed are interpreted as
- requests for huge amounts of space, which will often fail. The
- maximum supported value of n differs across systems, but is in all
- cases less than the maximum representable value of a size_t.
-*/
-DLMALLOC_EXPORT void* dlmalloc(size_t);
-
-/*
- free(void* p)
- Releases the chunk of memory pointed to by p, that had been previously
- allocated using malloc or a related routine such as realloc.
- It has no effect if p is null. If p was not malloced or already
- freed, free(p) will by default cause the current program to abort.
-*/
-DLMALLOC_EXPORT void dlfree(void*);
-
-/*
- calloc(size_t n_elements, size_t element_size);
- Returns a pointer to n_elements * element_size bytes, with all locations
- set to zero.
-*/
-DLMALLOC_EXPORT void* dlcalloc(size_t, size_t);
-
-/*
- realloc(void* p, size_t n)
- Returns a pointer to a chunk of size n that contains the same data
- as does chunk p up to the minimum of (n, p's size) bytes, or null
- if no space is available.
-
- The returned pointer may or may not be the same as p. The algorithm
- prefers extending p in most cases when possible, otherwise it
- employs the equivalent of a malloc-copy-free sequence.
-
- If p is null, realloc is equivalent to malloc.
-
- If space is not available, realloc returns null, errno is set (if on
- ANSI) and p is NOT freed.
-
- if n is for fewer bytes than already held by p, the newly unused
- space is lopped off and freed if possible. realloc with a size
- argument of zero (re)allocates a minimum-sized chunk.
-
- The old unix realloc convention of allowing the last-free'd chunk
- to be used as an argument to realloc is not supported.
-*/
-DLMALLOC_EXPORT void* dlrealloc(void*, size_t);
-
-/*
- realloc_in_place(void* p, size_t n)
- Resizes the space allocated for p to size n, only if this can be
- done without moving p (i.e., only if there is adjacent space
- available if n is greater than p's current allocated size, or n is
- less than or equal to p's size). This may be used instead of plain
- realloc if an alternative allocation strategy is needed upon failure
- to expand space; for example, reallocation of a buffer that must be
- memory-aligned or cleared. You can use realloc_in_place to trigger
- these alternatives only when needed.
-
- Returns p if successful; otherwise null.
-*/
-DLMALLOC_EXPORT void* dlrealloc_in_place(void*, size_t);
-
-/*
- memalign(size_t alignment, size_t n);
- Returns a pointer to a newly allocated chunk of n bytes, aligned
- in accord with the alignment argument.
-
- The alignment argument should be a power of two. If the argument is
- not a power of two, the nearest greater power is used.
- 8-byte alignment is guaranteed by normal malloc calls, so don't
- bother calling memalign with an argument of 8 or less.
-
- Overreliance on memalign is a sure way to fragment space.
-*/
-DLMALLOC_EXPORT void* dlmemalign(size_t, size_t);
-
-/*
- int posix_memalign(void** pp, size_t alignment, size_t n);
- Allocates a chunk of n bytes, aligned in accord with the alignment
- argument. Differs from memalign only in that it (1) assigns the
- allocated memory to *pp rather than returning it, (2) fails and
- returns EINVAL if the alignment is not a power of two (3) fails and
- returns ENOMEM if memory cannot be allocated.
-*/
-DLMALLOC_EXPORT int dlposix_memalign(void**, size_t, size_t);
-
-/*
- valloc(size_t n);
- Equivalent to memalign(pagesize, n), where pagesize is the page
- size of the system. If the pagesize is unknown, 4096 is used.
-*/
-DLMALLOC_EXPORT void* dlvalloc(size_t);
-
-/*
- mallopt(int parameter_number, int parameter_value)
- Sets tunable parameters The format is to provide a
- (parameter-number, parameter-value) pair. mallopt then sets the
- corresponding parameter to the argument value if it can (i.e., so
- long as the value is meaningful), and returns 1 if successful else
- 0. To workaround the fact that mallopt is specified to use int,
- not size_t parameters, the value -1 is specially treated as the
- maximum unsigned size_t value.
-
- SVID/XPG/ANSI defines four standard param numbers for mallopt,
- normally defined in malloc.h. None of these are use in this malloc,
- so setting them has no effect. But this malloc also supports other
- options in mallopt. See below for details. Briefly, supported
- parameters are as follows (listed defaults are for "typical"
- configurations).
-
- Symbol param # default allowed param values
- M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables)
- M_GRANULARITY -2 page size any power of 2 >= page size
- M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
-*/
-DLMALLOC_EXPORT int dlmallopt(int, int);
-
-/*
- malloc_footprint();
- Returns the number of bytes obtained from the system. The total
- number of bytes allocated by malloc, realloc etc., is less than this
- value. Unlike mallinfo, this function returns only a precomputed
- result, so can be called frequently to monitor memory consumption.
- Even if locks are otherwise defined, this function does not use them,
- so results might not be up to date.
-*/
-DLMALLOC_EXPORT size_t dlmalloc_footprint(void);
-
-/*
- malloc_max_footprint();
- Returns the maximum number of bytes obtained from the system. This
- value will be greater than current footprint if deallocated space
- has been reclaimed by the system. The peak number of bytes allocated
- by malloc, realloc etc., is less than this value. Unlike mallinfo,
- this function returns only a precomputed result, so can be called
- frequently to monitor memory consumption. Even if locks are
- otherwise defined, this function does not use them, so results might
- not be up to date.
-*/
-DLMALLOC_EXPORT size_t dlmalloc_max_footprint(void);
-
-/*
- malloc_footprint_limit();
- Returns the number of bytes that the heap is allowed to obtain from
- the system, returning the last value returned by
- malloc_set_footprint_limit, or the maximum size_t value if
- never set. The returned value reflects a permission. There is no
- guarantee that this number of bytes can actually be obtained from
- the system.
-*/
-DLMALLOC_EXPORT size_t dlmalloc_footprint_limit();
-
-/*
- malloc_set_footprint_limit();
- Sets the maximum number of bytes to obtain from the system, causing
- failure returns from malloc and related functions upon attempts to
- exceed this value. The argument value may be subject to page
- rounding to an enforceable limit; this actual value is returned.
- Using an argument of the maximum possible size_t effectively
- disables checks. If the argument is less than or equal to the
- current malloc_footprint, then all future allocations that require
- additional system memory will fail. However, invocation cannot
- retroactively deallocate existing used memory.
-*/
-DLMALLOC_EXPORT size_t dlmalloc_set_footprint_limit(size_t bytes);
-
-#if MALLOC_INSPECT_ALL
-/*
- malloc_inspect_all(void(*handler)(void *start,
- void *end,
- size_t used_bytes,
- void* callback_arg),
- void* arg);
- Traverses the heap and calls the given handler for each managed
- region, skipping all bytes that are (or may be) used for bookkeeping
- purposes. Traversal does not include include chunks that have been
- directly memory mapped. Each reported region begins at the start
- address, and continues up to but not including the end address. The
- first used_bytes of the region contain allocated data. If
- used_bytes is zero, the region is unallocated. The handler is
- invoked with the given callback argument. If locks are defined, they
- are held during the entire traversal. It is a bad idea to invoke
- other malloc functions from within the handler.
-
- For example, to count the number of in-use chunks with size greater
- than 1000, you could write:
- static int count = 0;
- void count_chunks(void* start, void* end, size_t used, void* arg) {
- if (used >= 1000) ++count;
- }
- then:
- malloc_inspect_all(count_chunks, NULL);
-
- malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined.
-*/
-DLMALLOC_EXPORT void dlmalloc_inspect_all(void(*handler)(void*, void *, size_t, void*),
- void* arg);
-
-#endif /* MALLOC_INSPECT_ALL */
-
-#if !NO_MALLINFO
-/*
- mallinfo()
- Returns (by copy) a struct containing various summary statistics:
-
- arena: current total non-mmapped bytes allocated from system
- ordblks: the number of free chunks
- smblks: always zero.
- hblks: current number of mmapped regions
- hblkhd: total bytes held in mmapped regions
- usmblks: the maximum total allocated space. This will be greater
- than current total if trimming has occurred.
- fsmblks: always zero
- uordblks: current total allocated space (normal or mmapped)
- fordblks: total free space
- keepcost: the maximum number of bytes that could ideally be released
- back to system via malloc_trim. ("ideally" means that
- it ignores page restrictions etc.)
-
- Because these fields are ints, but internal bookkeeping may
- be kept as longs, the reported values may wrap around zero and
- thus be inaccurate.
-*/
-DLMALLOC_EXPORT struct mallinfo dlmallinfo(void);
-#endif /* NO_MALLINFO */
-
-/*
- independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
-
- independent_calloc is similar to calloc, but instead of returning a
- single cleared space, it returns an array of pointers to n_elements
- independent elements that can hold contents of size elem_size, each
- of which starts out cleared, and can be independently freed,
- realloc'ed etc. The elements are guaranteed to be adjacently
- allocated (this is not guaranteed to occur with multiple callocs or
- mallocs), which may also improve cache locality in some
- applications.
-
- The "chunks" argument is optional (i.e., may be null, which is
- probably the most typical usage). If it is null, the returned array
- is itself dynamically allocated and should also be freed when it is
- no longer needed. Otherwise, the chunks array must be of at least
- n_elements in length. It is filled in with the pointers to the
- chunks.
-
- In either case, independent_calloc returns this pointer array, or
- null if the allocation failed. If n_elements is zero and "chunks"
- is null, it returns a chunk representing an array with zero elements
- (which should be freed if not wanted).
-
- Each element must be freed when it is no longer needed. This can be
- done all at once using bulk_free.
-
- independent_calloc simplifies and speeds up implementations of many
- kinds of pools. It may also be useful when constructing large data
- structures that initially have a fixed number of fixed-sized nodes,
- but the number is not known at compile time, and some of the nodes
- may later need to be freed. For example:
-
- struct Node { int item; struct Node* next; };
-
- struct Node* build_list() {
- struct Node** pool;
- int n = read_number_of_nodes_needed();
- if (n <= 0) return 0;
- pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
- if (pool == 0) die();
- // organize into a linked list...
- struct Node* first = pool[0];
- for (i = 0; i < n-1; ++i)
- pool[i]->next = pool[i+1];
- free(pool); // Can now free the array (or not, if it is needed later)
- return first;
- }
-*/
-DLMALLOC_EXPORT void** dlindependent_calloc(size_t, size_t, void**);
-
-/*
- independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
-
- independent_comalloc allocates, all at once, a set of n_elements
- chunks with sizes indicated in the "sizes" array. It returns
- an array of pointers to these elements, each of which can be
- independently freed, realloc'ed etc. The elements are guaranteed to
- be adjacently allocated (this is not guaranteed to occur with
- multiple callocs or mallocs), which may also improve cache locality
- in some applications.
-
- The "chunks" argument is optional (i.e., may be null). If it is null
- the returned array is itself dynamically allocated and should also
- be freed when it is no longer needed. Otherwise, the chunks array
- must be of at least n_elements in length. It is filled in with the
- pointers to the chunks.
-
- In either case, independent_comalloc returns this pointer array, or
- null if the allocation failed. If n_elements is zero and chunks is
- null, it returns a chunk representing an array with zero elements
- (which should be freed if not wanted).
-
- Each element must be freed when it is no longer needed. This can be
- done all at once using bulk_free.
-
- independent_comallac differs from independent_calloc in that each
- element may have a different size, and also that it does not
- automatically clear elements.
-
- independent_comalloc can be used to speed up allocation in cases
- where several structs or objects must always be allocated at the
- same time. For example:
-
- struct Head { ... }
- struct Foot { ... }
-
- void send_message(char* msg) {
- int msglen = strlen(msg);
- size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
- void* chunks[3];
- if (independent_comalloc(3, sizes, chunks) == 0)
- die();
- struct Head* head = (struct Head*)(chunks[0]);
- char* body = (char*)(chunks[1]);
- struct Foot* foot = (struct Foot*)(chunks[2]);
- // ...
- }
-
- In general though, independent_comalloc is worth using only for
- larger values of n_elements. For small values, you probably won't
- detect enough difference from series of malloc calls to bother.
-
- Overuse of independent_comalloc can increase overall memory usage,
- since it cannot reuse existing noncontiguous small chunks that
- might be available for some of the elements.
-*/
-DLMALLOC_EXPORT void** dlindependent_comalloc(size_t, size_t*, void**);
-
-/*
- bulk_free(void* array[], size_t n_elements)
- Frees and clears (sets to null) each non-null pointer in the given
- array. This is likely to be faster than freeing them one-by-one.
- If footers are used, pointers that have been allocated in different
- mspaces are not freed or cleared, and the count of all such pointers
- is returned. For large arrays of pointers with poor locality, it
- may be worthwhile to sort this array before calling bulk_free.
-*/
-DLMALLOC_EXPORT size_t dlbulk_free(void**, size_t n_elements);
-
-/*
- pvalloc(size_t n);
- Equivalent to valloc(minimum-page-that-holds(n)), that is,
- round up n to nearest pagesize.
- */
-DLMALLOC_EXPORT void* dlpvalloc(size_t);
-
-/*
- malloc_trim(size_t pad);
-
- If possible, gives memory back to the system (via negative arguments
- to sbrk) if there is unused memory at the `high' end of the malloc
- pool or in unused MMAP segments. You can call this after freeing
- large blocks of memory to potentially reduce the system-level memory
- requirements of a program. However, it cannot guarantee to reduce
- memory. Under some allocation patterns, some large free blocks of
- memory will be locked between two used chunks, so they cannot be
- given back to the system.
-
- The `pad' argument to malloc_trim represents the amount of free
- trailing space to leave untrimmed. If this argument is zero, only
- the minimum amount of memory to maintain internal data structures
- will be left. Non-zero arguments can be supplied to maintain enough
- trailing space to service future expected allocations without having
- to re-obtain memory from the system.
-
- Malloc_trim returns 1 if it actually released any memory, else 0.
-*/
-DLMALLOC_EXPORT int dlmalloc_trim(size_t);
-
-/*
- malloc_stats();
- Prints on stderr the amount of space obtained from the system (both
- via sbrk and mmap), the maximum amount (which may be more than
- current if malloc_trim and/or munmap got called), and the current
- number of bytes allocated via malloc (or realloc, etc) but not yet
- freed. Note that this is the number of bytes allocated, not the
- number requested. It will be larger than the number requested
- because of alignment and bookkeeping overhead. Because it includes
- alignment wastage as being in use, this figure may be greater than
- zero even when no user-level chunks are allocated.
-
- The reported current and maximum system memory can be inaccurate if
- a program makes other calls to system memory allocation functions
- (normally sbrk) outside of malloc.
-
- malloc_stats prints only the most commonly interesting statistics.
- More information can be obtained by calling mallinfo.
-*/
-DLMALLOC_EXPORT void dlmalloc_stats(void);
-
-/*
- malloc_usable_size(void* p);
-
- Returns the number of bytes you can actually use in
- an allocated chunk, which may be more than you requested (although
- often not) due to alignment and minimum size constraints.
- You can use this many bytes without worrying about
- overwriting other allocated objects. This is not a particularly great
- programming practice. malloc_usable_size can be more useful in
- debugging and assertions, for example:
-
- p = malloc(n);
- assert(malloc_usable_size(p) >= 256);
-*/
-size_t dlmalloc_usable_size(void*);
-
-#endif /* ONLY_MSPACES */
-
-#if MSPACES
-
-/*
- mspace is an opaque type representing an independent
- region of space that supports mspace_malloc, etc.
-*/
-typedef void* mspace;
-
-/*
- create_mspace creates and returns a new independent space with the
- given initial capacity, or, if 0, the default granularity size. It
- returns null if there is no system memory available to create the
- space. If argument locked is non-zero, the space uses a separate
- lock to control access. The capacity of the space will grow
- dynamically as needed to service mspace_malloc requests. You can
- control the sizes of incremental increases of this space by
- compiling with a different DEFAULT_GRANULARITY or dynamically
- setting with mallopt(M_GRANULARITY, value).
-*/
-DLMALLOC_EXPORT mspace create_mspace(size_t capacity, int locked);
-
-/*
- destroy_mspace destroys the given space, and attempts to return all
- of its memory back to the system, returning the total number of
- bytes freed. After destruction, the results of access to all memory
- used by the space become undefined.
-*/
-DLMALLOC_EXPORT size_t destroy_mspace(mspace msp);
-
-/*
- create_mspace_with_base uses the memory supplied as the initial base
- of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
- space is used for bookkeeping, so the capacity must be at least this
- large. (Otherwise 0 is returned.) When this initial space is
- exhausted, additional memory will be obtained from the system.
- Destroying this space will deallocate all additionally allocated
- space (if possible) but not the initial base.
-*/
-DLMALLOC_EXPORT mspace create_mspace_with_base(void* base, size_t capacity, int locked);
-
-/*
- mspace_track_large_chunks controls whether requests for large chunks
- are allocated in their own untracked mmapped regions, separate from
- others in this mspace. By default large chunks are not tracked,
- which reduces fragmentation. However, such chunks are not
- necessarily released to the system upon destroy_mspace. Enabling
- tracking by setting to true may increase fragmentation, but avoids
- leakage when relying on destroy_mspace to release all memory
- allocated using this space. The function returns the previous
- setting.
-*/
-DLMALLOC_EXPORT int mspace_track_large_chunks(mspace msp, int enable);
-
-
-/*
- mspace_malloc behaves as malloc, but operates within
- the given space.
-*/
-DLMALLOC_EXPORT void* mspace_malloc(mspace msp, size_t bytes);
-
-/*
- mspace_free behaves as free, but operates within
- the given space.
-
- If compiled with FOOTERS==1, mspace_free is not actually needed.
- free may be called instead of mspace_free because freed chunks from
- any space are handled by their originating spaces.
-*/
-DLMALLOC_EXPORT void mspace_free(mspace msp, void* mem);
-
-/*
- mspace_realloc behaves as realloc, but operates within
- the given space.
-
- If compiled with FOOTERS==1, mspace_realloc is not actually
- needed. realloc may be called instead of mspace_realloc because
- realloced chunks from any space are handled by their originating
- spaces.
-*/
-DLMALLOC_EXPORT void* mspace_realloc(mspace msp, void* mem, size_t newsize);
-
-/*
- mspace_calloc behaves as calloc, but operates within
- the given space.
-*/
-DLMALLOC_EXPORT void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
-
-/*
- mspace_memalign behaves as memalign, but operates within
- the given space.
-*/
-DLMALLOC_EXPORT void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
-
-/*
- mspace_independent_calloc behaves as independent_calloc, but
- operates within the given space.
-*/
-DLMALLOC_EXPORT void** mspace_independent_calloc(mspace msp, size_t n_elements,
- size_t elem_size, void* chunks[]);
-
-/*
- mspace_independent_comalloc behaves as independent_comalloc, but
- operates within the given space.
-*/
-DLMALLOC_EXPORT void** mspace_independent_comalloc(mspace msp, size_t n_elements,
- size_t sizes[], void* chunks[]);
-
-/*
- mspace_footprint() returns the number of bytes obtained from the
- system for this space.
-*/
-DLMALLOC_EXPORT size_t mspace_footprint(mspace msp);
-
-/*
- mspace_max_footprint() returns the peak number of bytes obtained from the
- system for this space.
-*/
-DLMALLOC_EXPORT size_t mspace_max_footprint(mspace msp);
-
-
-#if !NO_MALLINFO
-/*
- mspace_mallinfo behaves as mallinfo, but reports properties of
- the given space.
-*/
-DLMALLOC_EXPORT struct mallinfo mspace_mallinfo(mspace msp);
-#endif /* NO_MALLINFO */
-
-/*
- malloc_usable_size(void* p) behaves the same as malloc_usable_size;
-*/
-DLMALLOC_EXPORT size_t mspace_usable_size(const void* mem);
-
-/*
- mspace_malloc_stats behaves as malloc_stats, but reports
- properties of the given space.
-*/
-DLMALLOC_EXPORT void mspace_malloc_stats(mspace msp);
-
-/*
- mspace_trim behaves as malloc_trim, but
- operates within the given space.
-*/
-DLMALLOC_EXPORT int mspace_trim(mspace msp, size_t pad);
-
-/*
- An alias for mallopt.
-*/
-DLMALLOC_EXPORT int mspace_mallopt(int, int);
-
-#endif /* MSPACES */
-
-#ifdef __cplusplus
-} /* end of extern "C" */
-#endif /* __cplusplus */
-
-/*
- ========================================================================
- To make a fully customizable malloc.h header file, cut everything
- above this line, put into file malloc.h, edit to suit, and #include it
- on the next line, as well as in programs that use this malloc.
- ========================================================================
-*/
-
-/* #include "malloc.h" */
-
-/*------------------------------ internal #includes ---------------------- */
-
-#ifdef _MSC_VER
-#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
-#endif /* _MSC_VER */
-#if !NO_MALLOC_STATS
-#include <stdio.h> /* for printing in malloc_stats */
-#endif /* NO_MALLOC_STATS */
-#ifndef LACKS_ERRNO_H
-#include <errno.h> /* for MALLOC_FAILURE_ACTION */
-#endif /* LACKS_ERRNO_H */
-#ifdef DEBUG
-#if ABORT_ON_ASSERT_FAILURE
-#undef assert
-#define assert(x) if(!(x)) ABORT
-#else /* ABORT_ON_ASSERT_FAILURE */
-#include <assert.h>
-#endif /* ABORT_ON_ASSERT_FAILURE */
-#else /* DEBUG */
-#ifndef assert
-#define assert(x)
-#endif
-#define DEBUG 0
-#endif /* DEBUG */
-#if !defined(WIN32) && !defined(LACKS_TIME_H)
-#include <time.h> /* for magic initialization */
-#endif /* WIN32 */
-#ifndef LACKS_STDLIB_H
-#include <stdlib.h> /* for abort() */
-#endif /* LACKS_STDLIB_H */
-#ifndef LACKS_STRING_H
-#include <string.h> /* for memset etc */
-#endif /* LACKS_STRING_H */
-#if USE_BUILTIN_FFS
-#ifndef LACKS_STRINGS_H
-#include <strings.h> /* for ffs */
-#endif /* LACKS_STRINGS_H */
-#endif /* USE_BUILTIN_FFS */
-#if HAVE_MMAP
-#ifndef LACKS_SYS_MMAN_H
-/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */
-#if (defined(linux) && !defined(__USE_GNU))
-#define __USE_GNU 1
-#include <sys/mman.h> /* for mmap */
-#undef __USE_GNU
-#else
-#include <sys/mman.h> /* for mmap */
-#endif /* linux */
-#endif /* LACKS_SYS_MMAN_H */
-#ifndef LACKS_FCNTL_H
-#include <fcntl.h>
-#endif /* LACKS_FCNTL_H */
-#endif /* HAVE_MMAP */
-#ifndef LACKS_UNISTD_H
-#include <unistd.h> /* for sbrk, sysconf */
-#else /* LACKS_UNISTD_H */
-#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
-extern void* sbrk(ptrdiff_t);
-#endif /* FreeBSD etc */
-#endif /* LACKS_UNISTD_H */
-
-/* Declarations for locking */
-#if USE_LOCKS
-#ifndef WIN32
-#if defined (__SVR4) && defined (__sun) /* solaris */
-#include <thread.h>
-#elif !defined(LACKS_SCHED_H)
-#include <sched.h>
-#endif /* solaris or LACKS_SCHED_H */
-#if (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0) || !USE_SPIN_LOCKS
-#include <pthread.h>
-#endif /* USE_RECURSIVE_LOCKS ... */
-#elif defined(_MSC_VER)
-#ifndef _M_AMD64
-/* These are already defined on AMD64 builds */
-#ifdef __cplusplus
-extern "C" {
-#endif /* __cplusplus */
-LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp);
-LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value);
-#ifdef __cplusplus
-}
-#endif /* __cplusplus */
-#endif /* _M_AMD64 */
-#pragma intrinsic (_InterlockedCompareExchange)
-#pragma intrinsic (_InterlockedExchange)
-#define interlockedcompareexchange _InterlockedCompareExchange
-#define interlockedexchange _InterlockedExchange
-#elif defined(WIN32) && defined(__GNUC__)
-#define interlockedcompareexchange(a, b, c) __sync_val_compare_and_swap(a, c, b)
-#define interlockedexchange __sync_lock_test_and_set
-#endif /* Win32 */
-#else /* USE_LOCKS */
-#endif /* USE_LOCKS */
-
-#ifndef LOCK_AT_FORK
-#define LOCK_AT_FORK 0
-#endif
-
-/* Declarations for bit scanning on win32 */
-#if defined(_MSC_VER) && _MSC_VER>=1300
-#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */
-#ifdef __cplusplus
-extern "C" {
-#endif /* __cplusplus */
-unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
-unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
-#ifdef __cplusplus
-}
-#endif /* __cplusplus */
-
-#define BitScanForward _BitScanForward
-#define BitScanReverse _BitScanReverse
-#pragma intrinsic(_BitScanForward)
-#pragma intrinsic(_BitScanReverse)
-#endif /* BitScanForward */
-#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
-
-#ifndef WIN32
-#ifndef malloc_getpagesize
-# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
-# ifndef _SC_PAGE_SIZE
-# define _SC_PAGE_SIZE _SC_PAGESIZE
-# endif
-# endif
-# ifdef _SC_PAGE_SIZE
-# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
-# else
-# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
- extern size_t getpagesize();
-# define malloc_getpagesize getpagesize()
-# else
-# ifdef WIN32 /* use supplied emulation of getpagesize */
-# define malloc_getpagesize getpagesize()
-# else
-# ifndef LACKS_SYS_PARAM_H
-# include <sys/param.h>
-# endif
-# ifdef EXEC_PAGESIZE
-# define malloc_getpagesize EXEC_PAGESIZE
-# else
-# ifdef NBPG
-# ifndef CLSIZE
-# define malloc_getpagesize NBPG
-# else
-# define malloc_getpagesize (NBPG * CLSIZE)
-# endif
-# else
-# ifdef NBPC
-# define malloc_getpagesize NBPC
-# else
-# ifdef PAGESIZE
-# define malloc_getpagesize PAGESIZE
-# else /* just guess */
-# define malloc_getpagesize ((size_t)4096U)
-# endif
-# endif
-# endif
-# endif
-# endif
-# endif
-# endif
-#endif
-#endif
-
-/* ------------------- size_t and alignment properties -------------------- */
-
-/* The byte and bit size of a size_t */
-#define SIZE_T_SIZE (sizeof(size_t))
-#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
-
-/* Some constants coerced to size_t */
-/* Annoying but necessary to avoid errors on some platforms */
-#define SIZE_T_ZERO ((size_t)0)
-#define SIZE_T_ONE ((size_t)1)
-#define SIZE_T_TWO ((size_t)2)
-#define SIZE_T_FOUR ((size_t)4)
-#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
-#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
-#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
-#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
-
-/* The bit mask value corresponding to MALLOC_ALIGNMENT */
-#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
-
-/* True if address a has acceptable alignment */
-#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
-
-/* the number of bytes to offset an address to align it */
-#define align_offset(A)\
- ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
- ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
-
-/* -------------------------- MMAP preliminaries ------------------------- */
-
-/*
- If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
- checks to fail so compiler optimizer can delete code rather than
- using so many "#if"s.
-*/
-
-
-/* MORECORE and MMAP must return MFAIL on failure */
-#define MFAIL ((void*)(MAX_SIZE_T))
-#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
-
-#if HAVE_MMAP
-
-#ifndef WIN32
-#define MUNMAP_DEFAULT(a, s) munmap((a), (s))
-#define MMAP_PROT (PROT_READ|PROT_WRITE)
-#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
-#define MAP_ANONYMOUS MAP_ANON
-#endif /* MAP_ANON */
-#ifdef MAP_ANONYMOUS
-#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
-#define MMAP_DEFAULT(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
-#else /* MAP_ANONYMOUS */
-/*
- Nearly all versions of mmap support MAP_ANONYMOUS, so the following
- is unlikely to be needed, but is supplied just in case.
-*/
-#define MMAP_FLAGS (MAP_PRIVATE)
-static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
-#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \
- (dev_zero_fd = open("/dev/zero", O_RDWR), \
- mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
- mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
-#endif /* MAP_ANONYMOUS */
-
-#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s)
-
-#else /* WIN32 */
-
-/* Win32 MMAP via VirtualAlloc */
-static FORCEINLINE void* win32mmap(size_t size) {
- void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
- return (ptr != 0)? ptr: MFAIL;
-}
-
-/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
-static FORCEINLINE void* win32direct_mmap(size_t size) {
- void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
- PAGE_READWRITE);
- return (ptr != 0)? ptr: MFAIL;
-}
-
-/* This function supports releasing coalesed segments */
-static FORCEINLINE int win32munmap(void* ptr, size_t size) {
- MEMORY_BASIC_INFORMATION minfo;
- char* cptr = (char*)ptr;
- while (size) {
- if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
- return -1;
- if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
- minfo.State != MEM_COMMIT || minfo.RegionSize > size)
- return -1;
- if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
- return -1;
- cptr += minfo.RegionSize;
- size -= minfo.RegionSize;
- }
- return 0;
-}
-
-#define MMAP_DEFAULT(s) win32mmap(s)
-#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s))
-#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s)
-#endif /* WIN32 */
-#endif /* HAVE_MMAP */
-
-#if HAVE_MREMAP
-#ifndef WIN32
-#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
-#endif /* WIN32 */
-#endif /* HAVE_MREMAP */
-
-/**
- * Define CALL_MORECORE
- */
-#if HAVE_MORECORE
- #ifdef MORECORE
- #define CALL_MORECORE(S) MORECORE(S)
- #else /* MORECORE */
- #define CALL_MORECORE(S) MORECORE_DEFAULT(S)
- #endif /* MORECORE */
-#else /* HAVE_MORECORE */
- #define CALL_MORECORE(S) MFAIL
-#endif /* HAVE_MORECORE */
-
-/**
- * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP
- */
-#if HAVE_MMAP
- #define USE_MMAP_BIT (SIZE_T_ONE)
-
- #ifdef MMAP
- #define CALL_MMAP(s) MMAP(s)
- #else /* MMAP */
- #define CALL_MMAP(s) MMAP_DEFAULT(s)
- #endif /* MMAP */
- #ifdef MUNMAP
- #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
- #else /* MUNMAP */
- #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s))
- #endif /* MUNMAP */
- #ifdef DIRECT_MMAP
- #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
- #else /* DIRECT_MMAP */
- #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s)
- #endif /* DIRECT_MMAP */
-#else /* HAVE_MMAP */
- #define USE_MMAP_BIT (SIZE_T_ZERO)
-
- #define MMAP(s) MFAIL
- #define MUNMAP(a, s) (-1)
- #define DIRECT_MMAP(s) MFAIL
- #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
- #define CALL_MMAP(s) MMAP(s)
- #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
-#endif /* HAVE_MMAP */
-
-/**
- * Define CALL_MREMAP
- */
-#if HAVE_MMAP && HAVE_MREMAP
- #ifdef MREMAP
- #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
- #else /* MREMAP */
- #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
- #endif /* MREMAP */
-#else /* HAVE_MMAP && HAVE_MREMAP */
- #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
-#endif /* HAVE_MMAP && HAVE_MREMAP */
-
-/* mstate bit set if continguous morecore disabled or failed */
-#define USE_NONCONTIGUOUS_BIT (4U)
-
-/* segment bit set in create_mspace_with_base */
-#define EXTERN_BIT (8U)
-
-
-/* --------------------------- Lock preliminaries ------------------------ */
-
-/*
- When locks are defined, there is one global lock, plus
- one per-mspace lock.
-
- The global lock_ensures that mparams.magic and other unique
- mparams values are initialized only once. It also protects
- sequences of calls to MORECORE. In many cases sys_alloc requires
- two calls, that should not be interleaved with calls by other
- threads. This does not protect against direct calls to MORECORE
- by other threads not using this lock, so there is still code to
- cope the best we can on interference.
-
- Per-mspace locks surround calls to malloc, free, etc.
- By default, locks are simple non-reentrant mutexes.
-
- Because lock-protected regions generally have bounded times, it is
- OK to use the supplied simple spinlocks. Spinlocks are likely to
- improve performance for lightly contended applications, but worsen
- performance under heavy contention.
-
- If USE_LOCKS is > 1, the definitions of lock routines here are
- bypassed, in which case you will need to define the type MLOCK_T,
- and at least INITIAL_LOCK, DESTROY_LOCK, ACQUIRE_LOCK, RELEASE_LOCK
- and TRY_LOCK. You must also declare a
- static MLOCK_T malloc_global_mutex = { initialization values };.
-
-*/
-
-#if !USE_LOCKS
-#define USE_LOCK_BIT (0U)
-#define INITIAL_LOCK(l) (0)
-#define DESTROY_LOCK(l) (0)
-#define ACQUIRE_MALLOC_GLOBAL_LOCK()
-#define RELEASE_MALLOC_GLOBAL_LOCK()
-
-#else
-#if USE_LOCKS > 1
-/* ----------------------- User-defined locks ------------------------ */
-/* Define your own lock implementation here */
-/* #define INITIAL_LOCK(lk) ... */
-/* #define DESTROY_LOCK(lk) ... */
-/* #define ACQUIRE_LOCK(lk) ... */
-/* #define RELEASE_LOCK(lk) ... */
-/* #define TRY_LOCK(lk) ... */
-/* static MLOCK_T malloc_global_mutex = ... */
-
-#elif USE_SPIN_LOCKS
-
-/* First, define CAS_LOCK and CLEAR_LOCK on ints */
-/* Note CAS_LOCK defined to return 0 on success */
-
-#if defined(__GNUC__)&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1))
-#define CAS_LOCK(sl) __sync_lock_test_and_set(sl, 1)
-#define CLEAR_LOCK(sl) __sync_lock_release(sl)
-
-#elif (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)))
-/* Custom spin locks for older gcc on x86 */
-static FORCEINLINE int x86_cas_lock(int *sl) {
- int ret;
- int val = 1;
- int cmp = 0;
- __asm__ __volatile__ ("lock; cmpxchgl %1, %2"
- : "=a" (ret)
- : "r" (val), "m" (*(sl)), "0"(cmp)
- : "memory", "cc");
- return ret;
-}
-
-static FORCEINLINE void x86_clear_lock(int* sl) {
- assert(*sl != 0);
- int prev = 0;
- int ret;
- __asm__ __volatile__ ("lock; xchgl %0, %1"
- : "=r" (ret)
- : "m" (*(sl)), "0"(prev)
- : "memory");
-}
-
-#define CAS_LOCK(sl) x86_cas_lock(sl)
-#define CLEAR_LOCK(sl) x86_clear_lock(sl)
-
-#else /* Win32 MSC */
-#define CAS_LOCK(sl) interlockedexchange(sl, (LONG)1)
-#define CLEAR_LOCK(sl) interlockedexchange (sl, (LONG)0)
-
-#endif /* ... gcc spins locks ... */
-
-/* How to yield for a spin lock */
-#define SPINS_PER_YIELD 63
-#if defined(_MSC_VER)
-#define SLEEP_EX_DURATION 50 /* delay for yield/sleep */
-#define SPIN_LOCK_YIELD SleepEx(SLEEP_EX_DURATION, FALSE)
-#elif defined (__SVR4) && defined (__sun) /* solaris */
-#define SPIN_LOCK_YIELD thr_yield();
-#elif !defined(LACKS_SCHED_H)
-#define SPIN_LOCK_YIELD sched_yield();
-#else
-#define SPIN_LOCK_YIELD
-#endif /* ... yield ... */
-
-#if !defined(USE_RECURSIVE_LOCKS) || USE_RECURSIVE_LOCKS == 0
-/* Plain spin locks use single word (embedded in malloc_states) */
-static int spin_acquire_lock(int *sl) {
- int spins = 0;
- while (*(volatile int *)sl != 0 || CAS_LOCK(sl)) {
- if ((++spins & SPINS_PER_YIELD) == 0) {
- SPIN_LOCK_YIELD;
- }
- }
- return 0;
-}
-
-#define MLOCK_T int
-#define TRY_LOCK(sl) !CAS_LOCK(sl)
-#define RELEASE_LOCK(sl) CLEAR_LOCK(sl)
-#define ACQUIRE_LOCK(sl) (CAS_LOCK(sl)? spin_acquire_lock(sl) : 0)
-#define INITIAL_LOCK(sl) (*sl = 0)
-#define DESTROY_LOCK(sl) (0)
-static MLOCK_T malloc_global_mutex = 0;
-
-#else /* USE_RECURSIVE_LOCKS */
-/* types for lock owners */
-#ifdef WIN32
-#define THREAD_ID_T DWORD
-#define CURRENT_THREAD GetCurrentThreadId()
-#define EQ_OWNER(X,Y) ((X) == (Y))
-#else
-/*
- Note: the following assume that pthread_t is a type that can be
- initialized to (casted) zero. If this is not the case, you will need to
- somehow redefine these or not use spin locks.
-*/
-#define THREAD_ID_T pthread_t
-#define CURRENT_THREAD pthread_self()
-#define EQ_OWNER(X,Y) pthread_equal(X, Y)
-#endif
-
-struct malloc_recursive_lock {
- int sl;
- unsigned int c;
- THREAD_ID_T threadid;
-};
-
-#define MLOCK_T struct malloc_recursive_lock
-static MLOCK_T malloc_global_mutex = { 0, 0, (THREAD_ID_T)0};
-
-static FORCEINLINE void recursive_release_lock(MLOCK_T *lk) {
- assert(lk->sl != 0);
- if (--lk->c == 0) {
- CLEAR_LOCK(&lk->sl);
- }
-}
-
-static FORCEINLINE int recursive_acquire_lock(MLOCK_T *lk) {
- THREAD_ID_T mythreadid = CURRENT_THREAD;
- int spins = 0;
- for (;;) {
- if (*((volatile int *)(&lk->sl)) == 0) {
- if (!CAS_LOCK(&lk->sl)) {
- lk->threadid = mythreadid;
- lk->c = 1;
- return 0;
- }
- }
- else if (EQ_OWNER(lk->threadid, mythreadid)) {
- ++lk->c;
- return 0;
- }
- if ((++spins & SPINS_PER_YIELD) == 0) {
- SPIN_LOCK_YIELD;
- }
- }
-}
-
-static FORCEINLINE int recursive_try_lock(MLOCK_T *lk) {
- THREAD_ID_T mythreadid = CURRENT_THREAD;
- if (*((volatile int *)(&lk->sl)) == 0) {
- if (!CAS_LOCK(&lk->sl)) {
- lk->threadid = mythreadid;
- lk->c = 1;
- return 1;
- }
- }
- else if (EQ_OWNER(lk->threadid, mythreadid)) {
- ++lk->c;
- return 1;
- }
- return 0;
-}
-
-#define RELEASE_LOCK(lk) recursive_release_lock(lk)
-#define TRY_LOCK(lk) recursive_try_lock(lk)
-#define ACQUIRE_LOCK(lk) recursive_acquire_lock(lk)
-#define INITIAL_LOCK(lk) ((lk)->threadid = (THREAD_ID_T)0, (lk)->sl = 0, (lk)->c = 0)
-#define DESTROY_LOCK(lk) (0)
-#endif /* USE_RECURSIVE_LOCKS */
-
-#elif defined(WIN32) /* Win32 critical sections */
-#define MLOCK_T CRITICAL_SECTION
-#define ACQUIRE_LOCK(lk) (EnterCriticalSection(lk), 0)
-#define RELEASE_LOCK(lk) LeaveCriticalSection(lk)
-#define TRY_LOCK(lk) TryEnterCriticalSection(lk)
-#define INITIAL_LOCK(lk) (!InitializeCriticalSectionAndSpinCount((lk), 0x80000000|4000))
-#define DESTROY_LOCK(lk) (DeleteCriticalSection(lk), 0)
-#define NEED_GLOBAL_LOCK_INIT
-
-static MLOCK_T malloc_global_mutex;
-static volatile LONG malloc_global_mutex_status;
-
-/* Use spin loop to initialize global lock */
-static void init_malloc_global_mutex() {
- for (;;) {
- long stat = malloc_global_mutex_status;
- if (stat > 0)
- return;
- /* transition to < 0 while initializing, then to > 0) */
- if (stat == 0 &&
- interlockedcompareexchange(&malloc_global_mutex_status, (LONG)-1, (LONG)0) == 0) {
- InitializeCriticalSection(&malloc_global_mutex);
- interlockedexchange(&malloc_global_mutex_status, (LONG)1);
- return;
- }
- SleepEx(0, FALSE);
- }
-}
-
-#else /* pthreads-based locks */
-#define MLOCK_T pthread_mutex_t
-#define ACQUIRE_LOCK(lk) pthread_mutex_lock(lk)
-#define RELEASE_LOCK(lk) pthread_mutex_unlock(lk)
-#define TRY_LOCK(lk) (!pthread_mutex_trylock(lk))
-#define INITIAL_LOCK(lk) pthread_init_lock(lk)
-#define DESTROY_LOCK(lk) pthread_mutex_destroy(lk)
-
-#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 && defined(linux) && !defined(PTHREAD_MUTEX_RECURSIVE)
-/* Cope with old-style linux recursive lock initialization by adding */
-/* skipped internal declaration from pthread.h */
-extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr,
- int __kind));
-#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP
-#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y)
-#endif /* USE_RECURSIVE_LOCKS ... */
-
-static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER;
-
-static int pthread_init_lock (MLOCK_T *lk) {
- pthread_mutexattr_t attr;
- if (pthread_mutexattr_init(&attr)) return 1;
-#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0
- if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
-#endif
- if (pthread_mutex_init(lk, &attr)) return 1;
- if (pthread_mutexattr_destroy(&attr)) return 1;
- return 0;
-}
-
-#endif /* ... lock types ... */
-
-/* Common code for all lock types */
-#define USE_LOCK_BIT (2U)
-
-#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK
-#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex);
-#endif
-
-#ifndef RELEASE_MALLOC_GLOBAL_LOCK
-#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex);
-#endif
-
-#endif /* USE_LOCKS */
-
-/* ----------------------- Chunk representations ------------------------ */
-
-/*
- (The following includes lightly edited explanations by Colin Plumb.)
-
- The malloc_chunk declaration below is misleading (but accurate and
- necessary). It declares a "view" into memory allowing access to
- necessary fields at known offsets from a given base.
-
- Chunks of memory are maintained using a `boundary tag' method as
- originally described by Knuth. (See the paper by Paul Wilson
- ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
- techniques.) Sizes of free chunks are stored both in the front of
- each chunk and at the end. This makes consolidating fragmented
- chunks into bigger chunks fast. The head fields also hold bits
- representing whether chunks are free or in use.
-
- Here are some pictures to make it clearer. They are "exploded" to
- show that the state of a chunk can be thought of as extending from
- the high 31 bits of the head field of its header through the
- prev_foot and PINUSE_BIT bit of the following chunk header.
-
- A chunk that's in use looks like:
-
- chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Size of previous chunk (if P = 0) |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
- | Size of this chunk 1| +-+
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | |
- +- -+
- | |
- +- -+
- | :
- +- size - sizeof(size_t) available payload bytes -+
- : |
- chunk-> +- -+
- | |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
- | Size of next chunk (may or may not be in use) | +-+
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
- And if it's free, it looks like this:
-
- chunk-> +- -+
- | User payload (must be in use, or we would have merged!) |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
- | Size of this chunk 0| +-+
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Next pointer |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Prev pointer |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | :
- +- size - sizeof(struct chunk) unused bytes -+
- : |
- chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Size of this chunk |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
- | Size of next chunk (must be in use, or we would have merged)| +-+
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | :
- +- User payload -+
- : |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- |0|
- +-+
- Note that since we always merge adjacent free chunks, the chunks
- adjacent to a free chunk must be in use.
-
- Given a pointer to a chunk (which can be derived trivially from the
- payload pointer) we can, in O(1) time, find out whether the adjacent
- chunks are free, and if so, unlink them from the lists that they
- are on and merge them with the current chunk.
-
- Chunks always begin on even word boundaries, so the mem portion
- (which is returned to the user) is also on an even word boundary, and
- thus at least double-word aligned.
-
- The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
- chunk size (which is always a multiple of two words), is an in-use
- bit for the *previous* chunk. If that bit is *clear*, then the
- word before the current chunk size contains the previous chunk
- size, and can be used to find the front of the previous chunk.
- The very first chunk allocated always has this bit set, preventing
- access to non-existent (or non-owned) memory. If pinuse is set for
- any given chunk, then you CANNOT determine the size of the
- previous chunk, and might even get a memory addressing fault when
- trying to do so.
-
- The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
- the chunk size redundantly records whether the current chunk is
- inuse (unless the chunk is mmapped). This redundancy enables usage
- checks within free and realloc, and reduces indirection when freeing
- and consolidating chunks.
-
- Each freshly allocated chunk must have both cinuse and pinuse set.
- That is, each allocated chunk borders either a previously allocated
- and still in-use chunk, or the base of its memory arena. This is
- ensured by making all allocations from the `lowest' part of any
- found chunk. Further, no free chunk physically borders another one,
- so each free chunk is known to be preceded and followed by either
- inuse chunks or the ends of memory.
-
- Note that the `foot' of the current chunk is actually represented
- as the prev_foot of the NEXT chunk. This makes it easier to
- deal with alignments etc but can be very confusing when trying
- to extend or adapt this code.
-
- The exceptions to all this are
-
- 1. The special chunk `top' is the top-most available chunk (i.e.,
- the one bordering the end of available memory). It is treated
- specially. Top is never included in any bin, is used only if
- no other chunk is available, and is released back to the
- system if it is very large (see M_TRIM_THRESHOLD). In effect,
- the top chunk is treated as larger (and thus less well
- fitting) than any other available chunk. The top chunk
- doesn't update its trailing size field since there is no next
- contiguous chunk that would have to index off it. However,
- space is still allocated for it (TOP_FOOT_SIZE) to enable
- separation or merging when space is extended.
-
- 3. Chunks allocated via mmap, have both cinuse and pinuse bits
- cleared in their head fields. Because they are allocated
- one-by-one, each must carry its own prev_foot field, which is
- also used to hold the offset this chunk has within its mmapped
- region, which is needed to preserve alignment. Each mmapped
- chunk is trailed by the first two fields of a fake next-chunk
- for sake of usage checks.
-
-*/
-
-struct malloc_chunk {
- size_t prev_foot; /* Size of previous chunk (if free). */
- size_t head; /* Size and inuse bits. */
- struct malloc_chunk* fd; /* double links -- used only if free. */
- struct malloc_chunk* bk;
-};
-
-typedef struct malloc_chunk mchunk;
-typedef struct malloc_chunk* mchunkptr;
-typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
-typedef unsigned int bindex_t; /* Described below */
-typedef unsigned int binmap_t; /* Described below */
-typedef unsigned int flag_t; /* The type of various bit flag sets */
-
-/* ------------------- Chunks sizes and alignments ----------------------- */
-
-#define MCHUNK_SIZE (sizeof(mchunk))
-
-#if FOOTERS
-#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
-#else /* FOOTERS */
-#define CHUNK_OVERHEAD (SIZE_T_SIZE)
-#endif /* FOOTERS */
-
-/* MMapped chunks need a second word of overhead ... */
-#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
-/* ... and additional padding for fake next-chunk at foot */
-#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
-
-/* The smallest size we can malloc is an aligned minimal chunk */
-#define MIN_CHUNK_SIZE\
- ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
-
-/* conversion from malloc headers to user pointers, and back */
-#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
-#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
-/* chunk associated with aligned address A */
-#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
-
-/* Bounds on request (not chunk) sizes. */
-#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
-#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
-
-/* pad request bytes into a usable size */
-#define pad_request(req) \
- (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
-
-/* pad request, checking for minimum (but not maximum) */
-#define request2size(req) \
- (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
-
-
-/* ------------------ Operations on head and foot fields ----------------- */
-
-/*
- The head field of a chunk is or'ed with PINUSE_BIT when previous
- adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
- use, unless mmapped, in which case both bits are cleared.
-
- FLAG4_BIT is not used by this malloc, but might be useful in extensions.
-*/
-
-#define PINUSE_BIT (SIZE_T_ONE)
-#define CINUSE_BIT (SIZE_T_TWO)
-#define FLAG4_BIT (SIZE_T_FOUR)
-#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
-#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
-
-/* Head value for fenceposts */
-#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
-
-/* extraction of fields from head words */
-#define cinuse(p) ((p)->head & CINUSE_BIT)
-#define pinuse(p) ((p)->head & PINUSE_BIT)
-#define flag4inuse(p) ((p)->head & FLAG4_BIT)
-#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT)
-#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0)
-
-#define chunksize(p) ((p)->head & ~(FLAG_BITS))
-
-#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
-#define set_flag4(p) ((p)->head |= FLAG4_BIT)
-#define clear_flag4(p) ((p)->head &= ~FLAG4_BIT)
-
-/* Treat space at ptr +/- offset as a chunk */
-#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
-#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
-
-/* Ptr to next or previous physical malloc_chunk. */
-#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
-#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
-
-/* extract next chunk's pinuse bit */
-#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
-
-/* Get/set size at footer */
-#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
-#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
-
-/* Set size, pinuse bit, and foot */
-#define set_size_and_pinuse_of_free_chunk(p, s)\
- ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
-
-/* Set size, pinuse bit, foot, and clear next pinuse */
-#define set_free_with_pinuse(p, s, n)\
- (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
-
-/* Get the internal overhead associated with chunk p */
-#define overhead_for(p)\
- (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
-
-/* Return true if malloced space is not necessarily cleared */
-#if MMAP_CLEARS
-#define calloc_must_clear(p) (!is_mmapped(p))
-#else /* MMAP_CLEARS */
-#define calloc_must_clear(p) (1)
-#endif /* MMAP_CLEARS */
-
-/* ---------------------- Overlaid data structures ----------------------- */
-
-/*
- When chunks are not in use, they are treated as nodes of either
- lists or trees.
-
- "Small" chunks are stored in circular doubly-linked lists, and look
- like this:
-
- chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Size of previous chunk |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- `head:' | Size of chunk, in bytes |P|
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Forward pointer to next chunk in list |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Back pointer to previous chunk in list |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Unused space (may be 0 bytes long) .
- . .
- . |
-nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- `foot:' | Size of chunk, in bytes |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
- Larger chunks are kept in a form of bitwise digital trees (aka
- tries) keyed on chunksizes. Because malloc_tree_chunks are only for
- free chunks greater than 256 bytes, their size doesn't impose any
- constraints on user chunk sizes. Each node looks like:
-
- chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Size of previous chunk |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- `head:' | Size of chunk, in bytes |P|
- mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Forward pointer to next chunk of same size |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Back pointer to previous chunk of same size |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Pointer to left child (child[0]) |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Pointer to right child (child[1]) |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Pointer to parent |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | bin index of this chunk |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Unused space .
- . |
-nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- `foot:' | Size of chunk, in bytes |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
- Each tree holding treenodes is a tree of unique chunk sizes. Chunks
- of the same size are arranged in a circularly-linked list, with only
- the oldest chunk (the next to be used, in our FIFO ordering)
- actually in the tree. (Tree members are distinguished by a non-null
- parent pointer.) If a chunk with the same size an an existing node
- is inserted, it is linked off the existing node using pointers that
- work in the same way as fd/bk pointers of small chunks.
-
- Each tree contains a power of 2 sized range of chunk sizes (the
- smallest is 0x100 <= x < 0x180), which is is divided in half at each
- tree level, with the chunks in the smaller half of the range (0x100
- <= x < 0x140 for the top nose) in the left subtree and the larger
- half (0x140 <= x < 0x180) in the right subtree. This is, of course,
- done by inspecting individual bits.
-
- Using these rules, each node's left subtree contains all smaller
- sizes than its right subtree. However, the node at the root of each
- subtree has no particular ordering relationship to either. (The
- dividing line between the subtree sizes is based on trie relation.)
- If we remove the last chunk of a given size from the interior of the
- tree, we need to replace it with a leaf node. The tree ordering
- rules permit a node to be replaced by any leaf below it.
-
- The smallest chunk in a tree (a common operation in a best-fit
- allocator) can be found by walking a path to the leftmost leaf in
- the tree. Unlike a usual binary tree, where we follow left child
- pointers until we reach a null, here we follow the right child
- pointer any time the left one is null, until we reach a leaf with
- both child pointers null. The smallest chunk in the tree will be
- somewhere along that path.
-
- The worst case number of steps to add, find, or remove a node is
- bounded by the number of bits differentiating chunks within
- bins. Under current bin calculations, this ranges from 6 up to 21
- (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
- is of course much better.
-*/
-
-struct malloc_tree_chunk {
- /* The first four fields must be compatible with malloc_chunk */
- size_t prev_foot;
- size_t head;
- struct malloc_tree_chunk* fd;
- struct malloc_tree_chunk* bk;
-
- struct malloc_tree_chunk* child[2];
- struct malloc_tree_chunk* parent;
- bindex_t index;
-};
-
-typedef struct malloc_tree_chunk tchunk;
-typedef struct malloc_tree_chunk* tchunkptr;
-typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
-
-/* A little helper macro for trees */
-#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
-
-/* ----------------------------- Segments -------------------------------- */
-
-/*
- Each malloc space may include non-contiguous segments, held in a
- list headed by an embedded malloc_segment record representing the
- top-most space. Segments also include flags holding properties of
- the space. Large chunks that are directly allocated by mmap are not
- included in this list. They are instead independently created and
- destroyed without otherwise keeping track of them.
-
- Segment management mainly comes into play for spaces allocated by
- MMAP. Any call to MMAP might or might not return memory that is
- adjacent to an existing segment. MORECORE normally contiguously
- extends the current space, so this space is almost always adjacent,
- which is simpler and faster to deal with. (This is why MORECORE is
- used preferentially to MMAP when both are available -- see
- sys_alloc.) When allocating using MMAP, we don't use any of the
- hinting mechanisms (inconsistently) supported in various
- implementations of unix mmap, or distinguish reserving from
- committing memory. Instead, we just ask for space, and exploit
- contiguity when we get it. It is probably possible to do
- better than this on some systems, but no general scheme seems
- to be significantly better.
-
- Management entails a simpler variant of the consolidation scheme
- used for chunks to reduce fragmentation -- new adjacent memory is
- normally prepended or appended to an existing segment. However,
- there are limitations compared to chunk consolidation that mostly
- reflect the fact that segment processing is relatively infrequent
- (occurring only when getting memory from system) and that we
- don't expect to have huge numbers of segments:
-
- * Segments are not indexed, so traversal requires linear scans. (It
- would be possible to index these, but is not worth the extra
- overhead and complexity for most programs on most platforms.)
- * New segments are only appended to old ones when holding top-most
- memory; if they cannot be prepended to others, they are held in
- different segments.
-
- Except for the top-most segment of an mstate, each segment record
- is kept at the tail of its segment. Segments are added by pushing
- segment records onto the list headed by &mstate.seg for the
- containing mstate.
-
- Segment flags control allocation/merge/deallocation policies:
- * If EXTERN_BIT set, then we did not allocate this segment,
- and so should not try to deallocate or merge with others.
- (This currently holds only for the initial segment passed
- into create_mspace_with_base.)
- * If USE_MMAP_BIT set, the segment may be merged with
- other surrounding mmapped segments and trimmed/de-allocated
- using munmap.
- * If neither bit is set, then the segment was obtained using
- MORECORE so can be merged with surrounding MORECORE'd segments
- and deallocated/trimmed using MORECORE with negative arguments.
-*/
-
-struct malloc_segment {
- char* base; /* base address */
- size_t size; /* allocated size */
- struct malloc_segment* next; /* ptr to next segment */
- flag_t sflags; /* mmap and extern flag */
-};
-
-#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT)
-#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
-
-typedef struct malloc_segment msegment;
-typedef struct malloc_segment* msegmentptr;
-
-/* ---------------------------- malloc_state ----------------------------- */
-
-/*
- A malloc_state holds all of the bookkeeping for a space.
- The main fields are:
-
- Top
- The topmost chunk of the currently active segment. Its size is
- cached in topsize. The actual size of topmost space is
- topsize+TOP_FOOT_SIZE, which includes space reserved for adding
- fenceposts and segment records if necessary when getting more
- space from the system. The size at which to autotrim top is
- cached from mparams in trim_check, except that it is disabled if
- an autotrim fails.
-
- Designated victim (dv)
- This is the preferred chunk for servicing small requests that
- don't have exact fits. It is normally the chunk split off most
- recently to service another small request. Its size is cached in
- dvsize. The link fields of this chunk are not maintained since it
- is not kept in a bin.
-
- SmallBins
- An array of bin headers for free chunks. These bins hold chunks
- with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
- chunks of all the same size, spaced 8 bytes apart. To simplify
- use in double-linked lists, each bin header acts as a malloc_chunk
- pointing to the real first node, if it exists (else pointing to
- itself). This avoids special-casing for headers. But to avoid
- waste, we allocate only the fd/bk pointers of bins, and then use
- repositioning tricks to treat these as the fields of a chunk.
-
- TreeBins
- Treebins are pointers to the roots of trees holding a range of
- sizes. There are 2 equally spaced treebins for each power of two
- from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
- larger.
-
- Bin maps
- There is one bit map for small bins ("smallmap") and one for
- treebins ("treemap). Each bin sets its bit when non-empty, and
- clears the bit when empty. Bit operations are then used to avoid
- bin-by-bin searching -- nearly all "search" is done without ever
- looking at bins that won't be selected. The bit maps
- conservatively use 32 bits per map word, even if on 64bit system.
- For a good description of some of the bit-based techniques used
- here, see Henry S. Warren Jr's book "Hacker's Delight" (and
- supplement at http://hackersdelight.org/). Many of these are
- intended to reduce the branchiness of paths through malloc etc, as
- well as to reduce the number of memory locations read or written.
-
- Segments
- A list of segments headed by an embedded malloc_segment record
- representing the initial space.
-
- Address check support
- The least_addr field is the least address ever obtained from
- MORECORE or MMAP. Attempted frees and reallocs of any address less
- than this are trapped (unless INSECURE is defined).
-
- Magic tag
- A cross-check field that should always hold same value as mparams.magic.
-
- Max allowed footprint
- The maximum allowed bytes to allocate from system (zero means no limit)
-
- Flags
- Bits recording whether to use MMAP, locks, or contiguous MORECORE
-
- Statistics
- Each space keeps track of current and maximum system memory
- obtained via MORECORE or MMAP.
-
- Trim support
- Fields holding the amount of unused topmost memory that should trigger
- trimming, and a counter to force periodic scanning to release unused
- non-topmost segments.
-
- Locking
- If USE_LOCKS is defined, the "mutex" lock is acquired and released
- around every public call using this mspace.
-
- Extension support
- A void* pointer and a size_t field that can be used to help implement
- extensions to this malloc.
-*/
-
-/* Bin types, widths and sizes */
-#define NSMALLBINS (32U)
-#define NTREEBINS (32U)
-#define SMALLBIN_SHIFT (3U)
-#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
-#define TREEBIN_SHIFT (8U)
-#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
-#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
-#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
-
-struct malloc_state {
- binmap_t smallmap;
- binmap_t treemap;
- size_t dvsize;
- size_t topsize;
- char* least_addr;
- mchunkptr dv;
- mchunkptr top;
- size_t trim_check;
- size_t release_checks;
- size_t magic;
- mchunkptr smallbins[(NSMALLBINS+1)*2];
- tbinptr treebins[NTREEBINS];
- size_t footprint;
- size_t max_footprint;
- size_t footprint_limit; /* zero means no limit */
- flag_t mflags;
-#if USE_LOCKS
- MLOCK_T mutex; /* locate lock among fields that rarely change */
-#endif /* USE_LOCKS */
- msegment seg;
- void* extp; /* Unused but available for extensions */
- size_t exts;
-};
-
-typedef struct malloc_state* mstate;
-
-/* ------------- Global malloc_state and malloc_params ------------------- */
-
-/*
- malloc_params holds global properties, including those that can be
- dynamically set using mallopt. There is a single instance, mparams,
- initialized in init_mparams. Note that the non-zeroness of "magic"
- also serves as an initialization flag.
-*/
-
-struct malloc_params {
- size_t magic;
- size_t page_size;
- size_t granularity;
- size_t mmap_threshold;
- size_t trim_threshold;
- flag_t default_mflags;
-};
-
-static struct malloc_params mparams;
-
-/* Ensure mparams initialized */
-#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams())
-
-#if !ONLY_MSPACES
-
-/* The global malloc_state used for all non-"mspace" calls */
-static struct malloc_state _gm_;
-#define gm (&_gm_)
-#define is_global(M) ((M) == &_gm_)
-
-#endif /* !ONLY_MSPACES */
-
-#define is_initialized(M) ((M)->top != 0)
-
-/* -------------------------- system alloc setup ------------------------- */
-
-/* Operations on mflags */
-
-#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
-#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
-#if USE_LOCKS
-#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
-#else
-#define disable_lock(M)
-#endif
-
-#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
-#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
-#if HAVE_MMAP
-#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
-#else
-#define disable_mmap(M)
-#endif
-
-#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
-#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
-
-#define set_lock(M,L)\
- ((M)->mflags = (L)?\
- ((M)->mflags | USE_LOCK_BIT) :\
- ((M)->mflags & ~USE_LOCK_BIT))
-
-/* page-align a size */
-#define page_align(S)\
- (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
-
-/* granularity-align a size */
-#define granularity_align(S)\
- (((S) + (mparams.granularity - SIZE_T_ONE))\
- & ~(mparams.granularity - SIZE_T_ONE))
-
-
-/* For mmap, use granularity alignment on windows, else page-align */
-#ifdef WIN32
-#define mmap_align(S) granularity_align(S)
-#else
-#define mmap_align(S) page_align(S)
-#endif
-
-/* For sys_alloc, enough padding to ensure can malloc request on success */
-#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT)
-
-#define is_page_aligned(S)\
- (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
-#define is_granularity_aligned(S)\
- (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
-
-/* True if segment S holds address A */
-#define segment_holds(S, A)\
- ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
-
-/* Return segment holding given address */
-static msegmentptr segment_holding(mstate m, char* addr) {
- msegmentptr sp = &m->seg;
- for (;;) {
- if (addr >= sp->base && addr < sp->base + sp->size)
- return sp;
- if ((sp = sp->next) == 0)
- return 0;
- }
-}
-
-/* Return true if segment contains a segment link */
-static int has_segment_link(mstate m, msegmentptr ss) {
- msegmentptr sp = &m->seg;
- for (;;) {
- if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
- return 1;
- if ((sp = sp->next) == 0)
- return 0;
- }
-}
-
-#ifndef MORECORE_CANNOT_TRIM
-#define should_trim(M,s) ((s) > (M)->trim_check)
-#else /* MORECORE_CANNOT_TRIM */
-#define should_trim(M,s) (0)
-#endif /* MORECORE_CANNOT_TRIM */
-
-/*
- TOP_FOOT_SIZE is padding at the end of a segment, including space
- that may be needed to place segment records and fenceposts when new
- noncontiguous segments are added.
-*/
-#define TOP_FOOT_SIZE\
- (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
-
-
-/* ------------------------------- Hooks -------------------------------- */
-
-/*
- PREACTION should be defined to return 0 on success, and nonzero on
- failure. If you are not using locking, you can redefine these to do
- anything you like.
-*/
-
-#if USE_LOCKS
-#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
-#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
-#else /* USE_LOCKS */
-
-#ifndef PREACTION
-#define PREACTION(M) (0)
-#endif /* PREACTION */
-
-#ifndef POSTACTION
-#define POSTACTION(M)
-#endif /* POSTACTION */
-
-#endif /* USE_LOCKS */
-
-/*
- CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
- USAGE_ERROR_ACTION is triggered on detected bad frees and
- reallocs. The argument p is an address that might have triggered the
- fault. It is ignored by the two predefined actions, but might be
- useful in custom actions that try to help diagnose errors.
-*/
-
-#if PROCEED_ON_ERROR
-
-/* A count of the number of corruption errors causing resets */
-int malloc_corruption_error_count;
-
-/* default corruption action */
-static void reset_on_error(mstate m);
-
-#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
-#define USAGE_ERROR_ACTION(m, p)
-
-#else /* PROCEED_ON_ERROR */
-
-#ifndef CORRUPTION_ERROR_ACTION
-#define CORRUPTION_ERROR_ACTION(m) ABORT
-#endif /* CORRUPTION_ERROR_ACTION */
-
-#ifndef USAGE_ERROR_ACTION
-#define USAGE_ERROR_ACTION(m,p) ABORT
-#endif /* USAGE_ERROR_ACTION */
-
-#endif /* PROCEED_ON_ERROR */
-
-
-/* -------------------------- Debugging setup ---------------------------- */
-
-#if ! DEBUG
-
-#define check_free_chunk(M,P)
-#define check_inuse_chunk(M,P)
-#define check_malloced_chunk(M,P,N)
-#define check_mmapped_chunk(M,P)
-#define check_malloc_state(M)
-#define check_top_chunk(M,P)
-
-#else /* DEBUG */
-#define check_free_chunk(M,P) do_check_free_chunk(M,P)
-#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
-#define check_top_chunk(M,P) do_check_top_chunk(M,P)
-#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
-#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
-#define check_malloc_state(M) do_check_malloc_state(M)
-
-static void do_check_any_chunk(mstate m, mchunkptr p);
-static void do_check_top_chunk(mstate m, mchunkptr p);
-static void do_check_mmapped_chunk(mstate m, mchunkptr p);
-static void do_check_inuse_chunk(mstate m, mchunkptr p);
-static void do_check_free_chunk(mstate m, mchunkptr p);
-static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
-static void do_check_tree(mstate m, tchunkptr t);
-static void do_check_treebin(mstate m, bindex_t i);
-static void do_check_smallbin(mstate m, bindex_t i);
-static void do_check_malloc_state(mstate m);
-static int bin_find(mstate m, mchunkptr x);
-static size_t traverse_and_check(mstate m);
-#endif /* DEBUG */
-
-/* ---------------------------- Indexing Bins ---------------------------- */
-
-#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
-#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT)
-#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
-#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
-
-/* addressing by index. See above about smallbin repositioning */
-#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
-#define treebin_at(M,i) (&((M)->treebins[i]))
-
-/* assign tree index for size S to variable I. Use x86 asm if possible */
-#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
-#define compute_tree_index(S, I)\
-{\
- unsigned int X = S >> TREEBIN_SHIFT;\
- if (X == 0)\
- I = 0;\
- else if (X > 0xFFFF)\
- I = NTREEBINS-1;\
- else {\
- unsigned int K = (unsigned) sizeof(X)*__CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X); \
- I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
- }\
-}
-
-#elif defined (__INTEL_COMPILER)
-#define compute_tree_index(S, I)\
-{\
- size_t X = S >> TREEBIN_SHIFT;\
- if (X == 0)\
- I = 0;\
- else if (X > 0xFFFF)\
- I = NTREEBINS-1;\
- else {\
- unsigned int K = _bit_scan_reverse (X); \
- I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
- }\
-}
-
-#elif defined(_MSC_VER) && _MSC_VER>=1300
-#define compute_tree_index(S, I)\
-{\
- size_t X = S >> TREEBIN_SHIFT;\
- if (X == 0)\
- I = 0;\
- else if (X > 0xFFFF)\
- I = NTREEBINS-1;\
- else {\
- unsigned int K;\
- _BitScanReverse((DWORD *) &K, (DWORD) X);\
- I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
- }\
-}
-
-#else /* GNUC */
-#define compute_tree_index(S, I)\
-{\
- size_t X = S >> TREEBIN_SHIFT;\
- if (X == 0)\
- I = 0;\
- else if (X > 0xFFFF)\
- I = NTREEBINS-1;\
- else {\
- unsigned int Y = (unsigned int)X;\
- unsigned int N = ((Y - 0x100) >> 16) & 8;\
- unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
- N += K;\
- N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
- K = 14 - N + ((Y <<= K) >> 15);\
- I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
- }\
-}
-#endif /* GNUC */
-
-/* Bit representing maximum resolved size in a treebin at i */
-#define bit_for_tree_index(i) \
- (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
-
-/* Shift placing maximum resolved bit in a treebin at i as sign bit */
-#define leftshift_for_tree_index(i) \
- ((i == NTREEBINS-1)? 0 : \
- ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
-
-/* The size of the smallest chunk held in bin with index i */
-#define minsize_for_tree_index(i) \
- ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
- (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
-
-
-/* ------------------------ Operations on bin maps ----------------------- */
-
-/* bit corresponding to given index */
-#define idx2bit(i) ((binmap_t)(1) << (i))
-
-/* Mark/Clear bits with given index */
-#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
-#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
-#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
-
-#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
-#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
-#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
-
-/* isolate the least set bit of a bitmap */
-#define least_bit(x) ((x) & -(x))
-
-/* mask with all bits to left of least bit of x on */
-#define left_bits(x) ((x<<1) | -(x<<1))
-
-/* mask with all bits to left of or equal to least bit of x on */
-#define same_or_left_bits(x) ((x) | -(x))
-
-/* index corresponding to given bit. Use x86 asm if possible */
-
-#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
-#define compute_bit2idx(X, I)\
-{\
- unsigned int J;\
- J = __builtin_ctz(X); \
- I = (bindex_t)J;\
-}
-
-#elif defined (__INTEL_COMPILER)
-#define compute_bit2idx(X, I)\
-{\
- unsigned int J;\
- J = _bit_scan_forward (X); \
- I = (bindex_t)J;\
-}
-
-#elif defined(_MSC_VER) && _MSC_VER>=1300
-#define compute_bit2idx(X, I)\
-{\
- unsigned int J;\
- _BitScanForward((DWORD *) &J, X);\
- I = (bindex_t)J;\
-}
-
-#elif USE_BUILTIN_FFS
-#define compute_bit2idx(X, I) I = ffs(X)-1
-
-#else
-#define compute_bit2idx(X, I)\
-{\
- unsigned int Y = X - 1;\
- unsigned int K = Y >> (16-4) & 16;\
- unsigned int N = K; Y >>= K;\
- N += K = Y >> (8-3) & 8; Y >>= K;\
- N += K = Y >> (4-2) & 4; Y >>= K;\
- N += K = Y >> (2-1) & 2; Y >>= K;\
- N += K = Y >> (1-0) & 1; Y >>= K;\
- I = (bindex_t)(N + Y);\
-}
-#endif /* GNUC */
-
-
-/* ----------------------- Runtime Check Support ------------------------- */
-
-/*
- For security, the main invariant is that malloc/free/etc never
- writes to a static address other than malloc_state, unless static
- malloc_state itself has been corrupted, which cannot occur via
- malloc (because of these checks). In essence this means that we
- believe all pointers, sizes, maps etc held in malloc_state, but
- check all of those linked or offsetted from other embedded data
- structures. These checks are interspersed with main code in a way
- that tends to minimize their run-time cost.
-
- When FOOTERS is defined, in addition to range checking, we also
- verify footer fields of inuse chunks, which can be used guarantee
- that the mstate controlling malloc/free is intact. This is a
- streamlined version of the approach described by William Robertson
- et al in "Run-time Detection of Heap-based Overflows" LISA'03
- http://www.usenix.org/events/lisa03/tech/robertson.html The footer
- of an inuse chunk holds the xor of its mstate and a random seed,
- that is checked upon calls to free() and realloc(). This is
- (probabalistically) unguessable from outside the program, but can be
- computed by any code successfully malloc'ing any chunk, so does not
- itself provide protection against code that has already broken
- security through some other means. Unlike Robertson et al, we
- always dynamically check addresses of all offset chunks (previous,
- next, etc). This turns out to be cheaper than relying on hashes.
-*/
-
-#if !INSECURE
-/* Check if address a is at least as high as any from MORECORE or MMAP */
-#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
-/* Check if address of next chunk n is higher than base chunk p */
-#define ok_next(p, n) ((char*)(p) < (char*)(n))
-/* Check if p has inuse status */
-#define ok_inuse(p) is_inuse(p)
-/* Check if p has its pinuse bit on */
-#define ok_pinuse(p) pinuse(p)
-
-#else /* !INSECURE */
-#define ok_address(M, a) (1)
-#define ok_next(b, n) (1)
-#define ok_inuse(p) (1)
-#define ok_pinuse(p) (1)
-#endif /* !INSECURE */
-
-#if (FOOTERS && !INSECURE)
-/* Check if (alleged) mstate m has expected magic field */
-#define ok_magic(M) ((M)->magic == mparams.magic)
-#else /* (FOOTERS && !INSECURE) */
-#define ok_magic(M) (1)
-#endif /* (FOOTERS && !INSECURE) */
-
-/* In gcc, use __builtin_expect to minimize impact of checks */
-#if !INSECURE
-#if defined(__GNUC__) && __GNUC__ >= 3
-#define RTCHECK(e) __builtin_expect(e, 1)
-#else /* GNUC */
-#define RTCHECK(e) (e)
-#endif /* GNUC */
-#else /* !INSECURE */
-#define RTCHECK(e) (1)
-#endif /* !INSECURE */
-
-/* macros to set up inuse chunks with or without footers */
-
-#if !FOOTERS
-
-#define mark_inuse_foot(M,p,s)
-
-/* Macros for setting head/foot of non-mmapped chunks */
-
-/* Set cinuse bit and pinuse bit of next chunk */
-#define set_inuse(M,p,s)\
- ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
- ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
-
-/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
-#define set_inuse_and_pinuse(M,p,s)\
- ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
- ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
-
-/* Set size, cinuse and pinuse bit of this chunk */
-#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
- ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
-
-#else /* FOOTERS */
-
-/* Set foot of inuse chunk to be xor of mstate and seed */
-#define mark_inuse_foot(M,p,s)\
- (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
-
-#define get_mstate_for(p)\
- ((mstate)(((mchunkptr)((char*)(p) +\
- (chunksize(p))))->prev_foot ^ mparams.magic))
-
-#define set_inuse(M,p,s)\
- ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
- (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
- mark_inuse_foot(M,p,s))
-
-#define set_inuse_and_pinuse(M,p,s)\
- ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
- (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
- mark_inuse_foot(M,p,s))
-
-#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
- ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
- mark_inuse_foot(M, p, s))
-
-#endif /* !FOOTERS */
-
-/* ---------------------------- setting mparams -------------------------- */
-
-#if LOCK_AT_FORK
-static void pre_fork(void) { ACQUIRE_LOCK(&(gm)->mutex); }
-static void post_fork_parent(void) { RELEASE_LOCK(&(gm)->mutex); }
-static void post_fork_child(void) { INITIAL_LOCK(&(gm)->mutex); }
-#endif /* LOCK_AT_FORK */
-
-/* Initialize mparams */
-static int init_mparams(void) {
-#ifdef NEED_GLOBAL_LOCK_INIT
- if (malloc_global_mutex_status <= 0)
- init_malloc_global_mutex();
-#endif
-
- ACQUIRE_MALLOC_GLOBAL_LOCK();
- if (mparams.magic == 0) {
- size_t magic;
- size_t psize;
- size_t gsize;
-
-#ifndef WIN32
- psize = malloc_getpagesize;
- gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize);
-#else /* WIN32 */
- {
- SYSTEM_INFO system_info;
- GetSystemInfo(&system_info);
- psize = system_info.dwPageSize;
- gsize = ((DEFAULT_GRANULARITY != 0)?
- DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
- }
-#endif /* WIN32 */
-
- /* Sanity-check configuration:
- size_t must be unsigned and as wide as pointer type.
- ints must be at least 4 bytes.
- alignment must be at least 8.
- Alignment, min chunk size, and page size must all be powers of 2.
- */
- if ((sizeof(size_t) != sizeof(char*)) ||
- (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
- (sizeof(int) < 4) ||
- (MALLOC_ALIGNMENT < (size_t)8U) ||
- ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
- ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
- ((gsize & (gsize-SIZE_T_ONE)) != 0) ||
- ((psize & (psize-SIZE_T_ONE)) != 0))
- ABORT;
- mparams.granularity = gsize;
- mparams.page_size = psize;
- mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
- mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
-#if MORECORE_CONTIGUOUS
- mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
-#else /* MORECORE_CONTIGUOUS */
- mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
-#endif /* MORECORE_CONTIGUOUS */
-
-#if !ONLY_MSPACES
- /* Set up lock for main malloc area */
- gm->mflags = mparams.default_mflags;
- (void)INITIAL_LOCK(&gm->mutex);
-#endif
-#if LOCK_AT_FORK
- pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child);
-#endif
-
- {
-#if USE_DEV_RANDOM
- int fd;
- unsigned char buf[sizeof(size_t)];
- /* Try to use /dev/urandom, else fall back on using time */
- if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
- read(fd, buf, sizeof(buf)) == sizeof(buf)) {
- magic = *((size_t *) buf);
- close(fd);
- }
- else
-#endif /* USE_DEV_RANDOM */
-#ifdef WIN32
- magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);
-#elif defined(LACKS_TIME_H)
- magic = (size_t)&magic ^ (size_t)0x55555555U;
-#else
- magic = (size_t)(time(0) ^ (size_t)0x55555555U);
-#endif
- magic |= (size_t)8U; /* ensure nonzero */
- magic &= ~(size_t)7U; /* improve chances of fault for bad values */
- /* Until memory modes commonly available, use volatile-write */
- (*(volatile size_t *)(&(mparams.magic))) = magic;
- }
- }
-
- RELEASE_MALLOC_GLOBAL_LOCK();
- return 1;
-}
-
-/* support for mallopt */
-static int change_mparam(int param_number, int value) {
- size_t val;
- ensure_initialization();
- val = (value == -1)? MAX_SIZE_T : (size_t)value;
- switch(param_number) {
- case M_TRIM_THRESHOLD:
- mparams.trim_threshold = val;
- return 1;
- case M_GRANULARITY:
- if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
- mparams.granularity = val;
- return 1;
- }
- else
- return 0;
- case M_MMAP_THRESHOLD:
- mparams.mmap_threshold = val;
- return 1;
- default:
- return 0;
- }
-}
-
-#if DEBUG
-/* ------------------------- Debugging Support --------------------------- */
-
-/* Check properties of any chunk, whether free, inuse, mmapped etc */
-static void do_check_any_chunk(mstate m, mchunkptr p) {
- assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
- assert(ok_address(m, p));
-}
-
-/* Check properties of top chunk */
-static void do_check_top_chunk(mstate m, mchunkptr p) {
- msegmentptr sp = segment_holding(m, (char*)p);
- size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */
- assert(sp != 0);
- assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
- assert(ok_address(m, p));
- assert(sz == m->topsize);
- assert(sz > 0);
- assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
- assert(pinuse(p));
- assert(!pinuse(chunk_plus_offset(p, sz)));
-}
-
-/* Check properties of (inuse) mmapped chunks */
-static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
- size_t sz = chunksize(p);
- size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD);
- assert(is_mmapped(p));
- assert(use_mmap(m));
- assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
- assert(ok_address(m, p));
- assert(!is_small(sz));
- assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
- assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
- assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
-}
-
-/* Check properties of inuse chunks */
-static void do_check_inuse_chunk(mstate m, mchunkptr p) {
- do_check_any_chunk(m, p);
- assert(is_inuse(p));
- assert(next_pinuse(p));
- /* If not pinuse and not mmapped, previous chunk has OK offset */
- assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
- if (is_mmapped(p))
- do_check_mmapped_chunk(m, p);
-}
-
-/* Check properties of free chunks */
-static void do_check_free_chunk(mstate m, mchunkptr p) {
- size_t sz = chunksize(p);
- mchunkptr next = chunk_plus_offset(p, sz);
- do_check_any_chunk(m, p);
- assert(!is_inuse(p));
- assert(!next_pinuse(p));
- assert (!is_mmapped(p));
- if (p != m->dv && p != m->top) {
- if (sz >= MIN_CHUNK_SIZE) {
- assert((sz & CHUNK_ALIGN_MASK) == 0);
- assert(is_aligned(chunk2mem(p)));
- assert(next->prev_foot == sz);
- assert(pinuse(p));
- assert (next == m->top || is_inuse(next));
- assert(p->fd->bk == p);
- assert(p->bk->fd == p);
- }
- else /* markers are always of size SIZE_T_SIZE */
- assert(sz == SIZE_T_SIZE);
- }
-}
-
-/* Check properties of malloced chunks at the point they are malloced */
-static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
- size_t sz = p->head & ~INUSE_BITS;
- do_check_inuse_chunk(m, p);
- assert((sz & CHUNK_ALIGN_MASK) == 0);
- assert(sz >= MIN_CHUNK_SIZE);
- assert(sz >= s);
- /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
- assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
- }
-}
-
-/* Check a tree and its subtrees. */
-static void do_check_tree(mstate m, tchunkptr t) {
- tchunkptr head = 0;
- tchunkptr u = t;
- bindex_t tindex = t->index;
- size_t tsize = chunksize(t);
- bindex_t idx;
- compute_tree_index(tsize, idx);
- assert(tindex == idx);
- assert(tsize >= MIN_LARGE_SIZE);
- assert(tsize >= minsize_for_tree_index(idx));
- assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
-
- do { /* traverse through chain of same-sized nodes */
- do_check_any_chunk(m, ((mchunkptr)u));
- assert(u->index == tindex);
- assert(chunksize(u) == tsize);
- assert(!is_inuse(u));
- assert(!next_pinuse(u));
- assert(u->fd->bk == u);
- assert(u->bk->fd == u);
- if (u->parent == 0) {
- assert(u->child[0] == 0);
- assert(u->child[1] == 0);
- }
- else {
- assert(head == 0); /* only one node on chain has parent */
- head = u;
- assert(u->parent != u);
- assert (u->parent->child[0] == u ||
- u->parent->child[1] == u ||
- *((tbinptr*)(u->parent)) == u);
- if (u->child[0] != 0) {
- assert(u->child[0]->parent == u);
- assert(u->child[0] != u);
- do_check_tree(m, u->child[0]);
- }
- if (u->child[1] != 0) {
- assert(u->child[1]->parent == u);
- assert(u->child[1] != u);
- do_check_tree(m, u->child[1]);
- }
- if (u->child[0] != 0 && u->child[1] != 0) {
- assert(chunksize(u->child[0]) < chunksize(u->child[1]));
- }
- }
- u = u->fd;
- } while (u != t);
- assert(head != 0);
-}
-
-/* Check all the chunks in a treebin. */
-static void do_check_treebin(mstate m, bindex_t i) {
- tbinptr* tb = treebin_at(m, i);
- tchunkptr t = *tb;
- int empty = (m->treemap & (1U << i)) == 0;
- if (t == 0)
- assert(empty);
- if (!empty)
- do_check_tree(m, t);
-}
-
-/* Check all the chunks in a smallbin. */
-static void do_check_smallbin(mstate m, bindex_t i) {
- sbinptr b = smallbin_at(m, i);
- mchunkptr p = b->bk;
- unsigned int empty = (m->smallmap & (1U << i)) == 0;
- if (p == b)
- assert(empty);
- if (!empty) {
- for (; p != b; p = p->bk) {
- size_t size = chunksize(p);
- mchunkptr q;
- /* each chunk claims to be free */
- do_check_free_chunk(m, p);
- /* chunk belongs in bin */
- assert(small_index(size) == i);
- assert(p->bk == b || chunksize(p->bk) == chunksize(p));
- /* chunk is followed by an inuse chunk */
- q = next_chunk(p);
- if (q->head != FENCEPOST_HEAD)
- do_check_inuse_chunk(m, q);
- }
- }
-}
-
-/* Find x in a bin. Used in other check functions. */
-static int bin_find(mstate m, mchunkptr x) {
- size_t size = chunksize(x);
- if (is_small(size)) {
- bindex_t sidx = small_index(size);
- sbinptr b = smallbin_at(m, sidx);
- if (smallmap_is_marked(m, sidx)) {
- mchunkptr p = b;
- do {
- if (p == x)
- return 1;
- } while ((p = p->fd) != b);
- }
- }
- else {
- bindex_t tidx;
- compute_tree_index(size, tidx);
- if (treemap_is_marked(m, tidx)) {
- tchunkptr t = *treebin_at(m, tidx);
- size_t sizebits = size << leftshift_for_tree_index(tidx);
- while (t != 0 && chunksize(t) != size) {
- t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
- sizebits <<= 1;
- }
- if (t != 0) {
- tchunkptr u = t;
- do {
- if (u == (tchunkptr)x)
- return 1;
- } while ((u = u->fd) != t);
- }
- }
- }
- return 0;
-}
-
-/* Traverse each chunk and check it; return total */
-static size_t traverse_and_check(mstate m) {
- size_t sum = 0;
- if (is_initialized(m)) {
- msegmentptr s = &m->seg;
- sum += m->topsize + TOP_FOOT_SIZE;
- while (s != 0) {
- mchunkptr q = align_as_chunk(s->base);
- mchunkptr lastq = 0;
- assert(pinuse(q));
- while (segment_holds(s, q) &&
- q != m->top && q->head != FENCEPOST_HEAD) {
- sum += chunksize(q);
- if (is_inuse(q)) {
- assert(!bin_find(m, q));
- do_check_inuse_chunk(m, q);
- }
- else {
- assert(q == m->dv || bin_find(m, q));
- assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */
- do_check_free_chunk(m, q);
- }
- lastq = q;
- q = next_chunk(q);
- }
- s = s->next;
- }
- }
- return sum;
-}
-
-
-/* Check all properties of malloc_state. */
-static void do_check_malloc_state(mstate m) {
- bindex_t i;
- size_t total;
- /* check bins */
- for (i = 0; i < NSMALLBINS; ++i)
- do_check_smallbin(m, i);
- for (i = 0; i < NTREEBINS; ++i)
- do_check_treebin(m, i);
-
- if (m->dvsize != 0) { /* check dv chunk */
- do_check_any_chunk(m, m->dv);
- assert(m->dvsize == chunksize(m->dv));
- assert(m->dvsize >= MIN_CHUNK_SIZE);
- assert(bin_find(m, m->dv) == 0);
- }
-
- if (m->top != 0) { /* check top chunk */
- do_check_top_chunk(m, m->top);
- /*assert(m->topsize == chunksize(m->top)); redundant */
- assert(m->topsize > 0);
- assert(bin_find(m, m->top) == 0);
- }
-
- total = traverse_and_check(m);
- assert(total <= m->footprint);
- assert(m->footprint <= m->max_footprint);
-}
-#endif /* DEBUG */
-
-/* ----------------------------- statistics ------------------------------ */
-
-#if !NO_MALLINFO
-static struct mallinfo internal_mallinfo(mstate m) {
- struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
- ensure_initialization();
- if (!PREACTION(m)) {
- check_malloc_state(m);
- if (is_initialized(m)) {
- size_t nfree = SIZE_T_ONE; /* top always free */
- size_t mfree = m->topsize + TOP_FOOT_SIZE;
- size_t sum = mfree;
- msegmentptr s = &m->seg;
- while (s != 0) {
- mchunkptr q = align_as_chunk(s->base);
- while (segment_holds(s, q) &&
- q != m->top && q->head != FENCEPOST_HEAD) {
- size_t sz = chunksize(q);
- sum += sz;
- if (!is_inuse(q)) {
- mfree += sz;
- ++nfree;
- }
- q = next_chunk(q);
- }
- s = s->next;
- }
-
- nm.arena = sum;
- nm.ordblks = nfree;
- nm.hblkhd = m->footprint - sum;
- nm.usmblks = m->max_footprint;
- nm.uordblks = m->footprint - mfree;
- nm.fordblks = mfree;
- nm.keepcost = m->topsize;
- }
-
- POSTACTION(m);
- }
- return nm;
-}
-#endif /* !NO_MALLINFO */
-
-#if !NO_MALLOC_STATS
-static void internal_malloc_stats(mstate m) {
- ensure_initialization();
- if (!PREACTION(m)) {
- size_t maxfp = 0;
- size_t fp = 0;
- size_t used = 0;
- check_malloc_state(m);
- if (is_initialized(m)) {
- msegmentptr s = &m->seg;
- maxfp = m->max_footprint;
- fp = m->footprint;
- used = fp - (m->topsize + TOP_FOOT_SIZE);
-
- while (s != 0) {
- mchunkptr q = align_as_chunk(s->base);
- while (segment_holds(s, q) &&
- q != m->top && q->head != FENCEPOST_HEAD) {
- if (!is_inuse(q))
- used -= chunksize(q);
- q = next_chunk(q);
- }
- s = s->next;
- }
- }
- POSTACTION(m); /* drop lock */
- fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
- fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
- fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
- }
-}
-#endif /* NO_MALLOC_STATS */
-
-/* ----------------------- Operations on smallbins ----------------------- */
-
-/*
- Various forms of linking and unlinking are defined as macros. Even
- the ones for trees, which are very long but have very short typical
- paths. This is ugly but reduces reliance on inlining support of
- compilers.
-*/
-
-/* Link a free chunk into a smallbin */
-#define insert_small_chunk(M, P, S) {\
- bindex_t I = small_index(S);\
- mchunkptr B = smallbin_at(M, I);\
- mchunkptr F = B;\
- assert(S >= MIN_CHUNK_SIZE);\
- if (!smallmap_is_marked(M, I))\
- mark_smallmap(M, I);\
- else if (RTCHECK(ok_address(M, B->fd)))\
- F = B->fd;\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- B->fd = P;\
- F->bk = P;\
- P->fd = F;\
- P->bk = B;\
-}
-
-/* Unlink a chunk from a smallbin */
-#define unlink_small_chunk(M, P, S) {\
- mchunkptr F = P->fd;\
- mchunkptr B = P->bk;\
- bindex_t I = small_index(S);\
- assert(P != B);\
- assert(P != F);\
- assert(chunksize(P) == small_index2size(I));\
- if (RTCHECK(F == smallbin_at(M,I) || (ok_address(M, F) && F->bk == P))) { \
- if (B == F) {\
- clear_smallmap(M, I);\
- }\
- else if (RTCHECK(B == smallbin_at(M,I) ||\
- (ok_address(M, B) && B->fd == P))) {\
- F->bk = B;\
- B->fd = F;\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
-}
-
-/* Unlink the first chunk from a smallbin */
-#define unlink_first_small_chunk(M, B, P, I) {\
- mchunkptr F = P->fd;\
- assert(P != B);\
- assert(P != F);\
- assert(chunksize(P) == small_index2size(I));\
- if (B == F) {\
- clear_smallmap(M, I);\
- }\
- else if (RTCHECK(ok_address(M, F) && F->bk == P)) {\
- F->bk = B;\
- B->fd = F;\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
-}
-
-/* Replace dv node, binning the old one */
-/* Used only when dvsize known to be small */
-#define replace_dv(M, P, S) {\
- size_t DVS = M->dvsize;\
- assert(is_small(DVS));\
- if (DVS != 0) {\
- mchunkptr DV = M->dv;\
- insert_small_chunk(M, DV, DVS);\
- }\
- M->dvsize = S;\
- M->dv = P;\
-}
-
-/* ------------------------- Operations on trees ------------------------- */
-
-/* Insert chunk into tree */
-#define insert_large_chunk(M, X, S) {\
- tbinptr* H;\
- bindex_t I;\
- compute_tree_index(S, I);\
- H = treebin_at(M, I);\
- X->index = I;\
- X->child[0] = X->child[1] = 0;\
- if (!treemap_is_marked(M, I)) {\
- mark_treemap(M, I);\
- *H = X;\
- X->parent = (tchunkptr)H;\
- X->fd = X->bk = X;\
- }\
- else {\
- tchunkptr T = *H;\
- size_t K = S << leftshift_for_tree_index(I);\
- for (;;) {\
- if (chunksize(T) != S) {\
- tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
- K <<= 1;\
- if (*C != 0)\
- T = *C;\
- else if (RTCHECK(ok_address(M, C))) {\
- *C = X;\
- X->parent = T;\
- X->fd = X->bk = X;\
- break;\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- break;\
- }\
- }\
- else {\
- tchunkptr F = T->fd;\
- if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
- T->fd = F->bk = X;\
- X->fd = F;\
- X->bk = T;\
- X->parent = 0;\
- break;\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- break;\
- }\
- }\
- }\
- }\
-}
-
-/*
- Unlink steps:
-
- 1. If x is a chained node, unlink it from its same-sized fd/bk links
- and choose its bk node as its replacement.
- 2. If x was the last node of its size, but not a leaf node, it must
- be replaced with a leaf node (not merely one with an open left or
- right), to make sure that lefts and rights of descendents
- correspond properly to bit masks. We use the rightmost descendent
- of x. We could use any other leaf, but this is easy to locate and
- tends to counteract removal of leftmosts elsewhere, and so keeps
- paths shorter than minimally guaranteed. This doesn't loop much
- because on average a node in a tree is near the bottom.
- 3. If x is the base of a chain (i.e., has parent links) relink
- x's parent and children to x's replacement (or null if none).
-*/
-
-#define unlink_large_chunk(M, X) {\
- tchunkptr XP = X->parent;\
- tchunkptr R;\
- if (X->bk != X) {\
- tchunkptr F = X->fd;\
- R = X->bk;\
- if (RTCHECK(ok_address(M, F) && F->bk == X && R->fd == X)) {\
- F->bk = R;\
- R->fd = F;\
- }\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- }\
- else {\
- tchunkptr* RP;\
- if (((R = *(RP = &(X->child[1]))) != 0) ||\
- ((R = *(RP = &(X->child[0]))) != 0)) {\
- tchunkptr* CP;\
- while ((*(CP = &(R->child[1])) != 0) ||\
- (*(CP = &(R->child[0])) != 0)) {\
- R = *(RP = CP);\
- }\
- if (RTCHECK(ok_address(M, RP)))\
- *RP = 0;\
- else {\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- }\
- }\
- if (XP != 0) {\
- tbinptr* H = treebin_at(M, X->index);\
- if (X == *H) {\
- if ((*H = R) == 0) \
- clear_treemap(M, X->index);\
- }\
- else if (RTCHECK(ok_address(M, XP))) {\
- if (XP->child[0] == X) \
- XP->child[0] = R;\
- else \
- XP->child[1] = R;\
- }\
- else\
- CORRUPTION_ERROR_ACTION(M);\
- if (R != 0) {\
- if (RTCHECK(ok_address(M, R))) {\
- tchunkptr C0, C1;\
- R->parent = XP;\
- if ((C0 = X->child[0]) != 0) {\
- if (RTCHECK(ok_address(M, C0))) {\
- R->child[0] = C0;\
- C0->parent = R;\
- }\
- else\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- if ((C1 = X->child[1]) != 0) {\
- if (RTCHECK(ok_address(M, C1))) {\
- R->child[1] = C1;\
- C1->parent = R;\
- }\
- else\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- }\
- else\
- CORRUPTION_ERROR_ACTION(M);\
- }\
- }\
-}
-
-/* Relays to large vs small bin operations */
-
-#define insert_chunk(M, P, S)\
- if (is_small(S)) insert_small_chunk(M, P, S)\
- else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
-
-#define unlink_chunk(M, P, S)\
- if (is_small(S)) unlink_small_chunk(M, P, S)\
- else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
-
-
-/* Relays to internal calls to malloc/free from realloc, memalign etc */
-
-#if ONLY_MSPACES
-#define internal_malloc(m, b) mspace_malloc(m, b)
-#define internal_free(m, mem) mspace_free(m,mem);
-#else /* ONLY_MSPACES */
-#if MSPACES
-#define internal_malloc(m, b)\
- ((m == gm)? dlmalloc(b) : mspace_malloc(m, b))
-#define internal_free(m, mem)\
- if (m == gm) dlfree(mem); else mspace_free(m,mem);
-#else /* MSPACES */
-#define internal_malloc(m, b) dlmalloc(b)
-#define internal_free(m, mem) dlfree(mem)
-#endif /* MSPACES */
-#endif /* ONLY_MSPACES */
-
-/* ----------------------- Direct-mmapping chunks ----------------------- */
-
-/*
- Directly mmapped chunks are set up with an offset to the start of
- the mmapped region stored in the prev_foot field of the chunk. This
- allows reconstruction of the required argument to MUNMAP when freed,
- and also allows adjustment of the returned chunk to meet alignment
- requirements (especially in memalign).
-*/
-
-/* Malloc using mmap */
-static void* mmap_alloc(mstate m, size_t nb) {
- size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
- if (m->footprint_limit != 0) {
- size_t fp = m->footprint + mmsize;
- if (fp <= m->footprint || fp > m->footprint_limit)
- return 0;
- }
- if (mmsize > nb) { /* Check for wrap around 0 */
- char* mm = (char*)(CALL_DIRECT_MMAP(mmsize));
- if (mm != CMFAIL) {
- size_t offset = align_offset(chunk2mem(mm));
- size_t psize = mmsize - offset - MMAP_FOOT_PAD;
- mchunkptr p = (mchunkptr)(mm + offset);
- p->prev_foot = offset;
- p->head = psize;
- mark_inuse_foot(m, p, psize);
- chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
- chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
-
- if (m->least_addr == 0 || mm < m->least_addr)
- m->least_addr = mm;
- if ((m->footprint += mmsize) > m->max_footprint)
- m->max_footprint = m->footprint;
- assert(is_aligned(chunk2mem(p)));
- check_mmapped_chunk(m, p);
- return chunk2mem(p);
- }
- }
- return 0;
-}
-
-/* Realloc using mmap */
-static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb, int flags) {
- size_t oldsize = chunksize(oldp);
- (void)flags; /* placate people compiling -Wunused */
- if (is_small(nb)) /* Can't shrink mmap regions below small size */
- return 0;
- /* Keep old chunk if big enough but not too big */
- if (oldsize >= nb + SIZE_T_SIZE &&
- (oldsize - nb) <= (mparams.granularity << 1))
- return oldp;
- else {
- size_t offset = oldp->prev_foot;
- size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
- size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
- char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
- oldmmsize, newmmsize, flags);
- if (cp != CMFAIL) {
- mchunkptr newp = (mchunkptr)(cp + offset);
- size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
- newp->head = psize;
- mark_inuse_foot(m, newp, psize);
- chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
- chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
-
- if (cp < m->least_addr)
- m->least_addr = cp;
- if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
- m->max_footprint = m->footprint;
- check_mmapped_chunk(m, newp);
- return newp;
- }
- }
- return 0;
-}
-
-
-/* -------------------------- mspace management -------------------------- */
-
-/* Initialize top chunk and its size */
-static void init_top(mstate m, mchunkptr p, size_t psize) {
- /* Ensure alignment */
- size_t offset = align_offset(chunk2mem(p));
- p = (mchunkptr)((char*)p + offset);
- psize -= offset;
-
- m->top = p;
- m->topsize = psize;
- p->head = psize | PINUSE_BIT;
- /* set size of fake trailing chunk holding overhead space only once */
- chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
- m->trim_check = mparams.trim_threshold; /* reset on each update */
-}
-
-/* Initialize bins for a new mstate that is otherwise zeroed out */
-static void init_bins(mstate m) {
- /* Establish circular links for smallbins */
- bindex_t i;
- for (i = 0; i < NSMALLBINS; ++i) {
- sbinptr bin = smallbin_at(m,i);
- bin->fd = bin->bk = bin;
- }
-}
-
-#if PROCEED_ON_ERROR
-
-/* default corruption action */
-static void reset_on_error(mstate m) {
- int i;
- ++malloc_corruption_error_count;
- /* Reinitialize fields to forget about all memory */
- m->smallmap = m->treemap = 0;
- m->dvsize = m->topsize = 0;
- m->seg.base = 0;
- m->seg.size = 0;
- m->seg.next = 0;
- m->top = m->dv = 0;
- for (i = 0; i < NTREEBINS; ++i)
- *treebin_at(m, i) = 0;
- init_bins(m);
-}
-#endif /* PROCEED_ON_ERROR */
-
-/* Allocate chunk and prepend remainder with chunk in successor base. */
-static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
- size_t nb) {
- mchunkptr p = align_as_chunk(newbase);
- mchunkptr oldfirst = align_as_chunk(oldbase);
- size_t psize = (char*)oldfirst - (char*)p;
- mchunkptr q = chunk_plus_offset(p, nb);
- size_t qsize = psize - nb;
- set_size_and_pinuse_of_inuse_chunk(m, p, nb);
-
- assert((char*)oldfirst > (char*)q);
- assert(pinuse(oldfirst));
- assert(qsize >= MIN_CHUNK_SIZE);
-
- /* consolidate remainder with first chunk of old base */
- if (oldfirst == m->top) {
- size_t tsize = m->topsize += qsize;
- m->top = q;
- q->head = tsize | PINUSE_BIT;
- check_top_chunk(m, q);
- }
- else if (oldfirst == m->dv) {
- size_t dsize = m->dvsize += qsize;
- m->dv = q;
- set_size_and_pinuse_of_free_chunk(q, dsize);
- }
- else {
- if (!is_inuse(oldfirst)) {
- size_t nsize = chunksize(oldfirst);
- unlink_chunk(m, oldfirst, nsize);
- oldfirst = chunk_plus_offset(oldfirst, nsize);
- qsize += nsize;
- }
- set_free_with_pinuse(q, qsize, oldfirst);
- insert_chunk(m, q, qsize);
- check_free_chunk(m, q);
- }
-
- check_malloced_chunk(m, chunk2mem(p), nb);
- return chunk2mem(p);
-}
-
-/* Add a segment to hold a new noncontiguous region */
-static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
- /* Determine locations and sizes of segment, fenceposts, old top */
- char* old_top = (char*)m->top;
- msegmentptr oldsp = segment_holding(m, old_top);
- char* old_end = oldsp->base + oldsp->size;
- size_t ssize = pad_request(sizeof(struct malloc_segment));
- char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
- size_t offset = align_offset(chunk2mem(rawsp));
- char* asp = rawsp + offset;
- char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
- mchunkptr sp = (mchunkptr)csp;
- msegmentptr ss = (msegmentptr)(chunk2mem(sp));
- mchunkptr tnext = chunk_plus_offset(sp, ssize);
- mchunkptr p = tnext;
- int nfences = 0;
-
- /* reset top to new space */
- init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
-
- /* Set up segment record */
- assert(is_aligned(ss));
- set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
- *ss = m->seg; /* Push current record */
- m->seg.base = tbase;
- m->seg.size = tsize;
- m->seg.sflags = mmapped;
- m->seg.next = ss;
-
- /* Insert trailing fenceposts */
- for (;;) {
- mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
- p->head = FENCEPOST_HEAD;
- ++nfences;
- if ((char*)(&(nextp->head)) < old_end)
- p = nextp;
- else
- break;
- }
- assert(nfences >= 2);
-
- /* Insert the rest of old top into a bin as an ordinary free chunk */
- if (csp != old_top) {
- mchunkptr q = (mchunkptr)old_top;
- size_t psize = csp - old_top;
- mchunkptr tn = chunk_plus_offset(q, psize);
- set_free_with_pinuse(q, psize, tn);
- insert_chunk(m, q, psize);
- }
-
- check_top_chunk(m, m->top);
-}
-
-/* -------------------------- System allocation -------------------------- */
-
-/* Get memory from system using MORECORE or MMAP */
-static void* sys_alloc(mstate m, size_t nb) {
- char* tbase = CMFAIL;
- size_t tsize = 0;
- flag_t mmap_flag = 0;
- size_t asize; /* allocation size */
-
- ensure_initialization();
-
- /* Directly map large chunks, but only if already initialized */
- if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) {
- void* mem = mmap_alloc(m, nb);
- if (mem != 0)
- return mem;
- }
-
- asize = granularity_align(nb + SYS_ALLOC_PADDING);
- if (asize <= nb)
- return 0; /* wraparound */
- if (m->footprint_limit != 0) {
- size_t fp = m->footprint + asize;
- if (fp <= m->footprint || fp > m->footprint_limit)
- return 0;
- }
-
- /*
- Try getting memory in any of three ways (in most-preferred to
- least-preferred order):
- 1. A call to MORECORE that can normally contiguously extend memory.
- (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
- or main space is mmapped or a previous contiguous call failed)
- 2. A call to MMAP new space (disabled if not HAVE_MMAP).
- Note that under the default settings, if MORECORE is unable to
- fulfill a request, and HAVE_MMAP is true, then mmap is
- used as a noncontiguous system allocator. This is a useful backup
- strategy for systems with holes in address spaces -- in this case
- sbrk cannot contiguously expand the heap, but mmap may be able to
- find space.
- 3. A call to MORECORE that cannot usually contiguously extend memory.
- (disabled if not HAVE_MORECORE)
-
- In all cases, we need to request enough bytes from system to ensure
- we can malloc nb bytes upon success, so pad with enough space for
- top_foot, plus alignment-pad to make sure we don't lose bytes if
- not on boundary, and round this up to a granularity unit.
- */
-
- if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
- char* br = CMFAIL;
- size_t ssize = asize; /* sbrk call size */
- msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
- ACQUIRE_MALLOC_GLOBAL_LOCK();
-
- if (ss == 0) { /* First time through or recovery */
- char* base = (char*)CALL_MORECORE(0);
- if (base != CMFAIL) {
- size_t fp;
- /* Adjust to end on a page boundary */
- if (!is_page_aligned(base))
- ssize += (page_align((size_t)base) - (size_t)base);
- fp = m->footprint + ssize; /* recheck limits */
- if (ssize > nb && ssize < HALF_MAX_SIZE_T &&
- (m->footprint_limit == 0 ||
- (fp > m->footprint && fp <= m->footprint_limit)) &&
- (br = (char*)(CALL_MORECORE(ssize))) == base) {
- tbase = base;
- tsize = ssize;
- }
- }
- }
- else {
- /* Subtract out existing available top space from MORECORE request. */
- ssize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING);
- /* Use mem here only if it did continuously extend old space */
- if (ssize < HALF_MAX_SIZE_T &&
- (br = (char*)(CALL_MORECORE(ssize))) == ss->base+ss->size) {
- tbase = br;
- tsize = ssize;
- }
- }
-
- if (tbase == CMFAIL) { /* Cope with partial failure */
- if (br != CMFAIL) { /* Try to use/extend the space we did get */
- if (ssize < HALF_MAX_SIZE_T &&
- ssize < nb + SYS_ALLOC_PADDING) {
- size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - ssize);
- if (esize < HALF_MAX_SIZE_T) {
- char* end = (char*)CALL_MORECORE(esize);
- if (end != CMFAIL)
- ssize += esize;
- else { /* Can't use; try to release */
- (void) CALL_MORECORE(-ssize);
- br = CMFAIL;
- }
- }
- }
- }
- if (br != CMFAIL) { /* Use the space we did get */
- tbase = br;
- tsize = ssize;
- }
- else
- disable_contiguous(m); /* Don't try contiguous path in the future */
- }
-
- RELEASE_MALLOC_GLOBAL_LOCK();
- }
-
- if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
- char* mp = (char*)(CALL_MMAP(asize));
- if (mp != CMFAIL) {
- tbase = mp;
- tsize = asize;
- mmap_flag = USE_MMAP_BIT;
- }
- }
-
- if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
- if (asize < HALF_MAX_SIZE_T) {
- char* br = CMFAIL;
- char* end = CMFAIL;
- ACQUIRE_MALLOC_GLOBAL_LOCK();
- br = (char*)(CALL_MORECORE(asize));
- end = (char*)(CALL_MORECORE(0));
- RELEASE_MALLOC_GLOBAL_LOCK();
- if (br != CMFAIL && end != CMFAIL && br < end) {
- size_t ssize = end - br;
- if (ssize > nb + TOP_FOOT_SIZE) {
- tbase = br;
- tsize = ssize;
- }
- }
- }
- }
-
- if (tbase != CMFAIL) {
-
- if ((m->footprint += tsize) > m->max_footprint)
- m->max_footprint = m->footprint;
-
- if (!is_initialized(m)) { /* first-time initialization */
- if (m->least_addr == 0 || tbase < m->least_addr)
- m->least_addr = tbase;
- m->seg.base = tbase;
- m->seg.size = tsize;
- m->seg.sflags = mmap_flag;
- m->magic = mparams.magic;
- m->release_checks = MAX_RELEASE_CHECK_RATE;
- init_bins(m);
-#if !ONLY_MSPACES
- if (is_global(m))
- init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
- else
-#endif
- {
- /* Offset top by embedded malloc_state */
- mchunkptr mn = next_chunk(mem2chunk(m));
- init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
- }
- }
-
- else {
- /* Try to merge with an existing segment */
- msegmentptr sp = &m->seg;
- /* Only consider most recent segment if traversal suppressed */
- while (sp != 0 && tbase != sp->base + sp->size)
- sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
- if (sp != 0 &&
- !is_extern_segment(sp) &&
- (sp->sflags & USE_MMAP_BIT) == mmap_flag &&
- segment_holds(sp, m->top)) { /* append */
- sp->size += tsize;
- init_top(m, m->top, m->topsize + tsize);
- }
- else {
- if (tbase < m->least_addr)
- m->least_addr = tbase;
- sp = &m->seg;
- while (sp != 0 && sp->base != tbase + tsize)
- sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
- if (sp != 0 &&
- !is_extern_segment(sp) &&
- (sp->sflags & USE_MMAP_BIT) == mmap_flag) {
- char* oldbase = sp->base;
- sp->base = tbase;
- sp->size += tsize;
- return prepend_alloc(m, tbase, oldbase, nb);
- }
- else
- add_segment(m, tbase, tsize, mmap_flag);
- }
- }
-
- if (nb < m->topsize) { /* Allocate from new or extended top space */
- size_t rsize = m->topsize -= nb;
- mchunkptr p = m->top;
- mchunkptr r = m->top = chunk_plus_offset(p, nb);
- r->head = rsize | PINUSE_BIT;
- set_size_and_pinuse_of_inuse_chunk(m, p, nb);
- check_top_chunk(m, m->top);
- check_malloced_chunk(m, chunk2mem(p), nb);
- return chunk2mem(p);
- }
- }
-
- MALLOC_FAILURE_ACTION;
- return 0;
-}
-
-/* ----------------------- system deallocation -------------------------- */
-
-/* Unmap and unlink any mmapped segments that don't contain used chunks */
-static size_t release_unused_segments(mstate m) {
- size_t released = 0;
- int nsegs = 0;
- msegmentptr pred = &m->seg;
- msegmentptr sp = pred->next;
- while (sp != 0) {
- char* base = sp->base;
- size_t size = sp->size;
- msegmentptr next = sp->next;
- ++nsegs;
- if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
- mchunkptr p = align_as_chunk(base);
- size_t psize = chunksize(p);
- /* Can unmap if first chunk holds entire segment and not pinned */
- if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
- tchunkptr tp = (tchunkptr)p;
- assert(segment_holds(sp, (char*)sp));
- if (p == m->dv) {
- m->dv = 0;
- m->dvsize = 0;
- }
- else {
- unlink_large_chunk(m, tp);
- }
- if (CALL_MUNMAP(base, size) == 0) {
- released += size;
- m->footprint -= size;
- /* unlink obsoleted record */
- sp = pred;
- sp->next = next;
- }
- else { /* back out if cannot unmap */
- insert_large_chunk(m, tp, psize);
- }
- }
- }
- if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */
- break;
- pred = sp;
- sp = next;
- }
- /* Reset check counter */
- m->release_checks = (((size_t) nsegs > (size_t) MAX_RELEASE_CHECK_RATE)?
- (size_t) nsegs : (size_t) MAX_RELEASE_CHECK_RATE);
- return released;
-}
-
-static int sys_trim(mstate m, size_t pad) {
- size_t released = 0;
- ensure_initialization();
- if (pad < MAX_REQUEST && is_initialized(m)) {
- pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
-
- if (m->topsize > pad) {
- /* Shrink top space in granularity-size units, keeping at least one */
- size_t unit = mparams.granularity;
- size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
- SIZE_T_ONE) * unit;
- msegmentptr sp = segment_holding(m, (char*)m->top);
-
- if (!is_extern_segment(sp)) {
- if (is_mmapped_segment(sp)) {
- if (HAVE_MMAP &&
- sp->size >= extra &&
- !has_segment_link(m, sp)) { /* can't shrink if pinned */
- size_t newsize = sp->size - extra;
- (void)newsize; /* placate people compiling -Wunused-variable */
- /* Prefer mremap, fall back to munmap */
- if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
- (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
- released = extra;
- }
- }
- }
- else if (HAVE_MORECORE) {
- if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
- extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
- ACQUIRE_MALLOC_GLOBAL_LOCK();
- {
- /* Make sure end of memory is where we last set it. */
- char* old_br = (char*)(CALL_MORECORE(0));
- if (old_br == sp->base + sp->size) {
- char* rel_br = (char*)(CALL_MORECORE(-extra));
- char* new_br = (char*)(CALL_MORECORE(0));
- if (rel_br != CMFAIL && new_br < old_br)
- released = old_br - new_br;
- }
- }
- RELEASE_MALLOC_GLOBAL_LOCK();
- }
- }
-
- if (released != 0) {
- sp->size -= released;
- m->footprint -= released;
- init_top(m, m->top, m->topsize - released);
- check_top_chunk(m, m->top);
- }
- }
-
- /* Unmap any unused mmapped segments */
- if (HAVE_MMAP)
- released += release_unused_segments(m);
-
- /* On failure, disable autotrim to avoid repeated failed future calls */
- if (released == 0 && m->topsize > m->trim_check)
- m->trim_check = MAX_SIZE_T;
- }
-
- return (released != 0)? 1 : 0;
-}
-
-/* Consolidate and bin a chunk. Differs from exported versions
- of free mainly in that the chunk need not be marked as inuse.
-*/
-static void dispose_chunk(mstate m, mchunkptr p, size_t psize) {
- mchunkptr next = chunk_plus_offset(p, psize);
- if (!pinuse(p)) {
- mchunkptr prev;
- size_t prevsize = p->prev_foot;
- if (is_mmapped(p)) {
- psize += prevsize + MMAP_FOOT_PAD;
- if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
- m->footprint -= psize;
- return;
- }
- prev = chunk_minus_offset(p, prevsize);
- psize += prevsize;
- p = prev;
- if (RTCHECK(ok_address(m, prev))) { /* consolidate backward */
- if (p != m->dv) {
- unlink_chunk(m, p, prevsize);
- }
- else if ((next->head & INUSE_BITS) == INUSE_BITS) {
- m->dvsize = psize;
- set_free_with_pinuse(p, psize, next);
- return;
- }
- }
- else {
- CORRUPTION_ERROR_ACTION(m);
- return;
- }
- }
- if (RTCHECK(ok_address(m, next))) {
- if (!cinuse(next)) { /* consolidate forward */
- if (next == m->top) {
- size_t tsize = m->topsize += psize;
- m->top = p;
- p->head = tsize | PINUSE_BIT;
- if (p == m->dv) {
- m->dv = 0;
- m->dvsize = 0;
- }
- return;
- }
- else if (next == m->dv) {
- size_t dsize = m->dvsize += psize;
- m->dv = p;
- set_size_and_pinuse_of_free_chunk(p, dsize);
- return;
- }
- else {
- size_t nsize = chunksize(next);
- psize += nsize;
- unlink_chunk(m, next, nsize);
- set_size_and_pinuse_of_free_chunk(p, psize);
- if (p == m->dv) {
- m->dvsize = psize;
- return;
- }
- }
- }
- else {
- set_free_with_pinuse(p, psize, next);
- }
- insert_chunk(m, p, psize);
- }
- else {
- CORRUPTION_ERROR_ACTION(m);
- }
-}
-
-/* ---------------------------- malloc --------------------------- */
-
-/* allocate a large request from the best fitting chunk in a treebin */
-static void* tmalloc_large(mstate m, size_t nb) {
- tchunkptr v = 0;
- size_t rsize = -nb; /* Unsigned negation */
- tchunkptr t;
- bindex_t idx;
- compute_tree_index(nb, idx);
- if ((t = *treebin_at(m, idx)) != 0) {
- /* Traverse tree for this bin looking for node with size == nb */
- size_t sizebits = nb << leftshift_for_tree_index(idx);
- tchunkptr rst = 0; /* The deepest untaken right subtree */
- for (;;) {
- tchunkptr rt;
- size_t trem = chunksize(t) - nb;
- if (trem < rsize) {
- v = t;
- if ((rsize = trem) == 0)
- break;
- }
- rt = t->child[1];
- t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
- if (rt != 0 && rt != t)
- rst = rt;
- if (t == 0) {
- t = rst; /* set t to least subtree holding sizes > nb */
- break;
- }
- sizebits <<= 1;
- }
- }
- if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
- binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
- if (leftbits != 0) {
- bindex_t i;
- binmap_t leastbit = least_bit(leftbits);
- compute_bit2idx(leastbit, i);
- t = *treebin_at(m, i);
- }
- }
-
- while (t != 0) { /* find smallest of tree or subtree */
- size_t trem = chunksize(t) - nb;
- if (trem < rsize) {
- rsize = trem;
- v = t;
- }
- t = leftmost_child(t);
- }
-
- /* If dv is a better fit, return 0 so malloc will use it */
- if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
- if (RTCHECK(ok_address(m, v))) { /* split */
- mchunkptr r = chunk_plus_offset(v, nb);
- assert(chunksize(v) == rsize + nb);
- if (RTCHECK(ok_next(v, r))) {
- unlink_large_chunk(m, v);
- if (rsize < MIN_CHUNK_SIZE)
- set_inuse_and_pinuse(m, v, (rsize + nb));
- else {
- set_size_and_pinuse_of_inuse_chunk(m, v, nb);
- set_size_and_pinuse_of_free_chunk(r, rsize);
- insert_chunk(m, r, rsize);
- }
- return chunk2mem(v);
- }
- }
- CORRUPTION_ERROR_ACTION(m);
- }
- return 0;
-}
-
-/* allocate a small request from the best fitting chunk in a treebin */
-static void* tmalloc_small(mstate m, size_t nb) {
- tchunkptr t, v;
- size_t rsize;
- bindex_t i;
- binmap_t leastbit = least_bit(m->treemap);
- compute_bit2idx(leastbit, i);
- v = t = *treebin_at(m, i);
- rsize = chunksize(t) - nb;
-
- while ((t = leftmost_child(t)) != 0) {
- size_t trem = chunksize(t) - nb;
- if (trem < rsize) {
- rsize = trem;
- v = t;
- }
- }
-
- if (RTCHECK(ok_address(m, v))) {
- mchunkptr r = chunk_plus_offset(v, nb);
- assert(chunksize(v) == rsize + nb);
- if (RTCHECK(ok_next(v, r))) {
- unlink_large_chunk(m, v);
- if (rsize < MIN_CHUNK_SIZE)
- set_inuse_and_pinuse(m, v, (rsize + nb));
- else {
- set_size_and_pinuse_of_inuse_chunk(m, v, nb);
- set_size_and_pinuse_of_free_chunk(r, rsize);
- replace_dv(m, r, rsize);
- }
- return chunk2mem(v);
- }
- }
-
- CORRUPTION_ERROR_ACTION(m);
- return 0;
-}
-
-#if !ONLY_MSPACES
-
-void* dlmalloc(size_t bytes) {
- /*
- Basic algorithm:
- If a small request (< 256 bytes minus per-chunk overhead):
- 1. If one exists, use a remainderless chunk in associated smallbin.
- (Remainderless means that there are too few excess bytes to
- represent as a chunk.)
- 2. If it is big enough, use the dv chunk, which is normally the
- chunk adjacent to the one used for the most recent small request.
- 3. If one exists, split the smallest available chunk in a bin,
- saving remainder in dv.
- 4. If it is big enough, use the top chunk.
- 5. If available, get memory from system and use it
- Otherwise, for a large request:
- 1. Find the smallest available binned chunk that fits, and use it
- if it is better fitting than dv chunk, splitting if necessary.
- 2. If better fitting than any binned chunk, use the dv chunk.
- 3. If it is big enough, use the top chunk.
- 4. If request size >= mmap threshold, try to directly mmap this chunk.
- 5. If available, get memory from system and use it
-
- The ugly goto's here ensure that postaction occurs along all paths.
- */
-
-#if USE_LOCKS
- ensure_initialization(); /* initialize in sys_alloc if not using locks */
-#endif
-
- if (!PREACTION(gm)) {
- void* mem;
- size_t nb;
- if (bytes <= MAX_SMALL_REQUEST) {
- bindex_t idx;
- binmap_t smallbits;
- nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
- idx = small_index(nb);
- smallbits = gm->smallmap >> idx;
-
- if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
- mchunkptr b, p;
- idx += ~smallbits & 1; /* Uses next bin if idx empty */
- b = smallbin_at(gm, idx);
- p = b->fd;
- assert(chunksize(p) == small_index2size(idx));
- unlink_first_small_chunk(gm, b, p, idx);
- set_inuse_and_pinuse(gm, p, small_index2size(idx));
- mem = chunk2mem(p);
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
-
- else if (nb > gm->dvsize) {
- if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
- mchunkptr b, p, r;
- size_t rsize;
- bindex_t i;
- binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
- binmap_t leastbit = least_bit(leftbits);
- compute_bit2idx(leastbit, i);
- b = smallbin_at(gm, i);
- p = b->fd;
- assert(chunksize(p) == small_index2size(i));
- unlink_first_small_chunk(gm, b, p, i);
- rsize = small_index2size(i) - nb;
- /* Fit here cannot be remainderless if 4byte sizes */
- if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
- set_inuse_and_pinuse(gm, p, small_index2size(i));
- else {
- set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
- r = chunk_plus_offset(p, nb);
- set_size_and_pinuse_of_free_chunk(r, rsize);
- replace_dv(gm, r, rsize);
- }
- mem = chunk2mem(p);
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
-
- else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
- }
- }
- else if (bytes >= MAX_REQUEST)
- nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
- else {
- nb = pad_request(bytes);
- if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
- }
-
- if (nb <= gm->dvsize) {
- size_t rsize = gm->dvsize - nb;
- mchunkptr p = gm->dv;
- if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
- mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
- gm->dvsize = rsize;
- set_size_and_pinuse_of_free_chunk(r, rsize);
- set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
- }
- else { /* exhaust dv */
- size_t dvs = gm->dvsize;
- gm->dvsize = 0;
- gm->dv = 0;
- set_inuse_and_pinuse(gm, p, dvs);
- }
- mem = chunk2mem(p);
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
-
- else if (nb < gm->topsize) { /* Split top */
- size_t rsize = gm->topsize -= nb;
- mchunkptr p = gm->top;
- mchunkptr r = gm->top = chunk_plus_offset(p, nb);
- r->head = rsize | PINUSE_BIT;
- set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
- mem = chunk2mem(p);
- check_top_chunk(gm, gm->top);
- check_malloced_chunk(gm, mem, nb);
- goto postaction;
- }
-
- mem = sys_alloc(gm, nb);
-
- postaction:
- POSTACTION(gm);
- return mem;
- }
-
- return 0;
-}
-
-/* ---------------------------- free --------------------------- */
-
-void dlfree(void* mem) {
- /*
- Consolidate freed chunks with preceeding or succeeding bordering
- free chunks, if they exist, and then place in a bin. Intermixed
- with special cases for top, dv, mmapped chunks, and usage errors.
- */
-
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
-#if FOOTERS
- mstate fm = get_mstate_for(p);
- if (!ok_magic(fm)) {
- USAGE_ERROR_ACTION(fm, p);
- return;
- }
-#else /* FOOTERS */
-#define fm gm
-#endif /* FOOTERS */
- if (!PREACTION(fm)) {
- check_inuse_chunk(fm, p);
- if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
- size_t psize = chunksize(p);
- mchunkptr next = chunk_plus_offset(p, psize);
- if (!pinuse(p)) {
- size_t prevsize = p->prev_foot;
- if (is_mmapped(p)) {
- psize += prevsize + MMAP_FOOT_PAD;
- if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
- fm->footprint -= psize;
- goto postaction;
- }
- else {
- mchunkptr prev = chunk_minus_offset(p, prevsize);
- psize += prevsize;
- p = prev;
- if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
- if (p != fm->dv) {
- unlink_chunk(fm, p, prevsize);
- }
- else if ((next->head & INUSE_BITS) == INUSE_BITS) {
- fm->dvsize = psize;
- set_free_with_pinuse(p, psize, next);
- goto postaction;
- }
- }
- else
- goto erroraction;
- }
- }
-
- if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
- if (!cinuse(next)) { /* consolidate forward */
- if (next == fm->top) {
- size_t tsize = fm->topsize += psize;
- fm->top = p;
- p->head = tsize | PINUSE_BIT;
- if (p == fm->dv) {
- fm->dv = 0;
- fm->dvsize = 0;
- }
- if (should_trim(fm, tsize))
- sys_trim(fm, 0);
- goto postaction;
- }
- else if (next == fm->dv) {
- size_t dsize = fm->dvsize += psize;
- fm->dv = p;
- set_size_and_pinuse_of_free_chunk(p, dsize);
- goto postaction;
- }
- else {
- size_t nsize = chunksize(next);
- psize += nsize;
- unlink_chunk(fm, next, nsize);
- set_size_and_pinuse_of_free_chunk(p, psize);
- if (p == fm->dv) {
- fm->dvsize = psize;
- goto postaction;
- }
- }
- }
- else
- set_free_with_pinuse(p, psize, next);
-
- if (is_small(psize)) {
- insert_small_chunk(fm, p, psize);
- check_free_chunk(fm, p);
- }
- else {
- tchunkptr tp = (tchunkptr)p;
- insert_large_chunk(fm, tp, psize);
- check_free_chunk(fm, p);
- if (--fm->release_checks == 0)
- release_unused_segments(fm);
- }
- goto postaction;
- }
- }
- erroraction:
- USAGE_ERROR_ACTION(fm, p);
- postaction:
- POSTACTION(fm);
- }
- }
-#if !FOOTERS
-#undef fm
-#endif /* FOOTERS */
-}
-
-void* dlcalloc(size_t n_elements, size_t elem_size) {
- void* mem;
- size_t req = 0;
- if (n_elements != 0) {
- req = n_elements * elem_size;
- if (((n_elements | elem_size) & ~(size_t)0xffff) &&
- (req / n_elements != elem_size))
- req = MAX_SIZE_T; /* force downstream failure on overflow */
- }
- mem = dlmalloc(req);
- if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
- memset(mem, 0, req);
- return mem;
-}
-
-#endif /* !ONLY_MSPACES */
-
-/* ------------ Internal support for realloc, memalign, etc -------------- */
-
-/* Try to realloc; only in-place unless can_move true */
-static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb,
- int can_move) {
- mchunkptr newp = 0;
- size_t oldsize = chunksize(p);
- mchunkptr next = chunk_plus_offset(p, oldsize);
- if (RTCHECK(ok_address(m, p) && ok_inuse(p) &&
- ok_next(p, next) && ok_pinuse(next))) {
- if (is_mmapped(p)) {
- newp = mmap_resize(m, p, nb, can_move);
- }
- else if (oldsize >= nb) { /* already big enough */
- size_t rsize = oldsize - nb;
- if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */
- mchunkptr r = chunk_plus_offset(p, nb);
- set_inuse(m, p, nb);
- set_inuse(m, r, rsize);
- dispose_chunk(m, r, rsize);
- }
- newp = p;
- }
- else if (next == m->top) { /* extend into top */
- if (oldsize + m->topsize > nb) {
- size_t newsize = oldsize + m->topsize;
- size_t newtopsize = newsize - nb;
- mchunkptr newtop = chunk_plus_offset(p, nb);
- set_inuse(m, p, nb);
- newtop->head = newtopsize |PINUSE_BIT;
- m->top = newtop;
- m->topsize = newtopsize;
- newp = p;
- }
- }
- else if (next == m->dv) { /* extend into dv */
- size_t dvs = m->dvsize;
- if (oldsize + dvs >= nb) {
- size_t dsize = oldsize + dvs - nb;
- if (dsize >= MIN_CHUNK_SIZE) {
- mchunkptr r = chunk_plus_offset(p, nb);
- mchunkptr n = chunk_plus_offset(r, dsize);
- set_inuse(m, p, nb);
- set_size_and_pinuse_of_free_chunk(r, dsize);
- clear_pinuse(n);
- m->dvsize = dsize;
- m->dv = r;
- }
- else { /* exhaust dv */
- size_t newsize = oldsize + dvs;
- set_inuse(m, p, newsize);
- m->dvsize = 0;
- m->dv = 0;
- }
- newp = p;
- }
- }
- else if (!cinuse(next)) { /* extend into next free chunk */
- size_t nextsize = chunksize(next);
- if (oldsize + nextsize >= nb) {
- size_t rsize = oldsize + nextsize - nb;
- unlink_chunk(m, next, nextsize);
- if (rsize < MIN_CHUNK_SIZE) {
- size_t newsize = oldsize + nextsize;
- set_inuse(m, p, newsize);
- }
- else {
- mchunkptr r = chunk_plus_offset(p, nb);
- set_inuse(m, p, nb);
- set_inuse(m, r, rsize);
- dispose_chunk(m, r, rsize);
- }
- newp = p;
- }
- }
- }
- else {
- USAGE_ERROR_ACTION(m, chunk2mem(p));
- }
- return newp;
-}
-
-static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
- void* mem = 0;
- if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
- alignment = MIN_CHUNK_SIZE;
- if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
- size_t a = MALLOC_ALIGNMENT << 1;
- while (a < alignment) a <<= 1;
- alignment = a;
- }
- if (bytes >= MAX_REQUEST - alignment) {
- if (m != 0) { /* Test isn't needed but avoids compiler warning */
- MALLOC_FAILURE_ACTION;
- }
- }
- else {
- size_t nb = request2size(bytes);
- size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
- mem = internal_malloc(m, req);
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
- if (PREACTION(m))
- return 0;
- if ((((size_t)(mem)) & (alignment - 1)) != 0) { /* misaligned */
- /*
- Find an aligned spot inside chunk. Since we need to give
- back leading space in a chunk of at least MIN_CHUNK_SIZE, if
- the first calculation places us at a spot with less than
- MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
- We've allocated enough total room so that this is always
- possible.
- */
- char* br = (char*)mem2chunk((size_t)(((size_t)((char*)mem + alignment -
- SIZE_T_ONE)) &
- -alignment));
- char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
- br : br+alignment;
- mchunkptr newp = (mchunkptr)pos;
- size_t leadsize = pos - (char*)(p);
- size_t newsize = chunksize(p) - leadsize;
-
- if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
- newp->prev_foot = p->prev_foot + leadsize;
- newp->head = newsize;
- }
- else { /* Otherwise, give back leader, use the rest */
- set_inuse(m, newp, newsize);
- set_inuse(m, p, leadsize);
- dispose_chunk(m, p, leadsize);
- }
- p = newp;
- }
-
- /* Give back spare room at the end */
- if (!is_mmapped(p)) {
- size_t size = chunksize(p);
- if (size > nb + MIN_CHUNK_SIZE) {
- size_t remainder_size = size - nb;
- mchunkptr remainder = chunk_plus_offset(p, nb);
- set_inuse(m, p, nb);
- set_inuse(m, remainder, remainder_size);
- dispose_chunk(m, remainder, remainder_size);
- }
- }
-
- mem = chunk2mem(p);
- assert (chunksize(p) >= nb);
- assert(((size_t)mem & (alignment - 1)) == 0);
- check_inuse_chunk(m, p);
- POSTACTION(m);
- }
- }
- return mem;
-}
-
-/*
- Common support for independent_X routines, handling
- all of the combinations that can result.
- The opts arg has:
- bit 0 set if all elements are same size (using sizes[0])
- bit 1 set if elements should be zeroed
-*/
-static void** ialloc(mstate m,
- size_t n_elements,
- size_t* sizes,
- int opts,
- void* chunks[]) {
-
- size_t element_size; /* chunksize of each element, if all same */
- size_t contents_size; /* total size of elements */
- size_t array_size; /* request size of pointer array */
- void* mem; /* malloced aggregate space */
- mchunkptr p; /* corresponding chunk */
- size_t remainder_size; /* remaining bytes while splitting */
- void** marray; /* either "chunks" or malloced ptr array */
- mchunkptr array_chunk; /* chunk for malloced ptr array */
- flag_t was_enabled; /* to disable mmap */
- size_t size;
- size_t i;
-
- ensure_initialization();
- /* compute array length, if needed */
- if (chunks != 0) {
- if (n_elements == 0)
- return chunks; /* nothing to do */
- marray = chunks;
- array_size = 0;
- }
- else {
- /* if empty req, must still return chunk representing empty array */
- if (n_elements == 0)
- return (void**)internal_malloc(m, 0);
- marray = 0;
- array_size = request2size(n_elements * (sizeof(void*)));
- }
-
- /* compute total element size */
- if (opts & 0x1) { /* all-same-size */
- element_size = request2size(*sizes);
- contents_size = n_elements * element_size;
- }
- else { /* add up all the sizes */
- element_size = 0;
- contents_size = 0;
- for (i = 0; i != n_elements; ++i)
- contents_size += request2size(sizes[i]);
- }
-
- size = contents_size + array_size;
-
- /*
- Allocate the aggregate chunk. First disable direct-mmapping so
- malloc won't use it, since we would not be able to later
- free/realloc space internal to a segregated mmap region.
- */
- was_enabled = use_mmap(m);
- disable_mmap(m);
- mem = internal_malloc(m, size - CHUNK_OVERHEAD);
- if (was_enabled)
- enable_mmap(m);
- if (mem == 0)
- return 0;
-
- if (PREACTION(m)) return 0;
- p = mem2chunk(mem);
- remainder_size = chunksize(p);
-
- assert(!is_mmapped(p));
-
- if (opts & 0x2) { /* optionally clear the elements */
- memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
- }
-
- /* If not provided, allocate the pointer array as final part of chunk */
- if (marray == 0) {
- size_t array_chunk_size;
- array_chunk = chunk_plus_offset(p, contents_size);
- array_chunk_size = remainder_size - contents_size;
- marray = (void**) (chunk2mem(array_chunk));
- set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
- remainder_size = contents_size;
- }
-
- /* split out elements */
- for (i = 0; ; ++i) {
- marray[i] = chunk2mem(p);
- if (i != n_elements-1) {
- if (element_size != 0)
- size = element_size;
- else
- size = request2size(sizes[i]);
- remainder_size -= size;
- set_size_and_pinuse_of_inuse_chunk(m, p, size);
- p = chunk_plus_offset(p, size);
- }
- else { /* the final element absorbs any overallocation slop */
- set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
- break;
- }
- }
-
-#if DEBUG
- if (marray != chunks) {
- /* final element must have exactly exhausted chunk */
- if (element_size != 0) {
- assert(remainder_size == element_size);
- }
- else {
- assert(remainder_size == request2size(sizes[i]));
- }
- check_inuse_chunk(m, mem2chunk(marray));
- }
- for (i = 0; i != n_elements; ++i)
- check_inuse_chunk(m, mem2chunk(marray[i]));
-
-#endif /* DEBUG */
-
- POSTACTION(m);
- return marray;
-}
-
-/* Try to free all pointers in the given array.
- Note: this could be made faster, by delaying consolidation,
- at the price of disabling some user integrity checks, We
- still optimize some consolidations by combining adjacent
- chunks before freeing, which will occur often if allocated
- with ialloc or the array is sorted.
-*/
-static size_t internal_bulk_free(mstate m, void* array[], size_t nelem) {
- size_t unfreed = 0;
- if (!PREACTION(m)) {
- void** a;
- void** fence = &(array[nelem]);
- for (a = array; a != fence; ++a) {
- void* mem = *a;
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
- size_t psize = chunksize(p);
-#if FOOTERS
- if (get_mstate_for(p) != m) {
- ++unfreed;
- continue;
- }
-#endif
- check_inuse_chunk(m, p);
- *a = 0;
- if (RTCHECK(ok_address(m, p) && ok_inuse(p))) {
- void ** b = a + 1; /* try to merge with next chunk */
- mchunkptr next = next_chunk(p);
- if (b != fence && *b == chunk2mem(next)) {
- size_t newsize = chunksize(next) + psize;
- set_inuse(m, p, newsize);
- *b = chunk2mem(p);
- }
- else
- dispose_chunk(m, p, psize);
- }
- else {
- CORRUPTION_ERROR_ACTION(m);
- break;
- }
- }
- }
- if (should_trim(m, m->topsize))
- sys_trim(m, 0);
- POSTACTION(m);
- }
- return unfreed;
-}
-
-/* Traversal */
-#if MALLOC_INSPECT_ALL
-static void internal_inspect_all(mstate m,
- void(*handler)(void *start,
- void *end,
- size_t used_bytes,
- void* callback_arg),
- void* arg) {
- if (is_initialized(m)) {
- mchunkptr top = m->top;
- msegmentptr s;
- for (s = &m->seg; s != 0; s = s->next) {
- mchunkptr q = align_as_chunk(s->base);
- while (segment_holds(s, q) && q->head != FENCEPOST_HEAD) {
- mchunkptr next = next_chunk(q);
- size_t sz = chunksize(q);
- size_t used;
- void* start;
- if (is_inuse(q)) {
- used = sz - CHUNK_OVERHEAD; /* must not be mmapped */
- start = chunk2mem(q);
- }
- else {
- used = 0;
- if (is_small(sz)) { /* offset by possible bookkeeping */
- start = (void*)((char*)q + sizeof(struct malloc_chunk));
- }
- else {
- start = (void*)((char*)q + sizeof(struct malloc_tree_chunk));
- }
- }
- if (start < (void*)next) /* skip if all space is bookkeeping */
- handler(start, next, used, arg);
- if (q == top)
- break;
- q = next;
- }
- }
- }
-}
-#endif /* MALLOC_INSPECT_ALL */
-
-/* ------------------ Exported realloc, memalign, etc -------------------- */
-
-#if !ONLY_MSPACES
-
-void* dlrealloc(void* oldmem, size_t bytes) {
- void* mem = 0;
- if (oldmem == 0) {
- mem = dlmalloc(bytes);
- }
- else if (bytes >= MAX_REQUEST) {
- MALLOC_FAILURE_ACTION;
- }
-#ifdef REALLOC_ZERO_BYTES_FREES
- else if (bytes == 0) {
- dlfree(oldmem);
- }
-#endif /* REALLOC_ZERO_BYTES_FREES */
- else {
- size_t nb = request2size(bytes);
- mchunkptr oldp = mem2chunk(oldmem);
-#if ! FOOTERS
- mstate m = gm;
-#else /* FOOTERS */
- mstate m = get_mstate_for(oldp);
- if (!ok_magic(m)) {
- USAGE_ERROR_ACTION(m, oldmem);
- return 0;
- }
-#endif /* FOOTERS */
- if (!PREACTION(m)) {
- mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
- POSTACTION(m);
- if (newp != 0) {
- check_inuse_chunk(m, newp);
- mem = chunk2mem(newp);
- }
- else {
- mem = internal_malloc(m, bytes);
- if (mem != 0) {
- size_t oc = chunksize(oldp) - overhead_for(oldp);
- memcpy(mem, oldmem, (oc < bytes)? oc : bytes);
- internal_free(m, oldmem);
- }
- }
- }
- }
- return mem;
-}
-
-void* dlrealloc_in_place(void* oldmem, size_t bytes) {
- void* mem = 0;
- if (oldmem != 0) {
- if (bytes >= MAX_REQUEST) {
- MALLOC_FAILURE_ACTION;
- }
- else {
- size_t nb = request2size(bytes);
- mchunkptr oldp = mem2chunk(oldmem);
-#if ! FOOTERS
- mstate m = gm;
-#else /* FOOTERS */
- mstate m = get_mstate_for(oldp);
- if (!ok_magic(m)) {
- USAGE_ERROR_ACTION(m, oldmem);
- return 0;
- }
-#endif /* FOOTERS */
- if (!PREACTION(m)) {
- mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
- POSTACTION(m);
- if (newp == oldp) {
- check_inuse_chunk(m, newp);
- mem = oldmem;
- }
- }
- }
- }
- return mem;
-}
-
-void* dlmemalign(size_t alignment, size_t bytes) {
- if (alignment <= MALLOC_ALIGNMENT) {
- return dlmalloc(bytes);
- }
- return internal_memalign(gm, alignment, bytes);
-}
-
-int dlposix_memalign(void** pp, size_t alignment, size_t bytes) {
- void* mem = 0;
- if (alignment == MALLOC_ALIGNMENT)
- mem = dlmalloc(bytes);
- else {
- size_t d = alignment / sizeof(void*);
- size_t r = alignment % sizeof(void*);
- if (r != 0 || d == 0 || (d & (d-SIZE_T_ONE)) != 0)
- return EINVAL;
- else if (bytes <= MAX_REQUEST - alignment) {
- if (alignment < MIN_CHUNK_SIZE)
- alignment = MIN_CHUNK_SIZE;
- mem = internal_memalign(gm, alignment, bytes);
- }
- }
- if (mem == 0)
- return ENOMEM;
- else {
- *pp = mem;
- return 0;
- }
-}
-
-void* dlvalloc(size_t bytes) {
- size_t pagesz;
- ensure_initialization();
- pagesz = mparams.page_size;
- return dlmemalign(pagesz, bytes);
-}
-
-void* dlpvalloc(size_t bytes) {
- size_t pagesz;
- ensure_initialization();
- pagesz = mparams.page_size;
- return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
-}
-
-void** dlindependent_calloc(size_t n_elements, size_t elem_size,
- void* chunks[]) {
- size_t sz = elem_size; /* serves as 1-element array */
- return ialloc(gm, n_elements, &sz, 3, chunks);
-}
-
-void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
- void* chunks[]) {
- return ialloc(gm, n_elements, sizes, 0, chunks);
-}
-
-size_t dlbulk_free(void* array[], size_t nelem) {
- return internal_bulk_free(gm, array, nelem);
-}
-
-#if MALLOC_INSPECT_ALL
-void dlmalloc_inspect_all(void(*handler)(void *start,
- void *end,
- size_t used_bytes,
- void* callback_arg),
- void* arg) {
- ensure_initialization();
- if (!PREACTION(gm)) {
- internal_inspect_all(gm, handler, arg);
- POSTACTION(gm);
- }
-}
-#endif /* MALLOC_INSPECT_ALL */
-
-int dlmalloc_trim(size_t pad) {
- int result = 0;
- ensure_initialization();
- if (!PREACTION(gm)) {
- result = sys_trim(gm, pad);
- POSTACTION(gm);
- }
- return result;
-}
-
-size_t dlmalloc_footprint(void) {
- return gm->footprint;
-}
-
-size_t dlmalloc_max_footprint(void) {
- return gm->max_footprint;
-}
-
-size_t dlmalloc_footprint_limit(void) {
- size_t maf = gm->footprint_limit;
- return maf == 0 ? MAX_SIZE_T : maf;
-}
-
-size_t dlmalloc_set_footprint_limit(size_t bytes) {
- size_t result; /* invert sense of 0 */
- if (bytes == 0)
- result = granularity_align(1); /* Use minimal size */
- if (bytes == MAX_SIZE_T)
- result = 0; /* disable */
- else
- result = granularity_align(bytes);
- return gm->footprint_limit = result;
-}
-
-#if !NO_MALLINFO
-struct mallinfo dlmallinfo(void) {
- return internal_mallinfo(gm);
-}
-#endif /* NO_MALLINFO */
-
-#if !NO_MALLOC_STATS
-void dlmalloc_stats() {
- internal_malloc_stats(gm);
-}
-#endif /* NO_MALLOC_STATS */
-
-int dlmallopt(int param_number, int value) {
- return change_mparam(param_number, value);
-}
-
-size_t dlmalloc_usable_size(void* mem) {
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
- if (is_inuse(p))
- return chunksize(p) - overhead_for(p);
- }
- return 0;
-}
-
-#endif /* !ONLY_MSPACES */
-
-/* ----------------------------- user mspaces ---------------------------- */
-
-#if MSPACES
-
-static mstate init_user_mstate(char* tbase, size_t tsize) {
- size_t msize = pad_request(sizeof(struct malloc_state));
- mchunkptr mn;
- mchunkptr msp = align_as_chunk(tbase);
- mstate m = (mstate)(chunk2mem(msp));
- memset(m, 0, msize);
- (void)INITIAL_LOCK(&m->mutex);
- msp->head = (msize|INUSE_BITS);
- m->seg.base = m->least_addr = tbase;
- m->seg.size = m->footprint = m->max_footprint = tsize;
- m->magic = mparams.magic;
- m->release_checks = MAX_RELEASE_CHECK_RATE;
- m->mflags = mparams.default_mflags;
- m->extp = 0;
- m->exts = 0;
- disable_contiguous(m);
- init_bins(m);
- mn = next_chunk(mem2chunk(m));
- init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
- check_top_chunk(m, m->top);
- return m;
-}
-
-mspace create_mspace(size_t capacity, int locked) {
- mstate m = 0;
- size_t msize;
- ensure_initialization();
- msize = pad_request(sizeof(struct malloc_state));
- if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
- size_t rs = ((capacity == 0)? mparams.granularity :
- (capacity + TOP_FOOT_SIZE + msize));
- size_t tsize = granularity_align(rs);
- char* tbase = (char*)(CALL_MMAP(tsize));
- if (tbase != CMFAIL) {
- m = init_user_mstate(tbase, tsize);
- m->seg.sflags = USE_MMAP_BIT;
- set_lock(m, locked);
- }
- }
- return (mspace)m;
-}
-
-mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
- mstate m = 0;
- size_t msize;
- ensure_initialization();
- msize = pad_request(sizeof(struct malloc_state));
- if (capacity > msize + TOP_FOOT_SIZE &&
- capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
- m = init_user_mstate((char*)base, capacity);
- m->seg.sflags = EXTERN_BIT;
- set_lock(m, locked);
- }
- return (mspace)m;
-}
-
-int mspace_track_large_chunks(mspace msp, int enable) {
- int ret = 0;
- mstate ms = (mstate)msp;
- if (!PREACTION(ms)) {
- if (!use_mmap(ms)) {
- ret = 1;
- }
- if (!enable) {
- enable_mmap(ms);
- } else {
- disable_mmap(ms);
- }
- POSTACTION(ms);
- }
- return ret;
-}
-
-size_t destroy_mspace(mspace msp) {
- size_t freed = 0;
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- msegmentptr sp = &ms->seg;
- (void)DESTROY_LOCK(&ms->mutex); /* destroy before unmapped */
- while (sp != 0) {
- char* base = sp->base;
- size_t size = sp->size;
- flag_t flag = sp->sflags;
- (void)base; /* placate people compiling -Wunused-variable */
- sp = sp->next;
- if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) &&
- CALL_MUNMAP(base, size) == 0)
- freed += size;
- }
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return freed;
-}
-
-/*
- mspace versions of routines are near-clones of the global
- versions. This is not so nice but better than the alternatives.
-*/
-
-void* mspace_malloc(mspace msp, size_t bytes) {
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- if (!PREACTION(ms)) {
- void* mem;
- size_t nb;
- if (bytes <= MAX_SMALL_REQUEST) {
- bindex_t idx;
- binmap_t smallbits;
- nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
- idx = small_index(nb);
- smallbits = ms->smallmap >> idx;
-
- if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
- mchunkptr b, p;
- idx += ~smallbits & 1; /* Uses next bin if idx empty */
- b = smallbin_at(ms, idx);
- p = b->fd;
- assert(chunksize(p) == small_index2size(idx));
- unlink_first_small_chunk(ms, b, p, idx);
- set_inuse_and_pinuse(ms, p, small_index2size(idx));
- mem = chunk2mem(p);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- else if (nb > ms->dvsize) {
- if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
- mchunkptr b, p, r;
- size_t rsize;
- bindex_t i;
- binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
- binmap_t leastbit = least_bit(leftbits);
- compute_bit2idx(leastbit, i);
- b = smallbin_at(ms, i);
- p = b->fd;
- assert(chunksize(p) == small_index2size(i));
- unlink_first_small_chunk(ms, b, p, i);
- rsize = small_index2size(i) - nb;
- /* Fit here cannot be remainderless if 4byte sizes */
- if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
- set_inuse_and_pinuse(ms, p, small_index2size(i));
- else {
- set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
- r = chunk_plus_offset(p, nb);
- set_size_and_pinuse_of_free_chunk(r, rsize);
- replace_dv(ms, r, rsize);
- }
- mem = chunk2mem(p);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
- }
- }
- else if (bytes >= MAX_REQUEST)
- nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
- else {
- nb = pad_request(bytes);
- if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
- }
-
- if (nb <= ms->dvsize) {
- size_t rsize = ms->dvsize - nb;
- mchunkptr p = ms->dv;
- if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
- mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
- ms->dvsize = rsize;
- set_size_and_pinuse_of_free_chunk(r, rsize);
- set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
- }
- else { /* exhaust dv */
- size_t dvs = ms->dvsize;
- ms->dvsize = 0;
- ms->dv = 0;
- set_inuse_and_pinuse(ms, p, dvs);
- }
- mem = chunk2mem(p);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- else if (nb < ms->topsize) { /* Split top */
- size_t rsize = ms->topsize -= nb;
- mchunkptr p = ms->top;
- mchunkptr r = ms->top = chunk_plus_offset(p, nb);
- r->head = rsize | PINUSE_BIT;
- set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
- mem = chunk2mem(p);
- check_top_chunk(ms, ms->top);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- mem = sys_alloc(ms, nb);
-
- postaction:
- POSTACTION(ms);
- return mem;
- }
-
- return 0;
-}
-
-void mspace_free(mspace msp, void* mem) {
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
-#if FOOTERS
- mstate fm = get_mstate_for(p);
- (void)msp; /* placate people compiling -Wunused */
-#else /* FOOTERS */
- mstate fm = (mstate)msp;
-#endif /* FOOTERS */
- if (!ok_magic(fm)) {
- USAGE_ERROR_ACTION(fm, p);
- return;
- }
- if (!PREACTION(fm)) {
- check_inuse_chunk(fm, p);
- if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
- size_t psize = chunksize(p);
- mchunkptr next = chunk_plus_offset(p, psize);
- if (!pinuse(p)) {
- size_t prevsize = p->prev_foot;
- if (is_mmapped(p)) {
- psize += prevsize + MMAP_FOOT_PAD;
- if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
- fm->footprint -= psize;
- goto postaction;
- }
- else {
- mchunkptr prev = chunk_minus_offset(p, prevsize);
- psize += prevsize;
- p = prev;
- if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
- if (p != fm->dv) {
- unlink_chunk(fm, p, prevsize);
- }
- else if ((next->head & INUSE_BITS) == INUSE_BITS) {
- fm->dvsize = psize;
- set_free_with_pinuse(p, psize, next);
- goto postaction;
- }
- }
- else
- goto erroraction;
- }
- }
-
- if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
- if (!cinuse(next)) { /* consolidate forward */
- if (next == fm->top) {
- size_t tsize = fm->topsize += psize;
- fm->top = p;
- p->head = tsize | PINUSE_BIT;
- if (p == fm->dv) {
- fm->dv = 0;
- fm->dvsize = 0;
- }
- if (should_trim(fm, tsize))
- sys_trim(fm, 0);
- goto postaction;
- }
- else if (next == fm->dv) {
- size_t dsize = fm->dvsize += psize;
- fm->dv = p;
- set_size_and_pinuse_of_free_chunk(p, dsize);
- goto postaction;
- }
- else {
- size_t nsize = chunksize(next);
- psize += nsize;
- unlink_chunk(fm, next, nsize);
- set_size_and_pinuse_of_free_chunk(p, psize);
- if (p == fm->dv) {
- fm->dvsize = psize;
- goto postaction;
- }
- }
- }
- else
- set_free_with_pinuse(p, psize, next);
-
- if (is_small(psize)) {
- insert_small_chunk(fm, p, psize);
- check_free_chunk(fm, p);
- }
- else {
- tchunkptr tp = (tchunkptr)p;
- insert_large_chunk(fm, tp, psize);
- check_free_chunk(fm, p);
- if (--fm->release_checks == 0)
- release_unused_segments(fm);
- }
- goto postaction;
- }
- }
- erroraction:
- USAGE_ERROR_ACTION(fm, p);
- postaction:
- POSTACTION(fm);
- }
- }
-}
-
-void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
- void* mem;
- size_t req = 0;
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- if (n_elements != 0) {
- req = n_elements * elem_size;
- if (((n_elements | elem_size) & ~(size_t)0xffff) &&
- (req / n_elements != elem_size))
- req = MAX_SIZE_T; /* force downstream failure on overflow */
- }
- mem = internal_malloc(ms, req);
- if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
- memset(mem, 0, req);
- return mem;
-}
-
-void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
- void* mem = 0;
- if (oldmem == 0) {
- mem = mspace_malloc(msp, bytes);
- }
- else if (bytes >= MAX_REQUEST) {
- MALLOC_FAILURE_ACTION;
- }
-#ifdef REALLOC_ZERO_BYTES_FREES
- else if (bytes == 0) {
- mspace_free(msp, oldmem);
- }
-#endif /* REALLOC_ZERO_BYTES_FREES */
- else {
- size_t nb = request2size(bytes);
- mchunkptr oldp = mem2chunk(oldmem);
-#if ! FOOTERS
- mstate m = (mstate)msp;
-#else /* FOOTERS */
- mstate m = get_mstate_for(oldp);
- if (!ok_magic(m)) {
- USAGE_ERROR_ACTION(m, oldmem);
- return 0;
- }
-#endif /* FOOTERS */
- if (!PREACTION(m)) {
- mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
- POSTACTION(m);
- if (newp != 0) {
- check_inuse_chunk(m, newp);
- mem = chunk2mem(newp);
- }
- else {
- mem = mspace_malloc(m, bytes);
- if (mem != 0) {
- size_t oc = chunksize(oldp) - overhead_for(oldp);
- memcpy(mem, oldmem, (oc < bytes)? oc : bytes);
- mspace_free(m, oldmem);
- }
- }
- }
- }
- return mem;
-}
-
-void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes) {
- void* mem = 0;
- if (oldmem != 0) {
- if (bytes >= MAX_REQUEST) {
- MALLOC_FAILURE_ACTION;
- }
- else {
- size_t nb = request2size(bytes);
- mchunkptr oldp = mem2chunk(oldmem);
-#if ! FOOTERS
- mstate m = (mstate)msp;
-#else /* FOOTERS */
- mstate m = get_mstate_for(oldp);
- (void)msp; /* placate people compiling -Wunused */
- if (!ok_magic(m)) {
- USAGE_ERROR_ACTION(m, oldmem);
- return 0;
- }
-#endif /* FOOTERS */
- if (!PREACTION(m)) {
- mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
- POSTACTION(m);
- if (newp == oldp) {
- check_inuse_chunk(m, newp);
- mem = oldmem;
- }
- }
- }
- }
- return mem;
-}
-
-void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- if (alignment <= MALLOC_ALIGNMENT)
- return mspace_malloc(msp, bytes);
- return internal_memalign(ms, alignment, bytes);
-}
-
-void** mspace_independent_calloc(mspace msp, size_t n_elements,
- size_t elem_size, void* chunks[]) {
- size_t sz = elem_size; /* serves as 1-element array */
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- return ialloc(ms, n_elements, &sz, 3, chunks);
-}
-
-void** mspace_independent_comalloc(mspace msp, size_t n_elements,
- size_t sizes[], void* chunks[]) {
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- return ialloc(ms, n_elements, sizes, 0, chunks);
-}
-
-size_t mspace_bulk_free(mspace msp, void* array[], size_t nelem) {
- return internal_bulk_free((mstate)msp, array, nelem);
-}
-
-#if MALLOC_INSPECT_ALL
-void mspace_inspect_all(mspace msp,
- void(*handler)(void *start,
- void *end,
- size_t used_bytes,
- void* callback_arg),
- void* arg) {
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- if (!PREACTION(ms)) {
- internal_inspect_all(ms, handler, arg);
- POSTACTION(ms);
- }
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
-}
-#endif /* MALLOC_INSPECT_ALL */
-
-int mspace_trim(mspace msp, size_t pad) {
- int result = 0;
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- if (!PREACTION(ms)) {
- result = sys_trim(ms, pad);
- POSTACTION(ms);
- }
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return result;
-}
-
-#if !NO_MALLOC_STATS
-void mspace_malloc_stats(mspace msp) {
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- internal_malloc_stats(ms);
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
-}
-#endif /* NO_MALLOC_STATS */
-
-size_t mspace_footprint(mspace msp) {
- size_t result = 0;
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- result = ms->footprint;
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return result;
-}
-
-size_t mspace_max_footprint(mspace msp) {
- size_t result = 0;
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- result = ms->max_footprint;
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return result;
-}
-
-size_t mspace_footprint_limit(mspace msp) {
- size_t result = 0;
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- size_t maf = ms->footprint_limit;
- result = (maf == 0) ? MAX_SIZE_T : maf;
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return result;
-}
-
-size_t mspace_set_footprint_limit(mspace msp, size_t bytes) {
- size_t result = 0;
- mstate ms = (mstate)msp;
- if (ok_magic(ms)) {
- if (bytes == 0)
- result = granularity_align(1); /* Use minimal size */
- if (bytes == MAX_SIZE_T)
- result = 0; /* disable */
- else
- result = granularity_align(bytes);
- ms->footprint_limit = result;
- }
- else {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return result;
-}
-
-#if !NO_MALLINFO
-struct mallinfo mspace_mallinfo(mspace msp) {
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- }
- return internal_mallinfo(ms);
-}
-#endif /* NO_MALLINFO */
-
-size_t mspace_usable_size(const void* mem) {
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
- if (is_inuse(p))
- return chunksize(p) - overhead_for(p);
- }
- return 0;
-}
-
-int mspace_mallopt(int param_number, int value) {
- return change_mparam(param_number, value);
-}
-
-#endif /* MSPACES */
-
-
-/* -------------------- Alternative MORECORE functions ------------------- */
-
-/*
- Guidelines for creating a custom version of MORECORE:
-
- * For best performance, MORECORE should allocate in multiples of pagesize.
- * MORECORE may allocate more memory than requested. (Or even less,
- but this will usually result in a malloc failure.)
- * MORECORE must not allocate memory when given argument zero, but
- instead return one past the end address of memory from previous
- nonzero call.
- * For best performance, consecutive calls to MORECORE with positive
- arguments should return increasing addresses, indicating that
- space has been contiguously extended.
- * Even though consecutive calls to MORECORE need not return contiguous
- addresses, it must be OK for malloc'ed chunks to span multiple
- regions in those cases where they do happen to be contiguous.
- * MORECORE need not handle negative arguments -- it may instead
- just return MFAIL when given negative arguments.
- Negative arguments are always multiples of pagesize. MORECORE
- must not misinterpret negative args as large positive unsigned
- args. You can suppress all such calls from even occurring by defining
- MORECORE_CANNOT_TRIM,
-
- As an example alternative MORECORE, here is a custom allocator
- kindly contributed for pre-OSX macOS. It uses virtually but not
- necessarily physically contiguous non-paged memory (locked in,
- present and won't get swapped out). You can use it by uncommenting
- this section, adding some #includes, and setting up the appropriate
- defines above:
-
- #define MORECORE osMoreCore
-
- There is also a shutdown routine that should somehow be called for
- cleanup upon program exit.
-
- #define MAX_POOL_ENTRIES 100
- #define MINIMUM_MORECORE_SIZE (64 * 1024U)
- static int next_os_pool;
- void *our_os_pools[MAX_POOL_ENTRIES];
-
- void *osMoreCore(int size)
- {
- void *ptr = 0;
- static void *sbrk_top = 0;
-
- if (size > 0)
- {
- if (size < MINIMUM_MORECORE_SIZE)
- size = MINIMUM_MORECORE_SIZE;
- if (CurrentExecutionLevel() == kTaskLevel)
- ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
- if (ptr == 0)
- {
- return (void *) MFAIL;
- }
- // save ptrs so they can be freed during cleanup
- our_os_pools[next_os_pool] = ptr;
- next_os_pool++;
- ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
- sbrk_top = (char *) ptr + size;
- return ptr;
- }
- else if (size < 0)
- {
- // we don't currently support shrink behavior
- return (void *) MFAIL;
- }
- else
- {
- return sbrk_top;
- }
- }
-
- // cleanup any allocated memory pools
- // called as last thing before shutting down driver
-
- void osCleanupMem(void)
- {
- void **ptr;
-
- for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
- if (*ptr)
- {
- PoolDeallocate(*ptr);
- *ptr = 0;
- }
- }
-
-*/
-
-
-/* -----------------------------------------------------------------------
-History:
- v2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea
- * fix bad comparison in dlposix_memalign
- * don't reuse adjusted asize in sys_alloc
- * add LOCK_AT_FORK -- thanks to Kirill Artamonov for the suggestion
- * reduce compiler warnings -- thanks to all who reported/suggested these
-
- v2.8.5 Sun May 22 10:26:02 2011 Doug Lea (dl at gee)
- * Always perform unlink checks unless INSECURE
- * Add posix_memalign.
- * Improve realloc to expand in more cases; expose realloc_in_place.
- Thanks to Peter Buhr for the suggestion.
- * Add footprint_limit, inspect_all, bulk_free. Thanks
- to Barry Hayes and others for the suggestions.
- * Internal refactorings to avoid calls while holding locks
- * Use non-reentrant locks by default. Thanks to Roland McGrath
- for the suggestion.
- * Small fixes to mspace_destroy, reset_on_error.
- * Various configuration extensions/changes. Thanks
- to all who contributed these.
-
- V2.8.4a Thu Apr 28 14:39:43 2011 (dl at gee.cs.oswego.edu)
- * Update Creative Commons URL
-
- V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee)
- * Use zeros instead of prev foot for is_mmapped
- * Add mspace_track_large_chunks; thanks to Jean Brouwers
- * Fix set_inuse in internal_realloc; thanks to Jean Brouwers
- * Fix insufficient sys_alloc padding when using 16byte alignment
- * Fix bad error check in mspace_footprint
- * Adaptations for ptmalloc; thanks to Wolfram Gloger.
- * Reentrant spin locks; thanks to Earl Chew and others
- * Win32 improvements; thanks to Niall Douglas and Earl Chew
- * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
- * Extension hook in malloc_state
- * Various small adjustments to reduce warnings on some compilers
- * Various configuration extensions/changes for more platforms. Thanks
- to all who contributed these.
-
- V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
- * Add max_footprint functions
- * Ensure all appropriate literals are size_t
- * Fix conditional compilation problem for some #define settings
- * Avoid concatenating segments with the one provided
- in create_mspace_with_base
- * Rename some variables to avoid compiler shadowing warnings
- * Use explicit lock initialization.
- * Better handling of sbrk interference.
- * Simplify and fix segment insertion, trimming and mspace_destroy
- * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
- * Thanks especially to Dennis Flanagan for help on these.
-
- V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
- * Fix memalign brace error.
-
- V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
- * Fix improper #endif nesting in C++
- * Add explicit casts needed for C++
-
- V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
- * Use trees for large bins
- * Support mspaces
- * Use segments to unify sbrk-based and mmap-based system allocation,
- removing need for emulation on most platforms without sbrk.
- * Default safety checks
- * Optional footer checks. Thanks to William Robertson for the idea.
- * Internal code refactoring
- * Incorporate suggestions and platform-specific changes.
- Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
- Aaron Bachmann, Emery Berger, and others.
- * Speed up non-fastbin processing enough to remove fastbins.
- * Remove useless cfree() to avoid conflicts with other apps.
- * Remove internal memcpy, memset. Compilers handle builtins better.
- * Remove some options that no one ever used and rename others.
-
- V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
- * Fix malloc_state bitmap array misdeclaration
-
- V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
- * Allow tuning of FIRST_SORTED_BIN_SIZE
- * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
- * Better detection and support for non-contiguousness of MORECORE.
- Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
- * Bypass most of malloc if no frees. Thanks To Emery Berger.
- * Fix freeing of old top non-contiguous chunk im sysmalloc.
- * Raised default trim and map thresholds to 256K.
- * Fix mmap-related #defines. Thanks to Lubos Lunak.
- * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
- * Branch-free bin calculation
- * Default trim and mmap thresholds now 256K.
-
- V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
- * Introduce independent_comalloc and independent_calloc.
- Thanks to Michael Pachos for motivation and help.
- * Make optional .h file available
- * Allow > 2GB requests on 32bit systems.
- * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
- Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
- and Anonymous.
- * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
- helping test this.)
- * memalign: check alignment arg
- * realloc: don't try to shift chunks backwards, since this
- leads to more fragmentation in some programs and doesn't
- seem to help in any others.
- * Collect all cases in malloc requiring system memory into sysmalloc
- * Use mmap as backup to sbrk
- * Place all internal state in malloc_state
- * Introduce fastbins (although similar to 2.5.1)
- * Many minor tunings and cosmetic improvements
- * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
- * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
- Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
- * Include errno.h to support default failure action.
-
- V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
- * return null for negative arguments
- * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
- * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
- (e.g. WIN32 platforms)
- * Cleanup header file inclusion for WIN32 platforms
- * Cleanup code to avoid Microsoft Visual C++ compiler complaints
- * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
- memory allocation routines
- * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
- * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
- usage of 'assert' in non-WIN32 code
- * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
- avoid infinite loop
- * Always call 'fREe()' rather than 'free()'
-
- V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
- * Fixed ordering problem with boundary-stamping
-
- V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
- * Added pvalloc, as recommended by H.J. Liu
- * Added 64bit pointer support mainly from Wolfram Gloger
- * Added anonymously donated WIN32 sbrk emulation
- * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
- * malloc_extend_top: fix mask error that caused wastage after
- foreign sbrks
- * Add linux mremap support code from HJ Liu
-
- V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
- * Integrated most documentation with the code.
- * Add support for mmap, with help from
- Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
- * Use last_remainder in more cases.
- * Pack bins using idea from colin@nyx10.cs.du.edu
- * Use ordered bins instead of best-fit threshhold
- * Eliminate block-local decls to simplify tracing and debugging.
- * Support another case of realloc via move into top
- * Fix error occuring when initial sbrk_base not word-aligned.
- * Rely on page size for units instead of SBRK_UNIT to
- avoid surprises about sbrk alignment conventions.
- * Add mallinfo, mallopt. Thanks to Raymond Nijssen
- (raymond@es.ele.tue.nl) for the suggestion.
- * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
- * More precautions for cases where other routines call sbrk,
- courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
- * Added macros etc., allowing use in linux libc from
- H.J. Lu (hjl@gnu.ai.mit.edu)
- * Inverted this history list
-
- V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
- * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
- * Removed all preallocation code since under current scheme
- the work required to undo bad preallocations exceeds
- the work saved in good cases for most test programs.
- * No longer use return list or unconsolidated bins since
- no scheme using them consistently outperforms those that don't
- given above changes.
- * Use best fit for very large chunks to prevent some worst-cases.
- * Added some support for debugging
-
- V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
- * Removed footers when chunks are in use. Thanks to
- Paul Wilson (wilson@cs.texas.edu) for the suggestion.
-
- V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
- * Added malloc_trim, with help from Wolfram Gloger
- (wmglo@Dent.MED.Uni-Muenchen.DE).
-
- V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
-
- V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
- * realloc: try to expand in both directions
- * malloc: swap order of clean-bin strategy;
- * realloc: only conditionally expand backwards
- * Try not to scavenge used bins
- * Use bin counts as a guide to preallocation
- * Occasionally bin return list chunks in first scan
- * Add a few optimizations from colin@nyx10.cs.du.edu
-
- V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
- * faster bin computation & slightly different binning
- * merged all consolidations to one part of malloc proper
- (eliminating old malloc_find_space & malloc_clean_bin)
- * Scan 2 returns chunks (not just 1)
- * Propagate failure in realloc if malloc returns 0
- * Add stuff to allow compilation on non-ANSI compilers
- from kpv@research.att.com
-
- V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
- * removed potential for odd address access in prev_chunk
- * removed dependency on getpagesize.h
- * misc cosmetics and a bit more internal documentation
- * anticosmetics: mangled names in macros to evade debugger strangeness
- * tested on sparc, hp-700, dec-mips, rs6000
- with gcc & native cc (hp, dec only) allowing
- Detlefs & Zorn comparison study (in SIGPLAN Notices.)
-
- Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
- * Based loosely on libg++-1.2X malloc. (It retains some of the overall
- structure of old version, but most details differ.)
-
-*/
+/*
+ This is a version (aka dlmalloc) of malloc/free/realloc written by
+ Doug Lea and released to the public domain, as explained at
+ http://creativecommons.org/publicdomain/zero/1.0/ Send questions,
+ comments, complaints, performance data, etc to dl@cs.oswego.edu
+
+* Version 2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea
+ Note: There may be an updated version of this malloc obtainable at
+ ftp://gee.cs.oswego.edu/pub/misc/malloc.c
+ Check before installing!
+
+* Quickstart
+
+ This library is all in one file to simplify the most common usage:
+ ftp it, compile it (-O3), and link it into another program. All of
+ the compile-time options default to reasonable values for use on
+ most platforms. You might later want to step through various
+ compile-time and dynamic tuning options.
+
+ For convenience, an include file for code using this malloc is at:
+ ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.6.h
+ You don't really need this .h file unless you call functions not
+ defined in your system include files. The .h file contains only the
+ excerpts from this file needed for using this malloc on ANSI C/C++
+ systems, so long as you haven't changed compile-time options about
+ naming and tuning parameters. If you do, then you can create your
+ own malloc.h that does include all settings by cutting at the point
+ indicated below. Note that you may already by default be using a C
+ library containing a malloc that is based on some version of this
+ malloc (for example in linux). You might still want to use the one
+ in this file to customize settings or to avoid overheads associated
+ with library versions.
+
+* Vital statistics:
+
+ Supported pointer/size_t representation: 4 or 8 bytes
+ size_t MUST be an unsigned type of the same width as
+ pointers. (If you are using an ancient system that declares
+ size_t as a signed type, or need it to be a different width
+ than pointers, you can use a previous release of this malloc
+ (e.g. 2.7.2) supporting these.)
+
+ Alignment: 8 bytes (minimum)
+ This suffices for nearly all current machines and C compilers.
+ However, you can define MALLOC_ALIGNMENT to be wider than this
+ if necessary (up to 128bytes), at the expense of using more space.
+
+ Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
+ 8 or 16 bytes (if 8byte sizes)
+ Each malloced chunk has a hidden word of overhead holding size
+ and status information, and additional cross-check word
+ if FOOTERS is defined.
+
+ Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
+ 8-byte ptrs: 32 bytes (including overhead)
+
+ Even a request for zero bytes (i.e., malloc(0)) returns a
+ pointer to something of the minimum allocatable size.
+ The maximum overhead wastage (i.e., number of extra bytes
+ allocated than were requested in malloc) is less than or equal
+ to the minimum size, except for requests >= mmap_threshold that
+ are serviced via mmap(), where the worst case wastage is about
+ 32 bytes plus the remainder from a system page (the minimal
+ mmap unit); typically 4096 or 8192 bytes.
+
+ Security: static-safe; optionally more or less
+ The "security" of malloc refers to the ability of malicious
+ code to accentuate the effects of errors (for example, freeing
+ space that is not currently malloc'ed or overwriting past the
+ ends of chunks) in code that calls malloc. This malloc
+ guarantees not to modify any memory locations below the base of
+ heap, i.e., static variables, even in the presence of usage
+ errors. The routines additionally detect most improper frees
+ and reallocs. All this holds as long as the static bookkeeping
+ for malloc itself is not corrupted by some other means. This
+ is only one aspect of security -- these checks do not, and
+ cannot, detect all possible programming errors.
+
+ If FOOTERS is defined nonzero, then each allocated chunk
+ carries an additional check word to verify that it was malloced
+ from its space. These check words are the same within each
+ execution of a program using malloc, but differ across
+ executions, so externally crafted fake chunks cannot be
+ freed. This improves security by rejecting frees/reallocs that
+ could corrupt heap memory, in addition to the checks preventing
+ writes to statics that are always on. This may further improve
+ security at the expense of time and space overhead. (Note that
+ FOOTERS may also be worth using with MSPACES.)
+
+ By default detected errors cause the program to abort (calling
+ "abort()"). You can override this to instead proceed past
+ errors by defining PROCEED_ON_ERROR. In this case, a bad free
+ has no effect, and a malloc that encounters a bad address
+ caused by user overwrites will ignore the bad address by
+ dropping pointers and indices to all known memory. This may
+ be appropriate for programs that should continue if at all
+ possible in the face of programming errors, although they may
+ run out of memory because dropped memory is never reclaimed.
+
+ If you don't like either of these options, you can define
+ CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
+ else. And if if you are sure that your program using malloc has
+ no errors or vulnerabilities, you can define INSECURE to 1,
+ which might (or might not) provide a small performance improvement.
+
+ It is also possible to limit the maximum total allocatable
+ space, using malloc_set_footprint_limit. This is not
+ designed as a security feature in itself (calls to set limits
+ are not screened or privileged), but may be useful as one
+ aspect of a secure implementation.
+
+ Thread-safety: NOT thread-safe unless USE_LOCKS defined non-zero
+ When USE_LOCKS is defined, each public call to malloc, free,
+ etc is surrounded with a lock. By default, this uses a plain
+ pthread mutex, win32 critical section, or a spin-lock if if
+ available for the platform and not disabled by setting
+ USE_SPIN_LOCKS=0. However, if USE_RECURSIVE_LOCKS is defined,
+ recursive versions are used instead (which are not required for
+ base functionality but may be needed in layered extensions).
+ Using a global lock is not especially fast, and can be a major
+ bottleneck. It is designed only to provide minimal protection
+ in concurrent environments, and to provide a basis for
+ extensions. If you are using malloc in a concurrent program,
+ consider instead using nedmalloc
+ (http://www.nedprod.com/programs/portable/nedmalloc/) or
+ ptmalloc (See http://www.malloc.de), which are derived from
+ versions of this malloc.
+
+ System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
+ This malloc can use unix sbrk or any emulation (invoked using
+ the CALL_MORECORE macro) and/or mmap/munmap or any emulation
+ (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
+ memory. On most unix systems, it tends to work best if both
+ MORECORE and MMAP are enabled. On Win32, it uses emulations
+ based on VirtualAlloc. It also uses common C library functions
+ like memset.
+
+ Compliance: I believe it is compliant with the Single Unix Specification
+ (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
+ others as well.
+
+* Overview of algorithms
+
+ This is not the fastest, most space-conserving, most portable, or
+ most tunable malloc ever written. However it is among the fastest
+ while also being among the most space-conserving, portable and
+ tunable. Consistent balance across these factors results in a good
+ general-purpose allocator for malloc-intensive programs.
+
+ In most ways, this malloc is a best-fit allocator. Generally, it
+ chooses the best-fitting existing chunk for a request, with ties
+ broken in approximately least-recently-used order. (This strategy
+ normally maintains low fragmentation.) However, for requests less
+ than 256bytes, it deviates from best-fit when there is not an
+ exactly fitting available chunk by preferring to use space adjacent
+ to that used for the previous small request, as well as by breaking
+ ties in approximately most-recently-used order. (These enhance
+ locality of series of small allocations.) And for very large requests
+ (>= 256Kb by default), it relies on system memory mapping
+ facilities, if supported. (This helps avoid carrying around and
+ possibly fragmenting memory used only for large chunks.)
+
+ All operations (except malloc_stats and mallinfo) have execution
+ times that are bounded by a constant factor of the number of bits in
+ a size_t, not counting any clearing in calloc or copying in realloc,
+ or actions surrounding MORECORE and MMAP that have times
+ proportional to the number of non-contiguous regions returned by
+ system allocation routines, which is often just 1. In real-time
+ applications, you can optionally suppress segment traversals using
+ NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
+ system allocators return non-contiguous spaces, at the typical
+ expense of carrying around more memory and increased fragmentation.
+
+ The implementation is not very modular and seriously overuses
+ macros. Perhaps someday all C compilers will do as good a job
+ inlining modular code as can now be done by brute-force expansion,
+ but now, enough of them seem not to.
+
+ Some compilers issue a lot of warnings about code that is
+ dead/unreachable only on some platforms, and also about intentional
+ uses of negation on unsigned types. All known cases of each can be
+ ignored.
+
+ For a longer but out of date high-level description, see
+ http://gee.cs.oswego.edu/dl/html/malloc.html
+
+* MSPACES
+ If MSPACES is defined, then in addition to malloc, free, etc.,
+ this file also defines mspace_malloc, mspace_free, etc. These
+ are versions of malloc routines that take an "mspace" argument
+ obtained using create_mspace, to control all internal bookkeeping.
+ If ONLY_MSPACES is defined, only these versions are compiled.
+ So if you would like to use this allocator for only some allocations,
+ and your system malloc for others, you can compile with
+ ONLY_MSPACES and then do something like...
+ static mspace mymspace = create_mspace(0,0); // for example
+ #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
+
+ (Note: If you only need one instance of an mspace, you can instead
+ use "USE_DL_PREFIX" to relabel the global malloc.)
+
+ You can similarly create thread-local allocators by storing
+ mspaces as thread-locals. For example:
+ static __thread mspace tlms = 0;
+ void* tlmalloc(size_t bytes) {
+ if (tlms == 0) tlms = create_mspace(0, 0);
+ return mspace_malloc(tlms, bytes);
+ }
+ void tlfree(void* mem) { mspace_free(tlms, mem); }
+
+ Unless FOOTERS is defined, each mspace is completely independent.
+ You cannot allocate from one and free to another (although
+ conformance is only weakly checked, so usage errors are not always
+ caught). If FOOTERS is defined, then each chunk carries around a tag
+ indicating its originating mspace, and frees are directed to their
+ originating spaces. Normally, this requires use of locks.
+
+ ------------------------- Compile-time options ---------------------------
+
+Be careful in setting #define values for numerical constants of type
+size_t. On some systems, literal values are not automatically extended
+to size_t precision unless they are explicitly casted. You can also
+use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
+
+WIN32 default: defined if _WIN32 defined
+ Defining WIN32 sets up defaults for MS environment and compilers.
+ Otherwise defaults are for unix. Beware that there seem to be some
+ cases where this malloc might not be a pure drop-in replacement for
+ Win32 malloc: Random-looking failures from Win32 GDI API's (eg;
+ SetDIBits()) may be due to bugs in some video driver implementations
+ when pixel buffers are malloc()ed, and the region spans more than
+ one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb)
+ default granularity, pixel buffers may straddle virtual allocation
+ regions more often than when using the Microsoft allocator. You can
+ avoid this by using VirtualAlloc() and VirtualFree() for all pixel
+ buffers rather than using malloc(). If this is not possible,
+ recompile this malloc with a larger DEFAULT_GRANULARITY. Note:
+ in cases where MSC and gcc (cygwin) are known to differ on WIN32,
+ conditions use _MSC_VER to distinguish them.
+
+DLMALLOC_EXPORT default: extern
+ Defines how public APIs are declared. If you want to export via a
+ Windows DLL, you might define this as
+ #define DLMALLOC_EXPORT extern __declspec(dllexport)
+ If you want a POSIX ELF shared object, you might use
+ #define DLMALLOC_EXPORT extern __attribute__((visibility("default")))
+
+MALLOC_ALIGNMENT default: (size_t)(2 * sizeof(void *))
+ Controls the minimum alignment for malloc'ed chunks. It must be a
+ power of two and at least 8, even on machines for which smaller
+ alignments would suffice. It may be defined as larger than this
+ though. Note however that code and data structures are optimized for
+ the case of 8-byte alignment.
+
+MSPACES default: 0 (false)
+ If true, compile in support for independent allocation spaces.
+ This is only supported if HAVE_MMAP is true.
+
+ONLY_MSPACES default: 0 (false)
+ If true, only compile in mspace versions, not regular versions.
+
+USE_LOCKS default: 0 (false)
+ Causes each call to each public routine to be surrounded with
+ pthread or WIN32 mutex lock/unlock. (If set true, this can be
+ overridden on a per-mspace basis for mspace versions.) If set to a
+ non-zero value other than 1, locks are used, but their
+ implementation is left out, so lock functions must be supplied manually,
+ as described below.
+
+USE_SPIN_LOCKS default: 1 iff USE_LOCKS and spin locks available
+ If true, uses custom spin locks for locking. This is currently
+ supported only gcc >= 4.1, older gccs on x86 platforms, and recent
+ MS compilers. Otherwise, posix locks or win32 critical sections are
+ used.
+
+USE_RECURSIVE_LOCKS default: not defined
+ If defined nonzero, uses recursive (aka reentrant) locks, otherwise
+ uses plain mutexes. This is not required for malloc proper, but may
+ be needed for layered allocators such as nedmalloc.
+
+LOCK_AT_FORK default: not defined
+ If defined nonzero, performs pthread_atfork upon initialization
+ to initialize child lock while holding parent lock. The implementation
+ assumes that pthread locks (not custom locks) are being used. In other
+ cases, you may need to customize the implementation.
+
+FOOTERS default: 0
+ If true, provide extra checking and dispatching by placing
+ information in the footers of allocated chunks. This adds
+ space and time overhead.
+
+INSECURE default: 0
+ If true, omit checks for usage errors and heap space overwrites.
+
+USE_DL_PREFIX default: NOT defined
+ Causes compiler to prefix all public routines with the string 'dl'.
+ This can be useful when you only want to use this malloc in one part
+ of a program, using your regular system malloc elsewhere.
+
+MALLOC_INSPECT_ALL default: NOT defined
+ If defined, compiles malloc_inspect_all and mspace_inspect_all, that
+ perform traversal of all heap space. Unless access to these
+ functions is otherwise restricted, you probably do not want to
+ include them in secure implementations.
+
+ABORT default: defined as abort()
+ Defines how to abort on failed checks. On most systems, a failed
+ check cannot die with an "assert" or even print an informative
+ message, because the underlying print routines in turn call malloc,
+ which will fail again. Generally, the best policy is to simply call
+ abort(). It's not very useful to do more than this because many
+ errors due to overwriting will show up as address faults (null, odd
+ addresses etc) rather than malloc-triggered checks, so will also
+ abort. Also, most compilers know that abort() does not return, so
+ can better optimize code conditionally calling it.
+
+PROCEED_ON_ERROR default: defined as 0 (false)
+ Controls whether detected bad addresses cause them to bypassed
+ rather than aborting. If set, detected bad arguments to free and
+ realloc are ignored. And all bookkeeping information is zeroed out
+ upon a detected overwrite of freed heap space, thus losing the
+ ability to ever return it from malloc again, but enabling the
+ application to proceed. If PROCEED_ON_ERROR is defined, the
+ static variable malloc_corruption_error_count is compiled in
+ and can be examined to see if errors have occurred. This option
+ generates slower code than the default abort policy.
+
+DEBUG default: NOT defined
+ The DEBUG setting is mainly intended for people trying to modify
+ this code or diagnose problems when porting to new platforms.
+ However, it may also be able to better isolate user errors than just
+ using runtime checks. The assertions in the check routines spell
+ out in more detail the assumptions and invariants underlying the
+ algorithms. The checking is fairly extensive, and will slow down
+ execution noticeably. Calling malloc_stats or mallinfo with DEBUG
+ set will attempt to check every non-mmapped allocated and free chunk
+ in the course of computing the summaries.
+
+ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
+ Debugging assertion failures can be nearly impossible if your
+ version of the assert macro causes malloc to be called, which will
+ lead to a cascade of further failures, blowing the runtime stack.
+ ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
+ which will usually make debugging easier.
+
+MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
+ The action to take before "return 0" when malloc fails to be able to
+ return memory because there is none available.
+
+HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
+ True if this system supports sbrk or an emulation of it.
+
+MORECORE default: sbrk
+ The name of the sbrk-style system routine to call to obtain more
+ memory. See below for guidance on writing custom MORECORE
+ functions. The type of the argument to sbrk/MORECORE varies across
+ systems. It cannot be size_t, because it supports negative
+ arguments, so it is normally the signed type of the same width as
+ size_t (sometimes declared as "intptr_t"). It doesn't much matter
+ though. Internally, we only call it with arguments less than half
+ the max value of a size_t, which should work across all reasonable
+ possibilities, although sometimes generating compiler warnings.
+
+MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE
+ If true, take advantage of fact that consecutive calls to MORECORE
+ with positive arguments always return contiguous increasing
+ addresses. This is true of unix sbrk. It does not hurt too much to
+ set it true anyway, since malloc copes with non-contiguities.
+ Setting it false when definitely non-contiguous saves time
+ and possibly wasted space it would take to discover this though.
+
+MORECORE_CANNOT_TRIM default: NOT defined
+ True if MORECORE cannot release space back to the system when given
+ negative arguments. This is generally necessary only if you are
+ using a hand-crafted MORECORE function that cannot handle negative
+ arguments.
+
+NO_SEGMENT_TRAVERSAL default: 0
+ If non-zero, suppresses traversals of memory segments
+ returned by either MORECORE or CALL_MMAP. This disables
+ merging of segments that are contiguous, and selectively
+ releasing them to the OS if unused, but bounds execution times.
+
+HAVE_MMAP default: 1 (true)
+ True if this system supports mmap or an emulation of it. If so, and
+ HAVE_MORECORE is not true, MMAP is used for all system
+ allocation. If set and HAVE_MORECORE is true as well, MMAP is
+ primarily used to directly allocate very large blocks. It is also
+ used as a backup strategy in cases where MORECORE fails to provide
+ space from system. Note: A single call to MUNMAP is assumed to be
+ able to unmap memory that may have be allocated using multiple calls
+ to MMAP, so long as they are adjacent.
+
+HAVE_MREMAP default: 1 on linux, else 0
+ If true realloc() uses mremap() to re-allocate large blocks and
+ extend or shrink allocation spaces.
+
+MMAP_CLEARS default: 1 except on WINCE.
+ True if mmap clears memory so calloc doesn't need to. This is true
+ for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
+
+USE_BUILTIN_FFS default: 0 (i.e., not used)
+ Causes malloc to use the builtin ffs() function to compute indices.
+ Some compilers may recognize and intrinsify ffs to be faster than the
+ supplied C version. Also, the case of x86 using gcc is special-cased
+ to an asm instruction, so is already as fast as it can be, and so
+ this setting has no effect. Similarly for Win32 under recent MS compilers.
+ (On most x86s, the asm version is only slightly faster than the C version.)
+
+malloc_getpagesize default: derive from system includes, or 4096.
+ The system page size. To the extent possible, this malloc manages
+ memory from the system in page-size units. This may be (and
+ usually is) a function rather than a constant. This is ignored
+ if WIN32, where page size is determined using getSystemInfo during
+ initialization.
+
+USE_DEV_RANDOM default: 0 (i.e., not used)
+ Causes malloc to use /dev/random to initialize secure magic seed for
+ stamping footers. Otherwise, the current time is used.
+
+NO_MALLINFO default: 0
+ If defined, don't compile "mallinfo". This can be a simple way
+ of dealing with mismatches between system declarations and
+ those in this file.
+
+MALLINFO_FIELD_TYPE default: size_t
+ The type of the fields in the mallinfo struct. This was originally
+ defined as "int" in SVID etc, but is more usefully defined as
+ size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
+
+NO_MALLOC_STATS default: 0
+ If defined, don't compile "malloc_stats". This avoids calls to
+ fprintf and bringing in stdio dependencies you might not want.
+
+REALLOC_ZERO_BYTES_FREES default: not defined
+ This should be set if a call to realloc with zero bytes should
+ be the same as a call to free. Some people think it should. Otherwise,
+ since this malloc returns a unique pointer for malloc(0), so does
+ realloc(p, 0).
+
+LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
+LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
+LACKS_STDLIB_H LACKS_SCHED_H LACKS_TIME_H default: NOT defined unless on WIN32
+ Define these if your system does not have these header files.
+ You might need to manually insert some of the declarations they provide.
+
+DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
+ system_info.dwAllocationGranularity in WIN32,
+ otherwise 64K.
+ Also settable using mallopt(M_GRANULARITY, x)
+ The unit for allocating and deallocating memory from the system. On
+ most systems with contiguous MORECORE, there is no reason to
+ make this more than a page. However, systems with MMAP tend to
+ either require or encourage larger granularities. You can increase
+ this value to prevent system allocation functions to be called so
+ often, especially if they are slow. The value must be at least one
+ page and must be a power of two. Setting to 0 causes initialization
+ to either page size or win32 region size. (Note: In previous
+ versions of malloc, the equivalent of this option was called
+ "TOP_PAD")
+
+DEFAULT_TRIM_THRESHOLD default: 2MB
+ Also settable using mallopt(M_TRIM_THRESHOLD, x)
+ The maximum amount of unused top-most memory to keep before
+ releasing via malloc_trim in free(). Automatic trimming is mainly
+ useful in long-lived programs using contiguous MORECORE. Because
+ trimming via sbrk can be slow on some systems, and can sometimes be
+ wasteful (in cases where programs immediately afterward allocate
+ more large chunks) the value should be high enough so that your
+ overall system performance would improve by releasing this much
+ memory. As a rough guide, you might set to a value close to the
+ average size of a process (program) running on your system.
+ Releasing this much memory would allow such a process to run in
+ memory. Generally, it is worth tuning trim thresholds when a
+ program undergoes phases where several large chunks are allocated
+ and released in ways that can reuse each other's storage, perhaps
+ mixed with phases where there are no such chunks at all. The trim
+ value must be greater than page size to have any useful effect. To
+ disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
+ some people use of mallocing a huge space and then freeing it at
+ program startup, in an attempt to reserve system memory, doesn't
+ have the intended effect under automatic trimming, since that memory
+ will immediately be returned to the system.
+
+DEFAULT_MMAP_THRESHOLD default: 256K
+ Also settable using mallopt(M_MMAP_THRESHOLD, x)
+ The request size threshold for using MMAP to directly service a
+ request. Requests of at least this size that cannot be allocated
+ using already-existing space will be serviced via mmap. (If enough
+ normal freed space already exists it is used instead.) Using mmap
+ segregates relatively large chunks of memory so that they can be
+ individually obtained and released from the host system. A request
+ serviced through mmap is never reused by any other request (at least
+ not directly; the system may just so happen to remap successive
+ requests to the same locations). Segregating space in this way has
+ the benefits that: Mmapped space can always be individually released
+ back to the system, which helps keep the system level memory demands
+ of a long-lived program low. Also, mapped memory doesn't become
+ `locked' between other chunks, as can happen with normally allocated
+ chunks, which means that even trimming via malloc_trim would not
+ release them. However, it has the disadvantage that the space
+ cannot be reclaimed, consolidated, and then used to service later
+ requests, as happens with normal chunks. The advantages of mmap
+ nearly always outweigh disadvantages for "large" chunks, but the
+ value of "large" may vary across systems. The default is an
+ empirically derived value that works well in most systems. You can
+ disable mmap by setting to MAX_SIZE_T.
+
+MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP
+ The number of consolidated frees between checks to release
+ unused segments when freeing. When using non-contiguous segments,
+ especially with multiple mspaces, checking only for topmost space
+ doesn't always suffice to trigger trimming. To compensate for this,
+ free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
+ current number of segments, if greater) try to release unused
+ segments to the OS when freeing chunks that result in
+ consolidation. The best value for this parameter is a compromise
+ between slowing down frees with relatively costly checks that
+ rarely trigger versus holding on to unused memory. To effectively
+ disable, set to MAX_SIZE_T. This may lead to a very slight speed
+ improvement at the expense of carrying around more memory.
+*/
+
+/* Version identifier to allow people to support multiple versions */
+#ifndef DLMALLOC_VERSION
+#define DLMALLOC_VERSION 20806
+#endif /* DLMALLOC_VERSION */
+
+#ifndef DLMALLOC_EXPORT
+#define DLMALLOC_EXPORT extern
+#endif
+
+#ifndef WIN32
+#ifdef _WIN32
+#define WIN32 1
+#endif /* _WIN32 */
+#ifdef _WIN32_WCE
+#define LACKS_FCNTL_H
+#define WIN32 1
+#endif /* _WIN32_WCE */
+#endif /* WIN32 */
+#ifdef WIN32
+#define WIN32_LEAN_AND_MEAN
+#include <windows.h>
+#include <tchar.h>
+#define HAVE_MMAP 1
+#define HAVE_MORECORE 0
+#define LACKS_UNISTD_H
+#define LACKS_SYS_PARAM_H
+#define LACKS_SYS_MMAN_H
+#define LACKS_STRING_H
+#define LACKS_STRINGS_H
+#define LACKS_SYS_TYPES_H
+#define LACKS_ERRNO_H
+#define LACKS_SCHED_H
+#ifndef MALLOC_FAILURE_ACTION
+#define MALLOC_FAILURE_ACTION
+#endif /* MALLOC_FAILURE_ACTION */
+#ifndef MMAP_CLEARS
+#ifdef _WIN32_WCE /* WINCE reportedly does not clear */
+#define MMAP_CLEARS 0
+#else
+#define MMAP_CLEARS 1
+#endif /* _WIN32_WCE */
+#endif /*MMAP_CLEARS */
+#endif /* WIN32 */
+
+#if defined(DARWIN) || defined(_DARWIN)
+/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
+#ifndef HAVE_MORECORE
+#define HAVE_MORECORE 0
+#define HAVE_MMAP 1
+/* OSX allocators provide 16 byte alignment */
+#ifndef MALLOC_ALIGNMENT
+#define MALLOC_ALIGNMENT ((size_t)16U)
+#endif
+#endif /* HAVE_MORECORE */
+#endif /* DARWIN */
+
+#ifndef LACKS_SYS_TYPES_H
+#include <sys/types.h> /* For size_t */
+#endif /* LACKS_SYS_TYPES_H */
+
+/* The maximum possible size_t value has all bits set */
+#define MAX_SIZE_T (~(size_t)0)
+
+#ifndef USE_LOCKS /* ensure true if spin or recursive locks set */
+#define USE_LOCKS ((defined(USE_SPIN_LOCKS) && USE_SPIN_LOCKS != 0) || \
+ (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0))
+#endif /* USE_LOCKS */
+
+#if USE_LOCKS /* Spin locks for gcc >= 4.1, older gcc on x86, MSC >= 1310 */
+#if ((defined(__GNUC__) && \
+ ((__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) || \
+ defined(__i386__) || defined(__x86_64__))) || \
+ (defined(_MSC_VER) && _MSC_VER>=1310))
+#ifndef USE_SPIN_LOCKS
+#define USE_SPIN_LOCKS 1
+#endif /* USE_SPIN_LOCKS */
+#elif USE_SPIN_LOCKS
+#error "USE_SPIN_LOCKS defined without implementation"
+#endif /* ... locks available... */
+#elif !defined(USE_SPIN_LOCKS)
+#define USE_SPIN_LOCKS 0
+#endif /* USE_LOCKS */
+
+#ifndef ONLY_MSPACES
+#define ONLY_MSPACES 0
+#endif /* ONLY_MSPACES */
+#ifndef MSPACES
+#if ONLY_MSPACES
+#define MSPACES 1
+#else /* ONLY_MSPACES */
+#define MSPACES 0
+#endif /* ONLY_MSPACES */
+#endif /* MSPACES */
+#ifndef MALLOC_ALIGNMENT
+#define MALLOC_ALIGNMENT ((size_t)(2 * sizeof(void *)))
+#endif /* MALLOC_ALIGNMENT */
+#ifndef FOOTERS
+#define FOOTERS 0
+#endif /* FOOTERS */
+#ifndef ABORT
+#define ABORT abort()
+#endif /* ABORT */
+#ifndef ABORT_ON_ASSERT_FAILURE
+#define ABORT_ON_ASSERT_FAILURE 1
+#endif /* ABORT_ON_ASSERT_FAILURE */
+#ifndef PROCEED_ON_ERROR
+#define PROCEED_ON_ERROR 0
+#endif /* PROCEED_ON_ERROR */
+
+#ifndef INSECURE
+#define INSECURE 0
+#endif /* INSECURE */
+#ifndef MALLOC_INSPECT_ALL
+#define MALLOC_INSPECT_ALL 0
+#endif /* MALLOC_INSPECT_ALL */
+#ifndef HAVE_MMAP
+#define HAVE_MMAP 1
+#endif /* HAVE_MMAP */
+#ifndef MMAP_CLEARS
+#define MMAP_CLEARS 1
+#endif /* MMAP_CLEARS */
+#ifndef HAVE_MREMAP
+#ifdef linux
+#define HAVE_MREMAP 1
+#define _GNU_SOURCE /* Turns on mremap() definition */
+#else /* linux */
+#define HAVE_MREMAP 0
+#endif /* linux */
+#endif /* HAVE_MREMAP */
+#ifndef MALLOC_FAILURE_ACTION
+#define MALLOC_FAILURE_ACTION errno = ENOMEM;
+#endif /* MALLOC_FAILURE_ACTION */
+#ifndef HAVE_MORECORE
+#if ONLY_MSPACES
+#define HAVE_MORECORE 0
+#else /* ONLY_MSPACES */
+#define HAVE_MORECORE 1
+#endif /* ONLY_MSPACES */
+#endif /* HAVE_MORECORE */
+#if !HAVE_MORECORE
+#define MORECORE_CONTIGUOUS 0
+#else /* !HAVE_MORECORE */
+#define MORECORE_DEFAULT sbrk
+#ifndef MORECORE_CONTIGUOUS
+#define MORECORE_CONTIGUOUS 1
+#endif /* MORECORE_CONTIGUOUS */
+#endif /* HAVE_MORECORE */
+#ifndef DEFAULT_GRANULARITY
+#if (MORECORE_CONTIGUOUS || defined(WIN32))
+#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
+#else /* MORECORE_CONTIGUOUS */
+#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
+#endif /* MORECORE_CONTIGUOUS */
+#endif /* DEFAULT_GRANULARITY */
+#ifndef DEFAULT_TRIM_THRESHOLD
+#ifndef MORECORE_CANNOT_TRIM
+#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
+#else /* MORECORE_CANNOT_TRIM */
+#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
+#endif /* MORECORE_CANNOT_TRIM */
+#endif /* DEFAULT_TRIM_THRESHOLD */
+#ifndef DEFAULT_MMAP_THRESHOLD
+#if HAVE_MMAP
+#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
+#else /* HAVE_MMAP */
+#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
+#endif /* HAVE_MMAP */
+#endif /* DEFAULT_MMAP_THRESHOLD */
+#ifndef MAX_RELEASE_CHECK_RATE
+#if HAVE_MMAP
+#define MAX_RELEASE_CHECK_RATE 4095
+#else
+#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
+#endif /* HAVE_MMAP */
+#endif /* MAX_RELEASE_CHECK_RATE */
+#ifndef USE_BUILTIN_FFS
+#define USE_BUILTIN_FFS 0
+#endif /* USE_BUILTIN_FFS */
+#ifndef USE_DEV_RANDOM
+#define USE_DEV_RANDOM 0
+#endif /* USE_DEV_RANDOM */
+#ifndef NO_MALLINFO
+#define NO_MALLINFO 0
+#endif /* NO_MALLINFO */
+#ifndef MALLINFO_FIELD_TYPE
+#define MALLINFO_FIELD_TYPE size_t
+#endif /* MALLINFO_FIELD_TYPE */
+#ifndef NO_MALLOC_STATS
+#define NO_MALLOC_STATS 0
+#endif /* NO_MALLOC_STATS */
+#ifndef NO_SEGMENT_TRAVERSAL
+#define NO_SEGMENT_TRAVERSAL 0
+#endif /* NO_SEGMENT_TRAVERSAL */
+
+/*
+ mallopt tuning options. SVID/XPG defines four standard parameter
+ numbers for mallopt, normally defined in malloc.h. None of these
+ are used in this malloc, so setting them has no effect. But this
+ malloc does support the following options.
+*/
+
+#define M_TRIM_THRESHOLD (-1)
+#define M_GRANULARITY (-2)
+#define M_MMAP_THRESHOLD (-3)
+
+/* ------------------------ Mallinfo declarations ------------------------ */
+
+#if !NO_MALLINFO
+/*
+ This version of malloc supports the standard SVID/XPG mallinfo
+ routine that returns a struct containing usage properties and
+ statistics. It should work on any system that has a
+ /usr/include/malloc.h defining struct mallinfo. The main
+ declaration needed is the mallinfo struct that is returned (by-copy)
+ by mallinfo(). The malloinfo struct contains a bunch of fields that
+ are not even meaningful in this version of malloc. These fields are
+ are instead filled by mallinfo() with other numbers that might be of
+ interest.
+
+ HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
+ /usr/include/malloc.h file that includes a declaration of struct
+ mallinfo. If so, it is included; else a compliant version is
+ declared below. These must be precisely the same for mallinfo() to
+ work. The original SVID version of this struct, defined on most
+ systems with mallinfo, declares all fields as ints. But some others
+ define as unsigned long. If your system defines the fields using a
+ type of different width than listed here, you MUST #include your
+ system version and #define HAVE_USR_INCLUDE_MALLOC_H.
+*/
+
+/* #define HAVE_USR_INCLUDE_MALLOC_H */
+
+#ifdef HAVE_USR_INCLUDE_MALLOC_H
+#error #include "/usr/include/malloc.h"
+#else /* HAVE_USR_INCLUDE_MALLOC_H */
+#ifndef STRUCT_MALLINFO_DECLARED
+/* HP-UX (and others?) redefines mallinfo unless _STRUCT_MALLINFO is defined */
+#define _STRUCT_MALLINFO
+#define STRUCT_MALLINFO_DECLARED 1
+struct mallinfo {
+ MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
+ MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
+ MALLINFO_FIELD_TYPE smblks; /* always 0 */
+ MALLINFO_FIELD_TYPE hblks; /* always 0 */
+ MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
+ MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
+ MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
+ MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
+ MALLINFO_FIELD_TYPE fordblks; /* total free space */
+ MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
+};
+#endif /* STRUCT_MALLINFO_DECLARED */
+#endif /* HAVE_USR_INCLUDE_MALLOC_H */
+#endif /* NO_MALLINFO */
+
+/*
+ Try to persuade compilers to inline. The most critical functions for
+ inlining are defined as macros, so these aren't used for them.
+*/
+
+#ifndef FORCEINLINE
+ #if defined(__GNUC__)
+#define FORCEINLINE __inline __attribute__ ((always_inline))
+ #elif defined(_MSC_VER)
+ #define FORCEINLINE __forceinline
+ #endif
+#endif
+#ifndef NOINLINE
+ #if defined(__GNUC__)
+ #define NOINLINE __attribute__ ((noinline))
+ #elif defined(_MSC_VER)
+ #define NOINLINE __declspec(noinline)
+ #else
+ #define NOINLINE
+ #endif
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#ifndef FORCEINLINE
+ #define FORCEINLINE inline
+#endif
+#endif /* __cplusplus */
+#ifndef FORCEINLINE
+ #define FORCEINLINE
+#endif
+
+#if !ONLY_MSPACES
+
+/* ------------------- Declarations of public routines ------------------- */
+
+#ifndef USE_DL_PREFIX
+#define dlcalloc calloc
+#define dlfree free
+#define dlmalloc malloc
+#define dlmemalign memalign
+#define dlposix_memalign posix_memalign
+#define dlrealloc realloc
+#define dlrealloc_in_place realloc_in_place
+#define dlvalloc valloc
+#define dlpvalloc pvalloc
+#define dlmallinfo mallinfo
+#define dlmallopt mallopt
+#define dlmalloc_trim malloc_trim
+#define dlmalloc_stats malloc_stats
+#define dlmalloc_usable_size malloc_usable_size
+#define dlmalloc_footprint malloc_footprint
+#define dlmalloc_max_footprint malloc_max_footprint
+#define dlmalloc_footprint_limit malloc_footprint_limit
+#define dlmalloc_set_footprint_limit malloc_set_footprint_limit
+#define dlmalloc_inspect_all malloc_inspect_all
+#define dlindependent_calloc independent_calloc
+#define dlindependent_comalloc independent_comalloc
+#define dlbulk_free bulk_free
+#endif /* USE_DL_PREFIX */
+
+/*
+ malloc(size_t n)
+ Returns a pointer to a newly allocated chunk of at least n bytes, or
+ null if no space is available, in which case errno is set to ENOMEM
+ on ANSI C systems.
+
+ If n is zero, malloc returns a minimum-sized chunk. (The minimum
+ size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
+ systems.) Note that size_t is an unsigned type, so calls with
+ arguments that would be negative if signed are interpreted as
+ requests for huge amounts of space, which will often fail. The
+ maximum supported value of n differs across systems, but is in all
+ cases less than the maximum representable value of a size_t.
+*/
+DLMALLOC_EXPORT void* dlmalloc(size_t);
+
+/*
+ free(void* p)
+ Releases the chunk of memory pointed to by p, that had been previously
+ allocated using malloc or a related routine such as realloc.
+ It has no effect if p is null. If p was not malloced or already
+ freed, free(p) will by default cause the current program to abort.
+*/
+DLMALLOC_EXPORT void dlfree(void*);
+
+/*
+ calloc(size_t n_elements, size_t element_size);
+ Returns a pointer to n_elements * element_size bytes, with all locations
+ set to zero.
+*/
+DLMALLOC_EXPORT void* dlcalloc(size_t, size_t);
+
+/*
+ realloc(void* p, size_t n)
+ Returns a pointer to a chunk of size n that contains the same data
+ as does chunk p up to the minimum of (n, p's size) bytes, or null
+ if no space is available.
+
+ The returned pointer may or may not be the same as p. The algorithm
+ prefers extending p in most cases when possible, otherwise it
+ employs the equivalent of a malloc-copy-free sequence.
+
+ If p is null, realloc is equivalent to malloc.
+
+ If space is not available, realloc returns null, errno is set (if on
+ ANSI) and p is NOT freed.
+
+ if n is for fewer bytes than already held by p, the newly unused
+ space is lopped off and freed if possible. realloc with a size
+ argument of zero (re)allocates a minimum-sized chunk.
+
+ The old unix realloc convention of allowing the last-free'd chunk
+ to be used as an argument to realloc is not supported.
+*/
+DLMALLOC_EXPORT void* dlrealloc(void*, size_t);
+
+/*
+ realloc_in_place(void* p, size_t n)
+ Resizes the space allocated for p to size n, only if this can be
+ done without moving p (i.e., only if there is adjacent space
+ available if n is greater than p's current allocated size, or n is
+ less than or equal to p's size). This may be used instead of plain
+ realloc if an alternative allocation strategy is needed upon failure
+ to expand space; for example, reallocation of a buffer that must be
+ memory-aligned or cleared. You can use realloc_in_place to trigger
+ these alternatives only when needed.
+
+ Returns p if successful; otherwise null.
+*/
+DLMALLOC_EXPORT void* dlrealloc_in_place(void*, size_t);
+
+/*
+ memalign(size_t alignment, size_t n);
+ Returns a pointer to a newly allocated chunk of n bytes, aligned
+ in accord with the alignment argument.
+
+ The alignment argument should be a power of two. If the argument is
+ not a power of two, the nearest greater power is used.
+ 8-byte alignment is guaranteed by normal malloc calls, so don't
+ bother calling memalign with an argument of 8 or less.
+
+ Overreliance on memalign is a sure way to fragment space.
+*/
+DLMALLOC_EXPORT void* dlmemalign(size_t, size_t);
+
+/*
+ int posix_memalign(void** pp, size_t alignment, size_t n);
+ Allocates a chunk of n bytes, aligned in accord with the alignment
+ argument. Differs from memalign only in that it (1) assigns the
+ allocated memory to *pp rather than returning it, (2) fails and
+ returns EINVAL if the alignment is not a power of two (3) fails and
+ returns ENOMEM if memory cannot be allocated.
+*/
+DLMALLOC_EXPORT int dlposix_memalign(void**, size_t, size_t);
+
+/*
+ valloc(size_t n);
+ Equivalent to memalign(pagesize, n), where pagesize is the page
+ size of the system. If the pagesize is unknown, 4096 is used.
+*/
+DLMALLOC_EXPORT void* dlvalloc(size_t);
+
+/*
+ mallopt(int parameter_number, int parameter_value)
+ Sets tunable parameters The format is to provide a
+ (parameter-number, parameter-value) pair. mallopt then sets the
+ corresponding parameter to the argument value if it can (i.e., so
+ long as the value is meaningful), and returns 1 if successful else
+ 0. To workaround the fact that mallopt is specified to use int,
+ not size_t parameters, the value -1 is specially treated as the
+ maximum unsigned size_t value.
+
+ SVID/XPG/ANSI defines four standard param numbers for mallopt,
+ normally defined in malloc.h. None of these are use in this malloc,
+ so setting them has no effect. But this malloc also supports other
+ options in mallopt. See below for details. Briefly, supported
+ parameters are as follows (listed defaults are for "typical"
+ configurations).
+
+ Symbol param # default allowed param values
+ M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables)
+ M_GRANULARITY -2 page size any power of 2 >= page size
+ M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
+*/
+DLMALLOC_EXPORT int dlmallopt(int, int);
+
+/*
+ malloc_footprint();
+ Returns the number of bytes obtained from the system. The total
+ number of bytes allocated by malloc, realloc etc., is less than this
+ value. Unlike mallinfo, this function returns only a precomputed
+ result, so can be called frequently to monitor memory consumption.
+ Even if locks are otherwise defined, this function does not use them,
+ so results might not be up to date.
+*/
+DLMALLOC_EXPORT size_t dlmalloc_footprint(void);
+
+/*
+ malloc_max_footprint();
+ Returns the maximum number of bytes obtained from the system. This
+ value will be greater than current footprint if deallocated space
+ has been reclaimed by the system. The peak number of bytes allocated
+ by malloc, realloc etc., is less than this value. Unlike mallinfo,
+ this function returns only a precomputed result, so can be called
+ frequently to monitor memory consumption. Even if locks are
+ otherwise defined, this function does not use them, so results might
+ not be up to date.
+*/
+DLMALLOC_EXPORT size_t dlmalloc_max_footprint(void);
+
+/*
+ malloc_footprint_limit();
+ Returns the number of bytes that the heap is allowed to obtain from
+ the system, returning the last value returned by
+ malloc_set_footprint_limit, or the maximum size_t value if
+ never set. The returned value reflects a permission. There is no
+ guarantee that this number of bytes can actually be obtained from
+ the system.
+*/
+DLMALLOC_EXPORT size_t dlmalloc_footprint_limit();
+
+/*
+ malloc_set_footprint_limit();
+ Sets the maximum number of bytes to obtain from the system, causing
+ failure returns from malloc and related functions upon attempts to
+ exceed this value. The argument value may be subject to page
+ rounding to an enforceable limit; this actual value is returned.
+ Using an argument of the maximum possible size_t effectively
+ disables checks. If the argument is less than or equal to the
+ current malloc_footprint, then all future allocations that require
+ additional system memory will fail. However, invocation cannot
+ retroactively deallocate existing used memory.
+*/
+DLMALLOC_EXPORT size_t dlmalloc_set_footprint_limit(size_t bytes);
+
+#if MALLOC_INSPECT_ALL
+/*
+ malloc_inspect_all(void(*handler)(void *start,
+ void *end,
+ size_t used_bytes,
+ void* callback_arg),
+ void* arg);
+ Traverses the heap and calls the given handler for each managed
+ region, skipping all bytes that are (or may be) used for bookkeeping
+ purposes. Traversal does not include include chunks that have been
+ directly memory mapped. Each reported region begins at the start
+ address, and continues up to but not including the end address. The
+ first used_bytes of the region contain allocated data. If
+ used_bytes is zero, the region is unallocated. The handler is
+ invoked with the given callback argument. If locks are defined, they
+ are held during the entire traversal. It is a bad idea to invoke
+ other malloc functions from within the handler.
+
+ For example, to count the number of in-use chunks with size greater
+ than 1000, you could write:
+ static int count = 0;
+ void count_chunks(void* start, void* end, size_t used, void* arg) {
+ if (used >= 1000) ++count;
+ }
+ then:
+ malloc_inspect_all(count_chunks, NULL);
+
+ malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined.
+*/
+DLMALLOC_EXPORT void dlmalloc_inspect_all(void(*handler)(void*, void *, size_t, void*),
+ void* arg);
+
+#endif /* MALLOC_INSPECT_ALL */
+
+#if !NO_MALLINFO
+/*
+ mallinfo()
+ Returns (by copy) a struct containing various summary statistics:
+
+ arena: current total non-mmapped bytes allocated from system
+ ordblks: the number of free chunks
+ smblks: always zero.
+ hblks: current number of mmapped regions
+ hblkhd: total bytes held in mmapped regions
+ usmblks: the maximum total allocated space. This will be greater
+ than current total if trimming has occurred.
+ fsmblks: always zero
+ uordblks: current total allocated space (normal or mmapped)
+ fordblks: total free space
+ keepcost: the maximum number of bytes that could ideally be released
+ back to system via malloc_trim. ("ideally" means that
+ it ignores page restrictions etc.)
+
+ Because these fields are ints, but internal bookkeeping may
+ be kept as longs, the reported values may wrap around zero and
+ thus be inaccurate.
+*/
+DLMALLOC_EXPORT struct mallinfo dlmallinfo(void);
+#endif /* NO_MALLINFO */
+
+/*
+ independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
+
+ independent_calloc is similar to calloc, but instead of returning a
+ single cleared space, it returns an array of pointers to n_elements
+ independent elements that can hold contents of size elem_size, each
+ of which starts out cleared, and can be independently freed,
+ realloc'ed etc. The elements are guaranteed to be adjacently
+ allocated (this is not guaranteed to occur with multiple callocs or
+ mallocs), which may also improve cache locality in some
+ applications.
+
+ The "chunks" argument is optional (i.e., may be null, which is
+ probably the most typical usage). If it is null, the returned array
+ is itself dynamically allocated and should also be freed when it is
+ no longer needed. Otherwise, the chunks array must be of at least
+ n_elements in length. It is filled in with the pointers to the
+ chunks.
+
+ In either case, independent_calloc returns this pointer array, or
+ null if the allocation failed. If n_elements is zero and "chunks"
+ is null, it returns a chunk representing an array with zero elements
+ (which should be freed if not wanted).
+
+ Each element must be freed when it is no longer needed. This can be
+ done all at once using bulk_free.
+
+ independent_calloc simplifies and speeds up implementations of many
+ kinds of pools. It may also be useful when constructing large data
+ structures that initially have a fixed number of fixed-sized nodes,
+ but the number is not known at compile time, and some of the nodes
+ may later need to be freed. For example:
+
+ struct Node { int item; struct Node* next; };
+
+ struct Node* build_list() {
+ struct Node** pool;
+ int n = read_number_of_nodes_needed();
+ if (n <= 0) return 0;
+ pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
+ if (pool == 0) die();
+ // organize into a linked list...
+ struct Node* first = pool[0];
+ for (i = 0; i < n-1; ++i)
+ pool[i]->next = pool[i+1];
+ free(pool); // Can now free the array (or not, if it is needed later)
+ return first;
+ }
+*/
+DLMALLOC_EXPORT void** dlindependent_calloc(size_t, size_t, void**);
+
+/*
+ independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
+
+ independent_comalloc allocates, all at once, a set of n_elements
+ chunks with sizes indicated in the "sizes" array. It returns
+ an array of pointers to these elements, each of which can be
+ independently freed, realloc'ed etc. The elements are guaranteed to
+ be adjacently allocated (this is not guaranteed to occur with
+ multiple callocs or mallocs), which may also improve cache locality
+ in some applications.
+
+ The "chunks" argument is optional (i.e., may be null). If it is null
+ the returned array is itself dynamically allocated and should also
+ be freed when it is no longer needed. Otherwise, the chunks array
+ must be of at least n_elements in length. It is filled in with the
+ pointers to the chunks.
+
+ In either case, independent_comalloc returns this pointer array, or
+ null if the allocation failed. If n_elements is zero and chunks is
+ null, it returns a chunk representing an array with zero elements
+ (which should be freed if not wanted).
+
+ Each element must be freed when it is no longer needed. This can be
+ done all at once using bulk_free.
+
+ independent_comallac differs from independent_calloc in that each
+ element may have a different size, and also that it does not
+ automatically clear elements.
+
+ independent_comalloc can be used to speed up allocation in cases
+ where several structs or objects must always be allocated at the
+ same time. For example:
+
+ struct Head { ... }
+ struct Foot { ... }
+
+ void send_message(char* msg) {
+ int msglen = strlen(msg);
+ size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
+ void* chunks[3];
+ if (independent_comalloc(3, sizes, chunks) == 0)
+ die();
+ struct Head* head = (struct Head*)(chunks[0]);
+ char* body = (char*)(chunks[1]);
+ struct Foot* foot = (struct Foot*)(chunks[2]);
+ // ...
+ }
+
+ In general though, independent_comalloc is worth using only for
+ larger values of n_elements. For small values, you probably won't
+ detect enough difference from series of malloc calls to bother.
+
+ Overuse of independent_comalloc can increase overall memory usage,
+ since it cannot reuse existing noncontiguous small chunks that
+ might be available for some of the elements.
+*/
+DLMALLOC_EXPORT void** dlindependent_comalloc(size_t, size_t*, void**);
+
+/*
+ bulk_free(void* array[], size_t n_elements)
+ Frees and clears (sets to null) each non-null pointer in the given
+ array. This is likely to be faster than freeing them one-by-one.
+ If footers are used, pointers that have been allocated in different
+ mspaces are not freed or cleared, and the count of all such pointers
+ is returned. For large arrays of pointers with poor locality, it
+ may be worthwhile to sort this array before calling bulk_free.
+*/
+DLMALLOC_EXPORT size_t dlbulk_free(void**, size_t n_elements);
+
+/*
+ pvalloc(size_t n);
+ Equivalent to valloc(minimum-page-that-holds(n)), that is,
+ round up n to nearest pagesize.
+ */
+DLMALLOC_EXPORT void* dlpvalloc(size_t);
+
+/*
+ malloc_trim(size_t pad);
+
+ If possible, gives memory back to the system (via negative arguments
+ to sbrk) if there is unused memory at the `high' end of the malloc
+ pool or in unused MMAP segments. You can call this after freeing
+ large blocks of memory to potentially reduce the system-level memory
+ requirements of a program. However, it cannot guarantee to reduce
+ memory. Under some allocation patterns, some large free blocks of
+ memory will be locked between two used chunks, so they cannot be
+ given back to the system.
+
+ The `pad' argument to malloc_trim represents the amount of free
+ trailing space to leave untrimmed. If this argument is zero, only
+ the minimum amount of memory to maintain internal data structures
+ will be left. Non-zero arguments can be supplied to maintain enough
+ trailing space to service future expected allocations without having
+ to re-obtain memory from the system.
+
+ Malloc_trim returns 1 if it actually released any memory, else 0.
+*/
+DLMALLOC_EXPORT int dlmalloc_trim(size_t);
+
+/*
+ malloc_stats();
+ Prints on stderr the amount of space obtained from the system (both
+ via sbrk and mmap), the maximum amount (which may be more than
+ current if malloc_trim and/or munmap got called), and the current
+ number of bytes allocated via malloc (or realloc, etc) but not yet
+ freed. Note that this is the number of bytes allocated, not the
+ number requested. It will be larger than the number requested
+ because of alignment and bookkeeping overhead. Because it includes
+ alignment wastage as being in use, this figure may be greater than
+ zero even when no user-level chunks are allocated.
+
+ The reported current and maximum system memory can be inaccurate if
+ a program makes other calls to system memory allocation functions
+ (normally sbrk) outside of malloc.
+
+ malloc_stats prints only the most commonly interesting statistics.
+ More information can be obtained by calling mallinfo.
+*/
+DLMALLOC_EXPORT void dlmalloc_stats(void);
+
+/*
+ malloc_usable_size(void* p);
+
+ Returns the number of bytes you can actually use in
+ an allocated chunk, which may be more than you requested (although
+ often not) due to alignment and minimum size constraints.
+ You can use this many bytes without worrying about
+ overwriting other allocated objects. This is not a particularly great
+ programming practice. malloc_usable_size can be more useful in
+ debugging and assertions, for example:
+
+ p = malloc(n);
+ assert(malloc_usable_size(p) >= 256);
+*/
+size_t dlmalloc_usable_size(void*);
+
+#endif /* ONLY_MSPACES */
+
+#if MSPACES
+
+/*
+ mspace is an opaque type representing an independent
+ region of space that supports mspace_malloc, etc.
+*/
+typedef void* mspace;
+
+/*
+ create_mspace creates and returns a new independent space with the
+ given initial capacity, or, if 0, the default granularity size. It
+ returns null if there is no system memory available to create the
+ space. If argument locked is non-zero, the space uses a separate
+ lock to control access. The capacity of the space will grow
+ dynamically as needed to service mspace_malloc requests. You can
+ control the sizes of incremental increases of this space by
+ compiling with a different DEFAULT_GRANULARITY or dynamically
+ setting with mallopt(M_GRANULARITY, value).
+*/
+DLMALLOC_EXPORT mspace create_mspace(size_t capacity, int locked);
+
+/*
+ destroy_mspace destroys the given space, and attempts to return all
+ of its memory back to the system, returning the total number of
+ bytes freed. After destruction, the results of access to all memory
+ used by the space become undefined.
+*/
+DLMALLOC_EXPORT size_t destroy_mspace(mspace msp);
+
+/*
+ create_mspace_with_base uses the memory supplied as the initial base
+ of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
+ space is used for bookkeeping, so the capacity must be at least this
+ large. (Otherwise 0 is returned.) When this initial space is
+ exhausted, additional memory will be obtained from the system.
+ Destroying this space will deallocate all additionally allocated
+ space (if possible) but not the initial base.
+*/
+DLMALLOC_EXPORT mspace create_mspace_with_base(void* base, size_t capacity, int locked);
+
+/*
+ mspace_track_large_chunks controls whether requests for large chunks
+ are allocated in their own untracked mmapped regions, separate from
+ others in this mspace. By default large chunks are not tracked,
+ which reduces fragmentation. However, such chunks are not
+ necessarily released to the system upon destroy_mspace. Enabling
+ tracking by setting to true may increase fragmentation, but avoids
+ leakage when relying on destroy_mspace to release all memory
+ allocated using this space. The function returns the previous
+ setting.
+*/
+DLMALLOC_EXPORT int mspace_track_large_chunks(mspace msp, int enable);
+
+
+/*
+ mspace_malloc behaves as malloc, but operates within
+ the given space.
+*/
+DLMALLOC_EXPORT void* mspace_malloc(mspace msp, size_t bytes);
+
+/*
+ mspace_free behaves as free, but operates within
+ the given space.
+
+ If compiled with FOOTERS==1, mspace_free is not actually needed.
+ free may be called instead of mspace_free because freed chunks from
+ any space are handled by their originating spaces.
+*/
+DLMALLOC_EXPORT void mspace_free(mspace msp, void* mem);
+
+/*
+ mspace_realloc behaves as realloc, but operates within
+ the given space.
+
+ If compiled with FOOTERS==1, mspace_realloc is not actually
+ needed. realloc may be called instead of mspace_realloc because
+ realloced chunks from any space are handled by their originating
+ spaces.
+*/
+DLMALLOC_EXPORT void* mspace_realloc(mspace msp, void* mem, size_t newsize);
+
+/*
+ mspace_calloc behaves as calloc, but operates within
+ the given space.
+*/
+DLMALLOC_EXPORT void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
+
+/*
+ mspace_memalign behaves as memalign, but operates within
+ the given space.
+*/
+DLMALLOC_EXPORT void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
+
+/*
+ mspace_independent_calloc behaves as independent_calloc, but
+ operates within the given space.
+*/
+DLMALLOC_EXPORT void** mspace_independent_calloc(mspace msp, size_t n_elements,
+ size_t elem_size, void* chunks[]);
+
+/*
+ mspace_independent_comalloc behaves as independent_comalloc, but
+ operates within the given space.
+*/
+DLMALLOC_EXPORT void** mspace_independent_comalloc(mspace msp, size_t n_elements,
+ size_t sizes[], void* chunks[]);
+
+/*
+ mspace_footprint() returns the number of bytes obtained from the
+ system for this space.
+*/
+DLMALLOC_EXPORT size_t mspace_footprint(mspace msp);
+
+/*
+ mspace_max_footprint() returns the peak number of bytes obtained from the
+ system for this space.
+*/
+DLMALLOC_EXPORT size_t mspace_max_footprint(mspace msp);
+
+
+#if !NO_MALLINFO
+/*
+ mspace_mallinfo behaves as mallinfo, but reports properties of
+ the given space.
+*/
+DLMALLOC_EXPORT struct mallinfo mspace_mallinfo(mspace msp);
+#endif /* NO_MALLINFO */
+
+/*
+ malloc_usable_size(void* p) behaves the same as malloc_usable_size;
+*/
+DLMALLOC_EXPORT size_t mspace_usable_size(const void* mem);
+
+/*
+ mspace_malloc_stats behaves as malloc_stats, but reports
+ properties of the given space.
+*/
+DLMALLOC_EXPORT void mspace_malloc_stats(mspace msp);
+
+/*
+ mspace_trim behaves as malloc_trim, but
+ operates within the given space.
+*/
+DLMALLOC_EXPORT int mspace_trim(mspace msp, size_t pad);
+
+/*
+ An alias for mallopt.
+*/
+DLMALLOC_EXPORT int mspace_mallopt(int, int);
+
+#endif /* MSPACES */
+
+#ifdef __cplusplus
+} /* end of extern "C" */
+#endif /* __cplusplus */
+
+/*
+ ========================================================================
+ To make a fully customizable malloc.h header file, cut everything
+ above this line, put into file malloc.h, edit to suit, and #include it
+ on the next line, as well as in programs that use this malloc.
+ ========================================================================
+*/
+
+/* #include "malloc.h" */
+
+/*------------------------------ internal #includes ---------------------- */
+
+#ifdef _MSC_VER
+#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
+#endif /* _MSC_VER */
+#if !NO_MALLOC_STATS
+#include <stdio.h> /* for printing in malloc_stats */
+#endif /* NO_MALLOC_STATS */
+#ifndef LACKS_ERRNO_H
+#include <errno.h> /* for MALLOC_FAILURE_ACTION */
+#endif /* LACKS_ERRNO_H */
+#ifdef DEBUG
+#if ABORT_ON_ASSERT_FAILURE
+#undef assert
+#define assert(x) if(!(x)) ABORT
+#else /* ABORT_ON_ASSERT_FAILURE */
+#include <assert.h>
+#endif /* ABORT_ON_ASSERT_FAILURE */
+#else /* DEBUG */
+#ifndef assert
+#define assert(x)
+#endif
+#define DEBUG 0
+#endif /* DEBUG */
+#if !defined(WIN32) && !defined(LACKS_TIME_H)
+#include <time.h> /* for magic initialization */
+#endif /* WIN32 */
+#ifndef LACKS_STDLIB_H
+#include <stdlib.h> /* for abort() */
+#endif /* LACKS_STDLIB_H */
+#ifndef LACKS_STRING_H
+#include <string.h> /* for memset etc */
+#endif /* LACKS_STRING_H */
+#if USE_BUILTIN_FFS
+#ifndef LACKS_STRINGS_H
+#include <strings.h> /* for ffs */
+#endif /* LACKS_STRINGS_H */
+#endif /* USE_BUILTIN_FFS */
+#if HAVE_MMAP
+#ifndef LACKS_SYS_MMAN_H
+/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */
+#if (defined(linux) && !defined(__USE_GNU))
+#define __USE_GNU 1
+#include <sys/mman.h> /* for mmap */
+#undef __USE_GNU
+#else
+#include <sys/mman.h> /* for mmap */
+#endif /* linux */
+#endif /* LACKS_SYS_MMAN_H */
+#ifndef LACKS_FCNTL_H
+#include <fcntl.h>
+#endif /* LACKS_FCNTL_H */
+#endif /* HAVE_MMAP */
+#ifndef LACKS_UNISTD_H
+#include <unistd.h> /* for sbrk, sysconf */
+#else /* LACKS_UNISTD_H */
+#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
+extern void* sbrk(ptrdiff_t);
+#endif /* FreeBSD etc */
+#endif /* LACKS_UNISTD_H */
+
+/* Declarations for locking */
+#if USE_LOCKS
+#ifndef WIN32
+#if defined (__SVR4) && defined (__sun) /* solaris */
+#include <thread.h>
+#elif !defined(LACKS_SCHED_H)
+#include <sched.h>
+#endif /* solaris or LACKS_SCHED_H */
+#if (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0) || !USE_SPIN_LOCKS
+#include <pthread.h>
+#endif /* USE_RECURSIVE_LOCKS ... */
+#elif defined(_MSC_VER)
+#ifndef _M_AMD64
+/* These are already defined on AMD64 builds */
+#ifdef __cplusplus
+extern "C" {
+#endif /* __cplusplus */
+LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp);
+LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value);
+#ifdef __cplusplus
+}
+#endif /* __cplusplus */
+#endif /* _M_AMD64 */
+#pragma intrinsic (_InterlockedCompareExchange)
+#pragma intrinsic (_InterlockedExchange)
+#define interlockedcompareexchange _InterlockedCompareExchange
+#define interlockedexchange _InterlockedExchange
+#elif defined(WIN32) && defined(__GNUC__)
+#define interlockedcompareexchange(a, b, c) __sync_val_compare_and_swap(a, c, b)
+#define interlockedexchange __sync_lock_test_and_set
+#endif /* Win32 */
+#else /* USE_LOCKS */
+#endif /* USE_LOCKS */
+
+#ifndef LOCK_AT_FORK
+#define LOCK_AT_FORK 0
+#endif
+
+/* Declarations for bit scanning on win32 */
+#if defined(_MSC_VER) && _MSC_VER>=1300
+#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */
+#ifdef __cplusplus
+extern "C" {
+#endif /* __cplusplus */
+unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
+unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
+#ifdef __cplusplus
+}
+#endif /* __cplusplus */
+
+#define BitScanForward _BitScanForward
+#define BitScanReverse _BitScanReverse
+#pragma intrinsic(_BitScanForward)
+#pragma intrinsic(_BitScanReverse)
+#endif /* BitScanForward */
+#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
+
+#ifndef WIN32
+#ifndef malloc_getpagesize
+# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
+# ifndef _SC_PAGE_SIZE
+# define _SC_PAGE_SIZE _SC_PAGESIZE
+# endif
+# endif
+# ifdef _SC_PAGE_SIZE
+# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
+# else
+# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
+ extern size_t getpagesize();
+# define malloc_getpagesize getpagesize()
+# else
+# ifdef WIN32 /* use supplied emulation of getpagesize */
+# define malloc_getpagesize getpagesize()
+# else
+# ifndef LACKS_SYS_PARAM_H
+# include <sys/param.h>
+# endif
+# ifdef EXEC_PAGESIZE
+# define malloc_getpagesize EXEC_PAGESIZE
+# else
+# ifdef NBPG
+# ifndef CLSIZE
+# define malloc_getpagesize NBPG
+# else
+# define malloc_getpagesize (NBPG * CLSIZE)
+# endif
+# else
+# ifdef NBPC
+# define malloc_getpagesize NBPC
+# else
+# ifdef PAGESIZE
+# define malloc_getpagesize PAGESIZE
+# else /* just guess */
+# define malloc_getpagesize ((size_t)4096U)
+# endif
+# endif
+# endif
+# endif
+# endif
+# endif
+# endif
+#endif
+#endif
+
+/* ------------------- size_t and alignment properties -------------------- */
+
+/* The byte and bit size of a size_t */
+#define SIZE_T_SIZE (sizeof(size_t))
+#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
+
+/* Some constants coerced to size_t */
+/* Annoying but necessary to avoid errors on some platforms */
+#define SIZE_T_ZERO ((size_t)0)
+#define SIZE_T_ONE ((size_t)1)
+#define SIZE_T_TWO ((size_t)2)
+#define SIZE_T_FOUR ((size_t)4)
+#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
+#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
+#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
+#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
+
+/* The bit mask value corresponding to MALLOC_ALIGNMENT */
+#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
+
+/* True if address a has acceptable alignment */
+#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
+
+/* the number of bytes to offset an address to align it */
+#define align_offset(A)\
+ ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
+ ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
+
+/* -------------------------- MMAP preliminaries ------------------------- */
+
+/*
+ If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
+ checks to fail so compiler optimizer can delete code rather than
+ using so many "#if"s.
+*/
+
+
+/* MORECORE and MMAP must return MFAIL on failure */
+#define MFAIL ((void*)(MAX_SIZE_T))
+#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
+
+#if HAVE_MMAP
+
+#ifndef WIN32
+#define MUNMAP_DEFAULT(a, s) munmap((a), (s))
+#define MMAP_PROT (PROT_READ|PROT_WRITE)
+#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
+#define MAP_ANONYMOUS MAP_ANON
+#endif /* MAP_ANON */
+#ifdef MAP_ANONYMOUS
+#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
+#define MMAP_DEFAULT(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
+#else /* MAP_ANONYMOUS */
+/*
+ Nearly all versions of mmap support MAP_ANONYMOUS, so the following
+ is unlikely to be needed, but is supplied just in case.
+*/
+#define MMAP_FLAGS (MAP_PRIVATE)
+static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
+#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \
+ (dev_zero_fd = open("/dev/zero", O_RDWR), \
+ mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
+ mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
+#endif /* MAP_ANONYMOUS */
+
+#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s)
+
+#else /* WIN32 */
+
+/* Win32 MMAP via VirtualAlloc */
+static FORCEINLINE void* win32mmap(size_t size) {
+ void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
+ return (ptr != 0)? ptr: MFAIL;
+}
+
+/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
+static FORCEINLINE void* win32direct_mmap(size_t size) {
+ void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
+ PAGE_READWRITE);
+ return (ptr != 0)? ptr: MFAIL;
+}
+
+/* This function supports releasing coalesed segments */
+static FORCEINLINE int win32munmap(void* ptr, size_t size) {
+ MEMORY_BASIC_INFORMATION minfo;
+ char* cptr = (char*)ptr;
+ while (size) {
+ if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
+ return -1;
+ if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
+ minfo.State != MEM_COMMIT || minfo.RegionSize > size)
+ return -1;
+ if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
+ return -1;
+ cptr += minfo.RegionSize;
+ size -= minfo.RegionSize;
+ }
+ return 0;
+}
+
+#define MMAP_DEFAULT(s) win32mmap(s)
+#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s))
+#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s)
+#endif /* WIN32 */
+#endif /* HAVE_MMAP */
+
+#if HAVE_MREMAP
+#ifndef WIN32
+#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
+#endif /* WIN32 */
+#endif /* HAVE_MREMAP */
+
+/**
+ * Define CALL_MORECORE
+ */
+#if HAVE_MORECORE
+ #ifdef MORECORE
+ #define CALL_MORECORE(S) MORECORE(S)
+ #else /* MORECORE */
+ #define CALL_MORECORE(S) MORECORE_DEFAULT(S)
+ #endif /* MORECORE */
+#else /* HAVE_MORECORE */
+ #define CALL_MORECORE(S) MFAIL
+#endif /* HAVE_MORECORE */
+
+/**
+ * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP
+ */
+#if HAVE_MMAP
+ #define USE_MMAP_BIT (SIZE_T_ONE)
+
+ #ifdef MMAP
+ #define CALL_MMAP(s) MMAP(s)
+ #else /* MMAP */
+ #define CALL_MMAP(s) MMAP_DEFAULT(s)
+ #endif /* MMAP */
+ #ifdef MUNMAP
+ #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
+ #else /* MUNMAP */
+ #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s))
+ #endif /* MUNMAP */
+ #ifdef DIRECT_MMAP
+ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
+ #else /* DIRECT_MMAP */
+ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s)
+ #endif /* DIRECT_MMAP */
+#else /* HAVE_MMAP */
+ #define USE_MMAP_BIT (SIZE_T_ZERO)
+
+ #define MMAP(s) MFAIL
+ #define MUNMAP(a, s) (-1)
+ #define DIRECT_MMAP(s) MFAIL
+ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
+ #define CALL_MMAP(s) MMAP(s)
+ #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
+#endif /* HAVE_MMAP */
+
+/**
+ * Define CALL_MREMAP
+ */
+#if HAVE_MMAP && HAVE_MREMAP
+ #ifdef MREMAP
+ #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
+ #else /* MREMAP */
+ #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
+ #endif /* MREMAP */
+#else /* HAVE_MMAP && HAVE_MREMAP */
+ #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
+#endif /* HAVE_MMAP && HAVE_MREMAP */
+
+/* mstate bit set if continguous morecore disabled or failed */
+#define USE_NONCONTIGUOUS_BIT (4U)
+
+/* segment bit set in create_mspace_with_base */
+#define EXTERN_BIT (8U)
+
+
+/* --------------------------- Lock preliminaries ------------------------ */
+
+/*
+ When locks are defined, there is one global lock, plus
+ one per-mspace lock.
+
+ The global lock_ensures that mparams.magic and other unique
+ mparams values are initialized only once. It also protects
+ sequences of calls to MORECORE. In many cases sys_alloc requires
+ two calls, that should not be interleaved with calls by other
+ threads. This does not protect against direct calls to MORECORE
+ by other threads not using this lock, so there is still code to
+ cope the best we can on interference.
+
+ Per-mspace locks surround calls to malloc, free, etc.
+ By default, locks are simple non-reentrant mutexes.
+
+ Because lock-protected regions generally have bounded times, it is
+ OK to use the supplied simple spinlocks. Spinlocks are likely to
+ improve performance for lightly contended applications, but worsen
+ performance under heavy contention.
+
+ If USE_LOCKS is > 1, the definitions of lock routines here are
+ bypassed, in which case you will need to define the type MLOCK_T,
+ and at least INITIAL_LOCK, DESTROY_LOCK, ACQUIRE_LOCK, RELEASE_LOCK
+ and TRY_LOCK. You must also declare a
+ static MLOCK_T malloc_global_mutex = { initialization values };.
+
+*/
+
+#if !USE_LOCKS
+#define USE_LOCK_BIT (0U)
+#define INITIAL_LOCK(l) (0)
+#define DESTROY_LOCK(l) (0)
+#define ACQUIRE_MALLOC_GLOBAL_LOCK()
+#define RELEASE_MALLOC_GLOBAL_LOCK()
+
+#else
+#if USE_LOCKS > 1
+/* ----------------------- User-defined locks ------------------------ */
+/* Define your own lock implementation here */
+/* #define INITIAL_LOCK(lk) ... */
+/* #define DESTROY_LOCK(lk) ... */
+/* #define ACQUIRE_LOCK(lk) ... */
+/* #define RELEASE_LOCK(lk) ... */
+/* #define TRY_LOCK(lk) ... */
+/* static MLOCK_T malloc_global_mutex = ... */
+
+#elif USE_SPIN_LOCKS
+
+/* First, define CAS_LOCK and CLEAR_LOCK on ints */
+/* Note CAS_LOCK defined to return 0 on success */
+
+#if defined(__GNUC__)&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1))
+#define CAS_LOCK(sl) __sync_lock_test_and_set(sl, 1)
+#define CLEAR_LOCK(sl) __sync_lock_release(sl)
+
+#elif (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)))
+/* Custom spin locks for older gcc on x86 */
+static FORCEINLINE int x86_cas_lock(int *sl) {
+ int ret;
+ int val = 1;
+ int cmp = 0;
+ __asm__ __volatile__ ("lock; cmpxchgl %1, %2"
+ : "=a" (ret)
+ : "r" (val), "m" (*(sl)), "0"(cmp)
+ : "memory", "cc");
+ return ret;
+}
+
+static FORCEINLINE void x86_clear_lock(int* sl) {
+ assert(*sl != 0);
+ int prev = 0;
+ int ret;
+ __asm__ __volatile__ ("lock; xchgl %0, %1"
+ : "=r" (ret)
+ : "m" (*(sl)), "0"(prev)
+ : "memory");
+}
+
+#define CAS_LOCK(sl) x86_cas_lock(sl)
+#define CLEAR_LOCK(sl) x86_clear_lock(sl)
+
+#else /* Win32 MSC */
+#define CAS_LOCK(sl) interlockedexchange(sl, (LONG)1)
+#define CLEAR_LOCK(sl) interlockedexchange (sl, (LONG)0)
+
+#endif /* ... gcc spins locks ... */
+
+/* How to yield for a spin lock */
+#define SPINS_PER_YIELD 63
+#if defined(_MSC_VER)
+#define SLEEP_EX_DURATION 50 /* delay for yield/sleep */
+#define SPIN_LOCK_YIELD SleepEx(SLEEP_EX_DURATION, FALSE)
+#elif defined (__SVR4) && defined (__sun) /* solaris */
+#define SPIN_LOCK_YIELD thr_yield();
+#elif !defined(LACKS_SCHED_H)
+#define SPIN_LOCK_YIELD sched_yield();
+#else
+#define SPIN_LOCK_YIELD
+#endif /* ... yield ... */
+
+#if !defined(USE_RECURSIVE_LOCKS) || USE_RECURSIVE_LOCKS == 0
+/* Plain spin locks use single word (embedded in malloc_states) */
+static int spin_acquire_lock(int *sl) {
+ int spins = 0;
+ while (*(volatile int *)sl != 0 || CAS_LOCK(sl)) {
+ if ((++spins & SPINS_PER_YIELD) == 0) {
+ SPIN_LOCK_YIELD;
+ }
+ }
+ return 0;
+}
+
+#define MLOCK_T int
+#define TRY_LOCK(sl) !CAS_LOCK(sl)
+#define RELEASE_LOCK(sl) CLEAR_LOCK(sl)
+#define ACQUIRE_LOCK(sl) (CAS_LOCK(sl)? spin_acquire_lock(sl) : 0)
+#define INITIAL_LOCK(sl) (*sl = 0)
+#define DESTROY_LOCK(sl) (0)
+static MLOCK_T malloc_global_mutex = 0;
+
+#else /* USE_RECURSIVE_LOCKS */
+/* types for lock owners */
+#ifdef WIN32
+#define THREAD_ID_T DWORD
+#define CURRENT_THREAD GetCurrentThreadId()
+#define EQ_OWNER(X,Y) ((X) == (Y))
+#else
+/*
+ Note: the following assume that pthread_t is a type that can be
+ initialized to (casted) zero. If this is not the case, you will need to
+ somehow redefine these or not use spin locks.
+*/
+#define THREAD_ID_T pthread_t
+#define CURRENT_THREAD pthread_self()
+#define EQ_OWNER(X,Y) pthread_equal(X, Y)
+#endif
+
+struct malloc_recursive_lock {
+ int sl;
+ unsigned int c;
+ THREAD_ID_T threadid;
+};
+
+#define MLOCK_T struct malloc_recursive_lock
+static MLOCK_T malloc_global_mutex = { 0, 0, (THREAD_ID_T)0};
+
+static FORCEINLINE void recursive_release_lock(MLOCK_T *lk) {
+ assert(lk->sl != 0);
+ if (--lk->c == 0) {
+ CLEAR_LOCK(&lk->sl);
+ }
+}
+
+static FORCEINLINE int recursive_acquire_lock(MLOCK_T *lk) {
+ THREAD_ID_T mythreadid = CURRENT_THREAD;
+ int spins = 0;
+ for (;;) {
+ if (*((volatile int *)(&lk->sl)) == 0) {
+ if (!CAS_LOCK(&lk->sl)) {
+ lk->threadid = mythreadid;
+ lk->c = 1;
+ return 0;
+ }
+ }
+ else if (EQ_OWNER(lk->threadid, mythreadid)) {
+ ++lk->c;
+ return 0;
+ }
+ if ((++spins & SPINS_PER_YIELD) == 0) {
+ SPIN_LOCK_YIELD;
+ }
+ }
+}
+
+static FORCEINLINE int recursive_try_lock(MLOCK_T *lk) {
+ THREAD_ID_T mythreadid = CURRENT_THREAD;
+ if (*((volatile int *)(&lk->sl)) == 0) {
+ if (!CAS_LOCK(&lk->sl)) {
+ lk->threadid = mythreadid;
+ lk->c = 1;
+ return 1;
+ }
+ }
+ else if (EQ_OWNER(lk->threadid, mythreadid)) {
+ ++lk->c;
+ return 1;
+ }
+ return 0;
+}
+
+#define RELEASE_LOCK(lk) recursive_release_lock(lk)
+#define TRY_LOCK(lk) recursive_try_lock(lk)
+#define ACQUIRE_LOCK(lk) recursive_acquire_lock(lk)
+#define INITIAL_LOCK(lk) ((lk)->threadid = (THREAD_ID_T)0, (lk)->sl = 0, (lk)->c = 0)
+#define DESTROY_LOCK(lk) (0)
+#endif /* USE_RECURSIVE_LOCKS */
+
+#elif defined(WIN32) /* Win32 critical sections */
+#define MLOCK_T CRITICAL_SECTION
+#define ACQUIRE_LOCK(lk) (EnterCriticalSection(lk), 0)
+#define RELEASE_LOCK(lk) LeaveCriticalSection(lk)
+#define TRY_LOCK(lk) TryEnterCriticalSection(lk)
+#define INITIAL_LOCK(lk) (!InitializeCriticalSectionAndSpinCount((lk), 0x80000000|4000))
+#define DESTROY_LOCK(lk) (DeleteCriticalSection(lk), 0)
+#define NEED_GLOBAL_LOCK_INIT
+
+static MLOCK_T malloc_global_mutex;
+static volatile LONG malloc_global_mutex_status;
+
+/* Use spin loop to initialize global lock */
+static void init_malloc_global_mutex() {
+ for (;;) {
+ long stat = malloc_global_mutex_status;
+ if (stat > 0)
+ return;
+ /* transition to < 0 while initializing, then to > 0) */
+ if (stat == 0 &&
+ interlockedcompareexchange(&malloc_global_mutex_status, (LONG)-1, (LONG)0) == 0) {
+ InitializeCriticalSection(&malloc_global_mutex);
+ interlockedexchange(&malloc_global_mutex_status, (LONG)1);
+ return;
+ }
+ SleepEx(0, FALSE);
+ }
+}
+
+#else /* pthreads-based locks */
+#define MLOCK_T pthread_mutex_t
+#define ACQUIRE_LOCK(lk) pthread_mutex_lock(lk)
+#define RELEASE_LOCK(lk) pthread_mutex_unlock(lk)
+#define TRY_LOCK(lk) (!pthread_mutex_trylock(lk))
+#define INITIAL_LOCK(lk) pthread_init_lock(lk)
+#define DESTROY_LOCK(lk) pthread_mutex_destroy(lk)
+
+#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 && defined(linux) && !defined(PTHREAD_MUTEX_RECURSIVE)
+/* Cope with old-style linux recursive lock initialization by adding */
+/* skipped internal declaration from pthread.h */
+extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr,
+ int __kind));
+#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP
+#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y)
+#endif /* USE_RECURSIVE_LOCKS ... */
+
+static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER;
+
+static int pthread_init_lock (MLOCK_T *lk) {
+ pthread_mutexattr_t attr;
+ if (pthread_mutexattr_init(&attr)) return 1;
+#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0
+ if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
+#endif
+ if (pthread_mutex_init(lk, &attr)) return 1;
+ if (pthread_mutexattr_destroy(&attr)) return 1;
+ return 0;
+}
+
+#endif /* ... lock types ... */
+
+/* Common code for all lock types */
+#define USE_LOCK_BIT (2U)
+
+#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK
+#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex);
+#endif
+
+#ifndef RELEASE_MALLOC_GLOBAL_LOCK
+#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex);
+#endif
+
+#endif /* USE_LOCKS */
+
+/* ----------------------- Chunk representations ------------------------ */
+
+/*
+ (The following includes lightly edited explanations by Colin Plumb.)
+
+ The malloc_chunk declaration below is misleading (but accurate and
+ necessary). It declares a "view" into memory allowing access to
+ necessary fields at known offsets from a given base.
+
+ Chunks of memory are maintained using a `boundary tag' method as
+ originally described by Knuth. (See the paper by Paul Wilson
+ ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
+ techniques.) Sizes of free chunks are stored both in the front of
+ each chunk and at the end. This makes consolidating fragmented
+ chunks into bigger chunks fast. The head fields also hold bits
+ representing whether chunks are free or in use.
+
+ Here are some pictures to make it clearer. They are "exploded" to
+ show that the state of a chunk can be thought of as extending from
+ the high 31 bits of the head field of its header through the
+ prev_foot and PINUSE_BIT bit of the following chunk header.
+
+ A chunk that's in use looks like:
+
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Size of previous chunk (if P = 0) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
+ | Size of this chunk 1| +-+
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | |
+ +- -+
+ | |
+ +- -+
+ | :
+ +- size - sizeof(size_t) available payload bytes -+
+ : |
+ chunk-> +- -+
+ | |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
+ | Size of next chunk (may or may not be in use) | +-+
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
+ And if it's free, it looks like this:
+
+ chunk-> +- -+
+ | User payload (must be in use, or we would have merged!) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
+ | Size of this chunk 0| +-+
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Next pointer |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Prev pointer |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | :
+ +- size - sizeof(struct chunk) unused bytes -+
+ : |
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Size of this chunk |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
+ | Size of next chunk (must be in use, or we would have merged)| +-+
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | :
+ +- User payload -+
+ : |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ |0|
+ +-+
+ Note that since we always merge adjacent free chunks, the chunks
+ adjacent to a free chunk must be in use.
+
+ Given a pointer to a chunk (which can be derived trivially from the
+ payload pointer) we can, in O(1) time, find out whether the adjacent
+ chunks are free, and if so, unlink them from the lists that they
+ are on and merge them with the current chunk.
+
+ Chunks always begin on even word boundaries, so the mem portion
+ (which is returned to the user) is also on an even word boundary, and
+ thus at least double-word aligned.
+
+ The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
+ chunk size (which is always a multiple of two words), is an in-use
+ bit for the *previous* chunk. If that bit is *clear*, then the
+ word before the current chunk size contains the previous chunk
+ size, and can be used to find the front of the previous chunk.
+ The very first chunk allocated always has this bit set, preventing
+ access to non-existent (or non-owned) memory. If pinuse is set for
+ any given chunk, then you CANNOT determine the size of the
+ previous chunk, and might even get a memory addressing fault when
+ trying to do so.
+
+ The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
+ the chunk size redundantly records whether the current chunk is
+ inuse (unless the chunk is mmapped). This redundancy enables usage
+ checks within free and realloc, and reduces indirection when freeing
+ and consolidating chunks.
+
+ Each freshly allocated chunk must have both cinuse and pinuse set.
+ That is, each allocated chunk borders either a previously allocated
+ and still in-use chunk, or the base of its memory arena. This is
+ ensured by making all allocations from the `lowest' part of any
+ found chunk. Further, no free chunk physically borders another one,
+ so each free chunk is known to be preceded and followed by either
+ inuse chunks or the ends of memory.
+
+ Note that the `foot' of the current chunk is actually represented
+ as the prev_foot of the NEXT chunk. This makes it easier to
+ deal with alignments etc but can be very confusing when trying
+ to extend or adapt this code.
+
+ The exceptions to all this are
+
+ 1. The special chunk `top' is the top-most available chunk (i.e.,
+ the one bordering the end of available memory). It is treated
+ specially. Top is never included in any bin, is used only if
+ no other chunk is available, and is released back to the
+ system if it is very large (see M_TRIM_THRESHOLD). In effect,
+ the top chunk is treated as larger (and thus less well
+ fitting) than any other available chunk. The top chunk
+ doesn't update its trailing size field since there is no next
+ contiguous chunk that would have to index off it. However,
+ space is still allocated for it (TOP_FOOT_SIZE) to enable
+ separation or merging when space is extended.
+
+ 3. Chunks allocated via mmap, have both cinuse and pinuse bits
+ cleared in their head fields. Because they are allocated
+ one-by-one, each must carry its own prev_foot field, which is
+ also used to hold the offset this chunk has within its mmapped
+ region, which is needed to preserve alignment. Each mmapped
+ chunk is trailed by the first two fields of a fake next-chunk
+ for sake of usage checks.
+
+*/
+
+struct malloc_chunk {
+ size_t prev_foot; /* Size of previous chunk (if free). */
+ size_t head; /* Size and inuse bits. */
+ struct malloc_chunk* fd; /* double links -- used only if free. */
+ struct malloc_chunk* bk;
+};
+
+typedef struct malloc_chunk mchunk;
+typedef struct malloc_chunk* mchunkptr;
+typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
+typedef unsigned int bindex_t; /* Described below */
+typedef unsigned int binmap_t; /* Described below */
+typedef unsigned int flag_t; /* The type of various bit flag sets */
+
+/* ------------------- Chunks sizes and alignments ----------------------- */
+
+#define MCHUNK_SIZE (sizeof(mchunk))
+
+#if FOOTERS
+#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
+#else /* FOOTERS */
+#define CHUNK_OVERHEAD (SIZE_T_SIZE)
+#endif /* FOOTERS */
+
+/* MMapped chunks need a second word of overhead ... */
+#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
+/* ... and additional padding for fake next-chunk at foot */
+#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
+
+/* The smallest size we can malloc is an aligned minimal chunk */
+#define MIN_CHUNK_SIZE\
+ ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
+
+/* conversion from malloc headers to user pointers, and back */
+#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
+#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
+/* chunk associated with aligned address A */
+#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
+
+/* Bounds on request (not chunk) sizes. */
+#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
+#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
+
+/* pad request bytes into a usable size */
+#define pad_request(req) \
+ (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
+
+/* pad request, checking for minimum (but not maximum) */
+#define request2size(req) \
+ (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
+
+
+/* ------------------ Operations on head and foot fields ----------------- */
+
+/*
+ The head field of a chunk is or'ed with PINUSE_BIT when previous
+ adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
+ use, unless mmapped, in which case both bits are cleared.
+
+ FLAG4_BIT is not used by this malloc, but might be useful in extensions.
+*/
+
+#define PINUSE_BIT (SIZE_T_ONE)
+#define CINUSE_BIT (SIZE_T_TWO)
+#define FLAG4_BIT (SIZE_T_FOUR)
+#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
+#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
+
+/* Head value for fenceposts */
+#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
+
+/* extraction of fields from head words */
+#define cinuse(p) ((p)->head & CINUSE_BIT)
+#define pinuse(p) ((p)->head & PINUSE_BIT)
+#define flag4inuse(p) ((p)->head & FLAG4_BIT)
+#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT)
+#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0)
+
+#define chunksize(p) ((p)->head & ~(FLAG_BITS))
+
+#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
+#define set_flag4(p) ((p)->head |= FLAG4_BIT)
+#define clear_flag4(p) ((p)->head &= ~FLAG4_BIT)
+
+/* Treat space at ptr +/- offset as a chunk */
+#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
+#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
+
+/* Ptr to next or previous physical malloc_chunk. */
+#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
+#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
+
+/* extract next chunk's pinuse bit */
+#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
+
+/* Get/set size at footer */
+#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
+#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
+
+/* Set size, pinuse bit, and foot */
+#define set_size_and_pinuse_of_free_chunk(p, s)\
+ ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
+
+/* Set size, pinuse bit, foot, and clear next pinuse */
+#define set_free_with_pinuse(p, s, n)\
+ (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
+
+/* Get the internal overhead associated with chunk p */
+#define overhead_for(p)\
+ (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
+
+/* Return true if malloced space is not necessarily cleared */
+#if MMAP_CLEARS
+#define calloc_must_clear(p) (!is_mmapped(p))
+#else /* MMAP_CLEARS */
+#define calloc_must_clear(p) (1)
+#endif /* MMAP_CLEARS */
+
+/* ---------------------- Overlaid data structures ----------------------- */
+
+/*
+ When chunks are not in use, they are treated as nodes of either
+ lists or trees.
+
+ "Small" chunks are stored in circular doubly-linked lists, and look
+ like this:
+
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Size of previous chunk |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ `head:' | Size of chunk, in bytes |P|
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Forward pointer to next chunk in list |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Back pointer to previous chunk in list |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Unused space (may be 0 bytes long) .
+ . .
+ . |
+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ `foot:' | Size of chunk, in bytes |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
+ Larger chunks are kept in a form of bitwise digital trees (aka
+ tries) keyed on chunksizes. Because malloc_tree_chunks are only for
+ free chunks greater than 256 bytes, their size doesn't impose any
+ constraints on user chunk sizes. Each node looks like:
+
+ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Size of previous chunk |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ `head:' | Size of chunk, in bytes |P|
+ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Forward pointer to next chunk of same size |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Back pointer to previous chunk of same size |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Pointer to left child (child[0]) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Pointer to right child (child[1]) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Pointer to parent |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | bin index of this chunk |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | Unused space .
+ . |
+nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ `foot:' | Size of chunk, in bytes |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+
+ Each tree holding treenodes is a tree of unique chunk sizes. Chunks
+ of the same size are arranged in a circularly-linked list, with only
+ the oldest chunk (the next to be used, in our FIFO ordering)
+ actually in the tree. (Tree members are distinguished by a non-null
+ parent pointer.) If a chunk with the same size an an existing node
+ is inserted, it is linked off the existing node using pointers that
+ work in the same way as fd/bk pointers of small chunks.
+
+ Each tree contains a power of 2 sized range of chunk sizes (the
+ smallest is 0x100 <= x < 0x180), which is is divided in half at each
+ tree level, with the chunks in the smaller half of the range (0x100
+ <= x < 0x140 for the top nose) in the left subtree and the larger
+ half (0x140 <= x < 0x180) in the right subtree. This is, of course,
+ done by inspecting individual bits.
+
+ Using these rules, each node's left subtree contains all smaller
+ sizes than its right subtree. However, the node at the root of each
+ subtree has no particular ordering relationship to either. (The
+ dividing line between the subtree sizes is based on trie relation.)
+ If we remove the last chunk of a given size from the interior of the
+ tree, we need to replace it with a leaf node. The tree ordering
+ rules permit a node to be replaced by any leaf below it.
+
+ The smallest chunk in a tree (a common operation in a best-fit
+ allocator) can be found by walking a path to the leftmost leaf in
+ the tree. Unlike a usual binary tree, where we follow left child
+ pointers until we reach a null, here we follow the right child
+ pointer any time the left one is null, until we reach a leaf with
+ both child pointers null. The smallest chunk in the tree will be
+ somewhere along that path.
+
+ The worst case number of steps to add, find, or remove a node is
+ bounded by the number of bits differentiating chunks within
+ bins. Under current bin calculations, this ranges from 6 up to 21
+ (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
+ is of course much better.
+*/
+
+struct malloc_tree_chunk {
+ /* The first four fields must be compatible with malloc_chunk */
+ size_t prev_foot;
+ size_t head;
+ struct malloc_tree_chunk* fd;
+ struct malloc_tree_chunk* bk;
+
+ struct malloc_tree_chunk* child[2];
+ struct malloc_tree_chunk* parent;
+ bindex_t index;
+};
+
+typedef struct malloc_tree_chunk tchunk;
+typedef struct malloc_tree_chunk* tchunkptr;
+typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
+
+/* A little helper macro for trees */
+#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
+
+/* ----------------------------- Segments -------------------------------- */
+
+/*
+ Each malloc space may include non-contiguous segments, held in a
+ list headed by an embedded malloc_segment record representing the
+ top-most space. Segments also include flags holding properties of
+ the space. Large chunks that are directly allocated by mmap are not
+ included in this list. They are instead independently created and
+ destroyed without otherwise keeping track of them.
+
+ Segment management mainly comes into play for spaces allocated by
+ MMAP. Any call to MMAP might or might not return memory that is
+ adjacent to an existing segment. MORECORE normally contiguously
+ extends the current space, so this space is almost always adjacent,
+ which is simpler and faster to deal with. (This is why MORECORE is
+ used preferentially to MMAP when both are available -- see
+ sys_alloc.) When allocating using MMAP, we don't use any of the
+ hinting mechanisms (inconsistently) supported in various
+ implementations of unix mmap, or distinguish reserving from
+ committing memory. Instead, we just ask for space, and exploit
+ contiguity when we get it. It is probably possible to do
+ better than this on some systems, but no general scheme seems
+ to be significantly better.
+
+ Management entails a simpler variant of the consolidation scheme
+ used for chunks to reduce fragmentation -- new adjacent memory is
+ normally prepended or appended to an existing segment. However,
+ there are limitations compared to chunk consolidation that mostly
+ reflect the fact that segment processing is relatively infrequent
+ (occurring only when getting memory from system) and that we
+ don't expect to have huge numbers of segments:
+
+ * Segments are not indexed, so traversal requires linear scans. (It
+ would be possible to index these, but is not worth the extra
+ overhead and complexity for most programs on most platforms.)
+ * New segments are only appended to old ones when holding top-most
+ memory; if they cannot be prepended to others, they are held in
+ different segments.
+
+ Except for the top-most segment of an mstate, each segment record
+ is kept at the tail of its segment. Segments are added by pushing
+ segment records onto the list headed by &mstate.seg for the
+ containing mstate.
+
+ Segment flags control allocation/merge/deallocation policies:
+ * If EXTERN_BIT set, then we did not allocate this segment,
+ and so should not try to deallocate or merge with others.
+ (This currently holds only for the initial segment passed
+ into create_mspace_with_base.)
+ * If USE_MMAP_BIT set, the segment may be merged with
+ other surrounding mmapped segments and trimmed/de-allocated
+ using munmap.
+ * If neither bit is set, then the segment was obtained using
+ MORECORE so can be merged with surrounding MORECORE'd segments
+ and deallocated/trimmed using MORECORE with negative arguments.
+*/
+
+struct malloc_segment {
+ char* base; /* base address */
+ size_t size; /* allocated size */
+ struct malloc_segment* next; /* ptr to next segment */
+ flag_t sflags; /* mmap and extern flag */
+};
+
+#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT)
+#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
+
+typedef struct malloc_segment msegment;
+typedef struct malloc_segment* msegmentptr;
+
+/* ---------------------------- malloc_state ----------------------------- */
+
+/*
+ A malloc_state holds all of the bookkeeping for a space.
+ The main fields are:
+
+ Top
+ The topmost chunk of the currently active segment. Its size is
+ cached in topsize. The actual size of topmost space is
+ topsize+TOP_FOOT_SIZE, which includes space reserved for adding
+ fenceposts and segment records if necessary when getting more
+ space from the system. The size at which to autotrim top is
+ cached from mparams in trim_check, except that it is disabled if
+ an autotrim fails.
+
+ Designated victim (dv)
+ This is the preferred chunk for servicing small requests that
+ don't have exact fits. It is normally the chunk split off most
+ recently to service another small request. Its size is cached in
+ dvsize. The link fields of this chunk are not maintained since it
+ is not kept in a bin.
+
+ SmallBins
+ An array of bin headers for free chunks. These bins hold chunks
+ with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
+ chunks of all the same size, spaced 8 bytes apart. To simplify
+ use in double-linked lists, each bin header acts as a malloc_chunk
+ pointing to the real first node, if it exists (else pointing to
+ itself). This avoids special-casing for headers. But to avoid
+ waste, we allocate only the fd/bk pointers of bins, and then use
+ repositioning tricks to treat these as the fields of a chunk.
+
+ TreeBins
+ Treebins are pointers to the roots of trees holding a range of
+ sizes. There are 2 equally spaced treebins for each power of two
+ from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
+ larger.
+
+ Bin maps
+ There is one bit map for small bins ("smallmap") and one for
+ treebins ("treemap). Each bin sets its bit when non-empty, and
+ clears the bit when empty. Bit operations are then used to avoid
+ bin-by-bin searching -- nearly all "search" is done without ever
+ looking at bins that won't be selected. The bit maps
+ conservatively use 32 bits per map word, even if on 64bit system.
+ For a good description of some of the bit-based techniques used
+ here, see Henry S. Warren Jr's book "Hacker's Delight" (and
+ supplement at http://hackersdelight.org/). Many of these are
+ intended to reduce the branchiness of paths through malloc etc, as
+ well as to reduce the number of memory locations read or written.
+
+ Segments
+ A list of segments headed by an embedded malloc_segment record
+ representing the initial space.
+
+ Address check support
+ The least_addr field is the least address ever obtained from
+ MORECORE or MMAP. Attempted frees and reallocs of any address less
+ than this are trapped (unless INSECURE is defined).
+
+ Magic tag
+ A cross-check field that should always hold same value as mparams.magic.
+
+ Max allowed footprint
+ The maximum allowed bytes to allocate from system (zero means no limit)
+
+ Flags
+ Bits recording whether to use MMAP, locks, or contiguous MORECORE
+
+ Statistics
+ Each space keeps track of current and maximum system memory
+ obtained via MORECORE or MMAP.
+
+ Trim support
+ Fields holding the amount of unused topmost memory that should trigger
+ trimming, and a counter to force periodic scanning to release unused
+ non-topmost segments.
+
+ Locking
+ If USE_LOCKS is defined, the "mutex" lock is acquired and released
+ around every public call using this mspace.
+
+ Extension support
+ A void* pointer and a size_t field that can be used to help implement
+ extensions to this malloc.
+*/
+
+/* Bin types, widths and sizes */
+#define NSMALLBINS (32U)
+#define NTREEBINS (32U)
+#define SMALLBIN_SHIFT (3U)
+#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
+#define TREEBIN_SHIFT (8U)
+#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
+#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
+#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
+
+struct malloc_state {
+ binmap_t smallmap;
+ binmap_t treemap;
+ size_t dvsize;
+ size_t topsize;
+ char* least_addr;
+ mchunkptr dv;
+ mchunkptr top;
+ size_t trim_check;
+ size_t release_checks;
+ size_t magic;
+ mchunkptr smallbins[(NSMALLBINS+1)*2];
+ tbinptr treebins[NTREEBINS];
+ size_t footprint;
+ size_t max_footprint;
+ size_t footprint_limit; /* zero means no limit */
+ flag_t mflags;
+#if USE_LOCKS
+ MLOCK_T mutex; /* locate lock among fields that rarely change */
+#endif /* USE_LOCKS */
+ msegment seg;
+ void* extp; /* Unused but available for extensions */
+ size_t exts;
+};
+
+typedef struct malloc_state* mstate;
+
+/* ------------- Global malloc_state and malloc_params ------------------- */
+
+/*
+ malloc_params holds global properties, including those that can be
+ dynamically set using mallopt. There is a single instance, mparams,
+ initialized in init_mparams. Note that the non-zeroness of "magic"
+ also serves as an initialization flag.
+*/
+
+struct malloc_params {
+ size_t magic;
+ size_t page_size;
+ size_t granularity;
+ size_t mmap_threshold;
+ size_t trim_threshold;
+ flag_t default_mflags;
+};
+
+static struct malloc_params mparams;
+
+/* Ensure mparams initialized */
+#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams())
+
+#if !ONLY_MSPACES
+
+/* The global malloc_state used for all non-"mspace" calls */
+static struct malloc_state _gm_;
+#define gm (&_gm_)
+#define is_global(M) ((M) == &_gm_)
+
+#endif /* !ONLY_MSPACES */
+
+#define is_initialized(M) ((M)->top != 0)
+
+/* -------------------------- system alloc setup ------------------------- */
+
+/* Operations on mflags */
+
+#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
+#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
+#if USE_LOCKS
+#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
+#else
+#define disable_lock(M)
+#endif
+
+#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
+#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
+#if HAVE_MMAP
+#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
+#else
+#define disable_mmap(M)
+#endif
+
+#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
+#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
+
+#define set_lock(M,L)\
+ ((M)->mflags = (L)?\
+ ((M)->mflags | USE_LOCK_BIT) :\
+ ((M)->mflags & ~USE_LOCK_BIT))
+
+/* page-align a size */
+#define page_align(S)\
+ (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
+
+/* granularity-align a size */
+#define granularity_align(S)\
+ (((S) + (mparams.granularity - SIZE_T_ONE))\
+ & ~(mparams.granularity - SIZE_T_ONE))
+
+
+/* For mmap, use granularity alignment on windows, else page-align */
+#ifdef WIN32
+#define mmap_align(S) granularity_align(S)
+#else
+#define mmap_align(S) page_align(S)
+#endif
+
+/* For sys_alloc, enough padding to ensure can malloc request on success */
+#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT)
+
+#define is_page_aligned(S)\
+ (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
+#define is_granularity_aligned(S)\
+ (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
+
+/* True if segment S holds address A */
+#define segment_holds(S, A)\
+ ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
+
+/* Return segment holding given address */
+static msegmentptr segment_holding(mstate m, char* addr) {
+ msegmentptr sp = &m->seg;
+ for (;;) {
+ if (addr >= sp->base && addr < sp->base + sp->size)
+ return sp;
+ if ((sp = sp->next) == 0)
+ return 0;
+ }
+}
+
+/* Return true if segment contains a segment link */
+static int has_segment_link(mstate m, msegmentptr ss) {
+ msegmentptr sp = &m->seg;
+ for (;;) {
+ if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
+ return 1;
+ if ((sp = sp->next) == 0)
+ return 0;
+ }
+}
+
+#ifndef MORECORE_CANNOT_TRIM
+#define should_trim(M,s) ((s) > (M)->trim_check)
+#else /* MORECORE_CANNOT_TRIM */
+#define should_trim(M,s) (0)
+#endif /* MORECORE_CANNOT_TRIM */
+
+/*
+ TOP_FOOT_SIZE is padding at the end of a segment, including space
+ that may be needed to place segment records and fenceposts when new
+ noncontiguous segments are added.
+*/
+#define TOP_FOOT_SIZE\
+ (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
+
+
+/* ------------------------------- Hooks -------------------------------- */
+
+/*
+ PREACTION should be defined to return 0 on success, and nonzero on
+ failure. If you are not using locking, you can redefine these to do
+ anything you like.
+*/
+
+#if USE_LOCKS
+#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
+#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
+#else /* USE_LOCKS */
+
+#ifndef PREACTION
+#define PREACTION(M) (0)
+#endif /* PREACTION */
+
+#ifndef POSTACTION
+#define POSTACTION(M)
+#endif /* POSTACTION */
+
+#endif /* USE_LOCKS */
+
+/*
+ CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
+ USAGE_ERROR_ACTION is triggered on detected bad frees and
+ reallocs. The argument p is an address that might have triggered the
+ fault. It is ignored by the two predefined actions, but might be
+ useful in custom actions that try to help diagnose errors.
+*/
+
+#if PROCEED_ON_ERROR
+
+/* A count of the number of corruption errors causing resets */
+int malloc_corruption_error_count;
+
+/* default corruption action */
+static void reset_on_error(mstate m);
+
+#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
+#define USAGE_ERROR_ACTION(m, p)
+
+#else /* PROCEED_ON_ERROR */
+
+#ifndef CORRUPTION_ERROR_ACTION
+#define CORRUPTION_ERROR_ACTION(m) ABORT
+#endif /* CORRUPTION_ERROR_ACTION */
+
+#ifndef USAGE_ERROR_ACTION
+#define USAGE_ERROR_ACTION(m,p) ABORT
+#endif /* USAGE_ERROR_ACTION */
+
+#endif /* PROCEED_ON_ERROR */
+
+
+/* -------------------------- Debugging setup ---------------------------- */
+
+#if ! DEBUG
+
+#define check_free_chunk(M,P)
+#define check_inuse_chunk(M,P)
+#define check_malloced_chunk(M,P,N)
+#define check_mmapped_chunk(M,P)
+#define check_malloc_state(M)
+#define check_top_chunk(M,P)
+
+#else /* DEBUG */
+#define check_free_chunk(M,P) do_check_free_chunk(M,P)
+#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
+#define check_top_chunk(M,P) do_check_top_chunk(M,P)
+#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
+#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
+#define check_malloc_state(M) do_check_malloc_state(M)
+
+static void do_check_any_chunk(mstate m, mchunkptr p);
+static void do_check_top_chunk(mstate m, mchunkptr p);
+static void do_check_mmapped_chunk(mstate m, mchunkptr p);
+static void do_check_inuse_chunk(mstate m, mchunkptr p);
+static void do_check_free_chunk(mstate m, mchunkptr p);
+static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
+static void do_check_tree(mstate m, tchunkptr t);
+static void do_check_treebin(mstate m, bindex_t i);
+static void do_check_smallbin(mstate m, bindex_t i);
+static void do_check_malloc_state(mstate m);
+static int bin_find(mstate m, mchunkptr x);
+static size_t traverse_and_check(mstate m);
+#endif /* DEBUG */
+
+/* ---------------------------- Indexing Bins ---------------------------- */
+
+#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
+#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT)
+#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
+#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
+
+/* addressing by index. See above about smallbin repositioning */
+#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
+#define treebin_at(M,i) (&((M)->treebins[i]))
+
+/* assign tree index for size S to variable I. Use x86 asm if possible */
+#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
+#define compute_tree_index(S, I)\
+{\
+ unsigned int X = S >> TREEBIN_SHIFT;\
+ if (X == 0)\
+ I = 0;\
+ else if (X > 0xFFFF)\
+ I = NTREEBINS-1;\
+ else {\
+ unsigned int K = (unsigned) sizeof(X)*__CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X); \
+ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
+ }\
+}
+
+#elif defined (__INTEL_COMPILER)
+#define compute_tree_index(S, I)\
+{\
+ size_t X = S >> TREEBIN_SHIFT;\
+ if (X == 0)\
+ I = 0;\
+ else if (X > 0xFFFF)\
+ I = NTREEBINS-1;\
+ else {\
+ unsigned int K = _bit_scan_reverse (X); \
+ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
+ }\
+}
+
+#elif defined(_MSC_VER) && _MSC_VER>=1300
+#define compute_tree_index(S, I)\
+{\
+ size_t X = S >> TREEBIN_SHIFT;\
+ if (X == 0)\
+ I = 0;\
+ else if (X > 0xFFFF)\
+ I = NTREEBINS-1;\
+ else {\
+ unsigned int K;\
+ _BitScanReverse((DWORD *) &K, (DWORD) X);\
+ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
+ }\
+}
+
+#else /* GNUC */
+#define compute_tree_index(S, I)\
+{\
+ size_t X = S >> TREEBIN_SHIFT;\
+ if (X == 0)\
+ I = 0;\
+ else if (X > 0xFFFF)\
+ I = NTREEBINS-1;\
+ else {\
+ unsigned int Y = (unsigned int)X;\
+ unsigned int N = ((Y - 0x100) >> 16) & 8;\
+ unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
+ N += K;\
+ N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
+ K = 14 - N + ((Y <<= K) >> 15);\
+ I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
+ }\
+}
+#endif /* GNUC */
+
+/* Bit representing maximum resolved size in a treebin at i */
+#define bit_for_tree_index(i) \
+ (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
+
+/* Shift placing maximum resolved bit in a treebin at i as sign bit */
+#define leftshift_for_tree_index(i) \
+ ((i == NTREEBINS-1)? 0 : \
+ ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
+
+/* The size of the smallest chunk held in bin with index i */
+#define minsize_for_tree_index(i) \
+ ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
+ (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
+
+
+/* ------------------------ Operations on bin maps ----------------------- */
+
+/* bit corresponding to given index */
+#define idx2bit(i) ((binmap_t)(1) << (i))
+
+/* Mark/Clear bits with given index */
+#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
+#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
+#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
+
+#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
+#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
+#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
+
+/* isolate the least set bit of a bitmap */
+#define least_bit(x) ((x) & -(x))
+
+/* mask with all bits to left of least bit of x on */
+#define left_bits(x) ((x<<1) | -(x<<1))
+
+/* mask with all bits to left of or equal to least bit of x on */
+#define same_or_left_bits(x) ((x) | -(x))
+
+/* index corresponding to given bit. Use x86 asm if possible */
+
+#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
+#define compute_bit2idx(X, I)\
+{\
+ unsigned int J;\
+ J = __builtin_ctz(X); \
+ I = (bindex_t)J;\
+}
+
+#elif defined (__INTEL_COMPILER)
+#define compute_bit2idx(X, I)\
+{\
+ unsigned int J;\
+ J = _bit_scan_forward (X); \
+ I = (bindex_t)J;\
+}
+
+#elif defined(_MSC_VER) && _MSC_VER>=1300
+#define compute_bit2idx(X, I)\
+{\
+ unsigned int J;\
+ _BitScanForward((DWORD *) &J, X);\
+ I = (bindex_t)J;\
+}
+
+#elif USE_BUILTIN_FFS
+#define compute_bit2idx(X, I) I = ffs(X)-1
+
+#else
+#define compute_bit2idx(X, I)\
+{\
+ unsigned int Y = X - 1;\
+ unsigned int K = Y >> (16-4) & 16;\
+ unsigned int N = K; Y >>= K;\
+ N += K = Y >> (8-3) & 8; Y >>= K;\
+ N += K = Y >> (4-2) & 4; Y >>= K;\
+ N += K = Y >> (2-1) & 2; Y >>= K;\
+ N += K = Y >> (1-0) & 1; Y >>= K;\
+ I = (bindex_t)(N + Y);\
+}
+#endif /* GNUC */
+
+
+/* ----------------------- Runtime Check Support ------------------------- */
+
+/*
+ For security, the main invariant is that malloc/free/etc never
+ writes to a static address other than malloc_state, unless static
+ malloc_state itself has been corrupted, which cannot occur via
+ malloc (because of these checks). In essence this means that we
+ believe all pointers, sizes, maps etc held in malloc_state, but
+ check all of those linked or offsetted from other embedded data
+ structures. These checks are interspersed with main code in a way
+ that tends to minimize their run-time cost.
+
+ When FOOTERS is defined, in addition to range checking, we also
+ verify footer fields of inuse chunks, which can be used guarantee
+ that the mstate controlling malloc/free is intact. This is a
+ streamlined version of the approach described by William Robertson
+ et al in "Run-time Detection of Heap-based Overflows" LISA'03
+ http://www.usenix.org/events/lisa03/tech/robertson.html The footer
+ of an inuse chunk holds the xor of its mstate and a random seed,
+ that is checked upon calls to free() and realloc(). This is
+ (probabalistically) unguessable from outside the program, but can be
+ computed by any code successfully malloc'ing any chunk, so does not
+ itself provide protection against code that has already broken
+ security through some other means. Unlike Robertson et al, we
+ always dynamically check addresses of all offset chunks (previous,
+ next, etc). This turns out to be cheaper than relying on hashes.
+*/
+
+#if !INSECURE
+/* Check if address a is at least as high as any from MORECORE or MMAP */
+#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
+/* Check if address of next chunk n is higher than base chunk p */
+#define ok_next(p, n) ((char*)(p) < (char*)(n))
+/* Check if p has inuse status */
+#define ok_inuse(p) is_inuse(p)
+/* Check if p has its pinuse bit on */
+#define ok_pinuse(p) pinuse(p)
+
+#else /* !INSECURE */
+#define ok_address(M, a) (1)
+#define ok_next(b, n) (1)
+#define ok_inuse(p) (1)
+#define ok_pinuse(p) (1)
+#endif /* !INSECURE */
+
+#if (FOOTERS && !INSECURE)
+/* Check if (alleged) mstate m has expected magic field */
+#define ok_magic(M) ((M)->magic == mparams.magic)
+#else /* (FOOTERS && !INSECURE) */
+#define ok_magic(M) (1)
+#endif /* (FOOTERS && !INSECURE) */
+
+/* In gcc, use __builtin_expect to minimize impact of checks */
+#if !INSECURE
+#if defined(__GNUC__) && __GNUC__ >= 3
+#define RTCHECK(e) __builtin_expect(e, 1)
+#else /* GNUC */
+#define RTCHECK(e) (e)
+#endif /* GNUC */
+#else /* !INSECURE */
+#define RTCHECK(e) (1)
+#endif /* !INSECURE */
+
+/* macros to set up inuse chunks with or without footers */
+
+#if !FOOTERS
+
+#define mark_inuse_foot(M,p,s)
+
+/* Macros for setting head/foot of non-mmapped chunks */
+
+/* Set cinuse bit and pinuse bit of next chunk */
+#define set_inuse(M,p,s)\
+ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
+ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
+
+/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
+#define set_inuse_and_pinuse(M,p,s)\
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
+ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
+
+/* Set size, cinuse and pinuse bit of this chunk */
+#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
+
+#else /* FOOTERS */
+
+/* Set foot of inuse chunk to be xor of mstate and seed */
+#define mark_inuse_foot(M,p,s)\
+ (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
+
+#define get_mstate_for(p)\
+ ((mstate)(((mchunkptr)((char*)(p) +\
+ (chunksize(p))))->prev_foot ^ mparams.magic))
+
+#define set_inuse(M,p,s)\
+ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
+ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
+ mark_inuse_foot(M,p,s))
+
+#define set_inuse_and_pinuse(M,p,s)\
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
+ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
+ mark_inuse_foot(M,p,s))
+
+#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
+ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
+ mark_inuse_foot(M, p, s))
+
+#endif /* !FOOTERS */
+
+/* ---------------------------- setting mparams -------------------------- */
+
+#if LOCK_AT_FORK
+static void pre_fork(void) { ACQUIRE_LOCK(&(gm)->mutex); }
+static void post_fork_parent(void) { RELEASE_LOCK(&(gm)->mutex); }
+static void post_fork_child(void) { INITIAL_LOCK(&(gm)->mutex); }
+#endif /* LOCK_AT_FORK */
+
+/* Initialize mparams */
+static int init_mparams(void) {
+#ifdef NEED_GLOBAL_LOCK_INIT
+ if (malloc_global_mutex_status <= 0)
+ init_malloc_global_mutex();
+#endif
+
+ ACQUIRE_MALLOC_GLOBAL_LOCK();
+ if (mparams.magic == 0) {
+ size_t magic;
+ size_t psize;
+ size_t gsize;
+
+#ifndef WIN32
+ psize = malloc_getpagesize;
+ gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize);
+#else /* WIN32 */
+ {
+ SYSTEM_INFO system_info;
+ GetSystemInfo(&system_info);
+ psize = system_info.dwPageSize;
+ gsize = ((DEFAULT_GRANULARITY != 0)?
+ DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
+ }
+#endif /* WIN32 */
+
+ /* Sanity-check configuration:
+ size_t must be unsigned and as wide as pointer type.
+ ints must be at least 4 bytes.
+ alignment must be at least 8.
+ Alignment, min chunk size, and page size must all be powers of 2.
+ */
+ if ((sizeof(size_t) != sizeof(char*)) ||
+ (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
+ (sizeof(int) < 4) ||
+ (MALLOC_ALIGNMENT < (size_t)8U) ||
+ ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
+ ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
+ ((gsize & (gsize-SIZE_T_ONE)) != 0) ||
+ ((psize & (psize-SIZE_T_ONE)) != 0))
+ ABORT;
+ mparams.granularity = gsize;
+ mparams.page_size = psize;
+ mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
+ mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
+#if MORECORE_CONTIGUOUS
+ mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
+#else /* MORECORE_CONTIGUOUS */
+ mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
+#endif /* MORECORE_CONTIGUOUS */
+
+#if !ONLY_MSPACES
+ /* Set up lock for main malloc area */
+ gm->mflags = mparams.default_mflags;
+ (void)INITIAL_LOCK(&gm->mutex);
+#endif
+#if LOCK_AT_FORK
+ pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child);
+#endif
+
+ {
+#if USE_DEV_RANDOM
+ int fd;
+ unsigned char buf[sizeof(size_t)];
+ /* Try to use /dev/urandom, else fall back on using time */
+ if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
+ read(fd, buf, sizeof(buf)) == sizeof(buf)) {
+ magic = *((size_t *) buf);
+ close(fd);
+ }
+ else
+#endif /* USE_DEV_RANDOM */
+#ifdef WIN32
+ magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);
+#elif defined(LACKS_TIME_H)
+ magic = (size_t)&magic ^ (size_t)0x55555555U;
+#else
+ magic = (size_t)(time(0) ^ (size_t)0x55555555U);
+#endif
+ magic |= (size_t)8U; /* ensure nonzero */
+ magic &= ~(size_t)7U; /* improve chances of fault for bad values */
+ /* Until memory modes commonly available, use volatile-write */
+ (*(volatile size_t *)(&(mparams.magic))) = magic;
+ }
+ }
+
+ RELEASE_MALLOC_GLOBAL_LOCK();
+ return 1;
+}
+
+/* support for mallopt */
+static int change_mparam(int param_number, int value) {
+ size_t val;
+ ensure_initialization();
+ val = (value == -1)? MAX_SIZE_T : (size_t)value;
+ switch(param_number) {
+ case M_TRIM_THRESHOLD:
+ mparams.trim_threshold = val;
+ return 1;
+ case M_GRANULARITY:
+ if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
+ mparams.granularity = val;
+ return 1;
+ }
+ else
+ return 0;
+ case M_MMAP_THRESHOLD:
+ mparams.mmap_threshold = val;
+ return 1;
+ default:
+ return 0;
+ }
+}
+
+#if DEBUG
+/* ------------------------- Debugging Support --------------------------- */
+
+/* Check properties of any chunk, whether free, inuse, mmapped etc */
+static void do_check_any_chunk(mstate m, mchunkptr p) {
+ assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
+ assert(ok_address(m, p));
+}
+
+/* Check properties of top chunk */
+static void do_check_top_chunk(mstate m, mchunkptr p) {
+ msegmentptr sp = segment_holding(m, (char*)p);
+ size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */
+ assert(sp != 0);
+ assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
+ assert(ok_address(m, p));
+ assert(sz == m->topsize);
+ assert(sz > 0);
+ assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
+ assert(pinuse(p));
+ assert(!pinuse(chunk_plus_offset(p, sz)));
+}
+
+/* Check properties of (inuse) mmapped chunks */
+static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
+ size_t sz = chunksize(p);
+ size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD);
+ assert(is_mmapped(p));
+ assert(use_mmap(m));
+ assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
+ assert(ok_address(m, p));
+ assert(!is_small(sz));
+ assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
+ assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
+ assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
+}
+
+/* Check properties of inuse chunks */
+static void do_check_inuse_chunk(mstate m, mchunkptr p) {
+ do_check_any_chunk(m, p);
+ assert(is_inuse(p));
+ assert(next_pinuse(p));
+ /* If not pinuse and not mmapped, previous chunk has OK offset */
+ assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
+ if (is_mmapped(p))
+ do_check_mmapped_chunk(m, p);
+}
+
+/* Check properties of free chunks */
+static void do_check_free_chunk(mstate m, mchunkptr p) {
+ size_t sz = chunksize(p);
+ mchunkptr next = chunk_plus_offset(p, sz);
+ do_check_any_chunk(m, p);
+ assert(!is_inuse(p));
+ assert(!next_pinuse(p));
+ assert (!is_mmapped(p));
+ if (p != m->dv && p != m->top) {
+ if (sz >= MIN_CHUNK_SIZE) {
+ assert((sz & CHUNK_ALIGN_MASK) == 0);
+ assert(is_aligned(chunk2mem(p)));
+ assert(next->prev_foot == sz);
+ assert(pinuse(p));
+ assert (next == m->top || is_inuse(next));
+ assert(p->fd->bk == p);
+ assert(p->bk->fd == p);
+ }
+ else /* markers are always of size SIZE_T_SIZE */
+ assert(sz == SIZE_T_SIZE);
+ }
+}
+
+/* Check properties of malloced chunks at the point they are malloced */
+static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
+ if (mem != 0) {
+ mchunkptr p = mem2chunk(mem);
+ size_t sz = p->head & ~INUSE_BITS;
+ do_check_inuse_chunk(m, p);
+ assert((sz & CHUNK_ALIGN_MASK) == 0);
+ assert(sz >= MIN_CHUNK_SIZE);
+ assert(sz >= s);
+ /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
+ assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
+ }
+}
+
+/* Check a tree and its subtrees. */
+static void do_check_tree(mstate m, tchunkptr t) {
+ tchunkptr head = 0;
+ tchunkptr u = t;
+ bindex_t tindex = t->index;
+ size_t tsize = chunksize(t);
+ bindex_t idx;
+ compute_tree_index(tsize, idx);
+ assert(tindex == idx);
+ assert(tsize >= MIN_LARGE_SIZE);
+ assert(tsize >= minsize_for_tree_index(idx));
+ assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
+
+ do { /* traverse through chain of same-sized nodes */
+ do_check_any_chunk(m, ((mchunkptr)u));
+ assert(u->index == tindex);
+ assert(chunksize(u) == tsize);
+ assert(!is_inuse(u));
+ assert(!next_pinuse(u));
+ assert(u->fd->bk == u);
+ assert(u->bk->fd == u);
+ if (u->parent == 0) {
+ assert(u->child[0] == 0);
+ assert(u->child[1] == 0);
+ }
+ else {
+ assert(head == 0); /* only one node on chain has parent */
+ head = u;
+ assert(u->parent != u);
+ assert (u->parent->child[0] == u ||
+ u->parent->child[1] == u ||
+ *((tbinptr*)(u->parent)) == u);
+ if (u->child[0] != 0) {
+ assert(u->child[0]->parent == u);
+ assert(u->child[0] != u);
+ do_check_tree(m, u->child[0]);
+ }
+ if (u->child[1] != 0) {
+ assert(u->child[1]->parent == u);
+ assert(u->child[1] != u);
+ do_check_tree(m, u->child[1]);
+ }
+ if (u->child[0] != 0 && u->child[1] != 0) {
+ assert(chunksize(u->child[0]) < chunksize(u->child[1]));
+ }
+ }
+ u = u->fd;
+ } while (u != t);
+ assert(head != 0);
+}
+
+/* Check all the chunks in a treebin. */
+static void do_check_treebin(mstate m, bindex_t i) {
+ tbinptr* tb = treebin_at(m, i);
+ tchunkptr t = *tb;
+ int empty = (m->treemap & (1U << i)) == 0;
+ if (t == 0)
+ assert(empty);
+ if (!empty)
+ do_check_tree(m, t);
+}
+
+/* Check all the chunks in a smallbin. */
+static void do_check_smallbin(mstate m, bindex_t i) {
+ sbinptr b = smallbin_at(m, i);
+ mchunkptr p = b->bk;
+ unsigned int empty = (m->smallmap & (1U << i)) == 0;
+ if (p == b)
+ assert(empty);
+ if (!empty) {
+ for (; p != b; p = p->bk) {
+ size_t size = chunksize(p);
+ mchunkptr q;
+ /* each chunk claims to be free */
+ do_check_free_chunk(m, p);
+ /* chunk belongs in bin */
+ assert(small_index(size) == i);
+ assert(p->bk == b || chunksize(p->bk) == chunksize(p));
+ /* chunk is followed by an inuse chunk */
+ q = next_chunk(p);
+ if (q->head != FENCEPOST_HEAD)
+ do_check_inuse_chunk(m, q);
+ }
+ }
+}
+
+/* Find x in a bin. Used in other check functions. */
+static int bin_find(mstate m, mchunkptr x) {
+ size_t size = chunksize(x);
+ if (is_small(size)) {
+ bindex_t sidx = small_index(size);
+ sbinptr b = smallbin_at(m, sidx);
+ if (smallmap_is_marked(m, sidx)) {
+ mchunkptr p = b;
+ do {
+ if (p == x)
+ return 1;
+ } while ((p = p->fd) != b);
+ }
+ }
+ else {
+ bindex_t tidx;
+ compute_tree_index(size, tidx);
+ if (treemap_is_marked(m, tidx)) {
+ tchunkptr t = *treebin_at(m, tidx);
+ size_t sizebits = size << leftshift_for_tree_index(tidx);
+ while (t != 0 && chunksize(t) != size) {
+ t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
+ sizebits <<= 1;
+ }
+ if (t != 0) {
+ tchunkptr u = t;
+ do {
+ if (u == (tchunkptr)x)
+ return 1;
+ } while ((u = u->fd) != t);
+ }
+ }
+ }
+ return 0;
+}
+
+/* Traverse each chunk and check it; return total */
+static size_t traverse_and_check(mstate m) {
+ size_t sum = 0;
+ if (is_initialized(m)) {
+ msegmentptr s = &m->seg;
+ sum += m->topsize + TOP_FOOT_SIZE;
+ while (s != 0) {
+ mchunkptr q = align_as_chunk(s->base);
+ mchunkptr lastq = 0;
+ assert(pinuse(q));
+ while (segment_holds(s, q) &&
+ q != m->top && q->head != FENCEPOST_HEAD) {
+ sum += chunksize(q);
+ if (is_inuse(q)) {
+ assert(!bin_find(m, q));
+ do_check_inuse_chunk(m, q);
+ }
+ else {
+ assert(q == m->dv || bin_find(m, q));
+ assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */
+ do_check_free_chunk(m, q);
+ }
+ lastq = q;
+ q = next_chunk(q);
+ }
+ s = s->next;
+ }
+ }
+ return sum;
+}
+
+
+/* Check all properties of malloc_state. */
+static void do_check_malloc_state(mstate m) {
+ bindex_t i;
+ size_t total;
+ /* check bins */
+ for (i = 0; i < NSMALLBINS; ++i)
+ do_check_smallbin(m, i);
+ for (i = 0; i < NTREEBINS; ++i)
+ do_check_treebin(m, i);
+
+ if (m->dvsize != 0) { /* check dv chunk */
+ do_check_any_chunk(m, m->dv);
+ assert(m->dvsize == chunksize(m->dv));
+ assert(m->dvsize >= MIN_CHUNK_SIZE);
+ assert(bin_find(m, m->dv) == 0);
+ }
+
+ if (m->top != 0) { /* check top chunk */
+ do_check_top_chunk(m, m->top);
+ /*assert(m->topsize == chunksize(m->top)); redundant */
+ assert(m->topsize > 0);
+ assert(bin_find(m, m->top) == 0);
+ }
+
+ total = traverse_and_check(m);
+ assert(total <= m->footprint);
+ assert(m->footprint <= m->max_footprint);
+}
+#endif /* DEBUG */
+
+/* ----------------------------- statistics ------------------------------ */
+
+#if !NO_MALLINFO
+static struct mallinfo internal_mallinfo(mstate m) {
+ struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+ ensure_initialization();
+ if (!PREACTION(m)) {
+ check_malloc_state(m);
+ if (is_initialized(m)) {
+ size_t nfree = SIZE_T_ONE; /* top always free */
+ size_t mfree = m->topsize + TOP_FOOT_SIZE;
+ size_t sum = mfree;
+ msegmentptr s = &m->seg;
+ while (s != 0) {
+ mchunkptr q = align_as_chunk(s->base);
+ while (segment_holds(s, q) &&
+ q != m->top && q->head != FENCEPOST_HEAD) {
+ size_t sz = chunksize(q);
+ sum += sz;
+ if (!is_inuse(q)) {
+ mfree += sz;
+ ++nfree;
+ }
+ q = next_chunk(q);
+ }
+ s = s->next;
+ }
+
+ nm.arena = sum;
+ nm.ordblks = nfree;
+ nm.hblkhd = m->footprint - sum;
+ nm.usmblks = m->max_footprint;
+ nm.uordblks = m->footprint - mfree;
+ nm.fordblks = mfree;
+ nm.keepcost = m->topsize;
+ }
+
+ POSTACTION(m);
+ }
+ return nm;
+}
+#endif /* !NO_MALLINFO */
+
+#if !NO_MALLOC_STATS
+static void internal_malloc_stats(mstate m) {
+ ensure_initialization();
+ if (!PREACTION(m)) {
+ size_t maxfp = 0;
+ size_t fp = 0;
+ size_t used = 0;
+ check_malloc_state(m);
+ if (is_initialized(m)) {
+ msegmentptr s = &m->seg;
+ maxfp = m->max_footprint;
+ fp = m->footprint;
+ used = fp - (m->topsize + TOP_FOOT_SIZE);
+
+ while (s != 0) {
+ mchunkptr q = align_as_chunk(s->base);
+ while (segment_holds(s, q) &&
+ q != m->top && q->head != FENCEPOST_HEAD) {
+ if (!is_inuse(q))
+ used -= chunksize(q);
+ q = next_chunk(q);
+ }
+ s = s->next;
+ }
+ }
+ POSTACTION(m); /* drop lock */
+ fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
+ fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
+ fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
+ }
+}
+#endif /* NO_MALLOC_STATS */
+
+/* ----------------------- Operations on smallbins ----------------------- */
+
+/*
+ Various forms of linking and unlinking are defined as macros. Even
+ the ones for trees, which are very long but have very short typical
+ paths. This is ugly but reduces reliance on inlining support of
+ compilers.
+*/
+
+/* Link a free chunk into a smallbin */
+#define insert_small_chunk(M, P, S) {\
+ bindex_t I = small_index(S);\
+ mchunkptr B = smallbin_at(M, I);\
+ mchunkptr F = B;\
+ assert(S >= MIN_CHUNK_SIZE);\
+ if (!smallmap_is_marked(M, I))\
+ mark_smallmap(M, I);\
+ else if (RTCHECK(ok_address(M, B->fd)))\
+ F = B->fd;\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ B->fd = P;\
+ F->bk = P;\
+ P->fd = F;\
+ P->bk = B;\
+}
+
+/* Unlink a chunk from a smallbin */
+#define unlink_small_chunk(M, P, S) {\
+ mchunkptr F = P->fd;\
+ mchunkptr B = P->bk;\
+ bindex_t I = small_index(S);\
+ assert(P != B);\
+ assert(P != F);\
+ assert(chunksize(P) == small_index2size(I));\
+ if (RTCHECK(F == smallbin_at(M,I) || (ok_address(M, F) && F->bk == P))) { \
+ if (B == F) {\
+ clear_smallmap(M, I);\
+ }\
+ else if (RTCHECK(B == smallbin_at(M,I) ||\
+ (ok_address(M, B) && B->fd == P))) {\
+ F->bk = B;\
+ B->fd = F;\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+}
+
+/* Unlink the first chunk from a smallbin */
+#define unlink_first_small_chunk(M, B, P, I) {\
+ mchunkptr F = P->fd;\
+ assert(P != B);\
+ assert(P != F);\
+ assert(chunksize(P) == small_index2size(I));\
+ if (B == F) {\
+ clear_smallmap(M, I);\
+ }\
+ else if (RTCHECK(ok_address(M, F) && F->bk == P)) {\
+ F->bk = B;\
+ B->fd = F;\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+}
+
+/* Replace dv node, binning the old one */
+/* Used only when dvsize known to be small */
+#define replace_dv(M, P, S) {\
+ size_t DVS = M->dvsize;\
+ assert(is_small(DVS));\
+ if (DVS != 0) {\
+ mchunkptr DV = M->dv;\
+ insert_small_chunk(M, DV, DVS);\
+ }\
+ M->dvsize = S;\
+ M->dv = P;\
+}
+
+/* ------------------------- Operations on trees ------------------------- */
+
+/* Insert chunk into tree */
+#define insert_large_chunk(M, X, S) {\
+ tbinptr* H;\
+ bindex_t I;\
+ compute_tree_index(S, I);\
+ H = treebin_at(M, I);\
+ X->index = I;\
+ X->child[0] = X->child[1] = 0;\
+ if (!treemap_is_marked(M, I)) {\
+ mark_treemap(M, I);\
+ *H = X;\
+ X->parent = (tchunkptr)H;\
+ X->fd = X->bk = X;\
+ }\
+ else {\
+ tchunkptr T = *H;\
+ size_t K = S << leftshift_for_tree_index(I);\
+ for (;;) {\
+ if (chunksize(T) != S) {\
+ tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
+ K <<= 1;\
+ if (*C != 0)\
+ T = *C;\
+ else if (RTCHECK(ok_address(M, C))) {\
+ *C = X;\
+ X->parent = T;\
+ X->fd = X->bk = X;\
+ break;\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ break;\
+ }\
+ }\
+ else {\
+ tchunkptr F = T->fd;\
+ if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
+ T->fd = F->bk = X;\
+ X->fd = F;\
+ X->bk = T;\
+ X->parent = 0;\
+ break;\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ break;\
+ }\
+ }\
+ }\
+ }\
+}
+
+/*
+ Unlink steps:
+
+ 1. If x is a chained node, unlink it from its same-sized fd/bk links
+ and choose its bk node as its replacement.
+ 2. If x was the last node of its size, but not a leaf node, it must
+ be replaced with a leaf node (not merely one with an open left or
+ right), to make sure that lefts and rights of descendents
+ correspond properly to bit masks. We use the rightmost descendent
+ of x. We could use any other leaf, but this is easy to locate and
+ tends to counteract removal of leftmosts elsewhere, and so keeps
+ paths shorter than minimally guaranteed. This doesn't loop much
+ because on average a node in a tree is near the bottom.
+ 3. If x is the base of a chain (i.e., has parent links) relink
+ x's parent and children to x's replacement (or null if none).
+*/
+
+#define unlink_large_chunk(M, X) {\
+ tchunkptr XP = X->parent;\
+ tchunkptr R;\
+ if (X->bk != X) {\
+ tchunkptr F = X->fd;\
+ R = X->bk;\
+ if (RTCHECK(ok_address(M, F) && F->bk == X && R->fd == X)) {\
+ F->bk = R;\
+ R->fd = F;\
+ }\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ }\
+ else {\
+ tchunkptr* RP;\
+ if (((R = *(RP = &(X->child[1]))) != 0) ||\
+ ((R = *(RP = &(X->child[0]))) != 0)) {\
+ tchunkptr* CP;\
+ while ((*(CP = &(R->child[1])) != 0) ||\
+ (*(CP = &(R->child[0])) != 0)) {\
+ R = *(RP = CP);\
+ }\
+ if (RTCHECK(ok_address(M, RP)))\
+ *RP = 0;\
+ else {\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ }\
+ }\
+ if (XP != 0) {\
+ tbinptr* H = treebin_at(M, X->index);\
+ if (X == *H) {\
+ if ((*H = R) == 0) \
+ clear_treemap(M, X->index);\
+ }\
+ else if (RTCHECK(ok_address(M, XP))) {\
+ if (XP->child[0] == X) \
+ XP->child[0] = R;\
+ else \
+ XP->child[1] = R;\
+ }\
+ else\
+ CORRUPTION_ERROR_ACTION(M);\
+ if (R != 0) {\
+ if (RTCHECK(ok_address(M, R))) {\
+ tchunkptr C0, C1;\
+ R->parent = XP;\
+ if ((C0 = X->child[0]) != 0) {\
+ if (RTCHECK(ok_address(M, C0))) {\
+ R->child[0] = C0;\
+ C0->parent = R;\
+ }\
+ else\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ if ((C1 = X->child[1]) != 0) {\
+ if (RTCHECK(ok_address(M, C1))) {\
+ R->child[1] = C1;\
+ C1->parent = R;\
+ }\
+ else\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ }\
+ else\
+ CORRUPTION_ERROR_ACTION(M);\
+ }\
+ }\
+}
+
+/* Relays to large vs small bin operations */
+
+#define insert_chunk(M, P, S)\
+ if (is_small(S)) insert_small_chunk(M, P, S)\
+ else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
+
+#define unlink_chunk(M, P, S)\
+ if (is_small(S)) unlink_small_chunk(M, P, S)\
+ else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
+
+
+/* Relays to internal calls to malloc/free from realloc, memalign etc */
+
+#if ONLY_MSPACES
+#define internal_malloc(m, b) mspace_malloc(m, b)
+#define internal_free(m, mem) mspace_free(m,mem);
+#else /* ONLY_MSPACES */
+#if MSPACES
+#define internal_malloc(m, b)\
+ ((m == gm)? dlmalloc(b) : mspace_malloc(m, b))
+#define internal_free(m, mem)\
+ if (m == gm) dlfree(mem); else mspace_free(m,mem);
+#else /* MSPACES */
+#define internal_malloc(m, b) dlmalloc(b)
+#define internal_free(m, mem) dlfree(mem)
+#endif /* MSPACES */
+#endif /* ONLY_MSPACES */
+
+/* ----------------------- Direct-mmapping chunks ----------------------- */
+
+/*
+ Directly mmapped chunks are set up with an offset to the start of
+ the mmapped region stored in the prev_foot field of the chunk. This
+ allows reconstruction of the required argument to MUNMAP when freed,
+ and also allows adjustment of the returned chunk to meet alignment
+ requirements (especially in memalign).
+*/
+
+/* Malloc using mmap */
+static void* mmap_alloc(mstate m, size_t nb) {
+ size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
+ if (m->footprint_limit != 0) {
+ size_t fp = m->footprint + mmsize;
+ if (fp <= m->footprint || fp > m->footprint_limit)
+ return 0;
+ }
+ if (mmsize > nb) { /* Check for wrap around 0 */
+ char* mm = (char*)(CALL_DIRECT_MMAP(mmsize));
+ if (mm != CMFAIL) {
+ size_t offset = align_offset(chunk2mem(mm));
+ size_t psize = mmsize - offset - MMAP_FOOT_PAD;
+ mchunkptr p = (mchunkptr)(mm + offset);
+ p->prev_foot = offset;
+ p->head = psize;
+ mark_inuse_foot(m, p, psize);
+ chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
+ chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
+
+ if (m->least_addr == 0 || mm < m->least_addr)
+ m->least_addr = mm;
+ if ((m->footprint += mmsize) > m->max_footprint)
+ m->max_footprint = m->footprint;
+ assert(is_aligned(chunk2mem(p)));
+ check_mmapped_chunk(m, p);
+ return chunk2mem(p);
+ }
+ }
+ return 0;
+}
+
+/* Realloc using mmap */
+static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb, int flags) {
+ size_t oldsize = chunksize(oldp);
+ (void)flags; /* placate people compiling -Wunused */
+ if (is_small(nb)) /* Can't shrink mmap regions below small size */
+ return 0;
+ /* Keep old chunk if big enough but not too big */
+ if (oldsize >= nb + SIZE_T_SIZE &&
+ (oldsize - nb) <= (mparams.granularity << 1))
+ return oldp;
+ else {
+ size_t offset = oldp->prev_foot;
+ size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
+ size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
+ char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
+ oldmmsize, newmmsize, flags);
+ if (cp != CMFAIL) {
+ mchunkptr newp = (mchunkptr)(cp + offset);
+ size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
+ newp->head = psize;
+ mark_inuse_foot(m, newp, psize);
+ chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
+ chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
+
+ if (cp < m->least_addr)
+ m->least_addr = cp;
+ if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
+ m->max_footprint = m->footprint;
+ check_mmapped_chunk(m, newp);
+ return newp;
+ }
+ }
+ return 0;
+}
+
+
+/* -------------------------- mspace management -------------------------- */
+
+/* Initialize top chunk and its size */
+static void init_top(mstate m, mchunkptr p, size_t psize) {
+ /* Ensure alignment */
+ size_t offset = align_offset(chunk2mem(p));
+ p = (mchunkptr)((char*)p + offset);
+ psize -= offset;
+
+ m->top = p;
+ m->topsize = psize;
+ p->head = psize | PINUSE_BIT;
+ /* set size of fake trailing chunk holding overhead space only once */
+ chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
+ m->trim_check = mparams.trim_threshold; /* reset on each update */
+}
+
+/* Initialize bins for a new mstate that is otherwise zeroed out */
+static void init_bins(mstate m) {
+ /* Establish circular links for smallbins */
+ bindex_t i;
+ for (i = 0; i < NSMALLBINS; ++i) {
+ sbinptr bin = smallbin_at(m,i);
+ bin->fd = bin->bk = bin;
+ }
+}
+
+#if PROCEED_ON_ERROR
+
+/* default corruption action */
+static void reset_on_error(mstate m) {
+ int i;
+ ++malloc_corruption_error_count;
+ /* Reinitialize fields to forget about all memory */
+ m->smallmap = m->treemap = 0;
+ m->dvsize = m->topsize = 0;
+ m->seg.base = 0;
+ m->seg.size = 0;
+ m->seg.next = 0;
+ m->top = m->dv = 0;
+ for (i = 0; i < NTREEBINS; ++i)
+ *treebin_at(m, i) = 0;
+ init_bins(m);
+}
+#endif /* PROCEED_ON_ERROR */
+
+/* Allocate chunk and prepend remainder with chunk in successor base. */
+static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
+ size_t nb) {
+ mchunkptr p = align_as_chunk(newbase);
+ mchunkptr oldfirst = align_as_chunk(oldbase);
+ size_t psize = (char*)oldfirst - (char*)p;
+ mchunkptr q = chunk_plus_offset(p, nb);
+ size_t qsize = psize - nb;
+ set_size_and_pinuse_of_inuse_chunk(m, p, nb);
+
+ assert((char*)oldfirst > (char*)q);
+ assert(pinuse(oldfirst));
+ assert(qsize >= MIN_CHUNK_SIZE);
+
+ /* consolidate remainder with first chunk of old base */
+ if (oldfirst == m->top) {
+ size_t tsize = m->topsize += qsize;
+ m->top = q;
+ q->head = tsize | PINUSE_BIT;
+ check_top_chunk(m, q);
+ }
+ else if (oldfirst == m->dv) {
+ size_t dsize = m->dvsize += qsize;
+ m->dv = q;
+ set_size_and_pinuse_of_free_chunk(q, dsize);
+ }
+ else {
+ if (!is_inuse(oldfirst)) {
+ size_t nsize = chunksize(oldfirst);
+ unlink_chunk(m, oldfirst, nsize);
+ oldfirst = chunk_plus_offset(oldfirst, nsize);
+ qsize += nsize;
+ }
+ set_free_with_pinuse(q, qsize, oldfirst);
+ insert_chunk(m, q, qsize);
+ check_free_chunk(m, q);
+ }
+
+ check_malloced_chunk(m, chunk2mem(p), nb);
+ return chunk2mem(p);
+}
+
+/* Add a segment to hold a new noncontiguous region */
+static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
+ /* Determine locations and sizes of segment, fenceposts, old top */
+ char* old_top = (char*)m->top;
+ msegmentptr oldsp = segment_holding(m, old_top);
+ char* old_end = oldsp->base + oldsp->size;
+ size_t ssize = pad_request(sizeof(struct malloc_segment));
+ char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
+ size_t offset = align_offset(chunk2mem(rawsp));
+ char* asp = rawsp + offset;
+ char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
+ mchunkptr sp = (mchunkptr)csp;
+ msegmentptr ss = (msegmentptr)(chunk2mem(sp));
+ mchunkptr tnext = chunk_plus_offset(sp, ssize);
+ mchunkptr p = tnext;
+ int nfences = 0;
+
+ /* reset top to new space */
+ init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
+
+ /* Set up segment record */
+ assert(is_aligned(ss));
+ set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
+ *ss = m->seg; /* Push current record */
+ m->seg.base = tbase;
+ m->seg.size = tsize;
+ m->seg.sflags = mmapped;
+ m->seg.next = ss;
+
+ /* Insert trailing fenceposts */
+ for (;;) {
+ mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
+ p->head = FENCEPOST_HEAD;
+ ++nfences;
+ if ((char*)(&(nextp->head)) < old_end)
+ p = nextp;
+ else
+ break;
+ }
+ assert(nfences >= 2);
+
+ /* Insert the rest of old top into a bin as an ordinary free chunk */
+ if (csp != old_top) {
+ mchunkptr q = (mchunkptr)old_top;
+ size_t psize = csp - old_top;
+ mchunkptr tn = chunk_plus_offset(q, psize);
+ set_free_with_pinuse(q, psize, tn);
+ insert_chunk(m, q, psize);
+ }
+
+ check_top_chunk(m, m->top);
+}
+
+/* -------------------------- System allocation -------------------------- */
+
+/* Get memory from system using MORECORE or MMAP */
+static void* sys_alloc(mstate m, size_t nb) {
+ char* tbase = CMFAIL;
+ size_t tsize = 0;
+ flag_t mmap_flag = 0;
+ size_t asize; /* allocation size */
+
+ ensure_initialization();
+
+ /* Directly map large chunks, but only if already initialized */
+ if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) {
+ void* mem = mmap_alloc(m, nb);
+ if (mem != 0)
+ return mem;
+ }
+
+ asize = granularity_align(nb + SYS_ALLOC_PADDING);
+ if (asize <= nb)
+ return 0; /* wraparound */
+ if (m->footprint_limit != 0) {
+ size_t fp = m->footprint + asize;
+ if (fp <= m->footprint || fp > m->footprint_limit)
+ return 0;
+ }
+
+ /*
+ Try getting memory in any of three ways (in most-preferred to
+ least-preferred order):
+ 1. A call to MORECORE that can normally contiguously extend memory.
+ (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
+ or main space is mmapped or a previous contiguous call failed)
+ 2. A call to MMAP new space (disabled if not HAVE_MMAP).
+ Note that under the default settings, if MORECORE is unable to
+ fulfill a request, and HAVE_MMAP is true, then mmap is
+ used as a noncontiguous system allocator. This is a useful backup
+ strategy for systems with holes in address spaces -- in this case
+ sbrk cannot contiguously expand the heap, but mmap may be able to
+ find space.
+ 3. A call to MORECORE that cannot usually contiguously extend memory.
+ (disabled if not HAVE_MORECORE)
+
+ In all cases, we need to request enough bytes from system to ensure
+ we can malloc nb bytes upon success, so pad with enough space for
+ top_foot, plus alignment-pad to make sure we don't lose bytes if
+ not on boundary, and round this up to a granularity unit.
+ */
+
+ if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
+ char* br = CMFAIL;
+ size_t ssize = asize; /* sbrk call size */
+ msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
+ ACQUIRE_MALLOC_GLOBAL_LOCK();
+
+ if (ss == 0) { /* First time through or recovery */
+ char* base = (char*)CALL_MORECORE(0);
+ if (base != CMFAIL) {
+ size_t fp;
+ /* Adjust to end on a page boundary */
+ if (!is_page_aligned(base))
+ ssize += (page_align((size_t)base) - (size_t)base);
+ fp = m->footprint + ssize; /* recheck limits */
+ if (ssize > nb && ssize < HALF_MAX_SIZE_T &&
+ (m->footprint_limit == 0 ||
+ (fp > m->footprint && fp <= m->footprint_limit)) &&
+ (br = (char*)(CALL_MORECORE(ssize))) == base) {
+ tbase = base;
+ tsize = ssize;
+ }
+ }
+ }
+ else {
+ /* Subtract out existing available top space from MORECORE request. */
+ ssize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING);
+ /* Use mem here only if it did continuously extend old space */
+ if (ssize < HALF_MAX_SIZE_T &&
+ (br = (char*)(CALL_MORECORE(ssize))) == ss->base+ss->size) {
+ tbase = br;
+ tsize = ssize;
+ }
+ }
+
+ if (tbase == CMFAIL) { /* Cope with partial failure */
+ if (br != CMFAIL) { /* Try to use/extend the space we did get */
+ if (ssize < HALF_MAX_SIZE_T &&
+ ssize < nb + SYS_ALLOC_PADDING) {
+ size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - ssize);
+ if (esize < HALF_MAX_SIZE_T) {
+ char* end = (char*)CALL_MORECORE(esize);
+ if (end != CMFAIL)
+ ssize += esize;
+ else { /* Can't use; try to release */
+ (void) CALL_MORECORE(-ssize);
+ br = CMFAIL;
+ }
+ }
+ }
+ }
+ if (br != CMFAIL) { /* Use the space we did get */
+ tbase = br;
+ tsize = ssize;
+ }
+ else
+ disable_contiguous(m); /* Don't try contiguous path in the future */
+ }
+
+ RELEASE_MALLOC_GLOBAL_LOCK();
+ }
+
+ if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
+ char* mp = (char*)(CALL_MMAP(asize));
+ if (mp != CMFAIL) {
+ tbase = mp;
+ tsize = asize;
+ mmap_flag = USE_MMAP_BIT;
+ }
+ }
+
+ if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
+ if (asize < HALF_MAX_SIZE_T) {
+ char* br = CMFAIL;
+ char* end = CMFAIL;
+ ACQUIRE_MALLOC_GLOBAL_LOCK();
+ br = (char*)(CALL_MORECORE(asize));
+ end = (char*)(CALL_MORECORE(0));
+ RELEASE_MALLOC_GLOBAL_LOCK();
+ if (br != CMFAIL && end != CMFAIL && br < end) {
+ size_t ssize = end - br;
+ if (ssize > nb + TOP_FOOT_SIZE) {
+ tbase = br;
+ tsize = ssize;
+ }
+ }
+ }
+ }
+
+ if (tbase != CMFAIL) {
+
+ if ((m->footprint += tsize) > m->max_footprint)
+ m->max_footprint = m->footprint;
+
+ if (!is_initialized(m)) { /* first-time initialization */
+ if (m->least_addr == 0 || tbase < m->least_addr)
+ m->least_addr = tbase;
+ m->seg.base = tbase;
+ m->seg.size = tsize;
+ m->seg.sflags = mmap_flag;
+ m->magic = mparams.magic;
+ m->release_checks = MAX_RELEASE_CHECK_RATE;
+ init_bins(m);
+#if !ONLY_MSPACES
+ if (is_global(m))
+ init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
+ else
+#endif
+ {
+ /* Offset top by embedded malloc_state */
+ mchunkptr mn = next_chunk(mem2chunk(m));
+ init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
+ }
+ }
+
+ else {
+ /* Try to merge with an existing segment */
+ msegmentptr sp = &m->seg;
+ /* Only consider most recent segment if traversal suppressed */
+ while (sp != 0 && tbase != sp->base + sp->size)
+ sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
+ if (sp != 0 &&
+ !is_extern_segment(sp) &&
+ (sp->sflags & USE_MMAP_BIT) == mmap_flag &&
+ segment_holds(sp, m->top)) { /* append */
+ sp->size += tsize;
+ init_top(m, m->top, m->topsize + tsize);
+ }
+ else {
+ if (tbase < m->least_addr)
+ m->least_addr = tbase;
+ sp = &m->seg;
+ while (sp != 0 && sp->base != tbase + tsize)
+ sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
+ if (sp != 0 &&
+ !is_extern_segment(sp) &&
+ (sp->sflags & USE_MMAP_BIT) == mmap_flag) {
+ char* oldbase = sp->base;
+ sp->base = tbase;
+ sp->size += tsize;
+ return prepend_alloc(m, tbase, oldbase, nb);
+ }
+ else
+ add_segment(m, tbase, tsize, mmap_flag);
+ }
+ }
+
+ if (nb < m->topsize) { /* Allocate from new or extended top space */
+ size_t rsize = m->topsize -= nb;
+ mchunkptr p = m->top;
+ mchunkptr r = m->top = chunk_plus_offset(p, nb);
+ r->head = rsize | PINUSE_BIT;
+ set_size_and_pinuse_of_inuse_chunk(m, p, nb);
+ check_top_chunk(m, m->top);
+ check_malloced_chunk(m, chunk2mem(p), nb);
+ return chunk2mem(p);
+ }
+ }
+
+ MALLOC_FAILURE_ACTION;
+ return 0;
+}
+
+/* ----------------------- system deallocation -------------------------- */
+
+/* Unmap and unlink any mmapped segments that don't contain used chunks */
+static size_t release_unused_segments(mstate m) {
+ size_t released = 0;
+ int nsegs = 0;
+ msegmentptr pred = &m->seg;
+ msegmentptr sp = pred->next;
+ while (sp != 0) {
+ char* base = sp->base;
+ size_t size = sp->size;
+ msegmentptr next = sp->next;
+ ++nsegs;
+ if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
+ mchunkptr p = align_as_chunk(base);
+ size_t psize = chunksize(p);
+ /* Can unmap if first chunk holds entire segment and not pinned */
+ if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
+ tchunkptr tp = (tchunkptr)p;
+ assert(segment_holds(sp, (char*)sp));
+ if (p == m->dv) {
+ m->dv = 0;
+ m->dvsize = 0;
+ }
+ else {
+ unlink_large_chunk(m, tp);
+ }
+ if (CALL_MUNMAP(base, size) == 0) {
+ released += size;
+ m->footprint -= size;
+ /* unlink obsoleted record */
+ sp = pred;
+ sp->next = next;
+ }
+ else { /* back out if cannot unmap */
+ insert_large_chunk(m, tp, psize);
+ }
+ }
+ }
+ if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */
+ break;
+ pred = sp;
+ sp = next;
+ }
+ /* Reset check counter */
+ m->release_checks = (((size_t) nsegs > (size_t) MAX_RELEASE_CHECK_RATE)?
+ (size_t) nsegs : (size_t) MAX_RELEASE_CHECK_RATE);
+ return released;
+}
+
+static int sys_trim(mstate m, size_t pad) {
+ size_t released = 0;
+ ensure_initialization();
+ if (pad < MAX_REQUEST && is_initialized(m)) {
+ pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
+
+ if (m->topsize > pad) {
+ /* Shrink top space in granularity-size units, keeping at least one */
+ size_t unit = mparams.granularity;
+ size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
+ SIZE_T_ONE) * unit;
+ msegmentptr sp = segment_holding(m, (char*)m->top);
+
+ if (!is_extern_segment(sp)) {
+ if (is_mmapped_segment(sp)) {
+ if (HAVE_MMAP &&
+ sp->size >= extra &&
+ !has_segment_link(m, sp)) { /* can't shrink if pinned */
+ size_t newsize = sp->size - extra;
+ (void)newsize; /* placate people compiling -Wunused-variable */
+ /* Prefer mremap, fall back to munmap */
+ if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
+ (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
+ released = extra;
+ }
+ }
+ }
+ else if (HAVE_MORECORE) {
+ if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
+ extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
+ ACQUIRE_MALLOC_GLOBAL_LOCK();
+ {
+ /* Make sure end of memory is where we last set it. */
+ char* old_br = (char*)(CALL_MORECORE(0));
+ if (old_br == sp->base + sp->size) {
+ char* rel_br = (char*)(CALL_MORECORE(-extra));
+ char* new_br = (char*)(CALL_MORECORE(0));
+ if (rel_br != CMFAIL && new_br < old_br)
+ released = old_br - new_br;
+ }
+ }
+ RELEASE_MALLOC_GLOBAL_LOCK();
+ }
+ }
+
+ if (released != 0) {
+ sp->size -= released;
+ m->footprint -= released;
+ init_top(m, m->top, m->topsize - released);
+ check_top_chunk(m, m->top);
+ }
+ }
+
+ /* Unmap any unused mmapped segments */
+ if (HAVE_MMAP)
+ released += release_unused_segments(m);
+
+ /* On failure, disable autotrim to avoid repeated failed future calls */
+ if (released == 0 && m->topsize > m->trim_check)
+ m->trim_check = MAX_SIZE_T;
+ }
+
+ return (released != 0)? 1 : 0;
+}
+
+/* Consolidate and bin a chunk. Differs from exported versions
+ of free mainly in that the chunk need not be marked as inuse.
+*/
+static void dispose_chunk(mstate m, mchunkptr p, size_t psize) {
+ mchunkptr next = chunk_plus_offset(p, psize);
+ if (!pinuse(p)) {
+ mchunkptr prev;
+ size_t prevsize = p->prev_foot;
+ if (is_mmapped(p)) {
+ psize += prevsize + MMAP_FOOT_PAD;
+ if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
+ m->footprint -= psize;
+ return;
+ }
+ prev = chunk_minus_offset(p, prevsize);
+ psize += prevsize;
+ p = prev;
+ if (RTCHECK(ok_address(m, prev))) { /* consolidate backward */
+ if (p != m->dv) {
+ unlink_chunk(m, p, prevsize);
+ }
+ else if ((next->head & INUSE_BITS) == INUSE_BITS) {
+ m->dvsize = psize;
+ set_free_with_pinuse(p, psize, next);
+ return;
+ }
+ }
+ else {
+ CORRUPTION_ERROR_ACTION(m);
+ return;
+ }
+ }
+ if (RTCHECK(ok_address(m, next))) {
+ if (!cinuse(next)) { /* consolidate forward */
+ if (next == m->top) {
+ size_t tsize = m->topsize += psize;
+ m->top = p;
+ p->head = tsize | PINUSE_BIT;
+ if (p == m->dv) {
+ m->dv = 0;
+ m->dvsize = 0;
+ }
+ return;
+ }
+ else if (next == m->dv) {
+ size_t dsize = m->dvsize += psize;
+ m->dv = p;
+ set_size_and_pinuse_of_free_chunk(p, dsize);
+ return;
+ }
+ else {
+ size_t nsize = chunksize(next);
+ psize += nsize;
+ unlink_chunk(m, next, nsize);
+ set_size_and_pinuse_of_free_chunk(p, psize);
+ if (p == m->dv) {
+ m->dvsize = psize;
+ return;
+ }
+ }
+ }
+ else {
+ set_free_with_pinuse(p, psize, next);
+ }
+ insert_chunk(m, p, psize);
+ }
+ else {
+ CORRUPTION_ERROR_ACTION(m);
+ }
+}
+
+/* ---------------------------- malloc --------------------------- */
+
+/* allocate a large request from the best fitting chunk in a treebin */
+static void* tmalloc_large(mstate m, size_t nb) {
+ tchunkptr v = 0;
+ size_t rsize = -nb; /* Unsigned negation */
+ tchunkptr t;
+ bindex_t idx;
+ compute_tree_index(nb, idx);
+ if ((t = *treebin_at(m, idx)) != 0) {
+ /* Traverse tree for this bin looking for node with size == nb */
+ size_t sizebits = nb << leftshift_for_tree_index(idx);
+ tchunkptr rst = 0; /* The deepest untaken right subtree */
+ for (;;) {
+ tchunkptr rt;
+ size_t trem = chunksize(t) - nb;
+ if (trem < rsize) {
+ v = t;
+ if ((rsize = trem) == 0)
+ break;
+ }
+ rt = t->child[1];
+ t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
+ if (rt != 0 && rt != t)
+ rst = rt;
+ if (t == 0) {
+ t = rst; /* set t to least subtree holding sizes > nb */
+ break;
+ }
+ sizebits <<= 1;
+ }
+ }
+ if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
+ binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
+ if (leftbits != 0) {
+ bindex_t i;
+ binmap_t leastbit = least_bit(leftbits);
+ compute_bit2idx(leastbit, i);
+ t = *treebin_at(m, i);
+ }
+ }
+
+ while (t != 0) { /* find smallest of tree or subtree */
+ size_t trem = chunksize(t) - nb;
+ if (trem < rsize) {
+ rsize = trem;
+ v = t;
+ }
+ t = leftmost_child(t);
+ }
+
+ /* If dv is a better fit, return 0 so malloc will use it */
+ if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
+ if (RTCHECK(ok_address(m, v))) { /* split */
+ mchunkptr r = chunk_plus_offset(v, nb);
+ assert(chunksize(v) == rsize + nb);
+ if (RTCHECK(ok_next(v, r))) {
+ unlink_large_chunk(m, v);
+ if (rsize < MIN_CHUNK_SIZE)
+ set_inuse_and_pinuse(m, v, (rsize + nb));
+ else {
+ set_size_and_pinuse_of_inuse_chunk(m, v, nb);
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ insert_chunk(m, r, rsize);
+ }
+ return chunk2mem(v);
+ }
+ }
+ CORRUPTION_ERROR_ACTION(m);
+ }
+ return 0;
+}
+
+/* allocate a small request from the best fitting chunk in a treebin */
+static void* tmalloc_small(mstate m, size_t nb) {
+ tchunkptr t, v;
+ size_t rsize;
+ bindex_t i;
+ binmap_t leastbit = least_bit(m->treemap);
+ compute_bit2idx(leastbit, i);
+ v = t = *treebin_at(m, i);
+ rsize = chunksize(t) - nb;
+
+ while ((t = leftmost_child(t)) != 0) {
+ size_t trem = chunksize(t) - nb;
+ if (trem < rsize) {
+ rsize = trem;
+ v = t;
+ }
+ }
+
+ if (RTCHECK(ok_address(m, v))) {
+ mchunkptr r = chunk_plus_offset(v, nb);
+ assert(chunksize(v) == rsize + nb);
+ if (RTCHECK(ok_next(v, r))) {
+ unlink_large_chunk(m, v);
+ if (rsize < MIN_CHUNK_SIZE)
+ set_inuse_and_pinuse(m, v, (rsize + nb));
+ else {
+ set_size_and_pinuse_of_inuse_chunk(m, v, nb);
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ replace_dv(m, r, rsize);
+ }
+ return chunk2mem(v);
+ }
+ }
+
+ CORRUPTION_ERROR_ACTION(m);
+ return 0;
+}
+
+#if !ONLY_MSPACES
+
+void* dlmalloc(size_t bytes) {
+ /*
+ Basic algorithm:
+ If a small request (< 256 bytes minus per-chunk overhead):
+ 1. If one exists, use a remainderless chunk in associated smallbin.
+ (Remainderless means that there are too few excess bytes to
+ represent as a chunk.)
+ 2. If it is big enough, use the dv chunk, which is normally the
+ chunk adjacent to the one used for the most recent small request.
+ 3. If one exists, split the smallest available chunk in a bin,
+ saving remainder in dv.
+ 4. If it is big enough, use the top chunk.
+ 5. If available, get memory from system and use it
+ Otherwise, for a large request:
+ 1. Find the smallest available binned chunk that fits, and use it
+ if it is better fitting than dv chunk, splitting if necessary.
+ 2. If better fitting than any binned chunk, use the dv chunk.
+ 3. If it is big enough, use the top chunk.
+ 4. If request size >= mmap threshold, try to directly mmap this chunk.
+ 5. If available, get memory from system and use it
+
+ The ugly goto's here ensure that postaction occurs along all paths.
+ */
+
+#if USE_LOCKS
+ ensure_initialization(); /* initialize in sys_alloc if not using locks */
+#endif
+
+ if (!PREACTION(gm)) {
+ void* mem;
+ size_t nb;
+ if (bytes <= MAX_SMALL_REQUEST) {
+ bindex_t idx;
+ binmap_t smallbits;
+ nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
+ idx = small_index(nb);
+ smallbits = gm->smallmap >> idx;
+
+ if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
+ mchunkptr b, p;
+ idx += ~smallbits & 1; /* Uses next bin if idx empty */
+ b = smallbin_at(gm, idx);
+ p = b->fd;
+ assert(chunksize(p) == small_index2size(idx));
+ unlink_first_small_chunk(gm, b, p, idx);
+ set_inuse_and_pinuse(gm, p, small_index2size(idx));
+ mem = chunk2mem(p);
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+
+ else if (nb > gm->dvsize) {
+ if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
+ mchunkptr b, p, r;
+ size_t rsize;
+ bindex_t i;
+ binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
+ binmap_t leastbit = least_bit(leftbits);
+ compute_bit2idx(leastbit, i);
+ b = smallbin_at(gm, i);
+ p = b->fd;
+ assert(chunksize(p) == small_index2size(i));
+ unlink_first_small_chunk(gm, b, p, i);
+ rsize = small_index2size(i) - nb;
+ /* Fit here cannot be remainderless if 4byte sizes */
+ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
+ set_inuse_and_pinuse(gm, p, small_index2size(i));
+ else {
+ set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
+ r = chunk_plus_offset(p, nb);
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ replace_dv(gm, r, rsize);
+ }
+ mem = chunk2mem(p);
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+
+ else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+ }
+ }
+ else if (bytes >= MAX_REQUEST)
+ nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
+ else {
+ nb = pad_request(bytes);
+ if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+ }
+
+ if (nb <= gm->dvsize) {
+ size_t rsize = gm->dvsize - nb;
+ mchunkptr p = gm->dv;
+ if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
+ mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
+ gm->dvsize = rsize;
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
+ }
+ else { /* exhaust dv */
+ size_t dvs = gm->dvsize;
+ gm->dvsize = 0;
+ gm->dv = 0;
+ set_inuse_and_pinuse(gm, p, dvs);
+ }
+ mem = chunk2mem(p);
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+
+ else if (nb < gm->topsize) { /* Split top */
+ size_t rsize = gm->topsize -= nb;
+ mchunkptr p = gm->top;
+ mchunkptr r = gm->top = chunk_plus_offset(p, nb);
+ r->head = rsize | PINUSE_BIT;
+ set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
+ mem = chunk2mem(p);
+ check_top_chunk(gm, gm->top);
+ check_malloced_chunk(gm, mem, nb);
+ goto postaction;
+ }
+
+ mem = sys_alloc(gm, nb);
+
+ postaction:
+ POSTACTION(gm);
+ return mem;
+ }
+
+ return 0;
+}
+
+/* ---------------------------- free --------------------------- */
+
+void dlfree(void* mem) {
+ /*
+ Consolidate freed chunks with preceeding or succeeding bordering
+ free chunks, if they exist, and then place in a bin. Intermixed
+ with special cases for top, dv, mmapped chunks, and usage errors.
+ */
+
+ if (mem != 0) {
+ mchunkptr p = mem2chunk(mem);
+#if FOOTERS
+ mstate fm = get_mstate_for(p);
+ if (!ok_magic(fm)) {
+ USAGE_ERROR_ACTION(fm, p);
+ return;
+ }
+#else /* FOOTERS */
+#define fm gm
+#endif /* FOOTERS */
+ if (!PREACTION(fm)) {
+ check_inuse_chunk(fm, p);
+ if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
+ size_t psize = chunksize(p);
+ mchunkptr next = chunk_plus_offset(p, psize);
+ if (!pinuse(p)) {
+ size_t prevsize = p->prev_foot;
+ if (is_mmapped(p)) {
+ psize += prevsize + MMAP_FOOT_PAD;
+ if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
+ fm->footprint -= psize;
+ goto postaction;
+ }
+ else {
+ mchunkptr prev = chunk_minus_offset(p, prevsize);
+ psize += prevsize;
+ p = prev;
+ if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
+ if (p != fm->dv) {
+ unlink_chunk(fm, p, prevsize);
+ }
+ else if ((next->head & INUSE_BITS) == INUSE_BITS) {
+ fm->dvsize = psize;
+ set_free_with_pinuse(p, psize, next);
+ goto postaction;
+ }
+ }
+ else
+ goto erroraction;
+ }
+ }
+
+ if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
+ if (!cinuse(next)) { /* consolidate forward */
+ if (next == fm->top) {
+ size_t tsize = fm->topsize += psize;
+ fm->top = p;
+ p->head = tsize | PINUSE_BIT;
+ if (p == fm->dv) {
+ fm->dv = 0;
+ fm->dvsize = 0;
+ }
+ if (should_trim(fm, tsize))
+ sys_trim(fm, 0);
+ goto postaction;
+ }
+ else if (next == fm->dv) {
+ size_t dsize = fm->dvsize += psize;
+ fm->dv = p;
+ set_size_and_pinuse_of_free_chunk(p, dsize);
+ goto postaction;
+ }
+ else {
+ size_t nsize = chunksize(next);
+ psize += nsize;
+ unlink_chunk(fm, next, nsize);
+ set_size_and_pinuse_of_free_chunk(p, psize);
+ if (p == fm->dv) {
+ fm->dvsize = psize;
+ goto postaction;
+ }
+ }
+ }
+ else
+ set_free_with_pinuse(p, psize, next);
+
+ if (is_small(psize)) {
+ insert_small_chunk(fm, p, psize);
+ check_free_chunk(fm, p);
+ }
+ else {
+ tchunkptr tp = (tchunkptr)p;
+ insert_large_chunk(fm, tp, psize);
+ check_free_chunk(fm, p);
+ if (--fm->release_checks == 0)
+ release_unused_segments(fm);
+ }
+ goto postaction;
+ }
+ }
+ erroraction:
+ USAGE_ERROR_ACTION(fm, p);
+ postaction:
+ POSTACTION(fm);
+ }
+ }
+#if !FOOTERS
+#undef fm
+#endif /* FOOTERS */
+}
+
+void* dlcalloc(size_t n_elements, size_t elem_size) {
+ void* mem;
+ size_t req = 0;
+ if (n_elements != 0) {
+ req = n_elements * elem_size;
+ if (((n_elements | elem_size) & ~(size_t)0xffff) &&
+ (req / n_elements != elem_size))
+ req = MAX_SIZE_T; /* force downstream failure on overflow */
+ }
+ mem = dlmalloc(req);
+ if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
+ memset(mem, 0, req);
+ return mem;
+}
+
+#endif /* !ONLY_MSPACES */
+
+/* ------------ Internal support for realloc, memalign, etc -------------- */
+
+/* Try to realloc; only in-place unless can_move true */
+static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb,
+ int can_move) {
+ mchunkptr newp = 0;
+ size_t oldsize = chunksize(p);
+ mchunkptr next = chunk_plus_offset(p, oldsize);
+ if (RTCHECK(ok_address(m, p) && ok_inuse(p) &&
+ ok_next(p, next) && ok_pinuse(next))) {
+ if (is_mmapped(p)) {
+ newp = mmap_resize(m, p, nb, can_move);
+ }
+ else if (oldsize >= nb) { /* already big enough */
+ size_t rsize = oldsize - nb;
+ if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */
+ mchunkptr r = chunk_plus_offset(p, nb);
+ set_inuse(m, p, nb);
+ set_inuse(m, r, rsize);
+ dispose_chunk(m, r, rsize);
+ }
+ newp = p;
+ }
+ else if (next == m->top) { /* extend into top */
+ if (oldsize + m->topsize > nb) {
+ size_t newsize = oldsize + m->topsize;
+ size_t newtopsize = newsize - nb;
+ mchunkptr newtop = chunk_plus_offset(p, nb);
+ set_inuse(m, p, nb);
+ newtop->head = newtopsize |PINUSE_BIT;
+ m->top = newtop;
+ m->topsize = newtopsize;
+ newp = p;
+ }
+ }
+ else if (next == m->dv) { /* extend into dv */
+ size_t dvs = m->dvsize;
+ if (oldsize + dvs >= nb) {
+ size_t dsize = oldsize + dvs - nb;
+ if (dsize >= MIN_CHUNK_SIZE) {
+ mchunkptr r = chunk_plus_offset(p, nb);
+ mchunkptr n = chunk_plus_offset(r, dsize);
+ set_inuse(m, p, nb);
+ set_size_and_pinuse_of_free_chunk(r, dsize);
+ clear_pinuse(n);
+ m->dvsize = dsize;
+ m->dv = r;
+ }
+ else { /* exhaust dv */
+ size_t newsize = oldsize + dvs;
+ set_inuse(m, p, newsize);
+ m->dvsize = 0;
+ m->dv = 0;
+ }
+ newp = p;
+ }
+ }
+ else if (!cinuse(next)) { /* extend into next free chunk */
+ size_t nextsize = chunksize(next);
+ if (oldsize + nextsize >= nb) {
+ size_t rsize = oldsize + nextsize - nb;
+ unlink_chunk(m, next, nextsize);
+ if (rsize < MIN_CHUNK_SIZE) {
+ size_t newsize = oldsize + nextsize;
+ set_inuse(m, p, newsize);
+ }
+ else {
+ mchunkptr r = chunk_plus_offset(p, nb);
+ set_inuse(m, p, nb);
+ set_inuse(m, r, rsize);
+ dispose_chunk(m, r, rsize);
+ }
+ newp = p;
+ }
+ }
+ }
+ else {
+ USAGE_ERROR_ACTION(m, chunk2mem(p));
+ }
+ return newp;
+}
+
+static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
+ void* mem = 0;
+ if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
+ alignment = MIN_CHUNK_SIZE;
+ if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
+ size_t a = MALLOC_ALIGNMENT << 1;
+ while (a < alignment) a <<= 1;
+ alignment = a;
+ }
+ if (bytes >= MAX_REQUEST - alignment) {
+ if (m != 0) { /* Test isn't needed but avoids compiler warning */
+ MALLOC_FAILURE_ACTION;
+ }
+ }
+ else {
+ size_t nb = request2size(bytes);
+ size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
+ mem = internal_malloc(m, req);
+ if (mem != 0) {
+ mchunkptr p = mem2chunk(mem);
+ if (PREACTION(m))
+ return 0;
+ if ((((size_t)(mem)) & (alignment - 1)) != 0) { /* misaligned */
+ /*
+ Find an aligned spot inside chunk. Since we need to give
+ back leading space in a chunk of at least MIN_CHUNK_SIZE, if
+ the first calculation places us at a spot with less than
+ MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
+ We've allocated enough total room so that this is always
+ possible.
+ */
+ char* br = (char*)mem2chunk((size_t)(((size_t)((char*)mem + alignment -
+ SIZE_T_ONE)) &
+ -alignment));
+ char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
+ br : br+alignment;
+ mchunkptr newp = (mchunkptr)pos;
+ size_t leadsize = pos - (char*)(p);
+ size_t newsize = chunksize(p) - leadsize;
+
+ if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
+ newp->prev_foot = p->prev_foot + leadsize;
+ newp->head = newsize;
+ }
+ else { /* Otherwise, give back leader, use the rest */
+ set_inuse(m, newp, newsize);
+ set_inuse(m, p, leadsize);
+ dispose_chunk(m, p, leadsize);
+ }
+ p = newp;
+ }
+
+ /* Give back spare room at the end */
+ if (!is_mmapped(p)) {
+ size_t size = chunksize(p);
+ if (size > nb + MIN_CHUNK_SIZE) {
+ size_t remainder_size = size - nb;
+ mchunkptr remainder = chunk_plus_offset(p, nb);
+ set_inuse(m, p, nb);
+ set_inuse(m, remainder, remainder_size);
+ dispose_chunk(m, remainder, remainder_size);
+ }
+ }
+
+ mem = chunk2mem(p);
+ assert (chunksize(p) >= nb);
+ assert(((size_t)mem & (alignment - 1)) == 0);
+ check_inuse_chunk(m, p);
+ POSTACTION(m);
+ }
+ }
+ return mem;
+}
+
+/*
+ Common support for independent_X routines, handling
+ all of the combinations that can result.
+ The opts arg has:
+ bit 0 set if all elements are same size (using sizes[0])
+ bit 1 set if elements should be zeroed
+*/
+static void** ialloc(mstate m,
+ size_t n_elements,
+ size_t* sizes,
+ int opts,
+ void* chunks[]) {
+
+ size_t element_size; /* chunksize of each element, if all same */
+ size_t contents_size; /* total size of elements */
+ size_t array_size; /* request size of pointer array */
+ void* mem; /* malloced aggregate space */
+ mchunkptr p; /* corresponding chunk */
+ size_t remainder_size; /* remaining bytes while splitting */
+ void** marray; /* either "chunks" or malloced ptr array */
+ mchunkptr array_chunk; /* chunk for malloced ptr array */
+ flag_t was_enabled; /* to disable mmap */
+ size_t size;
+ size_t i;
+
+ ensure_initialization();
+ /* compute array length, if needed */
+ if (chunks != 0) {
+ if (n_elements == 0)
+ return chunks; /* nothing to do */
+ marray = chunks;
+ array_size = 0;
+ }
+ else {
+ /* if empty req, must still return chunk representing empty array */
+ if (n_elements == 0)
+ return (void**)internal_malloc(m, 0);
+ marray = 0;
+ array_size = request2size(n_elements * (sizeof(void*)));
+ }
+
+ /* compute total element size */
+ if (opts & 0x1) { /* all-same-size */
+ element_size = request2size(*sizes);
+ contents_size = n_elements * element_size;
+ }
+ else { /* add up all the sizes */
+ element_size = 0;
+ contents_size = 0;
+ for (i = 0; i != n_elements; ++i)
+ contents_size += request2size(sizes[i]);
+ }
+
+ size = contents_size + array_size;
+
+ /*
+ Allocate the aggregate chunk. First disable direct-mmapping so
+ malloc won't use it, since we would not be able to later
+ free/realloc space internal to a segregated mmap region.
+ */
+ was_enabled = use_mmap(m);
+ disable_mmap(m);
+ mem = internal_malloc(m, size - CHUNK_OVERHEAD);
+ if (was_enabled)
+ enable_mmap(m);
+ if (mem == 0)
+ return 0;
+
+ if (PREACTION(m)) return 0;
+ p = mem2chunk(mem);
+ remainder_size = chunksize(p);
+
+ assert(!is_mmapped(p));
+
+ if (opts & 0x2) { /* optionally clear the elements */
+ memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
+ }
+
+ /* If not provided, allocate the pointer array as final part of chunk */
+ if (marray == 0) {
+ size_t array_chunk_size;
+ array_chunk = chunk_plus_offset(p, contents_size);
+ array_chunk_size = remainder_size - contents_size;
+ marray = (void**) (chunk2mem(array_chunk));
+ set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
+ remainder_size = contents_size;
+ }
+
+ /* split out elements */
+ for (i = 0; ; ++i) {
+ marray[i] = chunk2mem(p);
+ if (i != n_elements-1) {
+ if (element_size != 0)
+ size = element_size;
+ else
+ size = request2size(sizes[i]);
+ remainder_size -= size;
+ set_size_and_pinuse_of_inuse_chunk(m, p, size);
+ p = chunk_plus_offset(p, size);
+ }
+ else { /* the final element absorbs any overallocation slop */
+ set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
+ break;
+ }
+ }
+
+#if DEBUG
+ if (marray != chunks) {
+ /* final element must have exactly exhausted chunk */
+ if (element_size != 0) {
+ assert(remainder_size == element_size);
+ }
+ else {
+ assert(remainder_size == request2size(sizes[i]));
+ }
+ check_inuse_chunk(m, mem2chunk(marray));
+ }
+ for (i = 0; i != n_elements; ++i)
+ check_inuse_chunk(m, mem2chunk(marray[i]));
+
+#endif /* DEBUG */
+
+ POSTACTION(m);
+ return marray;
+}
+
+/* Try to free all pointers in the given array.
+ Note: this could be made faster, by delaying consolidation,
+ at the price of disabling some user integrity checks, We
+ still optimize some consolidations by combining adjacent
+ chunks before freeing, which will occur often if allocated
+ with ialloc or the array is sorted.
+*/
+static size_t internal_bulk_free(mstate m, void* array[], size_t nelem) {
+ size_t unfreed = 0;
+ if (!PREACTION(m)) {
+ void** a;
+ void** fence = &(array[nelem]);
+ for (a = array; a != fence; ++a) {
+ void* mem = *a;
+ if (mem != 0) {
+ mchunkptr p = mem2chunk(mem);
+ size_t psize = chunksize(p);
+#if FOOTERS
+ if (get_mstate_for(p) != m) {
+ ++unfreed;
+ continue;
+ }
+#endif
+ check_inuse_chunk(m, p);
+ *a = 0;
+ if (RTCHECK(ok_address(m, p) && ok_inuse(p))) {
+ void ** b = a + 1; /* try to merge with next chunk */
+ mchunkptr next = next_chunk(p);
+ if (b != fence && *b == chunk2mem(next)) {
+ size_t newsize = chunksize(next) + psize;
+ set_inuse(m, p, newsize);
+ *b = chunk2mem(p);
+ }
+ else
+ dispose_chunk(m, p, psize);
+ }
+ else {
+ CORRUPTION_ERROR_ACTION(m);
+ break;
+ }
+ }
+ }
+ if (should_trim(m, m->topsize))
+ sys_trim(m, 0);
+ POSTACTION(m);
+ }
+ return unfreed;
+}
+
+/* Traversal */
+#if MALLOC_INSPECT_ALL
+static void internal_inspect_all(mstate m,
+ void(*handler)(void *start,
+ void *end,
+ size_t used_bytes,
+ void* callback_arg),
+ void* arg) {
+ if (is_initialized(m)) {
+ mchunkptr top = m->top;
+ msegmentptr s;
+ for (s = &m->seg; s != 0; s = s->next) {
+ mchunkptr q = align_as_chunk(s->base);
+ while (segment_holds(s, q) && q->head != FENCEPOST_HEAD) {
+ mchunkptr next = next_chunk(q);
+ size_t sz = chunksize(q);
+ size_t used;
+ void* start;
+ if (is_inuse(q)) {
+ used = sz - CHUNK_OVERHEAD; /* must not be mmapped */
+ start = chunk2mem(q);
+ }
+ else {
+ used = 0;
+ if (is_small(sz)) { /* offset by possible bookkeeping */
+ start = (void*)((char*)q + sizeof(struct malloc_chunk));
+ }
+ else {
+ start = (void*)((char*)q + sizeof(struct malloc_tree_chunk));
+ }
+ }
+ if (start < (void*)next) /* skip if all space is bookkeeping */
+ handler(start, next, used, arg);
+ if (q == top)
+ break;
+ q = next;
+ }
+ }
+ }
+}
+#endif /* MALLOC_INSPECT_ALL */
+
+/* ------------------ Exported realloc, memalign, etc -------------------- */
+
+#if !ONLY_MSPACES
+
+void* dlrealloc(void* oldmem, size_t bytes) {
+ void* mem = 0;
+ if (oldmem == 0) {
+ mem = dlmalloc(bytes);
+ }
+ else if (bytes >= MAX_REQUEST) {
+ MALLOC_FAILURE_ACTION;
+ }
+#ifdef REALLOC_ZERO_BYTES_FREES
+ else if (bytes == 0) {
+ dlfree(oldmem);
+ }
+#endif /* REALLOC_ZERO_BYTES_FREES */
+ else {
+ size_t nb = request2size(bytes);
+ mchunkptr oldp = mem2chunk(oldmem);
+#if ! FOOTERS
+ mstate m = gm;
+#else /* FOOTERS */
+ mstate m = get_mstate_for(oldp);
+ if (!ok_magic(m)) {
+ USAGE_ERROR_ACTION(m, oldmem);
+ return 0;
+ }
+#endif /* FOOTERS */
+ if (!PREACTION(m)) {
+ mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
+ POSTACTION(m);
+ if (newp != 0) {
+ check_inuse_chunk(m, newp);
+ mem = chunk2mem(newp);
+ }
+ else {
+ mem = internal_malloc(m, bytes);
+ if (mem != 0) {
+ size_t oc = chunksize(oldp) - overhead_for(oldp);
+ memcpy(mem, oldmem, (oc < bytes)? oc : bytes);
+ internal_free(m, oldmem);
+ }
+ }
+ }
+ }
+ return mem;
+}
+
+void* dlrealloc_in_place(void* oldmem, size_t bytes) {
+ void* mem = 0;
+ if (oldmem != 0) {
+ if (bytes >= MAX_REQUEST) {
+ MALLOC_FAILURE_ACTION;
+ }
+ else {
+ size_t nb = request2size(bytes);
+ mchunkptr oldp = mem2chunk(oldmem);
+#if ! FOOTERS
+ mstate m = gm;
+#else /* FOOTERS */
+ mstate m = get_mstate_for(oldp);
+ if (!ok_magic(m)) {
+ USAGE_ERROR_ACTION(m, oldmem);
+ return 0;
+ }
+#endif /* FOOTERS */
+ if (!PREACTION(m)) {
+ mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
+ POSTACTION(m);
+ if (newp == oldp) {
+ check_inuse_chunk(m, newp);
+ mem = oldmem;
+ }
+ }
+ }
+ }
+ return mem;
+}
+
+void* dlmemalign(size_t alignment, size_t bytes) {
+ if (alignment <= MALLOC_ALIGNMENT) {
+ return dlmalloc(bytes);
+ }
+ return internal_memalign(gm, alignment, bytes);
+}
+
+int dlposix_memalign(void** pp, size_t alignment, size_t bytes) {
+ void* mem = 0;
+ if (alignment == MALLOC_ALIGNMENT)
+ mem = dlmalloc(bytes);
+ else {
+ size_t d = alignment / sizeof(void*);
+ size_t r = alignment % sizeof(void*);
+ if (r != 0 || d == 0 || (d & (d-SIZE_T_ONE)) != 0)
+ return EINVAL;
+ else if (bytes <= MAX_REQUEST - alignment) {
+ if (alignment < MIN_CHUNK_SIZE)
+ alignment = MIN_CHUNK_SIZE;
+ mem = internal_memalign(gm, alignment, bytes);
+ }
+ }
+ if (mem == 0)
+ return ENOMEM;
+ else {
+ *pp = mem;
+ return 0;
+ }
+}
+
+void* dlvalloc(size_t bytes) {
+ size_t pagesz;
+ ensure_initialization();
+ pagesz = mparams.page_size;
+ return dlmemalign(pagesz, bytes);
+}
+
+void* dlpvalloc(size_t bytes) {
+ size_t pagesz;
+ ensure_initialization();
+ pagesz = mparams.page_size;
+ return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
+}
+
+void** dlindependent_calloc(size_t n_elements, size_t elem_size,
+ void* chunks[]) {
+ size_t sz = elem_size; /* serves as 1-element array */
+ return ialloc(gm, n_elements, &sz, 3, chunks);
+}
+
+void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
+ void* chunks[]) {
+ return ialloc(gm, n_elements, sizes, 0, chunks);
+}
+
+size_t dlbulk_free(void* array[], size_t nelem) {
+ return internal_bulk_free(gm, array, nelem);
+}
+
+#if MALLOC_INSPECT_ALL
+void dlmalloc_inspect_all(void(*handler)(void *start,
+ void *end,
+ size_t used_bytes,
+ void* callback_arg),
+ void* arg) {
+ ensure_initialization();
+ if (!PREACTION(gm)) {
+ internal_inspect_all(gm, handler, arg);
+ POSTACTION(gm);
+ }
+}
+#endif /* MALLOC_INSPECT_ALL */
+
+int dlmalloc_trim(size_t pad) {
+ int result = 0;
+ ensure_initialization();
+ if (!PREACTION(gm)) {
+ result = sys_trim(gm, pad);
+ POSTACTION(gm);
+ }
+ return result;
+}
+
+size_t dlmalloc_footprint(void) {
+ return gm->footprint;
+}
+
+size_t dlmalloc_max_footprint(void) {
+ return gm->max_footprint;
+}
+
+size_t dlmalloc_footprint_limit(void) {
+ size_t maf = gm->footprint_limit;
+ return maf == 0 ? MAX_SIZE_T : maf;
+}
+
+size_t dlmalloc_set_footprint_limit(size_t bytes) {
+ size_t result; /* invert sense of 0 */
+ if (bytes == 0)
+ result = granularity_align(1); /* Use minimal size */
+ if (bytes == MAX_SIZE_T)
+ result = 0; /* disable */
+ else
+ result = granularity_align(bytes);
+ return gm->footprint_limit = result;
+}
+
+#if !NO_MALLINFO
+struct mallinfo dlmallinfo(void) {
+ return internal_mallinfo(gm);
+}
+#endif /* NO_MALLINFO */
+
+#if !NO_MALLOC_STATS
+void dlmalloc_stats() {
+ internal_malloc_stats(gm);
+}
+#endif /* NO_MALLOC_STATS */
+
+int dlmallopt(int param_number, int value) {
+ return change_mparam(param_number, value);
+}
+
+size_t dlmalloc_usable_size(void* mem) {
+ if (mem != 0) {
+ mchunkptr p = mem2chunk(mem);
+ if (is_inuse(p))
+ return chunksize(p) - overhead_for(p);
+ }
+ return 0;
+}
+
+#endif /* !ONLY_MSPACES */
+
+/* ----------------------------- user mspaces ---------------------------- */
+
+#if MSPACES
+
+static mstate init_user_mstate(char* tbase, size_t tsize) {
+ size_t msize = pad_request(sizeof(struct malloc_state));
+ mchunkptr mn;
+ mchunkptr msp = align_as_chunk(tbase);
+ mstate m = (mstate)(chunk2mem(msp));
+ memset(m, 0, msize);
+ (void)INITIAL_LOCK(&m->mutex);
+ msp->head = (msize|INUSE_BITS);
+ m->seg.base = m->least_addr = tbase;
+ m->seg.size = m->footprint = m->max_footprint = tsize;
+ m->magic = mparams.magic;
+ m->release_checks = MAX_RELEASE_CHECK_RATE;
+ m->mflags = mparams.default_mflags;
+ m->extp = 0;
+ m->exts = 0;
+ disable_contiguous(m);
+ init_bins(m);
+ mn = next_chunk(mem2chunk(m));
+ init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
+ check_top_chunk(m, m->top);
+ return m;
+}
+
+mspace create_mspace(size_t capacity, int locked) {
+ mstate m = 0;
+ size_t msize;
+ ensure_initialization();
+ msize = pad_request(sizeof(struct malloc_state));
+ if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
+ size_t rs = ((capacity == 0)? mparams.granularity :
+ (capacity + TOP_FOOT_SIZE + msize));
+ size_t tsize = granularity_align(rs);
+ char* tbase = (char*)(CALL_MMAP(tsize));
+ if (tbase != CMFAIL) {
+ m = init_user_mstate(tbase, tsize);
+ m->seg.sflags = USE_MMAP_BIT;
+ set_lock(m, locked);
+ }
+ }
+ return (mspace)m;
+}
+
+mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
+ mstate m = 0;
+ size_t msize;
+ ensure_initialization();
+ msize = pad_request(sizeof(struct malloc_state));
+ if (capacity > msize + TOP_FOOT_SIZE &&
+ capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
+ m = init_user_mstate((char*)base, capacity);
+ m->seg.sflags = EXTERN_BIT;
+ set_lock(m, locked);
+ }
+ return (mspace)m;
+}
+
+int mspace_track_large_chunks(mspace msp, int enable) {
+ int ret = 0;
+ mstate ms = (mstate)msp;
+ if (!PREACTION(ms)) {
+ if (!use_mmap(ms)) {
+ ret = 1;
+ }
+ if (!enable) {
+ enable_mmap(ms);
+ } else {
+ disable_mmap(ms);
+ }
+ POSTACTION(ms);
+ }
+ return ret;
+}
+
+size_t destroy_mspace(mspace msp) {
+ size_t freed = 0;
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ msegmentptr sp = &ms->seg;
+ (void)DESTROY_LOCK(&ms->mutex); /* destroy before unmapped */
+ while (sp != 0) {
+ char* base = sp->base;
+ size_t size = sp->size;
+ flag_t flag = sp->sflags;
+ (void)base; /* placate people compiling -Wunused-variable */
+ sp = sp->next;
+ if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) &&
+ CALL_MUNMAP(base, size) == 0)
+ freed += size;
+ }
+ }
+ else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ return freed;
+}
+
+/*
+ mspace versions of routines are near-clones of the global
+ versions. This is not so nice but better than the alternatives.
+*/
+
+void* mspace_malloc(mspace msp, size_t bytes) {
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ if (!PREACTION(ms)) {
+ void* mem;
+ size_t nb;
+ if (bytes <= MAX_SMALL_REQUEST) {
+ bindex_t idx;
+ binmap_t smallbits;
+ nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
+ idx = small_index(nb);
+ smallbits = ms->smallmap >> idx;
+
+ if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
+ mchunkptr b, p;
+ idx += ~smallbits & 1; /* Uses next bin if idx empty */
+ b = smallbin_at(ms, idx);
+ p = b->fd;
+ assert(chunksize(p) == small_index2size(idx));
+ unlink_first_small_chunk(ms, b, p, idx);
+ set_inuse_and_pinuse(ms, p, small_index2size(idx));
+ mem = chunk2mem(p);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ else if (nb > ms->dvsize) {
+ if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
+ mchunkptr b, p, r;
+ size_t rsize;
+ bindex_t i;
+ binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
+ binmap_t leastbit = least_bit(leftbits);
+ compute_bit2idx(leastbit, i);
+ b = smallbin_at(ms, i);
+ p = b->fd;
+ assert(chunksize(p) == small_index2size(i));
+ unlink_first_small_chunk(ms, b, p, i);
+ rsize = small_index2size(i) - nb;
+ /* Fit here cannot be remainderless if 4byte sizes */
+ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
+ set_inuse_and_pinuse(ms, p, small_index2size(i));
+ else {
+ set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
+ r = chunk_plus_offset(p, nb);
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ replace_dv(ms, r, rsize);
+ }
+ mem = chunk2mem(p);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+ }
+ }
+ else if (bytes >= MAX_REQUEST)
+ nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
+ else {
+ nb = pad_request(bytes);
+ if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+ }
+
+ if (nb <= ms->dvsize) {
+ size_t rsize = ms->dvsize - nb;
+ mchunkptr p = ms->dv;
+ if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
+ mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
+ ms->dvsize = rsize;
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
+ }
+ else { /* exhaust dv */
+ size_t dvs = ms->dvsize;
+ ms->dvsize = 0;
+ ms->dv = 0;
+ set_inuse_and_pinuse(ms, p, dvs);
+ }
+ mem = chunk2mem(p);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ else if (nb < ms->topsize) { /* Split top */
+ size_t rsize = ms->topsize -= nb;
+ mchunkptr p = ms->top;
+ mchunkptr r = ms->top = chunk_plus_offset(p, nb);
+ r->head = rsize | PINUSE_BIT;
+ set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
+ mem = chunk2mem(p);
+ check_top_chunk(ms, ms->top);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ mem = sys_alloc(ms, nb);
+
+ postaction:
+ POSTACTION(ms);
+ return mem;
+ }
+
+ return 0;
+}
+
+void mspace_free(mspace msp, void* mem) {
+ if (mem != 0) {
+ mchunkptr p = mem2chunk(mem);
+#if FOOTERS
+ mstate fm = get_mstate_for(p);
+ (void)msp; /* placate people compiling -Wunused */
+#else /* FOOTERS */
+ mstate fm = (mstate)msp;
+#endif /* FOOTERS */
+ if (!ok_magic(fm)) {
+ USAGE_ERROR_ACTION(fm, p);
+ return;
+ }
+ if (!PREACTION(fm)) {
+ check_inuse_chunk(fm, p);
+ if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
+ size_t psize = chunksize(p);
+ mchunkptr next = chunk_plus_offset(p, psize);
+ if (!pinuse(p)) {
+ size_t prevsize = p->prev_foot;
+ if (is_mmapped(p)) {
+ psize += prevsize + MMAP_FOOT_PAD;
+ if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
+ fm->footprint -= psize;
+ goto postaction;
+ }
+ else {
+ mchunkptr prev = chunk_minus_offset(p, prevsize);
+ psize += prevsize;
+ p = prev;
+ if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
+ if (p != fm->dv) {
+ unlink_chunk(fm, p, prevsize);
+ }
+ else if ((next->head & INUSE_BITS) == INUSE_BITS) {
+ fm->dvsize = psize;
+ set_free_with_pinuse(p, psize, next);
+ goto postaction;
+ }
+ }
+ else
+ goto erroraction;
+ }
+ }
+
+ if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
+ if (!cinuse(next)) { /* consolidate forward */
+ if (next == fm->top) {
+ size_t tsize = fm->topsize += psize;
+ fm->top = p;
+ p->head = tsize | PINUSE_BIT;
+ if (p == fm->dv) {
+ fm->dv = 0;
+ fm->dvsize = 0;
+ }
+ if (should_trim(fm, tsize))
+ sys_trim(fm, 0);
+ goto postaction;
+ }
+ else if (next == fm->dv) {
+ size_t dsize = fm->dvsize += psize;
+ fm->dv = p;
+ set_size_and_pinuse_of_free_chunk(p, dsize);
+ goto postaction;
+ }
+ else {
+ size_t nsize = chunksize(next);
+ psize += nsize;
+ unlink_chunk(fm, next, nsize);
+ set_size_and_pinuse_of_free_chunk(p, psize);
+ if (p == fm->dv) {
+ fm->dvsize = psize;
+ goto postaction;
+ }
+ }
+ }
+ else
+ set_free_with_pinuse(p, psize, next);
+
+ if (is_small(psize)) {
+ insert_small_chunk(fm, p, psize);
+ check_free_chunk(fm, p);
+ }
+ else {
+ tchunkptr tp = (tchunkptr)p;
+ insert_large_chunk(fm, tp, psize);
+ check_free_chunk(fm, p);
+ if (--fm->release_checks == 0)
+ release_unused_segments(fm);
+ }
+ goto postaction;
+ }
+ }
+ erroraction:
+ USAGE_ERROR_ACTION(fm, p);
+ postaction:
+ POSTACTION(fm);
+ }
+ }
+}
+
+void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
+ void* mem;
+ size_t req = 0;
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ if (n_elements != 0) {
+ req = n_elements * elem_size;
+ if (((n_elements | elem_size) & ~(size_t)0xffff) &&
+ (req / n_elements != elem_size))
+ req = MAX_SIZE_T; /* force downstream failure on overflow */
+ }
+ mem = internal_malloc(ms, req);
+ if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
+ memset(mem, 0, req);
+ return mem;
+}
+
+void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
+ void* mem = 0;
+ if (oldmem == 0) {
+ mem = mspace_malloc(msp, bytes);
+ }
+ else if (bytes >= MAX_REQUEST) {
+ MALLOC_FAILURE_ACTION;
+ }
+#ifdef REALLOC_ZERO_BYTES_FREES
+ else if (bytes == 0) {
+ mspace_free(msp, oldmem);
+ }
+#endif /* REALLOC_ZERO_BYTES_FREES */
+ else {
+ size_t nb = request2size(bytes);
+ mchunkptr oldp = mem2chunk(oldmem);
+#if ! FOOTERS
+ mstate m = (mstate)msp;
+#else /* FOOTERS */
+ mstate m = get_mstate_for(oldp);
+ if (!ok_magic(m)) {
+ USAGE_ERROR_ACTION(m, oldmem);
+ return 0;
+ }
+#endif /* FOOTERS */
+ if (!PREACTION(m)) {
+ mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
+ POSTACTION(m);
+ if (newp != 0) {
+ check_inuse_chunk(m, newp);
+ mem = chunk2mem(newp);
+ }
+ else {
+ mem = mspace_malloc(m, bytes);
+ if (mem != 0) {
+ size_t oc = chunksize(oldp) - overhead_for(oldp);
+ memcpy(mem, oldmem, (oc < bytes)? oc : bytes);
+ mspace_free(m, oldmem);
+ }
+ }
+ }
+ }
+ return mem;
+}
+
+void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes) {
+ void* mem = 0;
+ if (oldmem != 0) {
+ if (bytes >= MAX_REQUEST) {
+ MALLOC_FAILURE_ACTION;
+ }
+ else {
+ size_t nb = request2size(bytes);
+ mchunkptr oldp = mem2chunk(oldmem);
+#if ! FOOTERS
+ mstate m = (mstate)msp;
+#else /* FOOTERS */
+ mstate m = get_mstate_for(oldp);
+ (void)msp; /* placate people compiling -Wunused */
+ if (!ok_magic(m)) {
+ USAGE_ERROR_ACTION(m, oldmem);
+ return 0;
+ }
+#endif /* FOOTERS */
+ if (!PREACTION(m)) {
+ mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
+ POSTACTION(m);
+ if (newp == oldp) {
+ check_inuse_chunk(m, newp);
+ mem = oldmem;
+ }
+ }
+ }
+ }
+ return mem;
+}
+
+void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ if (alignment <= MALLOC_ALIGNMENT)
+ return mspace_malloc(msp, bytes);
+ return internal_memalign(ms, alignment, bytes);
+}
+
+void** mspace_independent_calloc(mspace msp, size_t n_elements,
+ size_t elem_size, void* chunks[]) {
+ size_t sz = elem_size; /* serves as 1-element array */
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ return ialloc(ms, n_elements, &sz, 3, chunks);
+}
+
+void** mspace_independent_comalloc(mspace msp, size_t n_elements,
+ size_t sizes[], void* chunks[]) {
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ return ialloc(ms, n_elements, sizes, 0, chunks);
+}
+
+size_t mspace_bulk_free(mspace msp, void* array[], size_t nelem) {
+ return internal_bulk_free((mstate)msp, array, nelem);
+}
+
+#if MALLOC_INSPECT_ALL
+void mspace_inspect_all(mspace msp,
+ void(*handler)(void *start,
+ void *end,
+ size_t used_bytes,
+ void* callback_arg),
+ void* arg) {
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ if (!PREACTION(ms)) {
+ internal_inspect_all(ms, handler, arg);
+ POSTACTION(ms);
+ }
+ }
+ else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+}
+#endif /* MALLOC_INSPECT_ALL */
+
+int mspace_trim(mspace msp, size_t pad) {
+ int result = 0;
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ if (!PREACTION(ms)) {
+ result = sys_trim(ms, pad);
+ POSTACTION(ms);
+ }
+ }
+ else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ return result;
+}
+
+#if !NO_MALLOC_STATS
+void mspace_malloc_stats(mspace msp) {
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ internal_malloc_stats(ms);
+ }
+ else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+}
+#endif /* NO_MALLOC_STATS */
+
+size_t mspace_footprint(mspace msp) {
+ size_t result = 0;
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ result = ms->footprint;
+ }
+ else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ return result;
+}
+
+size_t mspace_max_footprint(mspace msp) {
+ size_t result = 0;
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ result = ms->max_footprint;
+ }
+ else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ return result;
+}
+
+size_t mspace_footprint_limit(mspace msp) {
+ size_t result = 0;
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ size_t maf = ms->footprint_limit;
+ result = (maf == 0) ? MAX_SIZE_T : maf;
+ }
+ else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ return result;
+}
+
+size_t mspace_set_footprint_limit(mspace msp, size_t bytes) {
+ size_t result = 0;
+ mstate ms = (mstate)msp;
+ if (ok_magic(ms)) {
+ if (bytes == 0)
+ result = granularity_align(1); /* Use minimal size */
+ if (bytes == MAX_SIZE_T)
+ result = 0; /* disable */
+ else
+ result = granularity_align(bytes);
+ ms->footprint_limit = result;
+ }
+ else {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ return result;
+}
+
+#if !NO_MALLINFO
+struct mallinfo mspace_mallinfo(mspace msp) {
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ return internal_mallinfo(ms);
+}
+#endif /* NO_MALLINFO */
+
+size_t mspace_usable_size(const void* mem) {
+ if (mem != 0) {
+ mchunkptr p = mem2chunk(mem);
+ if (is_inuse(p))
+ return chunksize(p) - overhead_for(p);
+ }
+ return 0;
+}
+
+int mspace_mallopt(int param_number, int value) {
+ return change_mparam(param_number, value);
+}
+
+#endif /* MSPACES */
+
+
+/* -------------------- Alternative MORECORE functions ------------------- */
+
+/*
+ Guidelines for creating a custom version of MORECORE:
+
+ * For best performance, MORECORE should allocate in multiples of pagesize.
+ * MORECORE may allocate more memory than requested. (Or even less,
+ but this will usually result in a malloc failure.)
+ * MORECORE must not allocate memory when given argument zero, but
+ instead return one past the end address of memory from previous
+ nonzero call.
+ * For best performance, consecutive calls to MORECORE with positive
+ arguments should return increasing addresses, indicating that
+ space has been contiguously extended.
+ * Even though consecutive calls to MORECORE need not return contiguous
+ addresses, it must be OK for malloc'ed chunks to span multiple
+ regions in those cases where they do happen to be contiguous.
+ * MORECORE need not handle negative arguments -- it may instead
+ just return MFAIL when given negative arguments.
+ Negative arguments are always multiples of pagesize. MORECORE
+ must not misinterpret negative args as large positive unsigned
+ args. You can suppress all such calls from even occurring by defining
+ MORECORE_CANNOT_TRIM,
+
+ As an example alternative MORECORE, here is a custom allocator
+ kindly contributed for pre-OSX macOS. It uses virtually but not
+ necessarily physically contiguous non-paged memory (locked in,
+ present and won't get swapped out). You can use it by uncommenting
+ this section, adding some #includes, and setting up the appropriate
+ defines above:
+
+ #define MORECORE osMoreCore
+
+ There is also a shutdown routine that should somehow be called for
+ cleanup upon program exit.
+
+ #define MAX_POOL_ENTRIES 100
+ #define MINIMUM_MORECORE_SIZE (64 * 1024U)
+ static int next_os_pool;
+ void *our_os_pools[MAX_POOL_ENTRIES];
+
+ void *osMoreCore(int size)
+ {
+ void *ptr = 0;
+ static void *sbrk_top = 0;
+
+ if (size > 0)
+ {
+ if (size < MINIMUM_MORECORE_SIZE)
+ size = MINIMUM_MORECORE_SIZE;
+ if (CurrentExecutionLevel() == kTaskLevel)
+ ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
+ if (ptr == 0)
+ {
+ return (void *) MFAIL;
+ }
+ // save ptrs so they can be freed during cleanup
+ our_os_pools[next_os_pool] = ptr;
+ next_os_pool++;
+ ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
+ sbrk_top = (char *) ptr + size;
+ return ptr;
+ }
+ else if (size < 0)
+ {
+ // we don't currently support shrink behavior
+ return (void *) MFAIL;
+ }
+ else
+ {
+ return sbrk_top;
+ }
+ }
+
+ // cleanup any allocated memory pools
+ // called as last thing before shutting down driver
+
+ void osCleanupMem(void)
+ {
+ void **ptr;
+
+ for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
+ if (*ptr)
+ {
+ PoolDeallocate(*ptr);
+ *ptr = 0;
+ }
+ }
+
+*/
+
+
+/* -----------------------------------------------------------------------
+History:
+ v2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea
+ * fix bad comparison in dlposix_memalign
+ * don't reuse adjusted asize in sys_alloc
+ * add LOCK_AT_FORK -- thanks to Kirill Artamonov for the suggestion
+ * reduce compiler warnings -- thanks to all who reported/suggested these
+
+ v2.8.5 Sun May 22 10:26:02 2011 Doug Lea (dl at gee)
+ * Always perform unlink checks unless INSECURE
+ * Add posix_memalign.
+ * Improve realloc to expand in more cases; expose realloc_in_place.
+ Thanks to Peter Buhr for the suggestion.
+ * Add footprint_limit, inspect_all, bulk_free. Thanks
+ to Barry Hayes and others for the suggestions.
+ * Internal refactorings to avoid calls while holding locks
+ * Use non-reentrant locks by default. Thanks to Roland McGrath
+ for the suggestion.
+ * Small fixes to mspace_destroy, reset_on_error.
+ * Various configuration extensions/changes. Thanks
+ to all who contributed these.
+
+ V2.8.4a Thu Apr 28 14:39:43 2011 (dl at gee.cs.oswego.edu)
+ * Update Creative Commons URL
+
+ V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee)
+ * Use zeros instead of prev foot for is_mmapped
+ * Add mspace_track_large_chunks; thanks to Jean Brouwers
+ * Fix set_inuse in internal_realloc; thanks to Jean Brouwers
+ * Fix insufficient sys_alloc padding when using 16byte alignment
+ * Fix bad error check in mspace_footprint
+ * Adaptations for ptmalloc; thanks to Wolfram Gloger.
+ * Reentrant spin locks; thanks to Earl Chew and others
+ * Win32 improvements; thanks to Niall Douglas and Earl Chew
+ * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
+ * Extension hook in malloc_state
+ * Various small adjustments to reduce warnings on some compilers
+ * Various configuration extensions/changes for more platforms. Thanks
+ to all who contributed these.
+
+ V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
+ * Add max_footprint functions
+ * Ensure all appropriate literals are size_t
+ * Fix conditional compilation problem for some #define settings
+ * Avoid concatenating segments with the one provided
+ in create_mspace_with_base
+ * Rename some variables to avoid compiler shadowing warnings
+ * Use explicit lock initialization.
+ * Better handling of sbrk interference.
+ * Simplify and fix segment insertion, trimming and mspace_destroy
+ * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
+ * Thanks especially to Dennis Flanagan for help on these.
+
+ V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
+ * Fix memalign brace error.
+
+ V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
+ * Fix improper #endif nesting in C++
+ * Add explicit casts needed for C++
+
+ V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
+ * Use trees for large bins
+ * Support mspaces
+ * Use segments to unify sbrk-based and mmap-based system allocation,
+ removing need for emulation on most platforms without sbrk.
+ * Default safety checks
+ * Optional footer checks. Thanks to William Robertson for the idea.
+ * Internal code refactoring
+ * Incorporate suggestions and platform-specific changes.
+ Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
+ Aaron Bachmann, Emery Berger, and others.
+ * Speed up non-fastbin processing enough to remove fastbins.
+ * Remove useless cfree() to avoid conflicts with other apps.
+ * Remove internal memcpy, memset. Compilers handle builtins better.
+ * Remove some options that no one ever used and rename others.
+
+ V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
+ * Fix malloc_state bitmap array misdeclaration
+
+ V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
+ * Allow tuning of FIRST_SORTED_BIN_SIZE
+ * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
+ * Better detection and support for non-contiguousness of MORECORE.
+ Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
+ * Bypass most of malloc if no frees. Thanks To Emery Berger.
+ * Fix freeing of old top non-contiguous chunk im sysmalloc.
+ * Raised default trim and map thresholds to 256K.
+ * Fix mmap-related #defines. Thanks to Lubos Lunak.
+ * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
+ * Branch-free bin calculation
+ * Default trim and mmap thresholds now 256K.
+
+ V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
+ * Introduce independent_comalloc and independent_calloc.
+ Thanks to Michael Pachos for motivation and help.
+ * Make optional .h file available
+ * Allow > 2GB requests on 32bit systems.
+ * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
+ Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
+ and Anonymous.
+ * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
+ helping test this.)
+ * memalign: check alignment arg
+ * realloc: don't try to shift chunks backwards, since this
+ leads to more fragmentation in some programs and doesn't
+ seem to help in any others.
+ * Collect all cases in malloc requiring system memory into sysmalloc
+ * Use mmap as backup to sbrk
+ * Place all internal state in malloc_state
+ * Introduce fastbins (although similar to 2.5.1)
+ * Many minor tunings and cosmetic improvements
+ * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
+ * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
+ Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
+ * Include errno.h to support default failure action.
+
+ V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
+ * return null for negative arguments
+ * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
+ * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
+ (e.g. WIN32 platforms)
+ * Cleanup header file inclusion for WIN32 platforms
+ * Cleanup code to avoid Microsoft Visual C++ compiler complaints
+ * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
+ memory allocation routines
+ * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
+ * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
+ usage of 'assert' in non-WIN32 code
+ * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
+ avoid infinite loop
+ * Always call 'fREe()' rather than 'free()'
+
+ V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
+ * Fixed ordering problem with boundary-stamping
+
+ V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
+ * Added pvalloc, as recommended by H.J. Liu
+ * Added 64bit pointer support mainly from Wolfram Gloger
+ * Added anonymously donated WIN32 sbrk emulation
+ * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
+ * malloc_extend_top: fix mask error that caused wastage after
+ foreign sbrks
+ * Add linux mremap support code from HJ Liu
+
+ V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
+ * Integrated most documentation with the code.
+ * Add support for mmap, with help from
+ Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
+ * Use last_remainder in more cases.
+ * Pack bins using idea from colin@nyx10.cs.du.edu
+ * Use ordered bins instead of best-fit threshhold
+ * Eliminate block-local decls to simplify tracing and debugging.
+ * Support another case of realloc via move into top
+ * Fix error occuring when initial sbrk_base not word-aligned.
+ * Rely on page size for units instead of SBRK_UNIT to
+ avoid surprises about sbrk alignment conventions.
+ * Add mallinfo, mallopt. Thanks to Raymond Nijssen
+ (raymond@es.ele.tue.nl) for the suggestion.
+ * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
+ * More precautions for cases where other routines call sbrk,
+ courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
+ * Added macros etc., allowing use in linux libc from
+ H.J. Lu (hjl@gnu.ai.mit.edu)
+ * Inverted this history list
+
+ V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
+ * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
+ * Removed all preallocation code since under current scheme
+ the work required to undo bad preallocations exceeds
+ the work saved in good cases for most test programs.
+ * No longer use return list or unconsolidated bins since
+ no scheme using them consistently outperforms those that don't
+ given above changes.
+ * Use best fit for very large chunks to prevent some worst-cases.
+ * Added some support for debugging
+
+ V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
+ * Removed footers when chunks are in use. Thanks to
+ Paul Wilson (wilson@cs.texas.edu) for the suggestion.
+
+ V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
+ * Added malloc_trim, with help from Wolfram Gloger
+ (wmglo@Dent.MED.Uni-Muenchen.DE).
+
+ V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
+
+ V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
+ * realloc: try to expand in both directions
+ * malloc: swap order of clean-bin strategy;
+ * realloc: only conditionally expand backwards
+ * Try not to scavenge used bins
+ * Use bin counts as a guide to preallocation
+ * Occasionally bin return list chunks in first scan
+ * Add a few optimizations from colin@nyx10.cs.du.edu
+
+ V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
+ * faster bin computation & slightly different binning
+ * merged all consolidations to one part of malloc proper
+ (eliminating old malloc_find_space & malloc_clean_bin)
+ * Scan 2 returns chunks (not just 1)
+ * Propagate failure in realloc if malloc returns 0
+ * Add stuff to allow compilation on non-ANSI compilers
+ from kpv@research.att.com
+
+ V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
+ * removed potential for odd address access in prev_chunk
+ * removed dependency on getpagesize.h
+ * misc cosmetics and a bit more internal documentation
+ * anticosmetics: mangled names in macros to evade debugger strangeness
+ * tested on sparc, hp-700, dec-mips, rs6000
+ with gcc & native cc (hp, dec only) allowing
+ Detlefs & Zorn comparison study (in SIGPLAN Notices.)
+
+ Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
+ * Based loosely on libg++-1.2X malloc. (It retains some of the overall
+ structure of old version, but most details differ.)
+
+*/
diff --git a/contrib/restricted/boost/libs/container/src/dlmalloc_ext_2_8_6.c b/contrib/restricted/boost/libs/container/src/dlmalloc_ext_2_8_6.c
index 3328d72975..9f1bcb0180 100644
--- a/contrib/restricted/boost/libs/container/src/dlmalloc_ext_2_8_6.c
+++ b/contrib/restricted/boost/libs/container/src/dlmalloc_ext_2_8_6.c
@@ -1,1459 +1,1459 @@
-//////////////////////////////////////////////////////////////////////////////
-//
-// (C) Copyright Ion Gaztanaga 2007-2015. Distributed under the Boost
-// Software License, Version 1.0. (See accompanying file
-// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-//
-// See http://www.boost.org/libs/container for documentation.
-//
-//////////////////////////////////////////////////////////////////////////////
-
-#include <boost/container/detail/alloc_lib.h>
-
-#include "errno.h" //dlmalloc bug EINVAL is used in posix_memalign without checking LACKS_ERRNO_H
-#include "limits.h" //CHAR_BIT
-#ifdef BOOST_CONTAINER_DLMALLOC_FOOTERS
-#define FOOTERS 1
-#endif
-#define USE_LOCKS 1
-#define MSPACES 1
-#define NO_MALLINFO 1
-#define NO_MALLOC_STATS 1
-
-
-#if !defined(NDEBUG)
- #if !defined(DEBUG)
- #define DEBUG 1
- #define DL_DEBUG_DEFINED
- #endif
-#endif
-
-#define USE_DL_PREFIX
-
-#ifdef __GNUC__
-#define FORCEINLINE inline
-#endif
-#include "dlmalloc_2_8_6.c"
-
-#ifdef _MSC_VER
-#pragma warning (push)
-#pragma warning (disable : 4127)
-#pragma warning (disable : 4267)
-#pragma warning (disable : 4127)
-#pragma warning (disable : 4702)
-#pragma warning (disable : 4390) /*empty controlled statement found; is this the intent?*/
-#pragma warning (disable : 4251 4231 4660) /*dll warnings*/
-#endif
-
-#define DL_SIZE_IMPL(p) (chunksize(mem2chunk(p)) - overhead_for(mem2chunk(p)))
-
-static size_t s_allocated_memory;
-
-///////////////////////////////////////////////////////////////
-///////////////////////////////////////////////////////////////
-///////////////////////////////////////////////////////////////
-//
-// SLIGHTLY MODIFIED DLMALLOC FUNCTIONS
-//
-///////////////////////////////////////////////////////////////
-///////////////////////////////////////////////////////////////
-///////////////////////////////////////////////////////////////
-
-//This function is equal to mspace_free
-//replacing PREACTION with 0 and POSTACTION with nothing
-static void mspace_free_lockless(mspace msp, void* mem)
-{
- if (mem != 0) {
- mchunkptr p = mem2chunk(mem);
-#if FOOTERS
- mstate fm = get_mstate_for(p);
- msp = msp; /* placate people compiling -Wunused */
-#else /* FOOTERS */
- mstate fm = (mstate)msp;
-#endif /* FOOTERS */
- if (!ok_magic(fm)) {
- USAGE_ERROR_ACTION(fm, p);
- return;
- }
- if (!0){//PREACTION(fm)) {
- check_inuse_chunk(fm, p);
- if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
- size_t psize = chunksize(p);
- mchunkptr next = chunk_plus_offset(p, psize);
- s_allocated_memory -= psize;
- if (!pinuse(p)) {
- size_t prevsize = p->prev_foot;
- if (is_mmapped(p)) {
- psize += prevsize + MMAP_FOOT_PAD;
- if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
- fm->footprint -= psize;
- goto postaction;
- }
- else {
- mchunkptr prev = chunk_minus_offset(p, prevsize);
- psize += prevsize;
- p = prev;
- if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
- if (p != fm->dv) {
- unlink_chunk(fm, p, prevsize);
- }
- else if ((next->head & INUSE_BITS) == INUSE_BITS) {
- fm->dvsize = psize;
- set_free_with_pinuse(p, psize, next);
- goto postaction;
- }
- }
- else
- goto erroraction;
- }
- }
-
- if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
- if (!cinuse(next)) { /* consolidate forward */
- if (next == fm->top) {
- size_t tsize = fm->topsize += psize;
- fm->top = p;
- p->head = tsize | PINUSE_BIT;
- if (p == fm->dv) {
- fm->dv = 0;
- fm->dvsize = 0;
- }
- if (should_trim(fm, tsize))
- sys_trim(fm, 0);
- goto postaction;
- }
- else if (next == fm->dv) {
- size_t dsize = fm->dvsize += psize;
- fm->dv = p;
- set_size_and_pinuse_of_free_chunk(p, dsize);
- goto postaction;
- }
- else {
- size_t nsize = chunksize(next);
- psize += nsize;
- unlink_chunk(fm, next, nsize);
- set_size_and_pinuse_of_free_chunk(p, psize);
- if (p == fm->dv) {
- fm->dvsize = psize;
- goto postaction;
- }
- }
- }
- else
- set_free_with_pinuse(p, psize, next);
-
- if (is_small(psize)) {
- insert_small_chunk(fm, p, psize);
- check_free_chunk(fm, p);
- }
- else {
- tchunkptr tp = (tchunkptr)p;
- insert_large_chunk(fm, tp, psize);
- check_free_chunk(fm, p);
- if (--fm->release_checks == 0)
- release_unused_segments(fm);
- }
- goto postaction;
- }
- }
- erroraction:
- USAGE_ERROR_ACTION(fm, p);
- postaction:
- ;//POSTACTION(fm);
- }
- }
-}
-
-//This function is equal to mspace_malloc
-//replacing PREACTION with 0 and POSTACTION with nothing
-void* mspace_malloc_lockless(mspace msp, size_t bytes)
-{
- mstate ms = (mstate)msp;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- if (!0){//PREACTION(ms)) {
- void* mem;
- size_t nb;
- if (bytes <= MAX_SMALL_REQUEST) {
- bindex_t idx;
- binmap_t smallbits;
- nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
- idx = small_index(nb);
- smallbits = ms->smallmap >> idx;
-
- if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
- mchunkptr b, p;
- idx += ~smallbits & 1; /* Uses next bin if idx empty */
- b = smallbin_at(ms, idx);
- p = b->fd;
- assert(chunksize(p) == small_index2size(idx));
- unlink_first_small_chunk(ms, b, p, idx);
- set_inuse_and_pinuse(ms, p, small_index2size(idx));
- mem = chunk2mem(p);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- else if (nb > ms->dvsize) {
- if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
- mchunkptr b, p, r;
- size_t rsize;
- bindex_t i;
- binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
- binmap_t leastbit = least_bit(leftbits);
- compute_bit2idx(leastbit, i);
- b = smallbin_at(ms, i);
- p = b->fd;
- assert(chunksize(p) == small_index2size(i));
- unlink_first_small_chunk(ms, b, p, i);
- rsize = small_index2size(i) - nb;
- /* Fit here cannot be remainderless if 4byte sizes */
- if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
- set_inuse_and_pinuse(ms, p, small_index2size(i));
- else {
- set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
- r = chunk_plus_offset(p, nb);
- set_size_and_pinuse_of_free_chunk(r, rsize);
- replace_dv(ms, r, rsize);
- }
- mem = chunk2mem(p);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
- }
- }
- else if (bytes >= MAX_REQUEST)
- nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
- else {
- nb = pad_request(bytes);
- if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
- }
-
- if (nb <= ms->dvsize) {
- size_t rsize = ms->dvsize - nb;
- mchunkptr p = ms->dv;
- if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
- mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
- ms->dvsize = rsize;
- set_size_and_pinuse_of_free_chunk(r, rsize);
- set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
- }
- else { /* exhaust dv */
- size_t dvs = ms->dvsize;
- ms->dvsize = 0;
- ms->dv = 0;
- set_inuse_and_pinuse(ms, p, dvs);
- }
- mem = chunk2mem(p);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- else if (nb < ms->topsize) { /* Split top */
- size_t rsize = ms->topsize -= nb;
- mchunkptr p = ms->top;
- mchunkptr r = ms->top = chunk_plus_offset(p, nb);
- r->head = rsize | PINUSE_BIT;
- set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
- mem = chunk2mem(p);
- check_top_chunk(ms, ms->top);
- check_malloced_chunk(ms, mem, nb);
- goto postaction;
- }
-
- mem = sys_alloc(ms, nb);
-
- postaction:
- ;//POSTACTION(ms);
- return mem;
- }
-
- return 0;
-}
-
-//This function is equal to try_realloc_chunk but handling
-//minimum and desired bytes
-static mchunkptr try_realloc_chunk_with_min(mstate m, mchunkptr p, size_t min_nb, size_t des_nb, int can_move)
-{
- mchunkptr newp = 0;
- size_t oldsize = chunksize(p);
- mchunkptr next = chunk_plus_offset(p, oldsize);
- if (RTCHECK(ok_address(m, p) && ok_inuse(p) &&
- ok_next(p, next) && ok_pinuse(next))) {
- if (is_mmapped(p)) {
- newp = mmap_resize(m, p, des_nb, can_move);
- if(!newp) //mmap does not return how many bytes we could reallocate, so go the minimum
- newp = mmap_resize(m, p, min_nb, can_move);
- }
- else if (oldsize >= min_nb) { /* already big enough */
- size_t nb = oldsize >= des_nb ? des_nb : oldsize;
- size_t rsize = oldsize - nb;
- if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */
- mchunkptr r = chunk_plus_offset(p, nb);
- set_inuse(m, p, nb);
- set_inuse(m, r, rsize);
- dispose_chunk(m, r, rsize);
- }
- newp = p;
- }
- else if (next == m->top) { /* extend into top */
- if (oldsize + m->topsize > min_nb) {
- size_t nb = (oldsize + m->topsize) > des_nb ? des_nb : (oldsize + m->topsize - MALLOC_ALIGNMENT);
- size_t newsize = oldsize + m->topsize;
- size_t newtopsize = newsize - nb;
- mchunkptr newtop = chunk_plus_offset(p, nb);
- set_inuse(m, p, nb);
- newtop->head = newtopsize |PINUSE_BIT;
- m->top = newtop;
- m->topsize = newtopsize;
- newp = p;
- }
- }
- else if (next == m->dv) { /* extend into dv */
- size_t dvs = m->dvsize;
- if (oldsize + dvs >= min_nb) {
- size_t nb = (oldsize + dvs) >= des_nb ? des_nb : (oldsize + dvs);
- size_t dsize = oldsize + dvs - nb;
- if (dsize >= MIN_CHUNK_SIZE) {
- mchunkptr r = chunk_plus_offset(p, nb);
- mchunkptr n = chunk_plus_offset(r, dsize);
- set_inuse(m, p, nb);
- set_size_and_pinuse_of_free_chunk(r, dsize);
- clear_pinuse(n);
- m->dvsize = dsize;
- m->dv = r;
- }
- else { /* exhaust dv */
- size_t newsize = oldsize + dvs;
- set_inuse(m, p, newsize);
- m->dvsize = 0;
- m->dv = 0;
- }
- newp = p;
- }
- }
- else if (!cinuse(next)) { /* extend into next free chunk */
- size_t nextsize = chunksize(next);
- if (oldsize + nextsize >= min_nb) {
- size_t nb = (oldsize + nextsize) >= des_nb ? des_nb : (oldsize + nextsize);
- size_t rsize = oldsize + nextsize - nb;
- unlink_chunk(m, next, nextsize);
- if (rsize < MIN_CHUNK_SIZE) {
- size_t newsize = oldsize + nextsize;
- set_inuse(m, p, newsize);
- }
- else {
- mchunkptr r = chunk_plus_offset(p, nb);
- set_inuse(m, p, nb);
- set_inuse(m, r, rsize);
- dispose_chunk(m, r, rsize);
- }
- newp = p;
- }
- }
- }
- else {
- USAGE_ERROR_ACTION(m, chunk2mem(p));
- }
- return newp;
-}
-
-#define BOOST_ALLOC_PLUS_MEMCHAIN_MEM_JUMP_NEXT(THISMEM, NEXTMEM) \
- *((void**)(THISMEM)) = *((void**)((NEXTMEM)))
-
-//This function is based on internal_bulk_free
-//replacing iteration over array[] with boost_cont_memchain.
-//Instead of returning the unallocated nodes, returns a chain of non-deallocated nodes.
-//After forward merging, backwards merging is also tried
-static void internal_multialloc_free(mstate m, boost_cont_memchain *pchain)
-{
-#if FOOTERS
- boost_cont_memchain ret_chain;
- BOOST_CONTAINER_MEMCHAIN_INIT(&ret_chain);
-#endif
- if (!PREACTION(m)) {
- boost_cont_memchain_it a_it = BOOST_CONTAINER_MEMCHAIN_BEGIN_IT(pchain);
- while(!BOOST_CONTAINER_MEMCHAIN_IS_END_IT(pchain, a_it)) { /* Iterate though all memory holded by the chain */
- void* a_mem = BOOST_CONTAINER_MEMIT_ADDR(a_it);
- mchunkptr a_p = mem2chunk(a_mem);
- size_t psize = chunksize(a_p);
-#if FOOTERS
- if (get_mstate_for(a_p) != m) {
- BOOST_CONTAINER_MEMIT_NEXT(a_it);
- BOOST_CONTAINER_MEMCHAIN_PUSH_BACK(&ret_chain, a_mem);
- continue;
- }
-#endif
- check_inuse_chunk(m, a_p);
- if (RTCHECK(ok_address(m, a_p) && ok_inuse(a_p))) {
- while(1) { /* Internal loop to speed up forward and backward merging (avoids some redundant checks) */
- boost_cont_memchain_it b_it = a_it;
- BOOST_CONTAINER_MEMIT_NEXT(b_it);
- if(!BOOST_CONTAINER_MEMCHAIN_IS_END_IT(pchain, b_it)){
- void *b_mem = BOOST_CONTAINER_MEMIT_ADDR(b_it);
- mchunkptr b_p = mem2chunk(b_mem);
- if (b_p == next_chunk(a_p)) { /* b chunk is contiguous and next so b's size can be added to a */
- psize += chunksize(b_p);
- set_inuse(m, a_p, psize);
- BOOST_ALLOC_PLUS_MEMCHAIN_MEM_JUMP_NEXT(a_mem, b_mem);
- continue;
- }
- if(RTCHECK(ok_address(m, b_p) && ok_inuse(b_p))){
- /* b chunk is contiguous and previous so a's size can be added to b */
- if(a_p == next_chunk(b_p)) {
- psize += chunksize(b_p);
- set_inuse(m, b_p, psize);
- a_it = b_it;
- a_p = b_p;
- a_mem = b_mem;
- continue;
- }
- }
- }
- /* Normal deallocation starts again in the outer loop */
- a_it = b_it;
- s_allocated_memory -= psize;
- dispose_chunk(m, a_p, psize);
- break;
- }
- }
- else {
- CORRUPTION_ERROR_ACTION(m);
- break;
- }
- }
- if (should_trim(m, m->topsize))
- sys_trim(m, 0);
- POSTACTION(m);
- }
-#if FOOTERS
- {
- boost_cont_memchain_it last_pchain = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain);
- BOOST_CONTAINER_MEMCHAIN_INIT(pchain);
- BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER
- (pchain
- , last_pchain
- , BOOST_CONTAINER_MEMCHAIN_FIRSTMEM(&ret_chain)
- , BOOST_CONTAINER_MEMCHAIN_LASTMEM(&ret_chain)
- , BOOST_CONTAINER_MEMCHAIN_SIZE(&ret_chain)
- );
- }
-#endif
-}
-
-///////////////////////////////////////////////////////////////
-///////////////////////////////////////////////////////////////
-///////////////////////////////////////////////////////////////
-//
-// NEW FUNCTIONS BASED ON DLMALLOC INTERNALS
-//
-///////////////////////////////////////////////////////////////
-///////////////////////////////////////////////////////////////
-///////////////////////////////////////////////////////////////
-
-#define GET_TRUNCATED_SIZE(ORIG_SIZE, ROUNDTO) ((ORIG_SIZE)/(ROUNDTO)*(ROUNDTO))
-#define GET_ROUNDED_SIZE(ORIG_SIZE, ROUNDTO) ((((ORIG_SIZE)-1)/(ROUNDTO)+1)*(ROUNDTO))
-#define GET_TRUNCATED_PO2_SIZE(ORIG_SIZE, ROUNDTO) ((ORIG_SIZE) & (~(ROUNDTO-1)))
-#define GET_ROUNDED_PO2_SIZE(ORIG_SIZE, ROUNDTO) (((ORIG_SIZE - 1) & (~(ROUNDTO-1))) + ROUNDTO)
-
-/* Greatest common divisor and least common multiple
- gcd is an algorithm that calculates the greatest common divisor of two
- integers, using Euclid's algorithm.
-
- Pre: A > 0 && B > 0
- Recommended: A > B*/
-#define CALCULATE_GCD(A, B, OUT)\
-{\
- size_t a = A;\
- size_t b = B;\
- do\
- {\
- size_t tmp = b;\
- b = a % b;\
- a = tmp;\
- } while (b != 0);\
-\
- OUT = a;\
-}
-
-/* lcm is an algorithm that calculates the least common multiple of two
- integers.
-
- Pre: A > 0 && B > 0
- Recommended: A > B*/
-#define CALCULATE_LCM(A, B, OUT)\
-{\
- CALCULATE_GCD(A, B, OUT);\
- OUT = (A / OUT)*B;\
-}
-
-static int calculate_lcm_and_needs_backwards_lcmed
- (size_t backwards_multiple, size_t received_size, size_t size_to_achieve,
- size_t *plcm, size_t *pneeds_backwards_lcmed)
-{
- /* Now calculate lcm */
- size_t max = backwards_multiple;
- size_t min = MALLOC_ALIGNMENT;
- size_t needs_backwards;
- size_t needs_backwards_lcmed;
- size_t lcm;
- size_t current_forward;
- /*Swap if necessary*/
- if(max < min){
- size_t tmp = min;
- min = max;
- max = tmp;
- }
- /*Check if it's power of two*/
- if((backwards_multiple & (backwards_multiple-1)) == 0){
- if(0 != (size_to_achieve & ((backwards_multiple-1)))){
- USAGE_ERROR_ACTION(m, oldp);
- return 0;
- }
-
- lcm = max;
- /*If we want to use minbytes data to get a buffer between maxbytes
- and minbytes if maxbytes can't be achieved, calculate the
- biggest of all possibilities*/
- current_forward = GET_TRUNCATED_PO2_SIZE(received_size, backwards_multiple);
- needs_backwards = size_to_achieve - current_forward;
- assert((needs_backwards % backwards_multiple) == 0);
- needs_backwards_lcmed = GET_ROUNDED_PO2_SIZE(needs_backwards, lcm);
- *plcm = lcm;
- *pneeds_backwards_lcmed = needs_backwards_lcmed;
- return 1;
- }
- /*Check if it's multiple of alignment*/
- else if((backwards_multiple & (MALLOC_ALIGNMENT - 1u)) == 0){
- lcm = backwards_multiple;
- current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple);
- //No need to round needs_backwards because backwards_multiple == lcm
- needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward;
- assert((needs_backwards_lcmed & (MALLOC_ALIGNMENT - 1u)) == 0);
- *plcm = lcm;
- *pneeds_backwards_lcmed = needs_backwards_lcmed;
- return 1;
- }
- /*Check if it's multiple of the half of the alignmment*/
- else if((backwards_multiple & ((MALLOC_ALIGNMENT/2u) - 1u)) == 0){
- lcm = backwards_multiple*2u;
- current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple);
- needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward;
- if(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1)))
- //while(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1)))
- needs_backwards_lcmed += backwards_multiple;
- assert((needs_backwards_lcmed % lcm) == 0);
- *plcm = lcm;
- *pneeds_backwards_lcmed = needs_backwards_lcmed;
- return 1;
- }
- /*Check if it's multiple of the quarter of the alignmment*/
- else if((backwards_multiple & ((MALLOC_ALIGNMENT/4u) - 1u)) == 0){
- size_t remainder;
- lcm = backwards_multiple*4u;
- current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple);
- needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward;
- //while(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1)))
- //needs_backwards_lcmed += backwards_multiple;
- if(0 != (remainder = ((needs_backwards_lcmed & (MALLOC_ALIGNMENT-1))>>(MALLOC_ALIGNMENT/8u)))){
- if(backwards_multiple & MALLOC_ALIGNMENT/2u){
- needs_backwards_lcmed += (remainder)*backwards_multiple;
- }
- else{
- needs_backwards_lcmed += (4-remainder)*backwards_multiple;
- }
- }
- assert((needs_backwards_lcmed % lcm) == 0);
- *plcm = lcm;
- *pneeds_backwards_lcmed = needs_backwards_lcmed;
- return 1;
- }
- else{
- CALCULATE_LCM(max, min, lcm);
- /*If we want to use minbytes data to get a buffer between maxbytes
- and minbytes if maxbytes can't be achieved, calculate the
- biggest of all possibilities*/
- current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple);
- needs_backwards = size_to_achieve - current_forward;
- assert((needs_backwards % backwards_multiple) == 0);
- needs_backwards_lcmed = GET_ROUNDED_SIZE(needs_backwards, lcm);
- *plcm = lcm;
- *pneeds_backwards_lcmed = needs_backwards_lcmed;
- return 1;
- }
-}
-
-static void *internal_grow_both_sides
- (mstate m
- ,allocation_type command
- ,void *oldmem
- ,size_t minbytes
- ,size_t maxbytes
- ,size_t *received_size
- ,size_t backwards_multiple
- ,int only_preferred_backwards)
-{
- mchunkptr oldp = mem2chunk(oldmem);
- size_t oldsize = chunksize(oldp);
- *received_size = oldsize - overhead_for(oldp);
- if(minbytes <= *received_size)
- return oldmem;
-
- if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp))) {
- if(command & BOOST_CONTAINER_EXPAND_FWD){
- if(try_realloc_chunk_with_min(m, oldp, request2size(minbytes), request2size(maxbytes), 0)){
- check_inuse_chunk(m, oldp);
- *received_size = DL_SIZE_IMPL(oldmem);
- s_allocated_memory += chunksize(oldp) - oldsize;
- return oldmem;
- }
- }
- else{
- *received_size = DL_SIZE_IMPL(oldmem);
- if(*received_size >= maxbytes)
- return oldmem;
- }
-/*
- Should we check this?
- if(backwards_multiple &&
- (0 != (minbytes % backwards_multiple) &&
- 0 != (maxbytes % backwards_multiple)) ){
- USAGE_ERROR_ACTION(m, oldp);
- return 0;
- }
-*/
- /* We reach here only if forward expansion fails */
- if(!(command & BOOST_CONTAINER_EXPAND_BWD) || pinuse(oldp)){
- return 0;
- }
- {
- size_t prevsize = oldp->prev_foot;
- if ((prevsize & USE_MMAP_BIT) != 0){
- /*Return failure the previous chunk was mmapped.
- mremap does not allow expanding to a fixed address (MREMAP_MAYMOVE) without
- copying (MREMAP_MAYMOVE must be also set).*/
- return 0;
- }
- else {
- mchunkptr prev = chunk_minus_offset(oldp, prevsize);
- size_t dsize = oldsize + prevsize;
- size_t needs_backwards_lcmed;
- size_t lcm;
-
- /* Let's calculate the number of extra bytes of data before the current
- block's begin. The value is a multiple of backwards_multiple
- and the alignment*/
- if(!calculate_lcm_and_needs_backwards_lcmed
- ( backwards_multiple, *received_size
- , only_preferred_backwards ? maxbytes : minbytes
- , &lcm, &needs_backwards_lcmed)
- || !RTCHECK(ok_address(m, prev))){
- USAGE_ERROR_ACTION(m, oldp);
- return 0;
- }
- /* Check if previous block has enough size */
- else if(prevsize < needs_backwards_lcmed){
- /* preferred size? */
- return 0;
- }
- /* Now take all next space. This must succeed, as we've previously calculated the correct size */
- if(command & BOOST_CONTAINER_EXPAND_FWD){
- if(!try_realloc_chunk_with_min(m, oldp, request2size(*received_size), request2size(*received_size), 0)){
- assert(0);
- }
- check_inuse_chunk(m, oldp);
- *received_size = DL_SIZE_IMPL(oldmem);
- s_allocated_memory += chunksize(oldp) - oldsize;
- oldsize = chunksize(oldp);
- dsize = oldsize + prevsize;
- }
- /* We need a minimum size to split the previous one */
- if(prevsize >= (needs_backwards_lcmed + MIN_CHUNK_SIZE)){
- mchunkptr r = chunk_minus_offset(oldp, needs_backwards_lcmed);
- size_t rsize = oldsize + needs_backwards_lcmed;
- size_t newprevsize = dsize - rsize;
- int prev_was_dv = prev == m->dv;
-
- assert(newprevsize >= MIN_CHUNK_SIZE);
-
- if (prev_was_dv) {
- m->dvsize = newprevsize;
- }
- else{/* if ((next->head & INUSE_BITS) == INUSE_BITS) { */
- unlink_chunk(m, prev, prevsize);
- insert_chunk(m, prev, newprevsize);
- }
-
- set_size_and_pinuse_of_free_chunk(prev, newprevsize);
- clear_pinuse(r);
- set_inuse(m, r, rsize);
- check_malloced_chunk(m, chunk2mem(r), rsize);
- *received_size = chunksize(r) - overhead_for(r);
- s_allocated_memory += chunksize(r) - oldsize;
- return chunk2mem(r);
- }
- /* Check if there is no place to create a new block and
- the whole new block is multiple of the backwards expansion multiple */
- else if(prevsize >= needs_backwards_lcmed && !(prevsize % lcm)) {
- /* Just merge the whole previous block */
- /* prevsize is multiple of lcm (and backwards_multiple)*/
- *received_size += prevsize;
-
- if (prev != m->dv) {
- unlink_chunk(m, prev, prevsize);
- }
- else{
- m->dvsize = 0;
- m->dv = 0;
- }
- set_inuse(m, prev, dsize);
- check_malloced_chunk(m, chunk2mem(prev), dsize);
- s_allocated_memory += chunksize(prev) - oldsize;
- return chunk2mem(prev);
- }
- else{
- /* Previous block was big enough but there is no room
- to create an empty block and taking the whole block does
- not fulfill alignment requirements */
- return 0;
- }
- }
- }
- }
- else{
- USAGE_ERROR_ACTION(m, oldmem);
- return 0;
- }
- return 0;
-}
-
-/* This is similar to mmap_resize but:
- * Only to shrink
- * It takes min and max sizes
- * Takes additional 'do_commit' argument to obtain the final
- size before doing the real shrink operation.
-*/
-static int internal_mmap_shrink_in_place(mstate m, mchunkptr oldp, size_t nbmin, size_t nbmax, size_t *received_size, int do_commit)
-{
- size_t oldsize = chunksize(oldp);
- *received_size = oldsize;
- #if HAVE_MREMAP
- if (is_small(nbmax)) /* Can't shrink mmap regions below small size */
- return 0;
- {
- size_t effective_min = nbmin > MIN_LARGE_SIZE ? nbmin : MIN_LARGE_SIZE;
- /* Keep old chunk if big enough but not too big */
- if (oldsize >= effective_min + SIZE_T_SIZE &&
- (oldsize - effective_min) <= (mparams.granularity << 1))
- return 0;
- /* Now calculate new sizes */
- {
- size_t offset = oldp->prev_foot;
- size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
- size_t newmmsize = mmap_align(effective_min + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
- *received_size = newmmsize;
- if(!do_commit){
- const int flags = 0; /* placate people compiling -Wunused */
- char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
- oldmmsize, newmmsize, flags);
- /*This must always succeed */
- if(!cp){
- USAGE_ERROR_ACTION(m, m);
- return 0;
- }
- {
- mchunkptr newp = (mchunkptr)(cp + offset);
- size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
- newp->head = psize;
- mark_inuse_foot(m, newp, psize);
- chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
- chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
-
- if (cp < m->least_addr)
- m->least_addr = cp;
- if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
- m->max_footprint = m->footprint;
- check_mmapped_chunk(m, newp);
- }
- }
- }
- return 1;
- }
- #else //#if HAVE_MREMAP
- (void)m;
- (void)oldp;
- (void)nbmin;
- (void)nbmax;
- (void)received_size;
- (void)do_commit;
- return 0;
- #endif //#if HAVE_MREMAP
-}
-
-static int internal_shrink(mstate m, void* oldmem, size_t minbytes, size_t maxbytes, size_t *received_size, int do_commit)
-{
- *received_size = chunksize(mem2chunk(oldmem)) - overhead_for(mem2chunk(oldmem));
- if (minbytes >= MAX_REQUEST || maxbytes >= MAX_REQUEST) {
- MALLOC_FAILURE_ACTION;
- return 0;
- }
- else if(minbytes < MIN_REQUEST){
- minbytes = MIN_REQUEST;
- }
- if (minbytes > maxbytes) {
- return 0;
- }
-
- {
- mchunkptr oldp = mem2chunk(oldmem);
- size_t oldsize = chunksize(oldp);
- mchunkptr next = chunk_plus_offset(oldp, oldsize);
- void* extra = 0;
-
- /* Try to either shrink or extend into top. Else malloc-copy-free*/
- if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp) &&
- ok_next(oldp, next) && ok_pinuse(next))) {
- size_t nbmin = request2size(minbytes);
- size_t nbmax = request2size(maxbytes);
-
- if (nbmin > oldsize){
- /* Return error if old size is too small */
- }
- else if (is_mmapped(oldp)){
- return internal_mmap_shrink_in_place(m, oldp, nbmin, nbmax, received_size, do_commit);
- }
- else{ // nbmin <= oldsize /* already big enough*/
- size_t nb = nbmin;
- size_t rsize = oldsize - nb;
- if (rsize >= MIN_CHUNK_SIZE) {
- if(do_commit){
- mchunkptr remainder = chunk_plus_offset(oldp, nb);
- set_inuse(m, oldp, nb);
- set_inuse(m, remainder, rsize);
- extra = chunk2mem(remainder);
- }
- *received_size = nb - overhead_for(oldp);
- if(!do_commit)
- return 1;
- }
- }
- }
- else {
- USAGE_ERROR_ACTION(m, oldmem);
- return 0;
- }
-
- if (extra != 0 && do_commit) {
- mspace_free_lockless(m, extra);
- check_inuse_chunk(m, oldp);
- return 1;
- }
- else {
- return 0;
- }
- }
-}
-
-
-#define INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM 4096
-
-#define SQRT_MAX_SIZE_T (((size_t)-1)>>(sizeof(size_t)*CHAR_BIT/2))
-
-static int internal_node_multialloc
- (mstate m, size_t n_elements, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain) {
- void* mem; /* malloced aggregate space */
- mchunkptr p; /* corresponding chunk */
- size_t remainder_size; /* remaining bytes while splitting */
- flag_t was_enabled; /* to disable mmap */
- size_t elements_per_segment = 0;
- size_t element_req_size = request2size(element_size);
- boost_cont_memchain_it prev_last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain);
-
- /*Error if wrong element_size parameter */
- if( !element_size ||
- /*OR Error if n_elements less thatn contiguous_elements */
- ((contiguous_elements + 1) > (DL_MULTIALLOC_DEFAULT_CONTIGUOUS + 1) && n_elements < contiguous_elements) ||
- /* OR Error if integer overflow */
- (SQRT_MAX_SIZE_T < (element_req_size | contiguous_elements) &&
- (MAX_SIZE_T/element_req_size) < contiguous_elements)){
- return 0;
- }
- switch(contiguous_elements){
- case DL_MULTIALLOC_DEFAULT_CONTIGUOUS:
- {
- /* Default contiguous, just check that we can store at least one element */
- elements_per_segment = INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM/element_req_size;
- elements_per_segment += (size_t)(!elements_per_segment);
- }
- break;
- case DL_MULTIALLOC_ALL_CONTIGUOUS:
- /* All elements should be allocated in a single call */
- elements_per_segment = n_elements;
- break;
- default:
- /* Allocate in chunks of "contiguous_elements" */
- elements_per_segment = contiguous_elements;
- }
-
- {
- size_t i;
- size_t next_i;
- /*
- Allocate the aggregate chunk. First disable direct-mmapping so
- malloc won't use it, since we would not be able to later
- free/realloc space internal to a segregated mmap region.
- */
- was_enabled = use_mmap(m);
- disable_mmap(m);
- for(i = 0; i != n_elements; i = next_i)
- {
- size_t accum_size;
- size_t n_elements_left = n_elements - i;
- next_i = i + ((n_elements_left < elements_per_segment) ? n_elements_left : elements_per_segment);
- accum_size = element_req_size*(next_i - i);
-
- mem = mspace_malloc_lockless(m, accum_size - CHUNK_OVERHEAD);
- if (mem == 0){
- BOOST_CONTAINER_MEMIT_NEXT(prev_last_it);
- while(i--){
- void *addr = BOOST_CONTAINER_MEMIT_ADDR(prev_last_it);
- BOOST_CONTAINER_MEMIT_NEXT(prev_last_it);
- mspace_free_lockless(m, addr);
- }
- if (was_enabled)
- enable_mmap(m);
- return 0;
- }
- p = mem2chunk(mem);
- remainder_size = chunksize(p);
- s_allocated_memory += remainder_size;
-
- assert(!is_mmapped(p));
- { /* split out elements */
- void *mem_orig = mem;
- boost_cont_memchain_it last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain);
- size_t num_elements = next_i-i;
-
- size_t num_loops = num_elements - 1;
- remainder_size -= element_req_size*num_loops;
- while(num_loops--){
- void **mem_prev = ((void**)mem);
- set_size_and_pinuse_of_inuse_chunk(m, p, element_req_size);
- p = chunk_plus_offset(p, element_req_size);
- mem = chunk2mem(p);
- *mem_prev = mem;
- }
- set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
- BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER(pchain, last_it, mem_orig, mem, num_elements);
- }
- }
- if (was_enabled)
- enable_mmap(m);
- }
- return 1;
-}
-
-static int internal_multialloc_arrays
- (mstate m, size_t n_elements, const size_t* sizes, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain) {
- void* mem; /* malloced aggregate space */
- mchunkptr p; /* corresponding chunk */
- size_t remainder_size; /* remaining bytes while splitting */
- flag_t was_enabled; /* to disable mmap */
- size_t size;
- size_t boost_cont_multialloc_segmented_malloc_size;
- size_t max_size;
-
- /* Check overflow */
- if(!element_size){
- return 0;
- }
- max_size = MAX_REQUEST/element_size;
- /* Different sizes*/
- switch(contiguous_elements){
- case DL_MULTIALLOC_DEFAULT_CONTIGUOUS:
- /* Use default contiguous mem */
- boost_cont_multialloc_segmented_malloc_size = INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM;
- break;
- case DL_MULTIALLOC_ALL_CONTIGUOUS:
- boost_cont_multialloc_segmented_malloc_size = MAX_REQUEST + CHUNK_OVERHEAD;
- break;
- default:
- if(max_size < contiguous_elements){
- return 0;
- }
- else{
- /* The suggested buffer is just the the element count by the size */
- boost_cont_multialloc_segmented_malloc_size = element_size*contiguous_elements;
- }
- }
-
- {
- size_t i;
- size_t next_i;
- /*
- Allocate the aggregate chunk. First disable direct-mmapping so
- malloc won't use it, since we would not be able to later
- free/realloc space internal to a segregated mmap region.
- */
- was_enabled = use_mmap(m);
- disable_mmap(m);
- for(i = 0, next_i = 0; i != n_elements; i = next_i)
- {
- int error = 0;
- size_t accum_size;
- for(accum_size = 0; next_i != n_elements; ++next_i){
- size_t cur_array_size = sizes[next_i];
- if(max_size < cur_array_size){
- error = 1;
- break;
- }
- else{
- size_t reqsize = request2size(cur_array_size*element_size);
- if(((boost_cont_multialloc_segmented_malloc_size - CHUNK_OVERHEAD) - accum_size) < reqsize){
- if(!accum_size){
- accum_size += reqsize;
- ++next_i;
- }
- break;
- }
- accum_size += reqsize;
- }
- }
-
- mem = error ? 0 : mspace_malloc_lockless(m, accum_size - CHUNK_OVERHEAD);
- if (mem == 0){
- boost_cont_memchain_it it = BOOST_CONTAINER_MEMCHAIN_BEGIN_IT(pchain);
- while(i--){
- void *addr = BOOST_CONTAINER_MEMIT_ADDR(it);
- BOOST_CONTAINER_MEMIT_NEXT(it);
- mspace_free_lockless(m, addr);
- }
- if (was_enabled)
- enable_mmap(m);
- return 0;
- }
- p = mem2chunk(mem);
- remainder_size = chunksize(p);
- s_allocated_memory += remainder_size;
-
- assert(!is_mmapped(p));
-
- { /* split out elements */
- void *mem_orig = mem;
- boost_cont_memchain_it last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain);
- size_t num_elements = next_i-i;
-
- for(++i; i != next_i; ++i) {
- void **mem_prev = ((void**)mem);
- size = request2size(sizes[i]*element_size);
- remainder_size -= size;
- set_size_and_pinuse_of_inuse_chunk(m, p, size);
- p = chunk_plus_offset(p, size);
- mem = chunk2mem(p);
- *mem_prev = mem;
- }
- set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
- BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER(pchain, last_it, mem_orig, mem, num_elements);
- }
- }
- if (was_enabled)
- enable_mmap(m);
- }
- return 1;
-}
-
-int boost_cont_multialloc_arrays
- (size_t n_elements, const size_t *sizes, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain)
-{
- int ret = 0;
- mstate ms = (mstate)gm;
- ensure_initialization();
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- }
- else if (!PREACTION(ms)) {
- ret = internal_multialloc_arrays(ms, n_elements, sizes, element_size, contiguous_elements, pchain);
- POSTACTION(ms);
- }
- return ret;
-}
-
-
-/*Doug Lea malloc extensions*/
-static boost_cont_malloc_stats_t get_malloc_stats(mstate m)
-{
- boost_cont_malloc_stats_t ret = { 0, 0, 0 };
- ensure_initialization();
- if (!PREACTION(m)) {
- size_t maxfp = 0;
- size_t fp = 0;
- size_t used = 0;
- check_malloc_state(m);
- if (is_initialized(m)) {
- msegmentptr s = &m->seg;
- maxfp = m->max_footprint;
- fp = m->footprint;
- used = fp - (m->topsize + TOP_FOOT_SIZE);
-
- while (s != 0) {
- mchunkptr q = align_as_chunk(s->base);
- while (segment_holds(s, q) &&
- q != m->top && q->head != FENCEPOST_HEAD) {
- if (!cinuse(q))
- used -= chunksize(q);
- q = next_chunk(q);
- }
- s = s->next;
- }
- }
-
- ret.max_system_bytes = maxfp;
- ret.system_bytes = fp;
- ret.in_use_bytes = used;
- POSTACTION(m);
- }
- return ret;
-}
-
-size_t boost_cont_size(const void *p)
-{ return DL_SIZE_IMPL(p); }
-
-void* boost_cont_malloc(size_t bytes)
-{
- size_t received_bytes;
- ensure_initialization();
- return boost_cont_allocation_command
- (BOOST_CONTAINER_ALLOCATE_NEW, 1, bytes, bytes, &received_bytes, 0).first;
-}
-
-void boost_cont_free(void* mem)
-{
- mstate ms = (mstate)gm;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- }
- else if (!PREACTION(ms)) {
- mspace_free_lockless(ms, mem);
- POSTACTION(ms);
- }
-}
-
-void* boost_cont_memalign(size_t bytes, size_t alignment)
-{
- void *addr;
- ensure_initialization();
- addr = mspace_memalign(gm, alignment, bytes);
- if(addr){
- s_allocated_memory += chunksize(mem2chunk(addr));
- }
- return addr;
-}
-
-int boost_cont_multialloc_nodes
- (size_t n_elements, size_t elem_size, size_t contiguous_elements, boost_cont_memchain *pchain)
-{
- int ret = 0;
- mstate ms = (mstate)gm;
- ensure_initialization();
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- }
- else if (!PREACTION(ms)) {
- ret = internal_node_multialloc(ms, n_elements, elem_size, contiguous_elements, pchain);
- POSTACTION(ms);
- }
- return ret;
-}
-
-size_t boost_cont_footprint()
-{
- return ((mstate)gm)->footprint;
-}
-
-size_t boost_cont_allocated_memory()
-{
- size_t alloc_mem = 0;
- mstate m = (mstate)gm;
- ensure_initialization();
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- }
-
-
- if (!PREACTION(m)) {
- check_malloc_state(m);
- if (is_initialized(m)) {
- size_t nfree = SIZE_T_ONE; /* top always free */
- size_t mfree = m->topsize + TOP_FOOT_SIZE;
- size_t sum = mfree;
- msegmentptr s = &m->seg;
- while (s != 0) {
- mchunkptr q = align_as_chunk(s->base);
- while (segment_holds(s, q) &&
- q != m->top && q->head != FENCEPOST_HEAD) {
- size_t sz = chunksize(q);
- sum += sz;
- if (!is_inuse(q)) {
- mfree += sz;
- ++nfree;
- }
- q = next_chunk(q);
- }
- s = s->next;
- }
- {
- size_t uordblks = m->footprint - mfree;
- if(nfree)
- alloc_mem = (size_t)(uordblks - (nfree-1)*TOP_FOOT_SIZE);
- else
- alloc_mem = uordblks;
- }
- }
-
- POSTACTION(m);
- }
- return alloc_mem;
-}
-
-size_t boost_cont_chunksize(const void *p)
-{ return chunksize(mem2chunk(p)); }
-
-int boost_cont_all_deallocated()
-{ return !s_allocated_memory; }
-
-boost_cont_malloc_stats_t boost_cont_malloc_stats()
-{
- mstate ms = (mstate)gm;
- if (ok_magic(ms)) {
- return get_malloc_stats(ms);
- }
- else {
- boost_cont_malloc_stats_t r = { 0, 0, 0 };
- USAGE_ERROR_ACTION(ms,ms);
- return r;
- }
-}
-
-size_t boost_cont_in_use_memory()
-{ return s_allocated_memory; }
-
-int boost_cont_trim(size_t pad)
-{
- ensure_initialization();
- return dlmalloc_trim(pad);
-}
-
-int boost_cont_grow
- (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received)
-{
- mstate ms = (mstate)gm;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
-
- if (!PREACTION(ms)) {
- mchunkptr p = mem2chunk(oldmem);
- size_t oldsize = chunksize(p);
- p = try_realloc_chunk_with_min(ms, p, request2size(minbytes), request2size(maxbytes), 0);
- POSTACTION(ms);
- if(p){
- check_inuse_chunk(ms, p);
- *received = DL_SIZE_IMPL(oldmem);
- s_allocated_memory += chunksize(p) - oldsize;
- }
- return 0 != p;
- }
- return 0;
-}
-
-int boost_cont_shrink
- (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received, int do_commit)
-{
- mstate ms = (mstate)gm;
- if (!ok_magic(ms)) {
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
-
- if (!PREACTION(ms)) {
- int ret = internal_shrink(ms, oldmem, minbytes, maxbytes, received, do_commit);
- POSTACTION(ms);
- return 0 != ret;
- }
- return 0;
-}
-
-
-void* boost_cont_alloc
- (size_t minbytes, size_t preferred_bytes, size_t *received_bytes)
-{
- //ensure_initialization provided by boost_cont_allocation_command
- return boost_cont_allocation_command
- (BOOST_CONTAINER_ALLOCATE_NEW, 1, minbytes, preferred_bytes, received_bytes, 0).first;
-}
-
-void boost_cont_multidealloc(boost_cont_memchain *pchain)
-{
- mstate ms = (mstate)gm;
- if (!ok_magic(ms)) {
- (void)ms;
- USAGE_ERROR_ACTION(ms,ms);
- }
- internal_multialloc_free(ms, pchain);
-}
-
-int boost_cont_malloc_check()
-{
-#ifdef DEBUG
- mstate ms = (mstate)gm;
- ensure_initialization();
- if (!ok_magic(ms)) {
- (void)ms;
- USAGE_ERROR_ACTION(ms,ms);
- return 0;
- }
- check_malloc_state(ms);
- return 1;
-#else
- return 1;
-#endif
-}
-
-
-boost_cont_command_ret_t boost_cont_allocation_command
- (allocation_type command, size_t sizeof_object, size_t limit_size
- , size_t preferred_size, size_t *received_size, void *reuse_ptr)
-{
- boost_cont_command_ret_t ret = { 0, 0 };
- ensure_initialization();
- if(command & (BOOST_CONTAINER_SHRINK_IN_PLACE | BOOST_CONTAINER_TRY_SHRINK_IN_PLACE)){
- int success = boost_cont_shrink( reuse_ptr, preferred_size, limit_size
- , received_size, (command & BOOST_CONTAINER_SHRINK_IN_PLACE));
- ret.first = success ? reuse_ptr : 0;
- return ret;
- }
-
- *received_size = 0;
-
- if(limit_size > preferred_size)
- return ret;
-
- {
- mstate ms = (mstate)gm;
-
- /*Expand in place*/
- if (!PREACTION(ms)) {
- #if FOOTERS
- if(reuse_ptr){
- mstate m = get_mstate_for(mem2chunk(reuse_ptr));
- if (!ok_magic(m)) {
- USAGE_ERROR_ACTION(m, reuse_ptr);
- return ret;
- }
- }
- #endif
- if(reuse_ptr && (command & (BOOST_CONTAINER_EXPAND_FWD | BOOST_CONTAINER_EXPAND_BWD))){
- void *r = internal_grow_both_sides
- ( ms, command, reuse_ptr, limit_size
- , preferred_size, received_size, sizeof_object, 1);
- if(r){
- ret.first = r;
- ret.second = 1;
- goto postaction;
- }
- }
-
- if(command & BOOST_CONTAINER_ALLOCATE_NEW){
- void *addr = mspace_malloc_lockless(ms, preferred_size);
- if(!addr) addr = mspace_malloc_lockless(ms, limit_size);
- if(addr){
- s_allocated_memory += chunksize(mem2chunk(addr));
- *received_size = DL_SIZE_IMPL(addr);
- }
- ret.first = addr;
- ret.second = 0;
- if(addr){
- goto postaction;
- }
- }
-
- //Now try to expand both sides with min size
- if(reuse_ptr && (command & (BOOST_CONTAINER_EXPAND_FWD | BOOST_CONTAINER_EXPAND_BWD))){
- void *r = internal_grow_both_sides
- ( ms, command, reuse_ptr, limit_size
- , preferred_size, received_size, sizeof_object, 0);
- if(r){
- ret.first = r;
- ret.second = 1;
- goto postaction;
- }
- }
- postaction:
- POSTACTION(ms);
- }
- }
- return ret;
-}
-
-int boost_cont_mallopt(int param_number, int value)
-{
- return change_mparam(param_number, value);
-}
-
-void *boost_cont_sync_create()
-{
- void *p = boost_cont_malloc(sizeof(MLOCK_T));
- if(p){
- if(0 != INITIAL_LOCK((MLOCK_T*)p)){
- boost_cont_free(p);
- p = 0;
- }
- }
- return p;
-}
-
-void boost_cont_sync_destroy(void *sync)
-{
- if(sync){
- (void)DESTROY_LOCK((MLOCK_T*)sync);
- boost_cont_free(sync);
- }
-}
-
-int boost_cont_sync_lock(void *sync)
-{ return 0 == (ACQUIRE_LOCK((MLOCK_T*)sync)); }
-
-void boost_cont_sync_unlock(void *sync)
-{ RELEASE_LOCK((MLOCK_T*)sync); }
-
-int boost_cont_global_sync_lock()
-{
- int ret;
- ensure_initialization();
- ret = ACQUIRE_MALLOC_GLOBAL_LOCK();
- return 0 == ret;
-}
-
-void boost_cont_global_sync_unlock()
-{
- RELEASE_MALLOC_GLOBAL_LOCK()
-}
-
-//#ifdef DL_DEBUG_DEFINED
-// #undef DEBUG
-//#endif
-
-#ifdef _MSC_VER
-#pragma warning (pop)
-#endif
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2007-2015. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/container for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#include <boost/container/detail/alloc_lib.h>
+
+#include "errno.h" //dlmalloc bug EINVAL is used in posix_memalign without checking LACKS_ERRNO_H
+#include "limits.h" //CHAR_BIT
+#ifdef BOOST_CONTAINER_DLMALLOC_FOOTERS
+#define FOOTERS 1
+#endif
+#define USE_LOCKS 1
+#define MSPACES 1
+#define NO_MALLINFO 1
+#define NO_MALLOC_STATS 1
+
+
+#if !defined(NDEBUG)
+ #if !defined(DEBUG)
+ #define DEBUG 1
+ #define DL_DEBUG_DEFINED
+ #endif
+#endif
+
+#define USE_DL_PREFIX
+
+#ifdef __GNUC__
+#define FORCEINLINE inline
+#endif
+#include "dlmalloc_2_8_6.c"
+
+#ifdef _MSC_VER
+#pragma warning (push)
+#pragma warning (disable : 4127)
+#pragma warning (disable : 4267)
+#pragma warning (disable : 4127)
+#pragma warning (disable : 4702)
+#pragma warning (disable : 4390) /*empty controlled statement found; is this the intent?*/
+#pragma warning (disable : 4251 4231 4660) /*dll warnings*/
+#endif
+
+#define DL_SIZE_IMPL(p) (chunksize(mem2chunk(p)) - overhead_for(mem2chunk(p)))
+
+static size_t s_allocated_memory;
+
+///////////////////////////////////////////////////////////////
+///////////////////////////////////////////////////////////////
+///////////////////////////////////////////////////////////////
+//
+// SLIGHTLY MODIFIED DLMALLOC FUNCTIONS
+//
+///////////////////////////////////////////////////////////////
+///////////////////////////////////////////////////////////////
+///////////////////////////////////////////////////////////////
+
+//This function is equal to mspace_free
+//replacing PREACTION with 0 and POSTACTION with nothing
+static void mspace_free_lockless(mspace msp, void* mem)
+{
+ if (mem != 0) {
+ mchunkptr p = mem2chunk(mem);
+#if FOOTERS
+ mstate fm = get_mstate_for(p);
+ msp = msp; /* placate people compiling -Wunused */
+#else /* FOOTERS */
+ mstate fm = (mstate)msp;
+#endif /* FOOTERS */
+ if (!ok_magic(fm)) {
+ USAGE_ERROR_ACTION(fm, p);
+ return;
+ }
+ if (!0){//PREACTION(fm)) {
+ check_inuse_chunk(fm, p);
+ if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
+ size_t psize = chunksize(p);
+ mchunkptr next = chunk_plus_offset(p, psize);
+ s_allocated_memory -= psize;
+ if (!pinuse(p)) {
+ size_t prevsize = p->prev_foot;
+ if (is_mmapped(p)) {
+ psize += prevsize + MMAP_FOOT_PAD;
+ if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
+ fm->footprint -= psize;
+ goto postaction;
+ }
+ else {
+ mchunkptr prev = chunk_minus_offset(p, prevsize);
+ psize += prevsize;
+ p = prev;
+ if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
+ if (p != fm->dv) {
+ unlink_chunk(fm, p, prevsize);
+ }
+ else if ((next->head & INUSE_BITS) == INUSE_BITS) {
+ fm->dvsize = psize;
+ set_free_with_pinuse(p, psize, next);
+ goto postaction;
+ }
+ }
+ else
+ goto erroraction;
+ }
+ }
+
+ if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
+ if (!cinuse(next)) { /* consolidate forward */
+ if (next == fm->top) {
+ size_t tsize = fm->topsize += psize;
+ fm->top = p;
+ p->head = tsize | PINUSE_BIT;
+ if (p == fm->dv) {
+ fm->dv = 0;
+ fm->dvsize = 0;
+ }
+ if (should_trim(fm, tsize))
+ sys_trim(fm, 0);
+ goto postaction;
+ }
+ else if (next == fm->dv) {
+ size_t dsize = fm->dvsize += psize;
+ fm->dv = p;
+ set_size_and_pinuse_of_free_chunk(p, dsize);
+ goto postaction;
+ }
+ else {
+ size_t nsize = chunksize(next);
+ psize += nsize;
+ unlink_chunk(fm, next, nsize);
+ set_size_and_pinuse_of_free_chunk(p, psize);
+ if (p == fm->dv) {
+ fm->dvsize = psize;
+ goto postaction;
+ }
+ }
+ }
+ else
+ set_free_with_pinuse(p, psize, next);
+
+ if (is_small(psize)) {
+ insert_small_chunk(fm, p, psize);
+ check_free_chunk(fm, p);
+ }
+ else {
+ tchunkptr tp = (tchunkptr)p;
+ insert_large_chunk(fm, tp, psize);
+ check_free_chunk(fm, p);
+ if (--fm->release_checks == 0)
+ release_unused_segments(fm);
+ }
+ goto postaction;
+ }
+ }
+ erroraction:
+ USAGE_ERROR_ACTION(fm, p);
+ postaction:
+ ;//POSTACTION(fm);
+ }
+ }
+}
+
+//This function is equal to mspace_malloc
+//replacing PREACTION with 0 and POSTACTION with nothing
+void* mspace_malloc_lockless(mspace msp, size_t bytes)
+{
+ mstate ms = (mstate)msp;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ if (!0){//PREACTION(ms)) {
+ void* mem;
+ size_t nb;
+ if (bytes <= MAX_SMALL_REQUEST) {
+ bindex_t idx;
+ binmap_t smallbits;
+ nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
+ idx = small_index(nb);
+ smallbits = ms->smallmap >> idx;
+
+ if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
+ mchunkptr b, p;
+ idx += ~smallbits & 1; /* Uses next bin if idx empty */
+ b = smallbin_at(ms, idx);
+ p = b->fd;
+ assert(chunksize(p) == small_index2size(idx));
+ unlink_first_small_chunk(ms, b, p, idx);
+ set_inuse_and_pinuse(ms, p, small_index2size(idx));
+ mem = chunk2mem(p);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ else if (nb > ms->dvsize) {
+ if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
+ mchunkptr b, p, r;
+ size_t rsize;
+ bindex_t i;
+ binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
+ binmap_t leastbit = least_bit(leftbits);
+ compute_bit2idx(leastbit, i);
+ b = smallbin_at(ms, i);
+ p = b->fd;
+ assert(chunksize(p) == small_index2size(i));
+ unlink_first_small_chunk(ms, b, p, i);
+ rsize = small_index2size(i) - nb;
+ /* Fit here cannot be remainderless if 4byte sizes */
+ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
+ set_inuse_and_pinuse(ms, p, small_index2size(i));
+ else {
+ set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
+ r = chunk_plus_offset(p, nb);
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ replace_dv(ms, r, rsize);
+ }
+ mem = chunk2mem(p);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+ }
+ }
+ else if (bytes >= MAX_REQUEST)
+ nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
+ else {
+ nb = pad_request(bytes);
+ if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+ }
+
+ if (nb <= ms->dvsize) {
+ size_t rsize = ms->dvsize - nb;
+ mchunkptr p = ms->dv;
+ if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
+ mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
+ ms->dvsize = rsize;
+ set_size_and_pinuse_of_free_chunk(r, rsize);
+ set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
+ }
+ else { /* exhaust dv */
+ size_t dvs = ms->dvsize;
+ ms->dvsize = 0;
+ ms->dv = 0;
+ set_inuse_and_pinuse(ms, p, dvs);
+ }
+ mem = chunk2mem(p);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ else if (nb < ms->topsize) { /* Split top */
+ size_t rsize = ms->topsize -= nb;
+ mchunkptr p = ms->top;
+ mchunkptr r = ms->top = chunk_plus_offset(p, nb);
+ r->head = rsize | PINUSE_BIT;
+ set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
+ mem = chunk2mem(p);
+ check_top_chunk(ms, ms->top);
+ check_malloced_chunk(ms, mem, nb);
+ goto postaction;
+ }
+
+ mem = sys_alloc(ms, nb);
+
+ postaction:
+ ;//POSTACTION(ms);
+ return mem;
+ }
+
+ return 0;
+}
+
+//This function is equal to try_realloc_chunk but handling
+//minimum and desired bytes
+static mchunkptr try_realloc_chunk_with_min(mstate m, mchunkptr p, size_t min_nb, size_t des_nb, int can_move)
+{
+ mchunkptr newp = 0;
+ size_t oldsize = chunksize(p);
+ mchunkptr next = chunk_plus_offset(p, oldsize);
+ if (RTCHECK(ok_address(m, p) && ok_inuse(p) &&
+ ok_next(p, next) && ok_pinuse(next))) {
+ if (is_mmapped(p)) {
+ newp = mmap_resize(m, p, des_nb, can_move);
+ if(!newp) //mmap does not return how many bytes we could reallocate, so go the minimum
+ newp = mmap_resize(m, p, min_nb, can_move);
+ }
+ else if (oldsize >= min_nb) { /* already big enough */
+ size_t nb = oldsize >= des_nb ? des_nb : oldsize;
+ size_t rsize = oldsize - nb;
+ if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */
+ mchunkptr r = chunk_plus_offset(p, nb);
+ set_inuse(m, p, nb);
+ set_inuse(m, r, rsize);
+ dispose_chunk(m, r, rsize);
+ }
+ newp = p;
+ }
+ else if (next == m->top) { /* extend into top */
+ if (oldsize + m->topsize > min_nb) {
+ size_t nb = (oldsize + m->topsize) > des_nb ? des_nb : (oldsize + m->topsize - MALLOC_ALIGNMENT);
+ size_t newsize = oldsize + m->topsize;
+ size_t newtopsize = newsize - nb;
+ mchunkptr newtop = chunk_plus_offset(p, nb);
+ set_inuse(m, p, nb);
+ newtop->head = newtopsize |PINUSE_BIT;
+ m->top = newtop;
+ m->topsize = newtopsize;
+ newp = p;
+ }
+ }
+ else if (next == m->dv) { /* extend into dv */
+ size_t dvs = m->dvsize;
+ if (oldsize + dvs >= min_nb) {
+ size_t nb = (oldsize + dvs) >= des_nb ? des_nb : (oldsize + dvs);
+ size_t dsize = oldsize + dvs - nb;
+ if (dsize >= MIN_CHUNK_SIZE) {
+ mchunkptr r = chunk_plus_offset(p, nb);
+ mchunkptr n = chunk_plus_offset(r, dsize);
+ set_inuse(m, p, nb);
+ set_size_and_pinuse_of_free_chunk(r, dsize);
+ clear_pinuse(n);
+ m->dvsize = dsize;
+ m->dv = r;
+ }
+ else { /* exhaust dv */
+ size_t newsize = oldsize + dvs;
+ set_inuse(m, p, newsize);
+ m->dvsize = 0;
+ m->dv = 0;
+ }
+ newp = p;
+ }
+ }
+ else if (!cinuse(next)) { /* extend into next free chunk */
+ size_t nextsize = chunksize(next);
+ if (oldsize + nextsize >= min_nb) {
+ size_t nb = (oldsize + nextsize) >= des_nb ? des_nb : (oldsize + nextsize);
+ size_t rsize = oldsize + nextsize - nb;
+ unlink_chunk(m, next, nextsize);
+ if (rsize < MIN_CHUNK_SIZE) {
+ size_t newsize = oldsize + nextsize;
+ set_inuse(m, p, newsize);
+ }
+ else {
+ mchunkptr r = chunk_plus_offset(p, nb);
+ set_inuse(m, p, nb);
+ set_inuse(m, r, rsize);
+ dispose_chunk(m, r, rsize);
+ }
+ newp = p;
+ }
+ }
+ }
+ else {
+ USAGE_ERROR_ACTION(m, chunk2mem(p));
+ }
+ return newp;
+}
+
+#define BOOST_ALLOC_PLUS_MEMCHAIN_MEM_JUMP_NEXT(THISMEM, NEXTMEM) \
+ *((void**)(THISMEM)) = *((void**)((NEXTMEM)))
+
+//This function is based on internal_bulk_free
+//replacing iteration over array[] with boost_cont_memchain.
+//Instead of returning the unallocated nodes, returns a chain of non-deallocated nodes.
+//After forward merging, backwards merging is also tried
+static void internal_multialloc_free(mstate m, boost_cont_memchain *pchain)
+{
+#if FOOTERS
+ boost_cont_memchain ret_chain;
+ BOOST_CONTAINER_MEMCHAIN_INIT(&ret_chain);
+#endif
+ if (!PREACTION(m)) {
+ boost_cont_memchain_it a_it = BOOST_CONTAINER_MEMCHAIN_BEGIN_IT(pchain);
+ while(!BOOST_CONTAINER_MEMCHAIN_IS_END_IT(pchain, a_it)) { /* Iterate though all memory holded by the chain */
+ void* a_mem = BOOST_CONTAINER_MEMIT_ADDR(a_it);
+ mchunkptr a_p = mem2chunk(a_mem);
+ size_t psize = chunksize(a_p);
+#if FOOTERS
+ if (get_mstate_for(a_p) != m) {
+ BOOST_CONTAINER_MEMIT_NEXT(a_it);
+ BOOST_CONTAINER_MEMCHAIN_PUSH_BACK(&ret_chain, a_mem);
+ continue;
+ }
+#endif
+ check_inuse_chunk(m, a_p);
+ if (RTCHECK(ok_address(m, a_p) && ok_inuse(a_p))) {
+ while(1) { /* Internal loop to speed up forward and backward merging (avoids some redundant checks) */
+ boost_cont_memchain_it b_it = a_it;
+ BOOST_CONTAINER_MEMIT_NEXT(b_it);
+ if(!BOOST_CONTAINER_MEMCHAIN_IS_END_IT(pchain, b_it)){
+ void *b_mem = BOOST_CONTAINER_MEMIT_ADDR(b_it);
+ mchunkptr b_p = mem2chunk(b_mem);
+ if (b_p == next_chunk(a_p)) { /* b chunk is contiguous and next so b's size can be added to a */
+ psize += chunksize(b_p);
+ set_inuse(m, a_p, psize);
+ BOOST_ALLOC_PLUS_MEMCHAIN_MEM_JUMP_NEXT(a_mem, b_mem);
+ continue;
+ }
+ if(RTCHECK(ok_address(m, b_p) && ok_inuse(b_p))){
+ /* b chunk is contiguous and previous so a's size can be added to b */
+ if(a_p == next_chunk(b_p)) {
+ psize += chunksize(b_p);
+ set_inuse(m, b_p, psize);
+ a_it = b_it;
+ a_p = b_p;
+ a_mem = b_mem;
+ continue;
+ }
+ }
+ }
+ /* Normal deallocation starts again in the outer loop */
+ a_it = b_it;
+ s_allocated_memory -= psize;
+ dispose_chunk(m, a_p, psize);
+ break;
+ }
+ }
+ else {
+ CORRUPTION_ERROR_ACTION(m);
+ break;
+ }
+ }
+ if (should_trim(m, m->topsize))
+ sys_trim(m, 0);
+ POSTACTION(m);
+ }
+#if FOOTERS
+ {
+ boost_cont_memchain_it last_pchain = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain);
+ BOOST_CONTAINER_MEMCHAIN_INIT(pchain);
+ BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER
+ (pchain
+ , last_pchain
+ , BOOST_CONTAINER_MEMCHAIN_FIRSTMEM(&ret_chain)
+ , BOOST_CONTAINER_MEMCHAIN_LASTMEM(&ret_chain)
+ , BOOST_CONTAINER_MEMCHAIN_SIZE(&ret_chain)
+ );
+ }
+#endif
+}
+
+///////////////////////////////////////////////////////////////
+///////////////////////////////////////////////////////////////
+///////////////////////////////////////////////////////////////
+//
+// NEW FUNCTIONS BASED ON DLMALLOC INTERNALS
+//
+///////////////////////////////////////////////////////////////
+///////////////////////////////////////////////////////////////
+///////////////////////////////////////////////////////////////
+
+#define GET_TRUNCATED_SIZE(ORIG_SIZE, ROUNDTO) ((ORIG_SIZE)/(ROUNDTO)*(ROUNDTO))
+#define GET_ROUNDED_SIZE(ORIG_SIZE, ROUNDTO) ((((ORIG_SIZE)-1)/(ROUNDTO)+1)*(ROUNDTO))
+#define GET_TRUNCATED_PO2_SIZE(ORIG_SIZE, ROUNDTO) ((ORIG_SIZE) & (~(ROUNDTO-1)))
+#define GET_ROUNDED_PO2_SIZE(ORIG_SIZE, ROUNDTO) (((ORIG_SIZE - 1) & (~(ROUNDTO-1))) + ROUNDTO)
+
+/* Greatest common divisor and least common multiple
+ gcd is an algorithm that calculates the greatest common divisor of two
+ integers, using Euclid's algorithm.
+
+ Pre: A > 0 && B > 0
+ Recommended: A > B*/
+#define CALCULATE_GCD(A, B, OUT)\
+{\
+ size_t a = A;\
+ size_t b = B;\
+ do\
+ {\
+ size_t tmp = b;\
+ b = a % b;\
+ a = tmp;\
+ } while (b != 0);\
+\
+ OUT = a;\
+}
+
+/* lcm is an algorithm that calculates the least common multiple of two
+ integers.
+
+ Pre: A > 0 && B > 0
+ Recommended: A > B*/
+#define CALCULATE_LCM(A, B, OUT)\
+{\
+ CALCULATE_GCD(A, B, OUT);\
+ OUT = (A / OUT)*B;\
+}
+
+static int calculate_lcm_and_needs_backwards_lcmed
+ (size_t backwards_multiple, size_t received_size, size_t size_to_achieve,
+ size_t *plcm, size_t *pneeds_backwards_lcmed)
+{
+ /* Now calculate lcm */
+ size_t max = backwards_multiple;
+ size_t min = MALLOC_ALIGNMENT;
+ size_t needs_backwards;
+ size_t needs_backwards_lcmed;
+ size_t lcm;
+ size_t current_forward;
+ /*Swap if necessary*/
+ if(max < min){
+ size_t tmp = min;
+ min = max;
+ max = tmp;
+ }
+ /*Check if it's power of two*/
+ if((backwards_multiple & (backwards_multiple-1)) == 0){
+ if(0 != (size_to_achieve & ((backwards_multiple-1)))){
+ USAGE_ERROR_ACTION(m, oldp);
+ return 0;
+ }
+
+ lcm = max;
+ /*If we want to use minbytes data to get a buffer between maxbytes
+ and minbytes if maxbytes can't be achieved, calculate the
+ biggest of all possibilities*/
+ current_forward = GET_TRUNCATED_PO2_SIZE(received_size, backwards_multiple);
+ needs_backwards = size_to_achieve - current_forward;
+ assert((needs_backwards % backwards_multiple) == 0);
+ needs_backwards_lcmed = GET_ROUNDED_PO2_SIZE(needs_backwards, lcm);
+ *plcm = lcm;
+ *pneeds_backwards_lcmed = needs_backwards_lcmed;
+ return 1;
+ }
+ /*Check if it's multiple of alignment*/
+ else if((backwards_multiple & (MALLOC_ALIGNMENT - 1u)) == 0){
+ lcm = backwards_multiple;
+ current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple);
+ //No need to round needs_backwards because backwards_multiple == lcm
+ needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward;
+ assert((needs_backwards_lcmed & (MALLOC_ALIGNMENT - 1u)) == 0);
+ *plcm = lcm;
+ *pneeds_backwards_lcmed = needs_backwards_lcmed;
+ return 1;
+ }
+ /*Check if it's multiple of the half of the alignmment*/
+ else if((backwards_multiple & ((MALLOC_ALIGNMENT/2u) - 1u)) == 0){
+ lcm = backwards_multiple*2u;
+ current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple);
+ needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward;
+ if(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1)))
+ //while(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1)))
+ needs_backwards_lcmed += backwards_multiple;
+ assert((needs_backwards_lcmed % lcm) == 0);
+ *plcm = lcm;
+ *pneeds_backwards_lcmed = needs_backwards_lcmed;
+ return 1;
+ }
+ /*Check if it's multiple of the quarter of the alignmment*/
+ else if((backwards_multiple & ((MALLOC_ALIGNMENT/4u) - 1u)) == 0){
+ size_t remainder;
+ lcm = backwards_multiple*4u;
+ current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple);
+ needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward;
+ //while(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1)))
+ //needs_backwards_lcmed += backwards_multiple;
+ if(0 != (remainder = ((needs_backwards_lcmed & (MALLOC_ALIGNMENT-1))>>(MALLOC_ALIGNMENT/8u)))){
+ if(backwards_multiple & MALLOC_ALIGNMENT/2u){
+ needs_backwards_lcmed += (remainder)*backwards_multiple;
+ }
+ else{
+ needs_backwards_lcmed += (4-remainder)*backwards_multiple;
+ }
+ }
+ assert((needs_backwards_lcmed % lcm) == 0);
+ *plcm = lcm;
+ *pneeds_backwards_lcmed = needs_backwards_lcmed;
+ return 1;
+ }
+ else{
+ CALCULATE_LCM(max, min, lcm);
+ /*If we want to use minbytes data to get a buffer between maxbytes
+ and minbytes if maxbytes can't be achieved, calculate the
+ biggest of all possibilities*/
+ current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple);
+ needs_backwards = size_to_achieve - current_forward;
+ assert((needs_backwards % backwards_multiple) == 0);
+ needs_backwards_lcmed = GET_ROUNDED_SIZE(needs_backwards, lcm);
+ *plcm = lcm;
+ *pneeds_backwards_lcmed = needs_backwards_lcmed;
+ return 1;
+ }
+}
+
+static void *internal_grow_both_sides
+ (mstate m
+ ,allocation_type command
+ ,void *oldmem
+ ,size_t minbytes
+ ,size_t maxbytes
+ ,size_t *received_size
+ ,size_t backwards_multiple
+ ,int only_preferred_backwards)
+{
+ mchunkptr oldp = mem2chunk(oldmem);
+ size_t oldsize = chunksize(oldp);
+ *received_size = oldsize - overhead_for(oldp);
+ if(minbytes <= *received_size)
+ return oldmem;
+
+ if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp))) {
+ if(command & BOOST_CONTAINER_EXPAND_FWD){
+ if(try_realloc_chunk_with_min(m, oldp, request2size(minbytes), request2size(maxbytes), 0)){
+ check_inuse_chunk(m, oldp);
+ *received_size = DL_SIZE_IMPL(oldmem);
+ s_allocated_memory += chunksize(oldp) - oldsize;
+ return oldmem;
+ }
+ }
+ else{
+ *received_size = DL_SIZE_IMPL(oldmem);
+ if(*received_size >= maxbytes)
+ return oldmem;
+ }
+/*
+ Should we check this?
+ if(backwards_multiple &&
+ (0 != (minbytes % backwards_multiple) &&
+ 0 != (maxbytes % backwards_multiple)) ){
+ USAGE_ERROR_ACTION(m, oldp);
+ return 0;
+ }
+*/
+ /* We reach here only if forward expansion fails */
+ if(!(command & BOOST_CONTAINER_EXPAND_BWD) || pinuse(oldp)){
+ return 0;
+ }
+ {
+ size_t prevsize = oldp->prev_foot;
+ if ((prevsize & USE_MMAP_BIT) != 0){
+ /*Return failure the previous chunk was mmapped.
+ mremap does not allow expanding to a fixed address (MREMAP_MAYMOVE) without
+ copying (MREMAP_MAYMOVE must be also set).*/
+ return 0;
+ }
+ else {
+ mchunkptr prev = chunk_minus_offset(oldp, prevsize);
+ size_t dsize = oldsize + prevsize;
+ size_t needs_backwards_lcmed;
+ size_t lcm;
+
+ /* Let's calculate the number of extra bytes of data before the current
+ block's begin. The value is a multiple of backwards_multiple
+ and the alignment*/
+ if(!calculate_lcm_and_needs_backwards_lcmed
+ ( backwards_multiple, *received_size
+ , only_preferred_backwards ? maxbytes : minbytes
+ , &lcm, &needs_backwards_lcmed)
+ || !RTCHECK(ok_address(m, prev))){
+ USAGE_ERROR_ACTION(m, oldp);
+ return 0;
+ }
+ /* Check if previous block has enough size */
+ else if(prevsize < needs_backwards_lcmed){
+ /* preferred size? */
+ return 0;
+ }
+ /* Now take all next space. This must succeed, as we've previously calculated the correct size */
+ if(command & BOOST_CONTAINER_EXPAND_FWD){
+ if(!try_realloc_chunk_with_min(m, oldp, request2size(*received_size), request2size(*received_size), 0)){
+ assert(0);
+ }
+ check_inuse_chunk(m, oldp);
+ *received_size = DL_SIZE_IMPL(oldmem);
+ s_allocated_memory += chunksize(oldp) - oldsize;
+ oldsize = chunksize(oldp);
+ dsize = oldsize + prevsize;
+ }
+ /* We need a minimum size to split the previous one */
+ if(prevsize >= (needs_backwards_lcmed + MIN_CHUNK_SIZE)){
+ mchunkptr r = chunk_minus_offset(oldp, needs_backwards_lcmed);
+ size_t rsize = oldsize + needs_backwards_lcmed;
+ size_t newprevsize = dsize - rsize;
+ int prev_was_dv = prev == m->dv;
+
+ assert(newprevsize >= MIN_CHUNK_SIZE);
+
+ if (prev_was_dv) {
+ m->dvsize = newprevsize;
+ }
+ else{/* if ((next->head & INUSE_BITS) == INUSE_BITS) { */
+ unlink_chunk(m, prev, prevsize);
+ insert_chunk(m, prev, newprevsize);
+ }
+
+ set_size_and_pinuse_of_free_chunk(prev, newprevsize);
+ clear_pinuse(r);
+ set_inuse(m, r, rsize);
+ check_malloced_chunk(m, chunk2mem(r), rsize);
+ *received_size = chunksize(r) - overhead_for(r);
+ s_allocated_memory += chunksize(r) - oldsize;
+ return chunk2mem(r);
+ }
+ /* Check if there is no place to create a new block and
+ the whole new block is multiple of the backwards expansion multiple */
+ else if(prevsize >= needs_backwards_lcmed && !(prevsize % lcm)) {
+ /* Just merge the whole previous block */
+ /* prevsize is multiple of lcm (and backwards_multiple)*/
+ *received_size += prevsize;
+
+ if (prev != m->dv) {
+ unlink_chunk(m, prev, prevsize);
+ }
+ else{
+ m->dvsize = 0;
+ m->dv = 0;
+ }
+ set_inuse(m, prev, dsize);
+ check_malloced_chunk(m, chunk2mem(prev), dsize);
+ s_allocated_memory += chunksize(prev) - oldsize;
+ return chunk2mem(prev);
+ }
+ else{
+ /* Previous block was big enough but there is no room
+ to create an empty block and taking the whole block does
+ not fulfill alignment requirements */
+ return 0;
+ }
+ }
+ }
+ }
+ else{
+ USAGE_ERROR_ACTION(m, oldmem);
+ return 0;
+ }
+ return 0;
+}
+
+/* This is similar to mmap_resize but:
+ * Only to shrink
+ * It takes min and max sizes
+ * Takes additional 'do_commit' argument to obtain the final
+ size before doing the real shrink operation.
+*/
+static int internal_mmap_shrink_in_place(mstate m, mchunkptr oldp, size_t nbmin, size_t nbmax, size_t *received_size, int do_commit)
+{
+ size_t oldsize = chunksize(oldp);
+ *received_size = oldsize;
+ #if HAVE_MREMAP
+ if (is_small(nbmax)) /* Can't shrink mmap regions below small size */
+ return 0;
+ {
+ size_t effective_min = nbmin > MIN_LARGE_SIZE ? nbmin : MIN_LARGE_SIZE;
+ /* Keep old chunk if big enough but not too big */
+ if (oldsize >= effective_min + SIZE_T_SIZE &&
+ (oldsize - effective_min) <= (mparams.granularity << 1))
+ return 0;
+ /* Now calculate new sizes */
+ {
+ size_t offset = oldp->prev_foot;
+ size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
+ size_t newmmsize = mmap_align(effective_min + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
+ *received_size = newmmsize;
+ if(!do_commit){
+ const int flags = 0; /* placate people compiling -Wunused */
+ char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
+ oldmmsize, newmmsize, flags);
+ /*This must always succeed */
+ if(!cp){
+ USAGE_ERROR_ACTION(m, m);
+ return 0;
+ }
+ {
+ mchunkptr newp = (mchunkptr)(cp + offset);
+ size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
+ newp->head = psize;
+ mark_inuse_foot(m, newp, psize);
+ chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
+ chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
+
+ if (cp < m->least_addr)
+ m->least_addr = cp;
+ if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
+ m->max_footprint = m->footprint;
+ check_mmapped_chunk(m, newp);
+ }
+ }
+ }
+ return 1;
+ }
+ #else //#if HAVE_MREMAP
+ (void)m;
+ (void)oldp;
+ (void)nbmin;
+ (void)nbmax;
+ (void)received_size;
+ (void)do_commit;
+ return 0;
+ #endif //#if HAVE_MREMAP
+}
+
+static int internal_shrink(mstate m, void* oldmem, size_t minbytes, size_t maxbytes, size_t *received_size, int do_commit)
+{
+ *received_size = chunksize(mem2chunk(oldmem)) - overhead_for(mem2chunk(oldmem));
+ if (minbytes >= MAX_REQUEST || maxbytes >= MAX_REQUEST) {
+ MALLOC_FAILURE_ACTION;
+ return 0;
+ }
+ else if(minbytes < MIN_REQUEST){
+ minbytes = MIN_REQUEST;
+ }
+ if (minbytes > maxbytes) {
+ return 0;
+ }
+
+ {
+ mchunkptr oldp = mem2chunk(oldmem);
+ size_t oldsize = chunksize(oldp);
+ mchunkptr next = chunk_plus_offset(oldp, oldsize);
+ void* extra = 0;
+
+ /* Try to either shrink or extend into top. Else malloc-copy-free*/
+ if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp) &&
+ ok_next(oldp, next) && ok_pinuse(next))) {
+ size_t nbmin = request2size(minbytes);
+ size_t nbmax = request2size(maxbytes);
+
+ if (nbmin > oldsize){
+ /* Return error if old size is too small */
+ }
+ else if (is_mmapped(oldp)){
+ return internal_mmap_shrink_in_place(m, oldp, nbmin, nbmax, received_size, do_commit);
+ }
+ else{ // nbmin <= oldsize /* already big enough*/
+ size_t nb = nbmin;
+ size_t rsize = oldsize - nb;
+ if (rsize >= MIN_CHUNK_SIZE) {
+ if(do_commit){
+ mchunkptr remainder = chunk_plus_offset(oldp, nb);
+ set_inuse(m, oldp, nb);
+ set_inuse(m, remainder, rsize);
+ extra = chunk2mem(remainder);
+ }
+ *received_size = nb - overhead_for(oldp);
+ if(!do_commit)
+ return 1;
+ }
+ }
+ }
+ else {
+ USAGE_ERROR_ACTION(m, oldmem);
+ return 0;
+ }
+
+ if (extra != 0 && do_commit) {
+ mspace_free_lockless(m, extra);
+ check_inuse_chunk(m, oldp);
+ return 1;
+ }
+ else {
+ return 0;
+ }
+ }
+}
+
+
+#define INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM 4096
+
+#define SQRT_MAX_SIZE_T (((size_t)-1)>>(sizeof(size_t)*CHAR_BIT/2))
+
+static int internal_node_multialloc
+ (mstate m, size_t n_elements, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain) {
+ void* mem; /* malloced aggregate space */
+ mchunkptr p; /* corresponding chunk */
+ size_t remainder_size; /* remaining bytes while splitting */
+ flag_t was_enabled; /* to disable mmap */
+ size_t elements_per_segment = 0;
+ size_t element_req_size = request2size(element_size);
+ boost_cont_memchain_it prev_last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain);
+
+ /*Error if wrong element_size parameter */
+ if( !element_size ||
+ /*OR Error if n_elements less thatn contiguous_elements */
+ ((contiguous_elements + 1) > (DL_MULTIALLOC_DEFAULT_CONTIGUOUS + 1) && n_elements < contiguous_elements) ||
+ /* OR Error if integer overflow */
+ (SQRT_MAX_SIZE_T < (element_req_size | contiguous_elements) &&
+ (MAX_SIZE_T/element_req_size) < contiguous_elements)){
+ return 0;
+ }
+ switch(contiguous_elements){
+ case DL_MULTIALLOC_DEFAULT_CONTIGUOUS:
+ {
+ /* Default contiguous, just check that we can store at least one element */
+ elements_per_segment = INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM/element_req_size;
+ elements_per_segment += (size_t)(!elements_per_segment);
+ }
+ break;
+ case DL_MULTIALLOC_ALL_CONTIGUOUS:
+ /* All elements should be allocated in a single call */
+ elements_per_segment = n_elements;
+ break;
+ default:
+ /* Allocate in chunks of "contiguous_elements" */
+ elements_per_segment = contiguous_elements;
+ }
+
+ {
+ size_t i;
+ size_t next_i;
+ /*
+ Allocate the aggregate chunk. First disable direct-mmapping so
+ malloc won't use it, since we would not be able to later
+ free/realloc space internal to a segregated mmap region.
+ */
+ was_enabled = use_mmap(m);
+ disable_mmap(m);
+ for(i = 0; i != n_elements; i = next_i)
+ {
+ size_t accum_size;
+ size_t n_elements_left = n_elements - i;
+ next_i = i + ((n_elements_left < elements_per_segment) ? n_elements_left : elements_per_segment);
+ accum_size = element_req_size*(next_i - i);
+
+ mem = mspace_malloc_lockless(m, accum_size - CHUNK_OVERHEAD);
+ if (mem == 0){
+ BOOST_CONTAINER_MEMIT_NEXT(prev_last_it);
+ while(i--){
+ void *addr = BOOST_CONTAINER_MEMIT_ADDR(prev_last_it);
+ BOOST_CONTAINER_MEMIT_NEXT(prev_last_it);
+ mspace_free_lockless(m, addr);
+ }
+ if (was_enabled)
+ enable_mmap(m);
+ return 0;
+ }
+ p = mem2chunk(mem);
+ remainder_size = chunksize(p);
+ s_allocated_memory += remainder_size;
+
+ assert(!is_mmapped(p));
+ { /* split out elements */
+ void *mem_orig = mem;
+ boost_cont_memchain_it last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain);
+ size_t num_elements = next_i-i;
+
+ size_t num_loops = num_elements - 1;
+ remainder_size -= element_req_size*num_loops;
+ while(num_loops--){
+ void **mem_prev = ((void**)mem);
+ set_size_and_pinuse_of_inuse_chunk(m, p, element_req_size);
+ p = chunk_plus_offset(p, element_req_size);
+ mem = chunk2mem(p);
+ *mem_prev = mem;
+ }
+ set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
+ BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER(pchain, last_it, mem_orig, mem, num_elements);
+ }
+ }
+ if (was_enabled)
+ enable_mmap(m);
+ }
+ return 1;
+}
+
+static int internal_multialloc_arrays
+ (mstate m, size_t n_elements, const size_t* sizes, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain) {
+ void* mem; /* malloced aggregate space */
+ mchunkptr p; /* corresponding chunk */
+ size_t remainder_size; /* remaining bytes while splitting */
+ flag_t was_enabled; /* to disable mmap */
+ size_t size;
+ size_t boost_cont_multialloc_segmented_malloc_size;
+ size_t max_size;
+
+ /* Check overflow */
+ if(!element_size){
+ return 0;
+ }
+ max_size = MAX_REQUEST/element_size;
+ /* Different sizes*/
+ switch(contiguous_elements){
+ case DL_MULTIALLOC_DEFAULT_CONTIGUOUS:
+ /* Use default contiguous mem */
+ boost_cont_multialloc_segmented_malloc_size = INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM;
+ break;
+ case DL_MULTIALLOC_ALL_CONTIGUOUS:
+ boost_cont_multialloc_segmented_malloc_size = MAX_REQUEST + CHUNK_OVERHEAD;
+ break;
+ default:
+ if(max_size < contiguous_elements){
+ return 0;
+ }
+ else{
+ /* The suggested buffer is just the the element count by the size */
+ boost_cont_multialloc_segmented_malloc_size = element_size*contiguous_elements;
+ }
+ }
+
+ {
+ size_t i;
+ size_t next_i;
+ /*
+ Allocate the aggregate chunk. First disable direct-mmapping so
+ malloc won't use it, since we would not be able to later
+ free/realloc space internal to a segregated mmap region.
+ */
+ was_enabled = use_mmap(m);
+ disable_mmap(m);
+ for(i = 0, next_i = 0; i != n_elements; i = next_i)
+ {
+ int error = 0;
+ size_t accum_size;
+ for(accum_size = 0; next_i != n_elements; ++next_i){
+ size_t cur_array_size = sizes[next_i];
+ if(max_size < cur_array_size){
+ error = 1;
+ break;
+ }
+ else{
+ size_t reqsize = request2size(cur_array_size*element_size);
+ if(((boost_cont_multialloc_segmented_malloc_size - CHUNK_OVERHEAD) - accum_size) < reqsize){
+ if(!accum_size){
+ accum_size += reqsize;
+ ++next_i;
+ }
+ break;
+ }
+ accum_size += reqsize;
+ }
+ }
+
+ mem = error ? 0 : mspace_malloc_lockless(m, accum_size - CHUNK_OVERHEAD);
+ if (mem == 0){
+ boost_cont_memchain_it it = BOOST_CONTAINER_MEMCHAIN_BEGIN_IT(pchain);
+ while(i--){
+ void *addr = BOOST_CONTAINER_MEMIT_ADDR(it);
+ BOOST_CONTAINER_MEMIT_NEXT(it);
+ mspace_free_lockless(m, addr);
+ }
+ if (was_enabled)
+ enable_mmap(m);
+ return 0;
+ }
+ p = mem2chunk(mem);
+ remainder_size = chunksize(p);
+ s_allocated_memory += remainder_size;
+
+ assert(!is_mmapped(p));
+
+ { /* split out elements */
+ void *mem_orig = mem;
+ boost_cont_memchain_it last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain);
+ size_t num_elements = next_i-i;
+
+ for(++i; i != next_i; ++i) {
+ void **mem_prev = ((void**)mem);
+ size = request2size(sizes[i]*element_size);
+ remainder_size -= size;
+ set_size_and_pinuse_of_inuse_chunk(m, p, size);
+ p = chunk_plus_offset(p, size);
+ mem = chunk2mem(p);
+ *mem_prev = mem;
+ }
+ set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
+ BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER(pchain, last_it, mem_orig, mem, num_elements);
+ }
+ }
+ if (was_enabled)
+ enable_mmap(m);
+ }
+ return 1;
+}
+
+int boost_cont_multialloc_arrays
+ (size_t n_elements, const size_t *sizes, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain)
+{
+ int ret = 0;
+ mstate ms = (mstate)gm;
+ ensure_initialization();
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ else if (!PREACTION(ms)) {
+ ret = internal_multialloc_arrays(ms, n_elements, sizes, element_size, contiguous_elements, pchain);
+ POSTACTION(ms);
+ }
+ return ret;
+}
+
+
+/*Doug Lea malloc extensions*/
+static boost_cont_malloc_stats_t get_malloc_stats(mstate m)
+{
+ boost_cont_malloc_stats_t ret = { 0, 0, 0 };
+ ensure_initialization();
+ if (!PREACTION(m)) {
+ size_t maxfp = 0;
+ size_t fp = 0;
+ size_t used = 0;
+ check_malloc_state(m);
+ if (is_initialized(m)) {
+ msegmentptr s = &m->seg;
+ maxfp = m->max_footprint;
+ fp = m->footprint;
+ used = fp - (m->topsize + TOP_FOOT_SIZE);
+
+ while (s != 0) {
+ mchunkptr q = align_as_chunk(s->base);
+ while (segment_holds(s, q) &&
+ q != m->top && q->head != FENCEPOST_HEAD) {
+ if (!cinuse(q))
+ used -= chunksize(q);
+ q = next_chunk(q);
+ }
+ s = s->next;
+ }
+ }
+
+ ret.max_system_bytes = maxfp;
+ ret.system_bytes = fp;
+ ret.in_use_bytes = used;
+ POSTACTION(m);
+ }
+ return ret;
+}
+
+size_t boost_cont_size(const void *p)
+{ return DL_SIZE_IMPL(p); }
+
+void* boost_cont_malloc(size_t bytes)
+{
+ size_t received_bytes;
+ ensure_initialization();
+ return boost_cont_allocation_command
+ (BOOST_CONTAINER_ALLOCATE_NEW, 1, bytes, bytes, &received_bytes, 0).first;
+}
+
+void boost_cont_free(void* mem)
+{
+ mstate ms = (mstate)gm;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ else if (!PREACTION(ms)) {
+ mspace_free_lockless(ms, mem);
+ POSTACTION(ms);
+ }
+}
+
+void* boost_cont_memalign(size_t bytes, size_t alignment)
+{
+ void *addr;
+ ensure_initialization();
+ addr = mspace_memalign(gm, alignment, bytes);
+ if(addr){
+ s_allocated_memory += chunksize(mem2chunk(addr));
+ }
+ return addr;
+}
+
+int boost_cont_multialloc_nodes
+ (size_t n_elements, size_t elem_size, size_t contiguous_elements, boost_cont_memchain *pchain)
+{
+ int ret = 0;
+ mstate ms = (mstate)gm;
+ ensure_initialization();
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ else if (!PREACTION(ms)) {
+ ret = internal_node_multialloc(ms, n_elements, elem_size, contiguous_elements, pchain);
+ POSTACTION(ms);
+ }
+ return ret;
+}
+
+size_t boost_cont_footprint()
+{
+ return ((mstate)gm)->footprint;
+}
+
+size_t boost_cont_allocated_memory()
+{
+ size_t alloc_mem = 0;
+ mstate m = (mstate)gm;
+ ensure_initialization();
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+
+
+ if (!PREACTION(m)) {
+ check_malloc_state(m);
+ if (is_initialized(m)) {
+ size_t nfree = SIZE_T_ONE; /* top always free */
+ size_t mfree = m->topsize + TOP_FOOT_SIZE;
+ size_t sum = mfree;
+ msegmentptr s = &m->seg;
+ while (s != 0) {
+ mchunkptr q = align_as_chunk(s->base);
+ while (segment_holds(s, q) &&
+ q != m->top && q->head != FENCEPOST_HEAD) {
+ size_t sz = chunksize(q);
+ sum += sz;
+ if (!is_inuse(q)) {
+ mfree += sz;
+ ++nfree;
+ }
+ q = next_chunk(q);
+ }
+ s = s->next;
+ }
+ {
+ size_t uordblks = m->footprint - mfree;
+ if(nfree)
+ alloc_mem = (size_t)(uordblks - (nfree-1)*TOP_FOOT_SIZE);
+ else
+ alloc_mem = uordblks;
+ }
+ }
+
+ POSTACTION(m);
+ }
+ return alloc_mem;
+}
+
+size_t boost_cont_chunksize(const void *p)
+{ return chunksize(mem2chunk(p)); }
+
+int boost_cont_all_deallocated()
+{ return !s_allocated_memory; }
+
+boost_cont_malloc_stats_t boost_cont_malloc_stats()
+{
+ mstate ms = (mstate)gm;
+ if (ok_magic(ms)) {
+ return get_malloc_stats(ms);
+ }
+ else {
+ boost_cont_malloc_stats_t r = { 0, 0, 0 };
+ USAGE_ERROR_ACTION(ms,ms);
+ return r;
+ }
+}
+
+size_t boost_cont_in_use_memory()
+{ return s_allocated_memory; }
+
+int boost_cont_trim(size_t pad)
+{
+ ensure_initialization();
+ return dlmalloc_trim(pad);
+}
+
+int boost_cont_grow
+ (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received)
+{
+ mstate ms = (mstate)gm;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+
+ if (!PREACTION(ms)) {
+ mchunkptr p = mem2chunk(oldmem);
+ size_t oldsize = chunksize(p);
+ p = try_realloc_chunk_with_min(ms, p, request2size(minbytes), request2size(maxbytes), 0);
+ POSTACTION(ms);
+ if(p){
+ check_inuse_chunk(ms, p);
+ *received = DL_SIZE_IMPL(oldmem);
+ s_allocated_memory += chunksize(p) - oldsize;
+ }
+ return 0 != p;
+ }
+ return 0;
+}
+
+int boost_cont_shrink
+ (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received, int do_commit)
+{
+ mstate ms = (mstate)gm;
+ if (!ok_magic(ms)) {
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+
+ if (!PREACTION(ms)) {
+ int ret = internal_shrink(ms, oldmem, minbytes, maxbytes, received, do_commit);
+ POSTACTION(ms);
+ return 0 != ret;
+ }
+ return 0;
+}
+
+
+void* boost_cont_alloc
+ (size_t minbytes, size_t preferred_bytes, size_t *received_bytes)
+{
+ //ensure_initialization provided by boost_cont_allocation_command
+ return boost_cont_allocation_command
+ (BOOST_CONTAINER_ALLOCATE_NEW, 1, minbytes, preferred_bytes, received_bytes, 0).first;
+}
+
+void boost_cont_multidealloc(boost_cont_memchain *pchain)
+{
+ mstate ms = (mstate)gm;
+ if (!ok_magic(ms)) {
+ (void)ms;
+ USAGE_ERROR_ACTION(ms,ms);
+ }
+ internal_multialloc_free(ms, pchain);
+}
+
+int boost_cont_malloc_check()
+{
+#ifdef DEBUG
+ mstate ms = (mstate)gm;
+ ensure_initialization();
+ if (!ok_magic(ms)) {
+ (void)ms;
+ USAGE_ERROR_ACTION(ms,ms);
+ return 0;
+ }
+ check_malloc_state(ms);
+ return 1;
+#else
+ return 1;
+#endif
+}
+
+
+boost_cont_command_ret_t boost_cont_allocation_command
+ (allocation_type command, size_t sizeof_object, size_t limit_size
+ , size_t preferred_size, size_t *received_size, void *reuse_ptr)
+{
+ boost_cont_command_ret_t ret = { 0, 0 };
+ ensure_initialization();
+ if(command & (BOOST_CONTAINER_SHRINK_IN_PLACE | BOOST_CONTAINER_TRY_SHRINK_IN_PLACE)){
+ int success = boost_cont_shrink( reuse_ptr, preferred_size, limit_size
+ , received_size, (command & BOOST_CONTAINER_SHRINK_IN_PLACE));
+ ret.first = success ? reuse_ptr : 0;
+ return ret;
+ }
+
+ *received_size = 0;
+
+ if(limit_size > preferred_size)
+ return ret;
+
+ {
+ mstate ms = (mstate)gm;
+
+ /*Expand in place*/
+ if (!PREACTION(ms)) {
+ #if FOOTERS
+ if(reuse_ptr){
+ mstate m = get_mstate_for(mem2chunk(reuse_ptr));
+ if (!ok_magic(m)) {
+ USAGE_ERROR_ACTION(m, reuse_ptr);
+ return ret;
+ }
+ }
+ #endif
+ if(reuse_ptr && (command & (BOOST_CONTAINER_EXPAND_FWD | BOOST_CONTAINER_EXPAND_BWD))){
+ void *r = internal_grow_both_sides
+ ( ms, command, reuse_ptr, limit_size
+ , preferred_size, received_size, sizeof_object, 1);
+ if(r){
+ ret.first = r;
+ ret.second = 1;
+ goto postaction;
+ }
+ }
+
+ if(command & BOOST_CONTAINER_ALLOCATE_NEW){
+ void *addr = mspace_malloc_lockless(ms, preferred_size);
+ if(!addr) addr = mspace_malloc_lockless(ms, limit_size);
+ if(addr){
+ s_allocated_memory += chunksize(mem2chunk(addr));
+ *received_size = DL_SIZE_IMPL(addr);
+ }
+ ret.first = addr;
+ ret.second = 0;
+ if(addr){
+ goto postaction;
+ }
+ }
+
+ //Now try to expand both sides with min size
+ if(reuse_ptr && (command & (BOOST_CONTAINER_EXPAND_FWD | BOOST_CONTAINER_EXPAND_BWD))){
+ void *r = internal_grow_both_sides
+ ( ms, command, reuse_ptr, limit_size
+ , preferred_size, received_size, sizeof_object, 0);
+ if(r){
+ ret.first = r;
+ ret.second = 1;
+ goto postaction;
+ }
+ }
+ postaction:
+ POSTACTION(ms);
+ }
+ }
+ return ret;
+}
+
+int boost_cont_mallopt(int param_number, int value)
+{
+ return change_mparam(param_number, value);
+}
+
+void *boost_cont_sync_create()
+{
+ void *p = boost_cont_malloc(sizeof(MLOCK_T));
+ if(p){
+ if(0 != INITIAL_LOCK((MLOCK_T*)p)){
+ boost_cont_free(p);
+ p = 0;
+ }
+ }
+ return p;
+}
+
+void boost_cont_sync_destroy(void *sync)
+{
+ if(sync){
+ (void)DESTROY_LOCK((MLOCK_T*)sync);
+ boost_cont_free(sync);
+ }
+}
+
+int boost_cont_sync_lock(void *sync)
+{ return 0 == (ACQUIRE_LOCK((MLOCK_T*)sync)); }
+
+void boost_cont_sync_unlock(void *sync)
+{ RELEASE_LOCK((MLOCK_T*)sync); }
+
+int boost_cont_global_sync_lock()
+{
+ int ret;
+ ensure_initialization();
+ ret = ACQUIRE_MALLOC_GLOBAL_LOCK();
+ return 0 == ret;
+}
+
+void boost_cont_global_sync_unlock()
+{
+ RELEASE_MALLOC_GLOBAL_LOCK()
+}
+
+//#ifdef DL_DEBUG_DEFINED
+// #undef DEBUG
+//#endif
+
+#ifdef _MSC_VER
+#pragma warning (pop)
+#endif
diff --git a/contrib/restricted/boost/libs/container/src/global_resource.cpp b/contrib/restricted/boost/libs/container/src/global_resource.cpp
index 15f4fe404c..c4e9381c1a 100644
--- a/contrib/restricted/boost/libs/container/src/global_resource.cpp
+++ b/contrib/restricted/boost/libs/container/src/global_resource.cpp
@@ -1,106 +1,106 @@
-//////////////////////////////////////////////////////////////////////////////
-//
-// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost
-// Software License, Version 1.0. (See accompanying file
-// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-//
-// See http://www.boost.org/libs/container for documentation.
-//
-//////////////////////////////////////////////////////////////////////////////
-
-#define BOOST_CONTAINER_SOURCE
-#include <boost/container/pmr/memory_resource.hpp>
-
-#include <boost/core/no_exceptions_support.hpp>
-#include <boost/container/throw_exception.hpp>
-#include <boost/container/detail/dlmalloc.hpp> //For global lock
-
-#include <cstddef>
-#include <new>
-
-namespace boost {
-namespace container {
-namespace pmr {
-
-class new_delete_resource_imp
- : public memory_resource
-{
- public:
-
- virtual ~new_delete_resource_imp()
- {}
-
- virtual void* do_allocate(std::size_t bytes, std::size_t alignment)
- { (void)bytes; (void)alignment; return new char[bytes]; }
-
- virtual void do_deallocate(void* p, std::size_t bytes, std::size_t alignment)
- { (void)bytes; (void)alignment; delete[]((char*)p); }
-
- virtual bool do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT
- { return &other == this; }
-} new_delete_resource_instance;
-
-struct null_memory_resource_imp
- : public memory_resource
-{
- public:
-
- virtual ~null_memory_resource_imp()
- {}
-
- virtual void* do_allocate(std::size_t bytes, std::size_t alignment)
- {
- (void)bytes; (void)alignment;
- throw_bad_alloc();
- return 0;
- }
-
- virtual void do_deallocate(void* p, std::size_t bytes, std::size_t alignment)
- { (void)p; (void)bytes; (void)alignment; }
-
- virtual bool do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT
- { return &other == this; }
-} null_memory_resource_instance;
-
-BOOST_CONTAINER_DECL memory_resource* new_delete_resource() BOOST_NOEXCEPT
-{
- return &new_delete_resource_instance;
-}
-
-BOOST_CONTAINER_DECL memory_resource* null_memory_resource() BOOST_NOEXCEPT
-{
- return &null_memory_resource_instance;
-}
-
-static memory_resource *default_memory_resource = &new_delete_resource_instance;
-
-BOOST_CONTAINER_DECL memory_resource* set_default_resource(memory_resource* r) BOOST_NOEXCEPT
-{
- //TO-DO: synchronizes-with part using atomics
- if(dlmalloc_global_sync_lock()){
- memory_resource *previous = default_memory_resource;
- default_memory_resource = r ? r : new_delete_resource();
- dlmalloc_global_sync_unlock();
- return previous;
- }
- else{
- return new_delete_resource();
- }
-}
-
-BOOST_CONTAINER_DECL memory_resource* get_default_resource() BOOST_NOEXCEPT
-{
- //TO-DO: synchronizes-with part using atomics
- if(dlmalloc_global_sync_lock()){
- memory_resource *current = default_memory_resource;
- dlmalloc_global_sync_unlock();
- return current;
- }
- else{
- return new_delete_resource();
- }
-}
-
-} //namespace pmr {
-} //namespace container {
-} //namespace boost {
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/container for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#define BOOST_CONTAINER_SOURCE
+#include <boost/container/pmr/memory_resource.hpp>
+
+#include <boost/core/no_exceptions_support.hpp>
+#include <boost/container/throw_exception.hpp>
+#include <boost/container/detail/dlmalloc.hpp> //For global lock
+
+#include <cstddef>
+#include <new>
+
+namespace boost {
+namespace container {
+namespace pmr {
+
+class new_delete_resource_imp
+ : public memory_resource
+{
+ public:
+
+ virtual ~new_delete_resource_imp()
+ {}
+
+ virtual void* do_allocate(std::size_t bytes, std::size_t alignment)
+ { (void)bytes; (void)alignment; return new char[bytes]; }
+
+ virtual void do_deallocate(void* p, std::size_t bytes, std::size_t alignment)
+ { (void)bytes; (void)alignment; delete[]((char*)p); }
+
+ virtual bool do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT
+ { return &other == this; }
+} new_delete_resource_instance;
+
+struct null_memory_resource_imp
+ : public memory_resource
+{
+ public:
+
+ virtual ~null_memory_resource_imp()
+ {}
+
+ virtual void* do_allocate(std::size_t bytes, std::size_t alignment)
+ {
+ (void)bytes; (void)alignment;
+ throw_bad_alloc();
+ return 0;
+ }
+
+ virtual void do_deallocate(void* p, std::size_t bytes, std::size_t alignment)
+ { (void)p; (void)bytes; (void)alignment; }
+
+ virtual bool do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT
+ { return &other == this; }
+} null_memory_resource_instance;
+
+BOOST_CONTAINER_DECL memory_resource* new_delete_resource() BOOST_NOEXCEPT
+{
+ return &new_delete_resource_instance;
+}
+
+BOOST_CONTAINER_DECL memory_resource* null_memory_resource() BOOST_NOEXCEPT
+{
+ return &null_memory_resource_instance;
+}
+
+static memory_resource *default_memory_resource = &new_delete_resource_instance;
+
+BOOST_CONTAINER_DECL memory_resource* set_default_resource(memory_resource* r) BOOST_NOEXCEPT
+{
+ //TO-DO: synchronizes-with part using atomics
+ if(dlmalloc_global_sync_lock()){
+ memory_resource *previous = default_memory_resource;
+ default_memory_resource = r ? r : new_delete_resource();
+ dlmalloc_global_sync_unlock();
+ return previous;
+ }
+ else{
+ return new_delete_resource();
+ }
+}
+
+BOOST_CONTAINER_DECL memory_resource* get_default_resource() BOOST_NOEXCEPT
+{
+ //TO-DO: synchronizes-with part using atomics
+ if(dlmalloc_global_sync_lock()){
+ memory_resource *current = default_memory_resource;
+ dlmalloc_global_sync_unlock();
+ return current;
+ }
+ else{
+ return new_delete_resource();
+ }
+}
+
+} //namespace pmr {
+} //namespace container {
+} //namespace boost {
diff --git a/contrib/restricted/boost/libs/container/src/monotonic_buffer_resource.cpp b/contrib/restricted/boost/libs/container/src/monotonic_buffer_resource.cpp
index f9f6f4cbe5..2a4672ffa0 100644
--- a/contrib/restricted/boost/libs/container/src/monotonic_buffer_resource.cpp
+++ b/contrib/restricted/boost/libs/container/src/monotonic_buffer_resource.cpp
@@ -1,159 +1,159 @@
-//////////////////////////////////////////////////////////////////////////////
-//
-// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost
-// Software License, Version 1.0. (See accompanying file
-// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-//
-// See http://www.boost.org/libs/container for documentation.
-//
-//////////////////////////////////////////////////////////////////////////////
-
-#define BOOST_CONTAINER_SOURCE
-#include <boost/container/detail/config_begin.hpp>
-#include <boost/container/detail/workaround.hpp>
-
-#include <boost/container/pmr/monotonic_buffer_resource.hpp>
-#include <boost/container/pmr/global_resource.hpp>
-
-#include <boost/container/detail/min_max.hpp>
-#include <boost/intrusive/detail/math.hpp>
-#include <boost/container/throw_exception.hpp>
-
-
-#include <cstddef>
-
-namespace {
-
-#ifdef BOOST_HAS_INTPTR_T
-typedef boost::uintptr_t uintptr_type;
-#else
-typedef std::size_t uintptr_type;
-#endif
-
-static const std::size_t minimum_buffer_size = 2*sizeof(void*);
-
-} //namespace {
-
-namespace boost {
-namespace container {
-namespace pmr {
-
-void monotonic_buffer_resource::increase_next_buffer()
-{
- m_next_buffer_size = (std::size_t(-1)/2 < m_next_buffer_size) ? std::size_t(-1) : m_next_buffer_size*2;
-}
-
-void monotonic_buffer_resource::increase_next_buffer_at_least_to(std::size_t minimum_size)
-{
- if(m_next_buffer_size < minimum_size){
- if(bi::detail::is_pow2(minimum_size)){
- m_next_buffer_size = minimum_size;
- }
- else if(std::size_t(-1)/2 < minimum_size){
- m_next_buffer_size = minimum_size;
- }
- else{
- m_next_buffer_size = bi::detail::ceil_pow2(minimum_size);
- }
- }
-}
-
-monotonic_buffer_resource::monotonic_buffer_resource(memory_resource* upstream) BOOST_NOEXCEPT
- : m_memory_blocks(upstream ? *upstream : *get_default_resource())
- , m_current_buffer(0)
- , m_current_buffer_size(0u)
- , m_next_buffer_size(initial_next_buffer_size)
-{}
-
-monotonic_buffer_resource::monotonic_buffer_resource(std::size_t initial_size, memory_resource* upstream) BOOST_NOEXCEPT
- : m_memory_blocks(upstream ? *upstream : *get_default_resource())
- , m_current_buffer(0)
- , m_current_buffer_size(0u)
- , m_next_buffer_size(minimum_buffer_size)
-{ //In case initial_size is zero
- this->increase_next_buffer_at_least_to(initial_size + !initial_size);
-}
-
-monotonic_buffer_resource::monotonic_buffer_resource(void* buffer, std::size_t buffer_size, memory_resource* upstream) BOOST_NOEXCEPT
- : m_memory_blocks(upstream ? *upstream : *get_default_resource())
- , m_current_buffer(buffer)
- , m_current_buffer_size(buffer_size)
- , m_next_buffer_size
- (bi::detail::previous_or_equal_pow2
- (boost::container::dtl::max_value(buffer_size, std::size_t(initial_next_buffer_size))))
-{ this->increase_next_buffer(); }
-
-monotonic_buffer_resource::~monotonic_buffer_resource()
-{ this->release(); }
-
-void monotonic_buffer_resource::release() BOOST_NOEXCEPT
-{
- m_memory_blocks.release();
- m_current_buffer = 0u;
- m_current_buffer_size = 0u;
- m_next_buffer_size = initial_next_buffer_size;
-}
-
-memory_resource* monotonic_buffer_resource::upstream_resource() const BOOST_NOEXCEPT
-{ return &m_memory_blocks.upstream_resource(); }
-
-std::size_t monotonic_buffer_resource::remaining_storage(std::size_t alignment, std::size_t &wasted_due_to_alignment) const BOOST_NOEXCEPT
-{
- const uintptr_type up_alignment_minus1 = alignment - 1u;
- const uintptr_type up_alignment_mask = ~up_alignment_minus1;
- const uintptr_type up_addr = uintptr_type(m_current_buffer);
- const uintptr_type up_aligned_addr = (up_addr + up_alignment_minus1) & up_alignment_mask;
- wasted_due_to_alignment = std::size_t(up_aligned_addr - up_addr);
- return m_current_buffer_size <= wasted_due_to_alignment ? 0u : m_current_buffer_size - wasted_due_to_alignment;
-}
-
-std::size_t monotonic_buffer_resource::remaining_storage(std::size_t alignment) const BOOST_NOEXCEPT
-{
- std::size_t ignore_this;
- return this->remaining_storage(alignment, ignore_this);
-}
-
-const void *monotonic_buffer_resource::current_buffer() const BOOST_NOEXCEPT
-{ return m_current_buffer; }
-
-std::size_t monotonic_buffer_resource::next_buffer_size() const BOOST_NOEXCEPT
-{ return m_next_buffer_size; }
-
-void *monotonic_buffer_resource::allocate_from_current(std::size_t aligner, std::size_t bytes)
-{
- char * p = (char*)m_current_buffer + aligner;
- m_current_buffer = p + bytes;
- m_current_buffer_size -= aligner + bytes;
- return p;
-}
-
-void* monotonic_buffer_resource::do_allocate(std::size_t bytes, std::size_t alignment)
-{
- if(alignment > memory_resource::max_align)
- throw_bad_alloc();
-
- //See if there is room in current buffer
- std::size_t aligner = 0u;
- if(this->remaining_storage(alignment, aligner) < bytes){
- //Update next_buffer_size to at least bytes
- this->increase_next_buffer_at_least_to(bytes);
- //Now allocate and update internal data
- m_current_buffer = (char*)m_memory_blocks.allocate(m_next_buffer_size);
- m_current_buffer_size = m_next_buffer_size;
- this->increase_next_buffer();
- }
- //Enough internal storage, extract from it
- return this->allocate_from_current(aligner, bytes);
-}
-
-void monotonic_buffer_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) BOOST_NOEXCEPT
-{ (void)p; (void)bytes; (void)alignment; }
-
-bool monotonic_buffer_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT
-{ return this == dynamic_cast<const monotonic_buffer_resource*>(&other); }
-
-} //namespace pmr {
-} //namespace container {
-} //namespace boost {
-
-#include <boost/container/detail/config_end.hpp>
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/container for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#define BOOST_CONTAINER_SOURCE
+#include <boost/container/detail/config_begin.hpp>
+#include <boost/container/detail/workaround.hpp>
+
+#include <boost/container/pmr/monotonic_buffer_resource.hpp>
+#include <boost/container/pmr/global_resource.hpp>
+
+#include <boost/container/detail/min_max.hpp>
+#include <boost/intrusive/detail/math.hpp>
+#include <boost/container/throw_exception.hpp>
+
+
+#include <cstddef>
+
+namespace {
+
+#ifdef BOOST_HAS_INTPTR_T
+typedef boost::uintptr_t uintptr_type;
+#else
+typedef std::size_t uintptr_type;
+#endif
+
+static const std::size_t minimum_buffer_size = 2*sizeof(void*);
+
+} //namespace {
+
+namespace boost {
+namespace container {
+namespace pmr {
+
+void monotonic_buffer_resource::increase_next_buffer()
+{
+ m_next_buffer_size = (std::size_t(-1)/2 < m_next_buffer_size) ? std::size_t(-1) : m_next_buffer_size*2;
+}
+
+void monotonic_buffer_resource::increase_next_buffer_at_least_to(std::size_t minimum_size)
+{
+ if(m_next_buffer_size < minimum_size){
+ if(bi::detail::is_pow2(minimum_size)){
+ m_next_buffer_size = minimum_size;
+ }
+ else if(std::size_t(-1)/2 < minimum_size){
+ m_next_buffer_size = minimum_size;
+ }
+ else{
+ m_next_buffer_size = bi::detail::ceil_pow2(minimum_size);
+ }
+ }
+}
+
+monotonic_buffer_resource::monotonic_buffer_resource(memory_resource* upstream) BOOST_NOEXCEPT
+ : m_memory_blocks(upstream ? *upstream : *get_default_resource())
+ , m_current_buffer(0)
+ , m_current_buffer_size(0u)
+ , m_next_buffer_size(initial_next_buffer_size)
+{}
+
+monotonic_buffer_resource::monotonic_buffer_resource(std::size_t initial_size, memory_resource* upstream) BOOST_NOEXCEPT
+ : m_memory_blocks(upstream ? *upstream : *get_default_resource())
+ , m_current_buffer(0)
+ , m_current_buffer_size(0u)
+ , m_next_buffer_size(minimum_buffer_size)
+{ //In case initial_size is zero
+ this->increase_next_buffer_at_least_to(initial_size + !initial_size);
+}
+
+monotonic_buffer_resource::monotonic_buffer_resource(void* buffer, std::size_t buffer_size, memory_resource* upstream) BOOST_NOEXCEPT
+ : m_memory_blocks(upstream ? *upstream : *get_default_resource())
+ , m_current_buffer(buffer)
+ , m_current_buffer_size(buffer_size)
+ , m_next_buffer_size
+ (bi::detail::previous_or_equal_pow2
+ (boost::container::dtl::max_value(buffer_size, std::size_t(initial_next_buffer_size))))
+{ this->increase_next_buffer(); }
+
+monotonic_buffer_resource::~monotonic_buffer_resource()
+{ this->release(); }
+
+void monotonic_buffer_resource::release() BOOST_NOEXCEPT
+{
+ m_memory_blocks.release();
+ m_current_buffer = 0u;
+ m_current_buffer_size = 0u;
+ m_next_buffer_size = initial_next_buffer_size;
+}
+
+memory_resource* monotonic_buffer_resource::upstream_resource() const BOOST_NOEXCEPT
+{ return &m_memory_blocks.upstream_resource(); }
+
+std::size_t monotonic_buffer_resource::remaining_storage(std::size_t alignment, std::size_t &wasted_due_to_alignment) const BOOST_NOEXCEPT
+{
+ const uintptr_type up_alignment_minus1 = alignment - 1u;
+ const uintptr_type up_alignment_mask = ~up_alignment_minus1;
+ const uintptr_type up_addr = uintptr_type(m_current_buffer);
+ const uintptr_type up_aligned_addr = (up_addr + up_alignment_minus1) & up_alignment_mask;
+ wasted_due_to_alignment = std::size_t(up_aligned_addr - up_addr);
+ return m_current_buffer_size <= wasted_due_to_alignment ? 0u : m_current_buffer_size - wasted_due_to_alignment;
+}
+
+std::size_t monotonic_buffer_resource::remaining_storage(std::size_t alignment) const BOOST_NOEXCEPT
+{
+ std::size_t ignore_this;
+ return this->remaining_storage(alignment, ignore_this);
+}
+
+const void *monotonic_buffer_resource::current_buffer() const BOOST_NOEXCEPT
+{ return m_current_buffer; }
+
+std::size_t monotonic_buffer_resource::next_buffer_size() const BOOST_NOEXCEPT
+{ return m_next_buffer_size; }
+
+void *monotonic_buffer_resource::allocate_from_current(std::size_t aligner, std::size_t bytes)
+{
+ char * p = (char*)m_current_buffer + aligner;
+ m_current_buffer = p + bytes;
+ m_current_buffer_size -= aligner + bytes;
+ return p;
+}
+
+void* monotonic_buffer_resource::do_allocate(std::size_t bytes, std::size_t alignment)
+{
+ if(alignment > memory_resource::max_align)
+ throw_bad_alloc();
+
+ //See if there is room in current buffer
+ std::size_t aligner = 0u;
+ if(this->remaining_storage(alignment, aligner) < bytes){
+ //Update next_buffer_size to at least bytes
+ this->increase_next_buffer_at_least_to(bytes);
+ //Now allocate and update internal data
+ m_current_buffer = (char*)m_memory_blocks.allocate(m_next_buffer_size);
+ m_current_buffer_size = m_next_buffer_size;
+ this->increase_next_buffer();
+ }
+ //Enough internal storage, extract from it
+ return this->allocate_from_current(aligner, bytes);
+}
+
+void monotonic_buffer_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) BOOST_NOEXCEPT
+{ (void)p; (void)bytes; (void)alignment; }
+
+bool monotonic_buffer_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT
+{ return this == dynamic_cast<const monotonic_buffer_resource*>(&other); }
+
+} //namespace pmr {
+} //namespace container {
+} //namespace boost {
+
+#include <boost/container/detail/config_end.hpp>
diff --git a/contrib/restricted/boost/libs/container/src/pool_resource.cpp b/contrib/restricted/boost/libs/container/src/pool_resource.cpp
index e6829e28e7..46b36dcae7 100644
--- a/contrib/restricted/boost/libs/container/src/pool_resource.cpp
+++ b/contrib/restricted/boost/libs/container/src/pool_resource.cpp
@@ -1,291 +1,291 @@
-//////////////////////////////////////////////////////////////////////////////
-//
-// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost
-// Software License, Version 1.0. (See accompanying file
-// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-//
-// See http://www.boost.org/libs/container for documentation.
-//
-//////////////////////////////////////////////////////////////////////////////
-
-#define BOOST_CONTAINER_SOURCE
-#include <boost/container/detail/config_begin.hpp>
-#include <boost/container/detail/workaround.hpp>
-
-#include <boost/container/pmr/global_resource.hpp>
-
-#include <boost/container/detail/pool_resource.hpp>
-#include <boost/container/detail/block_slist.hpp>
-#include <boost/container/detail/min_max.hpp>
-#include <boost/container/detail/placement_new.hpp>
-#include <boost/intrusive/linear_slist_algorithms.hpp>
-#include <boost/intrusive/detail/math.hpp>
-
-#include <cstddef>
-
-namespace boost {
-namespace container {
-namespace pmr {
-
-//pool_data_t
-
-class pool_data_t
- : public block_slist_base<>
-{
- typedef block_slist_base<> block_slist_base_t;
-
- public:
- explicit pool_data_t(std::size_t initial_blocks_per_chunk)
- : block_slist_base_t(), next_blocks_per_chunk(initial_blocks_per_chunk)
- { slist_algo::init_header(&free_slist); }
-
- void *allocate_block() BOOST_NOEXCEPT
- {
- if(slist_algo::unique(&free_slist)){
- return 0;
- }
- slist_node *pv = slist_algo::node_traits::get_next(&free_slist);
- slist_algo::unlink_after(&free_slist);
- pv->~slist_node();
- return pv;
- }
-
- void deallocate_block(void *p) BOOST_NOEXCEPT
- {
- slist_node *pv = ::new(p, boost_container_new_t()) slist_node();
- slist_algo::link_after(&free_slist, pv);
- }
-
- void release(memory_resource &upstream)
- {
- slist_algo::init_header(&free_slist);
- this->block_slist_base_t::release(upstream);
- next_blocks_per_chunk = pool_options_minimum_max_blocks_per_chunk;
- }
-
- void replenish(memory_resource &mr, std::size_t pool_block, std::size_t max_blocks_per_chunk)
- {
- //Limit max value
- std::size_t blocks_per_chunk = boost::container::dtl::min_value(max_blocks_per_chunk, next_blocks_per_chunk);
- //Avoid overflow
- blocks_per_chunk = boost::container::dtl::min_value(blocks_per_chunk, std::size_t(-1)/pool_block);
-
- //Minimum block size is at least max_align, so all pools allocate sizes that are multiple of max_align,
- //meaning that all blocks are max_align-aligned.
- char *p = static_cast<char *>(block_slist_base_t::allocate(blocks_per_chunk*pool_block, mr));
-
- //Create header types. This is no-throw
- for(std::size_t i = 0, max = blocks_per_chunk; i != max; ++i){
- slist_node *const pv = ::new(p, boost_container_new_t()) slist_node();
- slist_algo::link_after(&free_slist, pv);
- p += pool_block;
- }
-
- //Update next block per chunk
- next_blocks_per_chunk = max_blocks_per_chunk/2u < blocks_per_chunk ? max_blocks_per_chunk : blocks_per_chunk*2u;
- }
-
- std::size_t cache_count() const
- { return slist_algo::count(&free_slist) - 1u; }
-
- slist_node free_slist;
- std::size_t next_blocks_per_chunk;
-};
-
-//pool_resource
-
-//Detect overflow in ceil_pow2
-BOOST_STATIC_ASSERT(pool_options_default_max_blocks_per_chunk <= (std::size_t(-1)/2u+1u));
-//Sanity checks
-BOOST_STATIC_ASSERT(bi::detail::static_is_pow2<pool_options_default_max_blocks_per_chunk>::value);
-BOOST_STATIC_ASSERT(bi::detail::static_is_pow2<pool_options_minimum_largest_required_pool_block>::value);
-
-//unsynchronized_pool_resource
-
-void pool_resource::priv_limit_option(std::size_t &val, std::size_t min, std::size_t max) //static
-{
- if(!val){
- val = max;
- }
- else{
- val = val < min ? min : boost::container::dtl::min_value(val, max);
- }
-}
-
-std::size_t pool_resource::priv_pool_index(std::size_t block_size) //static
-{
- //For allocations equal or less than pool_options_minimum_largest_required_pool_block
- //the smallest pool is used
- block_size = boost::container::dtl::max_value(block_size, pool_options_minimum_largest_required_pool_block);
- return bi::detail::ceil_log2(block_size)
- - bi::detail::ceil_log2(pool_options_minimum_largest_required_pool_block);
-}
-
-std::size_t pool_resource::priv_pool_block(std::size_t index) //static
-{
- //For allocations equal or less than pool_options_minimum_largest_required_pool_block
- //the smallest pool is used
- return pool_options_minimum_largest_required_pool_block << index;
-}
-
-void pool_resource::priv_fix_options()
-{
- priv_limit_option(m_options.max_blocks_per_chunk
- , pool_options_minimum_max_blocks_per_chunk
- , pool_options_default_max_blocks_per_chunk);
- priv_limit_option
- ( m_options.largest_required_pool_block
- , pool_options_minimum_largest_required_pool_block
- , pool_options_default_largest_required_pool_block);
- m_options.largest_required_pool_block = bi::detail::ceil_pow2(m_options.largest_required_pool_block);
-}
-
-void pool_resource::priv_init_pools()
-{
- const std::size_t num_pools = priv_pool_index(m_options.largest_required_pool_block)+1u;
- //Otherwise, just use the default alloc (zero pools)
- void *p = 0;
- //This can throw
- p = m_upstream.allocate(sizeof(pool_data_t)*num_pools);
- //This is nothrow
- m_pool_data = static_cast<pool_data_t *>(p);
- for(std::size_t i = 0, max = num_pools; i != max; ++i){
- ::new(&m_pool_data[i], boost_container_new_t()) pool_data_t(pool_options_minimum_max_blocks_per_chunk);
- }
- m_pool_count = num_pools;
-}
-
-void pool_resource::priv_constructor_body()
-{
- this->priv_fix_options();
-}
-
-pool_resource::pool_resource(const pool_options& opts, memory_resource* upstream) BOOST_NOEXCEPT
- : m_options(opts), m_upstream(*upstream), m_oversized_list(), m_pool_data(), m_pool_count()
-{ this->priv_constructor_body(); }
-
-pool_resource::pool_resource() BOOST_NOEXCEPT
- : m_options(), m_upstream(*get_default_resource()), m_oversized_list(), m_pool_data(), m_pool_count()
-{ this->priv_constructor_body(); }
-
-pool_resource::pool_resource(memory_resource* upstream) BOOST_NOEXCEPT
- : m_options(), m_upstream(*upstream), m_oversized_list(), m_pool_data(), m_pool_count()
-{ this->priv_constructor_body(); }
-
-pool_resource::pool_resource(const pool_options& opts) BOOST_NOEXCEPT
- : m_options(opts), m_upstream(*get_default_resource()), m_oversized_list(), m_pool_data(), m_pool_count()
-{ this->priv_constructor_body(); }
-
-pool_resource::~pool_resource() //virtual
-{
- this->release();
-
- for(std::size_t i = 0, max = m_pool_count; i != max; ++i){
- m_pool_data[i].~pool_data_t();
- }
- if(m_pool_data){
- m_upstream.deallocate((void*)m_pool_data, sizeof(pool_data_t)*m_pool_count);
- }
-}
-
-void pool_resource::release()
-{
- m_oversized_list.release(m_upstream);
- for(std::size_t i = 0, max = m_pool_count; i != max; ++i)
- {
- m_pool_data[i].release(m_upstream);
- }
-}
-
-memory_resource* pool_resource::upstream_resource() const
-{ return &m_upstream; }
-
-pool_options pool_resource::options() const
-{ return m_options; }
-
-void* pool_resource::do_allocate(std::size_t bytes, std::size_t alignment) //virtual
-{
- if(!m_pool_data){
- this->priv_init_pools();
- }
- (void)alignment; //alignment ignored here, max_align is used by pools
- if(bytes > m_options.largest_required_pool_block){
- return m_oversized_list.allocate(bytes, m_upstream);
- }
- else{
- const std::size_t pool_idx = priv_pool_index(bytes);
- pool_data_t & pool = m_pool_data[pool_idx];
- void *p = pool.allocate_block();
- if(!p){
- pool.replenish(m_upstream, priv_pool_block(pool_idx), m_options.max_blocks_per_chunk);
- p = pool.allocate_block();
- }
- return p;
- }
-}
-
-void pool_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) //virtual
-{
- (void)alignment; //alignment ignored here, max_align is used by pools
- if(bytes > m_options.largest_required_pool_block){
- //Just cached
- return m_oversized_list.deallocate(p, m_upstream);
- }
- else{
- const std::size_t pool_idx = priv_pool_index(bytes);
- return m_pool_data[pool_idx].deallocate_block(p);
- }
-}
-
-bool pool_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT //virtual
-{ return this == dynamic_cast<const pool_resource*>(&other); }
-
-
-std::size_t pool_resource::pool_count() const
-{
- if(BOOST_LIKELY((0 != m_pool_data))){
- return m_pool_count;
- }
- else{
- return priv_pool_index(m_options.largest_required_pool_block)+1u;
- }
-}
-
-std::size_t pool_resource::pool_index(std::size_t bytes) const
-{
- if(bytes > m_options.largest_required_pool_block){
- return pool_count();
- }
- else{
- return priv_pool_index(bytes);
- }
-}
-
-std::size_t pool_resource::pool_next_blocks_per_chunk(std::size_t pool_idx) const
-{
- if(BOOST_LIKELY((m_pool_data && pool_idx < m_pool_count))){
- return m_pool_data[pool_idx].next_blocks_per_chunk;
- }
- else{
- return 1u;
- }
-}
-
-std::size_t pool_resource::pool_block(std::size_t pool_idx) const
-{ return priv_pool_block(pool_idx); }
-
-std::size_t pool_resource::pool_cached_blocks(std::size_t pool_idx) const
-{
- if(BOOST_LIKELY((m_pool_data && pool_idx < m_pool_count))){
- return m_pool_data[pool_idx].cache_count();
- }
- else{
- return 0u;
- }
-}
-
-} //namespace pmr {
-} //namespace container {
-} //namespace boost {
-
-#include <boost/container/detail/config_end.hpp>
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/container for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#define BOOST_CONTAINER_SOURCE
+#include <boost/container/detail/config_begin.hpp>
+#include <boost/container/detail/workaround.hpp>
+
+#include <boost/container/pmr/global_resource.hpp>
+
+#include <boost/container/detail/pool_resource.hpp>
+#include <boost/container/detail/block_slist.hpp>
+#include <boost/container/detail/min_max.hpp>
+#include <boost/container/detail/placement_new.hpp>
+#include <boost/intrusive/linear_slist_algorithms.hpp>
+#include <boost/intrusive/detail/math.hpp>
+
+#include <cstddef>
+
+namespace boost {
+namespace container {
+namespace pmr {
+
+//pool_data_t
+
+class pool_data_t
+ : public block_slist_base<>
+{
+ typedef block_slist_base<> block_slist_base_t;
+
+ public:
+ explicit pool_data_t(std::size_t initial_blocks_per_chunk)
+ : block_slist_base_t(), next_blocks_per_chunk(initial_blocks_per_chunk)
+ { slist_algo::init_header(&free_slist); }
+
+ void *allocate_block() BOOST_NOEXCEPT
+ {
+ if(slist_algo::unique(&free_slist)){
+ return 0;
+ }
+ slist_node *pv = slist_algo::node_traits::get_next(&free_slist);
+ slist_algo::unlink_after(&free_slist);
+ pv->~slist_node();
+ return pv;
+ }
+
+ void deallocate_block(void *p) BOOST_NOEXCEPT
+ {
+ slist_node *pv = ::new(p, boost_container_new_t()) slist_node();
+ slist_algo::link_after(&free_slist, pv);
+ }
+
+ void release(memory_resource &upstream)
+ {
+ slist_algo::init_header(&free_slist);
+ this->block_slist_base_t::release(upstream);
+ next_blocks_per_chunk = pool_options_minimum_max_blocks_per_chunk;
+ }
+
+ void replenish(memory_resource &mr, std::size_t pool_block, std::size_t max_blocks_per_chunk)
+ {
+ //Limit max value
+ std::size_t blocks_per_chunk = boost::container::dtl::min_value(max_blocks_per_chunk, next_blocks_per_chunk);
+ //Avoid overflow
+ blocks_per_chunk = boost::container::dtl::min_value(blocks_per_chunk, std::size_t(-1)/pool_block);
+
+ //Minimum block size is at least max_align, so all pools allocate sizes that are multiple of max_align,
+ //meaning that all blocks are max_align-aligned.
+ char *p = static_cast<char *>(block_slist_base_t::allocate(blocks_per_chunk*pool_block, mr));
+
+ //Create header types. This is no-throw
+ for(std::size_t i = 0, max = blocks_per_chunk; i != max; ++i){
+ slist_node *const pv = ::new(p, boost_container_new_t()) slist_node();
+ slist_algo::link_after(&free_slist, pv);
+ p += pool_block;
+ }
+
+ //Update next block per chunk
+ next_blocks_per_chunk = max_blocks_per_chunk/2u < blocks_per_chunk ? max_blocks_per_chunk : blocks_per_chunk*2u;
+ }
+
+ std::size_t cache_count() const
+ { return slist_algo::count(&free_slist) - 1u; }
+
+ slist_node free_slist;
+ std::size_t next_blocks_per_chunk;
+};
+
+//pool_resource
+
+//Detect overflow in ceil_pow2
+BOOST_STATIC_ASSERT(pool_options_default_max_blocks_per_chunk <= (std::size_t(-1)/2u+1u));
+//Sanity checks
+BOOST_STATIC_ASSERT(bi::detail::static_is_pow2<pool_options_default_max_blocks_per_chunk>::value);
+BOOST_STATIC_ASSERT(bi::detail::static_is_pow2<pool_options_minimum_largest_required_pool_block>::value);
+
+//unsynchronized_pool_resource
+
+void pool_resource::priv_limit_option(std::size_t &val, std::size_t min, std::size_t max) //static
+{
+ if(!val){
+ val = max;
+ }
+ else{
+ val = val < min ? min : boost::container::dtl::min_value(val, max);
+ }
+}
+
+std::size_t pool_resource::priv_pool_index(std::size_t block_size) //static
+{
+ //For allocations equal or less than pool_options_minimum_largest_required_pool_block
+ //the smallest pool is used
+ block_size = boost::container::dtl::max_value(block_size, pool_options_minimum_largest_required_pool_block);
+ return bi::detail::ceil_log2(block_size)
+ - bi::detail::ceil_log2(pool_options_minimum_largest_required_pool_block);
+}
+
+std::size_t pool_resource::priv_pool_block(std::size_t index) //static
+{
+ //For allocations equal or less than pool_options_minimum_largest_required_pool_block
+ //the smallest pool is used
+ return pool_options_minimum_largest_required_pool_block << index;
+}
+
+void pool_resource::priv_fix_options()
+{
+ priv_limit_option(m_options.max_blocks_per_chunk
+ , pool_options_minimum_max_blocks_per_chunk
+ , pool_options_default_max_blocks_per_chunk);
+ priv_limit_option
+ ( m_options.largest_required_pool_block
+ , pool_options_minimum_largest_required_pool_block
+ , pool_options_default_largest_required_pool_block);
+ m_options.largest_required_pool_block = bi::detail::ceil_pow2(m_options.largest_required_pool_block);
+}
+
+void pool_resource::priv_init_pools()
+{
+ const std::size_t num_pools = priv_pool_index(m_options.largest_required_pool_block)+1u;
+ //Otherwise, just use the default alloc (zero pools)
+ void *p = 0;
+ //This can throw
+ p = m_upstream.allocate(sizeof(pool_data_t)*num_pools);
+ //This is nothrow
+ m_pool_data = static_cast<pool_data_t *>(p);
+ for(std::size_t i = 0, max = num_pools; i != max; ++i){
+ ::new(&m_pool_data[i], boost_container_new_t()) pool_data_t(pool_options_minimum_max_blocks_per_chunk);
+ }
+ m_pool_count = num_pools;
+}
+
+void pool_resource::priv_constructor_body()
+{
+ this->priv_fix_options();
+}
+
+pool_resource::pool_resource(const pool_options& opts, memory_resource* upstream) BOOST_NOEXCEPT
+ : m_options(opts), m_upstream(*upstream), m_oversized_list(), m_pool_data(), m_pool_count()
+{ this->priv_constructor_body(); }
+
+pool_resource::pool_resource() BOOST_NOEXCEPT
+ : m_options(), m_upstream(*get_default_resource()), m_oversized_list(), m_pool_data(), m_pool_count()
+{ this->priv_constructor_body(); }
+
+pool_resource::pool_resource(memory_resource* upstream) BOOST_NOEXCEPT
+ : m_options(), m_upstream(*upstream), m_oversized_list(), m_pool_data(), m_pool_count()
+{ this->priv_constructor_body(); }
+
+pool_resource::pool_resource(const pool_options& opts) BOOST_NOEXCEPT
+ : m_options(opts), m_upstream(*get_default_resource()), m_oversized_list(), m_pool_data(), m_pool_count()
+{ this->priv_constructor_body(); }
+
+pool_resource::~pool_resource() //virtual
+{
+ this->release();
+
+ for(std::size_t i = 0, max = m_pool_count; i != max; ++i){
+ m_pool_data[i].~pool_data_t();
+ }
+ if(m_pool_data){
+ m_upstream.deallocate((void*)m_pool_data, sizeof(pool_data_t)*m_pool_count);
+ }
+}
+
+void pool_resource::release()
+{
+ m_oversized_list.release(m_upstream);
+ for(std::size_t i = 0, max = m_pool_count; i != max; ++i)
+ {
+ m_pool_data[i].release(m_upstream);
+ }
+}
+
+memory_resource* pool_resource::upstream_resource() const
+{ return &m_upstream; }
+
+pool_options pool_resource::options() const
+{ return m_options; }
+
+void* pool_resource::do_allocate(std::size_t bytes, std::size_t alignment) //virtual
+{
+ if(!m_pool_data){
+ this->priv_init_pools();
+ }
+ (void)alignment; //alignment ignored here, max_align is used by pools
+ if(bytes > m_options.largest_required_pool_block){
+ return m_oversized_list.allocate(bytes, m_upstream);
+ }
+ else{
+ const std::size_t pool_idx = priv_pool_index(bytes);
+ pool_data_t & pool = m_pool_data[pool_idx];
+ void *p = pool.allocate_block();
+ if(!p){
+ pool.replenish(m_upstream, priv_pool_block(pool_idx), m_options.max_blocks_per_chunk);
+ p = pool.allocate_block();
+ }
+ return p;
+ }
+}
+
+void pool_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) //virtual
+{
+ (void)alignment; //alignment ignored here, max_align is used by pools
+ if(bytes > m_options.largest_required_pool_block){
+ //Just cached
+ return m_oversized_list.deallocate(p, m_upstream);
+ }
+ else{
+ const std::size_t pool_idx = priv_pool_index(bytes);
+ return m_pool_data[pool_idx].deallocate_block(p);
+ }
+}
+
+bool pool_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT //virtual
+{ return this == dynamic_cast<const pool_resource*>(&other); }
+
+
+std::size_t pool_resource::pool_count() const
+{
+ if(BOOST_LIKELY((0 != m_pool_data))){
+ return m_pool_count;
+ }
+ else{
+ return priv_pool_index(m_options.largest_required_pool_block)+1u;
+ }
+}
+
+std::size_t pool_resource::pool_index(std::size_t bytes) const
+{
+ if(bytes > m_options.largest_required_pool_block){
+ return pool_count();
+ }
+ else{
+ return priv_pool_index(bytes);
+ }
+}
+
+std::size_t pool_resource::pool_next_blocks_per_chunk(std::size_t pool_idx) const
+{
+ if(BOOST_LIKELY((m_pool_data && pool_idx < m_pool_count))){
+ return m_pool_data[pool_idx].next_blocks_per_chunk;
+ }
+ else{
+ return 1u;
+ }
+}
+
+std::size_t pool_resource::pool_block(std::size_t pool_idx) const
+{ return priv_pool_block(pool_idx); }
+
+std::size_t pool_resource::pool_cached_blocks(std::size_t pool_idx) const
+{
+ if(BOOST_LIKELY((m_pool_data && pool_idx < m_pool_count))){
+ return m_pool_data[pool_idx].cache_count();
+ }
+ else{
+ return 0u;
+ }
+}
+
+} //namespace pmr {
+} //namespace container {
+} //namespace boost {
+
+#include <boost/container/detail/config_end.hpp>
diff --git a/contrib/restricted/boost/libs/container/src/synchronized_pool_resource.cpp b/contrib/restricted/boost/libs/container/src/synchronized_pool_resource.cpp
index b98bed4f63..4d7cda6b3d 100644
--- a/contrib/restricted/boost/libs/container/src/synchronized_pool_resource.cpp
+++ b/contrib/restricted/boost/libs/container/src/synchronized_pool_resource.cpp
@@ -1,123 +1,123 @@
-//////////////////////////////////////////////////////////////////////////////
-//
-// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost
-// Software License, Version 1.0. (See accompanying file
-// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-//
-// See http://www.boost.org/libs/container for documentation.
-//
-//////////////////////////////////////////////////////////////////////////////
-
-#define BOOST_CONTAINER_SOURCE
-#include <boost/container/detail/config_begin.hpp>
-#include <boost/container/detail/workaround.hpp>
-#include <boost/container/detail/dlmalloc.hpp>
-
-#include <boost/container/pmr/synchronized_pool_resource.hpp>
-#include <cstddef>
-
-namespace {
-
-using namespace boost::container;
-
-class dlmalloc_sync_scoped_lock
-{
- void *m_sync;
-
- public:
- explicit dlmalloc_sync_scoped_lock(void *sync)
- : m_sync(sync)
- {
- if(!dlmalloc_sync_lock(m_sync)){
- throw_bad_alloc();
- }
- }
-
- ~dlmalloc_sync_scoped_lock()
- {
- dlmalloc_sync_unlock(m_sync);
- }
-};
-
-} //namespace {
-
-namespace boost {
-namespace container {
-namespace pmr {
-
-synchronized_pool_resource::synchronized_pool_resource(const pool_options& opts, memory_resource* upstream) BOOST_NOEXCEPT
- : m_pool_resource(opts, upstream), m_opaque_sync()
-{}
-
-synchronized_pool_resource::synchronized_pool_resource() BOOST_NOEXCEPT
- : m_pool_resource(), m_opaque_sync()
-{}
-
-synchronized_pool_resource::synchronized_pool_resource(memory_resource* upstream) BOOST_NOEXCEPT
- : m_pool_resource(upstream), m_opaque_sync()
-{}
-
-synchronized_pool_resource::synchronized_pool_resource(const pool_options& opts) BOOST_NOEXCEPT
- : m_pool_resource(opts), m_opaque_sync()
-{}
-
-synchronized_pool_resource::~synchronized_pool_resource() //virtual
-{
- if(m_opaque_sync)
- dlmalloc_sync_destroy(m_opaque_sync);
-}
-
-void synchronized_pool_resource::release()
-{
- if(m_opaque_sync){ //If there is no mutex, no allocation could be done
- m_pool_resource.release();
- }
-}
-
-memory_resource* synchronized_pool_resource::upstream_resource() const
-{ return m_pool_resource.upstream_resource(); }
-
-pool_options synchronized_pool_resource::options() const
-{ return m_pool_resource.options(); }
-
-void* synchronized_pool_resource::do_allocate(std::size_t bytes, std::size_t alignment) //virtual
-{
- if(!m_opaque_sync){ //If there is no mutex, no allocation could be done
- m_opaque_sync = dlmalloc_sync_create();
- if(!m_opaque_sync){
- throw_bad_alloc();
- }
- }
- dlmalloc_sync_scoped_lock lock(m_opaque_sync); (void)lock;
- return m_pool_resource.do_allocate(bytes, alignment);
-}
-
-void synchronized_pool_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) //virtual
-{
- dlmalloc_sync_scoped_lock lock(m_opaque_sync); (void)lock;
- return m_pool_resource.do_deallocate(p, bytes, alignment);
-}
-
-bool synchronized_pool_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT //virtual
-{ return this == dynamic_cast<const synchronized_pool_resource*>(&other); }
-
-std::size_t synchronized_pool_resource::pool_count() const
-{ return m_pool_resource.pool_count(); }
-
-std::size_t synchronized_pool_resource::pool_index(std::size_t bytes) const
-{ return m_pool_resource.pool_index(bytes); }
-
-std::size_t synchronized_pool_resource::pool_next_blocks_per_chunk(std::size_t pool_idx) const
-{ return m_pool_resource.pool_next_blocks_per_chunk(pool_idx); }
-
-std::size_t synchronized_pool_resource::pool_block(std::size_t pool_idx) const
-{ return m_pool_resource.pool_block(pool_idx); }
-
-std::size_t synchronized_pool_resource::pool_cached_blocks(std::size_t pool_idx) const
-{ return m_pool_resource.pool_cached_blocks(pool_idx); }
-
-} //namespace pmr {
-} //namespace container {
-} //namespace boost {
-
-#include <boost/container/detail/config_end.hpp>
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/container for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#define BOOST_CONTAINER_SOURCE
+#include <boost/container/detail/config_begin.hpp>
+#include <boost/container/detail/workaround.hpp>
+#include <boost/container/detail/dlmalloc.hpp>
+
+#include <boost/container/pmr/synchronized_pool_resource.hpp>
+#include <cstddef>
+
+namespace {
+
+using namespace boost::container;
+
+class dlmalloc_sync_scoped_lock
+{
+ void *m_sync;
+
+ public:
+ explicit dlmalloc_sync_scoped_lock(void *sync)
+ : m_sync(sync)
+ {
+ if(!dlmalloc_sync_lock(m_sync)){
+ throw_bad_alloc();
+ }
+ }
+
+ ~dlmalloc_sync_scoped_lock()
+ {
+ dlmalloc_sync_unlock(m_sync);
+ }
+};
+
+} //namespace {
+
+namespace boost {
+namespace container {
+namespace pmr {
+
+synchronized_pool_resource::synchronized_pool_resource(const pool_options& opts, memory_resource* upstream) BOOST_NOEXCEPT
+ : m_pool_resource(opts, upstream), m_opaque_sync()
+{}
+
+synchronized_pool_resource::synchronized_pool_resource() BOOST_NOEXCEPT
+ : m_pool_resource(), m_opaque_sync()
+{}
+
+synchronized_pool_resource::synchronized_pool_resource(memory_resource* upstream) BOOST_NOEXCEPT
+ : m_pool_resource(upstream), m_opaque_sync()
+{}
+
+synchronized_pool_resource::synchronized_pool_resource(const pool_options& opts) BOOST_NOEXCEPT
+ : m_pool_resource(opts), m_opaque_sync()
+{}
+
+synchronized_pool_resource::~synchronized_pool_resource() //virtual
+{
+ if(m_opaque_sync)
+ dlmalloc_sync_destroy(m_opaque_sync);
+}
+
+void synchronized_pool_resource::release()
+{
+ if(m_opaque_sync){ //If there is no mutex, no allocation could be done
+ m_pool_resource.release();
+ }
+}
+
+memory_resource* synchronized_pool_resource::upstream_resource() const
+{ return m_pool_resource.upstream_resource(); }
+
+pool_options synchronized_pool_resource::options() const
+{ return m_pool_resource.options(); }
+
+void* synchronized_pool_resource::do_allocate(std::size_t bytes, std::size_t alignment) //virtual
+{
+ if(!m_opaque_sync){ //If there is no mutex, no allocation could be done
+ m_opaque_sync = dlmalloc_sync_create();
+ if(!m_opaque_sync){
+ throw_bad_alloc();
+ }
+ }
+ dlmalloc_sync_scoped_lock lock(m_opaque_sync); (void)lock;
+ return m_pool_resource.do_allocate(bytes, alignment);
+}
+
+void synchronized_pool_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) //virtual
+{
+ dlmalloc_sync_scoped_lock lock(m_opaque_sync); (void)lock;
+ return m_pool_resource.do_deallocate(p, bytes, alignment);
+}
+
+bool synchronized_pool_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT //virtual
+{ return this == dynamic_cast<const synchronized_pool_resource*>(&other); }
+
+std::size_t synchronized_pool_resource::pool_count() const
+{ return m_pool_resource.pool_count(); }
+
+std::size_t synchronized_pool_resource::pool_index(std::size_t bytes) const
+{ return m_pool_resource.pool_index(bytes); }
+
+std::size_t synchronized_pool_resource::pool_next_blocks_per_chunk(std::size_t pool_idx) const
+{ return m_pool_resource.pool_next_blocks_per_chunk(pool_idx); }
+
+std::size_t synchronized_pool_resource::pool_block(std::size_t pool_idx) const
+{ return m_pool_resource.pool_block(pool_idx); }
+
+std::size_t synchronized_pool_resource::pool_cached_blocks(std::size_t pool_idx) const
+{ return m_pool_resource.pool_cached_blocks(pool_idx); }
+
+} //namespace pmr {
+} //namespace container {
+} //namespace boost {
+
+#include <boost/container/detail/config_end.hpp>
diff --git a/contrib/restricted/boost/libs/container/src/unsynchronized_pool_resource.cpp b/contrib/restricted/boost/libs/container/src/unsynchronized_pool_resource.cpp
index 0c84f694a3..4164925f76 100644
--- a/contrib/restricted/boost/libs/container/src/unsynchronized_pool_resource.cpp
+++ b/contrib/restricted/boost/libs/container/src/unsynchronized_pool_resource.cpp
@@ -1,79 +1,79 @@
-//////////////////////////////////////////////////////////////////////////////
-//
-// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost
-// Software License, Version 1.0. (See accompanying file
-// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
-//
-// See http://www.boost.org/libs/container for documentation.
-//
-//////////////////////////////////////////////////////////////////////////////
-
-#define BOOST_CONTAINER_SOURCE
-#include <boost/container/detail/config_begin.hpp>
-#include <boost/container/detail/workaround.hpp>
-
-#include <boost/container/pmr/unsynchronized_pool_resource.hpp>
-
-namespace boost {
-namespace container {
-namespace pmr {
-
-unsynchronized_pool_resource::unsynchronized_pool_resource(const pool_options& opts, memory_resource* upstream) BOOST_NOEXCEPT
- : m_resource(opts, upstream)
-{}
-
-unsynchronized_pool_resource::unsynchronized_pool_resource() BOOST_NOEXCEPT
- : m_resource()
-{}
-
-unsynchronized_pool_resource::unsynchronized_pool_resource(memory_resource* upstream) BOOST_NOEXCEPT
- : m_resource(upstream)
-{}
-
-unsynchronized_pool_resource::unsynchronized_pool_resource(const pool_options& opts) BOOST_NOEXCEPT
- : m_resource(opts)
-{}
-
-unsynchronized_pool_resource::~unsynchronized_pool_resource() //virtual
-{}
-
-void unsynchronized_pool_resource::release()
-{
- m_resource.release();
-}
-
-memory_resource* unsynchronized_pool_resource::upstream_resource() const
-{ return m_resource.upstream_resource(); }
-
-pool_options unsynchronized_pool_resource::options() const
-{ return m_resource.options(); }
-
-void* unsynchronized_pool_resource::do_allocate(std::size_t bytes, std::size_t alignment) //virtual
-{ return m_resource.do_allocate(bytes, alignment); }
-
-void unsynchronized_pool_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) //virtual
-{ return m_resource.do_deallocate(p, bytes, alignment); }
-
-bool unsynchronized_pool_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT //virtual
-{ return this == dynamic_cast<const unsynchronized_pool_resource*>(&other); }
-
-std::size_t unsynchronized_pool_resource::pool_count() const
-{ return m_resource.pool_count(); }
-
-std::size_t unsynchronized_pool_resource::pool_index(std::size_t bytes) const
-{ return m_resource.pool_index(bytes); }
-
-std::size_t unsynchronized_pool_resource::pool_next_blocks_per_chunk(std::size_t pool_idx) const
-{ return m_resource.pool_next_blocks_per_chunk(pool_idx); }
-
-std::size_t unsynchronized_pool_resource::pool_block(std::size_t pool_idx) const
-{ return m_resource.pool_block(pool_idx); }
-
-std::size_t unsynchronized_pool_resource::pool_cached_blocks(std::size_t pool_idx) const
-{ return m_resource.pool_cached_blocks(pool_idx); }
-
-} //namespace pmr {
-} //namespace container {
-} //namespace boost {
-
-#include <boost/container/detail/config_end.hpp>
+//////////////////////////////////////////////////////////////////////////////
+//
+// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost
+// Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+//
+// See http://www.boost.org/libs/container for documentation.
+//
+//////////////////////////////////////////////////////////////////////////////
+
+#define BOOST_CONTAINER_SOURCE
+#include <boost/container/detail/config_begin.hpp>
+#include <boost/container/detail/workaround.hpp>
+
+#include <boost/container/pmr/unsynchronized_pool_resource.hpp>
+
+namespace boost {
+namespace container {
+namespace pmr {
+
+unsynchronized_pool_resource::unsynchronized_pool_resource(const pool_options& opts, memory_resource* upstream) BOOST_NOEXCEPT
+ : m_resource(opts, upstream)
+{}
+
+unsynchronized_pool_resource::unsynchronized_pool_resource() BOOST_NOEXCEPT
+ : m_resource()
+{}
+
+unsynchronized_pool_resource::unsynchronized_pool_resource(memory_resource* upstream) BOOST_NOEXCEPT
+ : m_resource(upstream)
+{}
+
+unsynchronized_pool_resource::unsynchronized_pool_resource(const pool_options& opts) BOOST_NOEXCEPT
+ : m_resource(opts)
+{}
+
+unsynchronized_pool_resource::~unsynchronized_pool_resource() //virtual
+{}
+
+void unsynchronized_pool_resource::release()
+{
+ m_resource.release();
+}
+
+memory_resource* unsynchronized_pool_resource::upstream_resource() const
+{ return m_resource.upstream_resource(); }
+
+pool_options unsynchronized_pool_resource::options() const
+{ return m_resource.options(); }
+
+void* unsynchronized_pool_resource::do_allocate(std::size_t bytes, std::size_t alignment) //virtual
+{ return m_resource.do_allocate(bytes, alignment); }
+
+void unsynchronized_pool_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) //virtual
+{ return m_resource.do_deallocate(p, bytes, alignment); }
+
+bool unsynchronized_pool_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT //virtual
+{ return this == dynamic_cast<const unsynchronized_pool_resource*>(&other); }
+
+std::size_t unsynchronized_pool_resource::pool_count() const
+{ return m_resource.pool_count(); }
+
+std::size_t unsynchronized_pool_resource::pool_index(std::size_t bytes) const
+{ return m_resource.pool_index(bytes); }
+
+std::size_t unsynchronized_pool_resource::pool_next_blocks_per_chunk(std::size_t pool_idx) const
+{ return m_resource.pool_next_blocks_per_chunk(pool_idx); }
+
+std::size_t unsynchronized_pool_resource::pool_block(std::size_t pool_idx) const
+{ return m_resource.pool_block(pool_idx); }
+
+std::size_t unsynchronized_pool_resource::pool_cached_blocks(std::size_t pool_idx) const
+{ return m_resource.pool_cached_blocks(pool_idx); }
+
+} //namespace pmr {
+} //namespace container {
+} //namespace boost {
+
+#include <boost/container/detail/config_end.hpp>
diff --git a/contrib/restricted/boost/libs/container/ya.make b/contrib/restricted/boost/libs/container/ya.make
index bc9a2cd150..0575a06293 100644
--- a/contrib/restricted/boost/libs/container/ya.make
+++ b/contrib/restricted/boost/libs/container/ya.make
@@ -1,12 +1,12 @@
-LIBRARY()
-
+LIBRARY()
+
LICENSE(
BSL-1.0 AND
CC0-1.0
)
LICENSE_TEXTS(.yandex_meta/licenses.list.txt)
-
+
OWNER(
antoshkka
g:cpp-committee
@@ -14,15 +14,15 @@ OWNER(
)
INCLUDE(${ARCADIA_ROOT}/contrib/restricted/boost/boost_common.inc)
-
-SRCS(
- src/alloc_lib.c
- src/dlmalloc.cpp
- src/global_resource.cpp
- src/monotonic_buffer_resource.cpp
- src/pool_resource.cpp
- src/synchronized_pool_resource.cpp
- src/unsynchronized_pool_resource.cpp
-)
-
-END()
+
+SRCS(
+ src/alloc_lib.c
+ src/dlmalloc.cpp
+ src/global_resource.cpp
+ src/monotonic_buffer_resource.cpp
+ src/pool_resource.cpp
+ src/synchronized_pool_resource.cpp
+ src/unsynchronized_pool_resource.cpp
+)
+
+END()
diff --git a/contrib/restricted/boost/libs/context/src/asm/jump_i386_sysv_elf_gas.S b/contrib/restricted/boost/libs/context/src/asm/jump_i386_sysv_elf_gas.S
index c56ef14202..23f5a23498 100644
--- a/contrib/restricted/boost/libs/context/src/asm/jump_i386_sysv_elf_gas.S
+++ b/contrib/restricted/boost/libs/context/src/asm/jump_i386_sysv_elf_gas.S
@@ -12,14 +12,14 @@
* ---------------------------------------------------------------------------------- *
* | 0x0 | 0x4 | 0x8 | 0xc | 0x10 | 0x14 | 0x18 | 0x1c | *
* ---------------------------------------------------------------------------------- *
- * | fc_mxcsr|fc_x87_cw| guard | EDI | ESI | EBX | EBP | EIP | *
+ * | fc_mxcsr|fc_x87_cw| guard | EDI | ESI | EBX | EBP | EIP | *
* ---------------------------------------------------------------------------------- *
* ---------------------------------------------------------------------------------- *
* | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | *
* ---------------------------------------------------------------------------------- *
- * | 0x20 | 0x24 | 0x28 | | *
+ * | 0x20 | 0x24 | 0x28 | | *
* ---------------------------------------------------------------------------------- *
- * | hidden | to | data | | *
+ * | hidden | to | data | | *
* ---------------------------------------------------------------------------------- *
* *
****************************************************************************************/
@@ -29,61 +29,61 @@
.align 2
.type jump_fcontext,@function
jump_fcontext:
- leal -0x1c(%esp), %esp /* prepare stack */
+ leal -0x1c(%esp), %esp /* prepare stack */
#if !defined(BOOST_USE_TSX)
stmxcsr (%esp) /* save MMX control- and status-word */
fnstcw 0x4(%esp) /* save x87 control-word */
#endif
-#if defined(TLS_STACK_PROTECTOR)
- movl %gs:0x14, %ecx /* read stack guard from TLS record */
- movl %ecx, 0x8(%esp) /* save stack guard */
-#endif
-
- movl %edi, 0xc(%esp) /* save EDI */
- movl %esi, 0x10(%esp) /* save ESI */
- movl %ebx, 0x14(%esp) /* save EBX */
- movl %ebp, 0x18(%esp) /* save EBP */
+#if defined(TLS_STACK_PROTECTOR)
+ movl %gs:0x14, %ecx /* read stack guard from TLS record */
+ movl %ecx, 0x8(%esp) /* save stack guard */
+#endif
+ movl %edi, 0xc(%esp) /* save EDI */
+ movl %esi, 0x10(%esp) /* save ESI */
+ movl %ebx, 0x14(%esp) /* save EBX */
+ movl %ebp, 0x18(%esp) /* save EBP */
+
/* store ESP (pointing to context-data) in ECX */
movl %esp, %ecx
/* first arg of jump_fcontext() == fcontext to jump to */
- movl 0x24(%esp), %eax
+ movl 0x24(%esp), %eax
/* second arg of jump_fcontext() == data to be transferred */
- movl 0x28(%esp), %edx
+ movl 0x28(%esp), %edx
/* restore ESP (pointing to context-data) from EAX */
movl %eax, %esp
/* address of returned transport_t */
- movl 0x20(%esp), %eax
+ movl 0x20(%esp), %eax
/* return parent fcontext_t */
movl %ecx, (%eax)
/* return data */
movl %edx, 0x4(%eax)
- movl 0x1c(%esp), %ecx /* restore EIP */
+ movl 0x1c(%esp), %ecx /* restore EIP */
#if !defined(BOOST_USE_TSX)
ldmxcsr (%esp) /* restore MMX control- and status-word */
fldcw 0x4(%esp) /* restore x87 control-word */
#endif
-#if defined(TLS_STACK_PROTECTOR)
- movl 0x8(%esp), %edx /* load stack guard */
- movl %edx, %gs:0x14 /* restore stack guard to TLS record */
-#endif
-
- movl 0xc(%esp), %edi /* restore EDI */
- movl 0x10(%esp), %esi /* restore ESI */
- movl 0x14(%esp), %ebx /* restore EBX */
- movl 0x18(%esp), %ebp /* restore EBP */
+#if defined(TLS_STACK_PROTECTOR)
+ movl 0x8(%esp), %edx /* load stack guard */
+ movl %edx, %gs:0x14 /* restore stack guard to TLS record */
+#endif
- leal 0x24(%esp), %esp /* prepare stack */
+ movl 0xc(%esp), %edi /* restore EDI */
+ movl 0x10(%esp), %esi /* restore ESI */
+ movl 0x14(%esp), %ebx /* restore EBX */
+ movl 0x18(%esp), %ebp /* restore EBP */
+ leal 0x24(%esp), %esp /* prepare stack */
+
/* jump to context */
jmp *%ecx
.size jump_fcontext,.-jump_fcontext
diff --git a/contrib/restricted/boost/libs/context/src/asm/jump_x86_64_sysv_elf_gas.S b/contrib/restricted/boost/libs/context/src/asm/jump_x86_64_sysv_elf_gas.S
index 551aaf5a78..6ed1edd0be 100644
--- a/contrib/restricted/boost/libs/context/src/asm/jump_x86_64_sysv_elf_gas.S
+++ b/contrib/restricted/boost/libs/context/src/asm/jump_x86_64_sysv_elf_gas.S
@@ -12,22 +12,22 @@
* ---------------------------------------------------------------------------------- *
* | 0x0 | 0x4 | 0x8 | 0xc | 0x10 | 0x14 | 0x18 | 0x1c | *
* ---------------------------------------------------------------------------------- *
- * | fc_mxcsr|fc_x87_cw| guard | R12 | R13 | *
+ * | fc_mxcsr|fc_x87_cw| guard | R12 | R13 | *
* ---------------------------------------------------------------------------------- *
* ---------------------------------------------------------------------------------- *
* | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | *
* ---------------------------------------------------------------------------------- *
* | 0x20 | 0x24 | 0x28 | 0x2c | 0x30 | 0x34 | 0x38 | 0x3c | *
* ---------------------------------------------------------------------------------- *
- * | R14 | R15 | RBX | RBP | *
- * ---------------------------------------------------------------------------------- *
- * ---------------------------------------------------------------------------------- *
- * | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | *
- * ---------------------------------------------------------------------------------- *
- * | 0x40 | 0x44 | | *
- * ---------------------------------------------------------------------------------- *
- * | RIP | | *
+ * | R14 | R15 | RBX | RBP | *
* ---------------------------------------------------------------------------------- *
+ * ---------------------------------------------------------------------------------- *
+ * | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | *
+ * ---------------------------------------------------------------------------------- *
+ * | 0x40 | 0x44 | | *
+ * ---------------------------------------------------------------------------------- *
+ * | RIP | | *
+ * ---------------------------------------------------------------------------------- *
* *
****************************************************************************************/
@@ -36,52 +36,52 @@
.type jump_fcontext,@function
.align 16
jump_fcontext:
- leaq -0x40(%rsp), %rsp /* prepare stack */
+ leaq -0x40(%rsp), %rsp /* prepare stack */
#if !defined(BOOST_USE_TSX)
stmxcsr (%rsp) /* save MMX control- and status-word */
fnstcw 0x4(%rsp) /* save x87 control-word */
#endif
-#if defined(TLS_STACK_PROTECTOR)
- movq %fs:0x28, %rcx /* read stack guard from TLS record */
- movq %rcx, 0x8(%rsp) /* save stack guard */
-#endif
-
- movq %r12, 0x10(%rsp) /* save R12 */
- movq %r13, 0x18(%rsp) /* save R13 */
- movq %r14, 0x20(%rsp) /* save R14 */
- movq %r15, 0x28(%rsp) /* save R15 */
- movq %rbx, 0x30(%rsp) /* save RBX */
- movq %rbp, 0x38(%rsp) /* save RBP */
+#if defined(TLS_STACK_PROTECTOR)
+ movq %fs:0x28, %rcx /* read stack guard from TLS record */
+ movq %rcx, 0x8(%rsp) /* save stack guard */
+#endif
+ movq %r12, 0x10(%rsp) /* save R12 */
+ movq %r13, 0x18(%rsp) /* save R13 */
+ movq %r14, 0x20(%rsp) /* save R14 */
+ movq %r15, 0x28(%rsp) /* save R15 */
+ movq %rbx, 0x30(%rsp) /* save RBX */
+ movq %rbp, 0x38(%rsp) /* save RBP */
+
/* store RSP (pointing to context-data) in RAX */
movq %rsp, %rax
/* restore RSP (pointing to context-data) from RDI */
movq %rdi, %rsp
- movq 0x40(%rsp), %r8 /* restore return-address */
+ movq 0x40(%rsp), %r8 /* restore return-address */
#if !defined(BOOST_USE_TSX)
ldmxcsr (%rsp) /* restore MMX control- and status-word */
fldcw 0x4(%rsp) /* restore x87 control-word */
#endif
-#if defined(TLS_STACK_PROTECTOR)
- movq 0x8(%rsp), %rdx /* load stack guard */
- movq %rdx, %fs:0x28 /* restore stack guard to TLS record */
-#endif
-
- movq 0x10(%rsp), %r12 /* restore R12 */
- movq 0x18(%rsp), %r13 /* restore R13 */
- movq 0x20(%rsp), %r14 /* restore R14 */
- movq 0x28(%rsp), %r15 /* restore R15 */
- movq 0x30(%rsp), %rbx /* restore RBX */
- movq 0x38(%rsp), %rbp /* restore RBP */
+#if defined(TLS_STACK_PROTECTOR)
+ movq 0x8(%rsp), %rdx /* load stack guard */
+ movq %rdx, %fs:0x28 /* restore stack guard to TLS record */
+#endif
- leaq 0x48(%rsp), %rsp /* prepare stack */
+ movq 0x10(%rsp), %r12 /* restore R12 */
+ movq 0x18(%rsp), %r13 /* restore R13 */
+ movq 0x20(%rsp), %r14 /* restore R14 */
+ movq 0x28(%rsp), %r15 /* restore R15 */
+ movq 0x30(%rsp), %rbx /* restore RBX */
+ movq 0x38(%rsp), %rbp /* restore RBP */
+ leaq 0x48(%rsp), %rsp /* prepare stack */
+
/* return transfer_t from jump */
/* RAX == fctx, RDX == data */
movq %rsi, %rdx
diff --git a/contrib/restricted/boost/libs/context/src/asm/make_i386_sysv_elf_gas.S b/contrib/restricted/boost/libs/context/src/asm/make_i386_sysv_elf_gas.S
index 3ad353cfa2..e9c78bbdc1 100644
--- a/contrib/restricted/boost/libs/context/src/asm/make_i386_sysv_elf_gas.S
+++ b/contrib/restricted/boost/libs/context/src/asm/make_i386_sysv_elf_gas.S
@@ -12,14 +12,14 @@
* ---------------------------------------------------------------------------------- *
* | 0x0 | 0x4 | 0x8 | 0xc | 0x10 | 0x14 | 0x18 | 0x1c | *
* ---------------------------------------------------------------------------------- *
- * | fc_mxcsr|fc_x87_cw| guard | EDI | ESI | EBX | EBP | EIP | *
+ * | fc_mxcsr|fc_x87_cw| guard | EDI | ESI | EBX | EBP | EIP | *
* ---------------------------------------------------------------------------------- *
* ---------------------------------------------------------------------------------- *
* | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | *
* ---------------------------------------------------------------------------------- *
- * | 0x20 | 0x24 | 0x28 | | *
+ * | 0x20 | 0x24 | 0x28 | | *
* ---------------------------------------------------------------------------------- *
- * | hidden | to | data | | *
+ * | hidden | to | data | | *
* ---------------------------------------------------------------------------------- *
* *
****************************************************************************************/
@@ -40,28 +40,28 @@ make_fcontext:
andl $-16, %eax
/* reserve space for context-data on context-stack */
- leal -0x2c(%eax), %eax
+ leal -0x2c(%eax), %eax
/* third arg of make_fcontext() == address of context-function */
/* stored in EBX */
movl 0xc(%esp), %ecx
- movl %ecx, 0x14(%eax)
+ movl %ecx, 0x14(%eax)
/* save MMX control- and status-word */
stmxcsr (%eax)
/* save x87 control-word */
fnstcw 0x4(%eax)
-#if defined(TLS_STACK_PROTECTOR)
- /* save stack guard */
- movl %gs:0x14, %ecx /* read stack guard from TLS record */
- movl %ecx, 0x8(%eax) /* save stack guard */
-#endif
-
+#if defined(TLS_STACK_PROTECTOR)
+ /* save stack guard */
+ movl %gs:0x14, %ecx /* read stack guard from TLS record */
+ movl %ecx, 0x8(%eax) /* save stack guard */
+#endif
+
/* return transport_t */
/* FCTX == EDI, DATA == ESI */
- leal 0xc(%eax), %ecx
- movl %ecx, 0x20(%eax)
+ leal 0xc(%eax), %ecx
+ movl %ecx, 0x20(%eax)
/* compute abs address of label trampoline */
call 1f
@@ -71,7 +71,7 @@ make_fcontext:
addl $trampoline-1b, %ecx
/* save address of trampoline as return address */
/* will be entered after calling jump_fcontext() first time */
- movl %ecx, 0x1c(%eax)
+ movl %ecx, 0x1c(%eax)
/* compute abs address of label finish */
call 2f
@@ -81,7 +81,7 @@ make_fcontext:
addl $finish-2b, %ecx
/* save address of finish as return-address for context-function */
/* will be entered after context-function returns */
- movl %ecx, 0x18(%eax)
+ movl %ecx, 0x18(%eax)
ret /* return pointer to context-data */
diff --git a/contrib/restricted/boost/libs/context/src/asm/make_x86_64_sysv_elf_gas.S b/contrib/restricted/boost/libs/context/src/asm/make_x86_64_sysv_elf_gas.S
index d0753b95d6..3d8fdf68e5 100644
--- a/contrib/restricted/boost/libs/context/src/asm/make_x86_64_sysv_elf_gas.S
+++ b/contrib/restricted/boost/libs/context/src/asm/make_x86_64_sysv_elf_gas.S
@@ -12,22 +12,22 @@
* ---------------------------------------------------------------------------------- *
* | 0x0 | 0x4 | 0x8 | 0xc | 0x10 | 0x14 | 0x18 | 0x1c | *
* ---------------------------------------------------------------------------------- *
- * | fc_mxcsr|fc_x87_cw| guard | R12 | R13 | *
+ * | fc_mxcsr|fc_x87_cw| guard | R12 | R13 | *
* ---------------------------------------------------------------------------------- *
* ---------------------------------------------------------------------------------- *
* | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | *
* ---------------------------------------------------------------------------------- *
* | 0x20 | 0x24 | 0x28 | 0x2c | 0x30 | 0x34 | 0x38 | 0x3c | *
* ---------------------------------------------------------------------------------- *
- * | R14 | R15 | RBX | RBP | *
- * ---------------------------------------------------------------------------------- *
- * ---------------------------------------------------------------------------------- *
- * | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | *
- * ---------------------------------------------------------------------------------- *
- * | 0x40 | 0x44 | | *
- * ---------------------------------------------------------------------------------- *
- * | RIP | | *
+ * | R14 | R15 | RBX | RBP | *
* ---------------------------------------------------------------------------------- *
+ * ---------------------------------------------------------------------------------- *
+ * | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | *
+ * ---------------------------------------------------------------------------------- *
+ * | 0x40 | 0x44 | | *
+ * ---------------------------------------------------------------------------------- *
+ * | RIP | | *
+ * ---------------------------------------------------------------------------------- *
* *
****************************************************************************************/
@@ -44,34 +44,34 @@ make_fcontext:
/* reserve space for context-data on context-stack */
/* on context-function entry: (RSP -0x8) % 16 == 0 */
- leaq -0x48(%rax), %rax
+ leaq -0x48(%rax), %rax
/* third arg of make_fcontext() == address of context-function */
/* stored in RBX */
- movq %rdx, 0x30(%rax)
+ movq %rdx, 0x30(%rax)
/* save MMX control- and status-word */
stmxcsr (%rax)
/* save x87 control-word */
fnstcw 0x4(%rax)
-#if defined(TLS_STACK_PROTECTOR)
- /* save stack guard */
- movq %fs:0x28, %rcx /* read stack guard from TLS record */
- movq %rcx, 0x8(%rsp) /* save stack guard */
-#endif
-
+#if defined(TLS_STACK_PROTECTOR)
+ /* save stack guard */
+ movq %fs:0x28, %rcx /* read stack guard from TLS record */
+ movq %rcx, 0x8(%rsp) /* save stack guard */
+#endif
+
/* compute abs address of label trampoline */
leaq trampoline(%rip), %rcx
/* save address of trampoline as return-address for context-function */
/* will be entered after calling jump_fcontext() first time */
- movq %rcx, 0x40(%rax)
+ movq %rcx, 0x40(%rax)
/* compute abs address of label finish */
leaq finish(%rip), %rcx
/* save address of finish as return-address for context-function */
/* will be entered after context-function returns */
- movq %rcx, 0x38(%rax)
+ movq %rcx, 0x38(%rax)
ret /* return pointer to context-data */
diff --git a/contrib/restricted/boost/libs/context/src/asm/ontop_i386_sysv_elf_gas.S b/contrib/restricted/boost/libs/context/src/asm/ontop_i386_sysv_elf_gas.S
index 03eb0f0c09..ed8e3d93e4 100644
--- a/contrib/restricted/boost/libs/context/src/asm/ontop_i386_sysv_elf_gas.S
+++ b/contrib/restricted/boost/libs/context/src/asm/ontop_i386_sysv_elf_gas.S
@@ -12,14 +12,14 @@
* ---------------------------------------------------------------------------------- *
* | 0x0 | 0x4 | 0x8 | 0xc | 0x10 | 0x14 | 0x18 | 0x1c | *
* ---------------------------------------------------------------------------------- *
- * | fc_mxcsr|fc_x87_cw| guard | EDI | ESI | EBX | EBP | EIP | *
+ * | fc_mxcsr|fc_x87_cw| guard | EDI | ESI | EBX | EBP | EIP | *
* ---------------------------------------------------------------------------------- *
* ---------------------------------------------------------------------------------- *
* | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | *
* ---------------------------------------------------------------------------------- *
- * | 0x20 | 0x24 | 0x28 | | *
+ * | 0x20 | 0x24 | 0x28 | | *
* ---------------------------------------------------------------------------------- *
- * | hidden | to | data | | *
+ * | hidden | to | data | | *
* ---------------------------------------------------------------------------------- *
* *
****************************************************************************************/
@@ -29,46 +29,46 @@
.align 2
.type ontop_fcontext,@function
ontop_fcontext:
- leal -0x1c(%esp), %esp /* prepare stack */
+ leal -0x1c(%esp), %esp /* prepare stack */
#if !defined(BOOST_USE_TSX)
stmxcsr (%esp) /* save MMX control- and status-word */
fnstcw 0x4(%esp) /* save x87 control-word */
#endif
-#if defined(TLS_STACK_PROTECTOR)
- movl %gs:0x14, %ecx /* read stack guard from TLS record */
- movl %ecx, 0x8(%esp) /* save stack guard */
-#endif
-
- movl %edi, 0xc(%esp) /* save EDI */
- movl %esi, 0x10(%esp) /* save ESI */
- movl %ebx, 0x14(%esp) /* save EBX */
- movl %ebp, 0x18(%esp) /* save EBP */
+#if defined(TLS_STACK_PROTECTOR)
+ movl %gs:0x14, %ecx /* read stack guard from TLS record */
+ movl %ecx, 0x8(%esp) /* save stack guard */
+#endif
+ movl %edi, 0xc(%esp) /* save EDI */
+ movl %esi, 0x10(%esp) /* save ESI */
+ movl %ebx, 0x14(%esp) /* save EBX */
+ movl %ebp, 0x18(%esp) /* save EBP */
+
/* store ESP (pointing to context-data) in ECX */
movl %esp, %ecx
/* first arg of ontop_fcontext() == fcontext to jump to */
- movl 0x24(%esp), %eax
+ movl 0x24(%esp), %eax
/* pass parent fcontext_t */
- movl %ecx, 0x24(%eax)
+ movl %ecx, 0x24(%eax)
/* second arg of ontop_fcontext() == data to be transferred */
- movl 0x28(%esp), %ecx
+ movl 0x28(%esp), %ecx
/* pass data */
- movl %ecx, 0x28(%eax)
+ movl %ecx, 0x28(%eax)
/* third arg of ontop_fcontext() == ontop-function */
- movl 0x2c(%esp), %ecx
+ movl 0x2c(%esp), %ecx
/* restore ESP (pointing to context-data) from EAX */
movl %eax, %esp
/* address of returned transport_t */
- movl 0x20(%esp), %eax
+ movl 0x20(%esp), %eax
/* return parent fcontext_t */
movl %ecx, (%eax)
/* return data */
@@ -79,18 +79,18 @@ ontop_fcontext:
fldcw 0x4(%esp) /* restore x87 control-word */
#endif
-#if defined(TLS_STACK_PROTECTOR)
- movl 0x8(%esp), %edx /* load stack guard */
- movl %edx, %gs:0x14 /* restore stack guard to TLS record */
-#endif
-
- movl 0xc(%esp), %edi /* restore EDI */
- movl 0x10(%esp), %esi /* restore ESI */
- movl 0x14(%esp), %ebx /* restore EBX */
- movl 0x18(%esp), %ebp /* restore EBP */
+#if defined(TLS_STACK_PROTECTOR)
+ movl 0x8(%esp), %edx /* load stack guard */
+ movl %edx, %gs:0x14 /* restore stack guard to TLS record */
+#endif
- leal 0x1c(%esp), %esp /* prepare stack */
+ movl 0xc(%esp), %edi /* restore EDI */
+ movl 0x10(%esp), %esi /* restore ESI */
+ movl 0x14(%esp), %ebx /* restore EBX */
+ movl 0x18(%esp), %ebp /* restore EBP */
+ leal 0x1c(%esp), %esp /* prepare stack */
+
/* jump to context */
jmp *%ecx
.size ontop_fcontext,.-ontop_fcontext
diff --git a/contrib/restricted/boost/libs/context/src/asm/ontop_x86_64_sysv_elf_gas.S b/contrib/restricted/boost/libs/context/src/asm/ontop_x86_64_sysv_elf_gas.S
index 95e9981f24..8fb83ecfc5 100644
--- a/contrib/restricted/boost/libs/context/src/asm/ontop_x86_64_sysv_elf_gas.S
+++ b/contrib/restricted/boost/libs/context/src/asm/ontop_x86_64_sysv_elf_gas.S
@@ -12,22 +12,22 @@
* ---------------------------------------------------------------------------------- *
* | 0x0 | 0x4 | 0x8 | 0xc | 0x10 | 0x14 | 0x18 | 0x1c | *
* ---------------------------------------------------------------------------------- *
- * | fc_mxcsr|fc_x87_cw| guard | R12 | R13 | *
+ * | fc_mxcsr|fc_x87_cw| guard | R12 | R13 | *
* ---------------------------------------------------------------------------------- *
* ---------------------------------------------------------------------------------- *
* | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | *
* ---------------------------------------------------------------------------------- *
* | 0x20 | 0x24 | 0x28 | 0x2c | 0x30 | 0x34 | 0x38 | 0x3c | *
* ---------------------------------------------------------------------------------- *
- * | R14 | R15 | RBX | RBP | *
- * ---------------------------------------------------------------------------------- *
- * ---------------------------------------------------------------------------------- *
- * | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | *
- * ---------------------------------------------------------------------------------- *
- * | 0x40 | 0x44 | | *
- * ---------------------------------------------------------------------------------- *
- * | RIP | | *
+ * | R14 | R15 | RBX | RBP | *
* ---------------------------------------------------------------------------------- *
+ * ---------------------------------------------------------------------------------- *
+ * | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | *
+ * ---------------------------------------------------------------------------------- *
+ * | 0x40 | 0x44 | | *
+ * ---------------------------------------------------------------------------------- *
+ * | RIP | | *
+ * ---------------------------------------------------------------------------------- *
* *
****************************************************************************************/
@@ -39,25 +39,25 @@ ontop_fcontext:
/* preserve ontop-function in R8 */
movq %rdx, %r8
- leaq -0x40(%rsp), %rsp /* prepare stack */
+ leaq -0x40(%rsp), %rsp /* prepare stack */
#if !defined(BOOST_USE_TSX)
stmxcsr (%rsp) /* save MMX control- and status-word */
fnstcw 0x4(%rsp) /* save x87 control-word */
#endif
-#if defined(TLS_STACK_PROTECTOR)
- movq %fs:0x28, %rcx /* read stack guard from TLS record */
- movq %rcx, 0x8(%rsp) /* save stack guard */
-#endif
-
- movq %r12, 0x10(%rsp) /* save R12 */
- movq %r13, 0x18(%rsp) /* save R13 */
- movq %r14, 0x20(%rsp) /* save R14 */
- movq %r15, 0x28(%rsp) /* save R15 */
- movq %rbx, 0x30(%rsp) /* save RBX */
- movq %rbp, 0x38(%rsp) /* save RBP */
-
+#if defined(TLS_STACK_PROTECTOR)
+ movq %fs:0x28, %rcx /* read stack guard from TLS record */
+ movq %rcx, 0x8(%rsp) /* save stack guard */
+#endif
+
+ movq %r12, 0x10(%rsp) /* save R12 */
+ movq %r13, 0x18(%rsp) /* save R13 */
+ movq %r14, 0x20(%rsp) /* save R14 */
+ movq %r15, 0x28(%rsp) /* save R15 */
+ movq %rbx, 0x30(%rsp) /* save RBX */
+ movq %rbp, 0x38(%rsp) /* save RBP */
+
/* store RSP (pointing to context-data) in RAX */
movq %rsp, %rax
@@ -69,20 +69,20 @@ ontop_fcontext:
fldcw 0x4(%rsp) /* restore x87 control-word */
#endif
-#if defined(TLS_STACK_PROTECTOR)
- movq 0x8(%rsp), %rdx /* load stack guard */
- movq %rdx, %fs:0x28 /* restore stack guard to TLS record */
-#endif
-
- movq 0x10(%rsp), %r12 /* restore R12 */
- movq 0x18(%rsp), %r13 /* restore R13 */
- movq 0x20(%rsp), %r14 /* restore R14 */
- movq 0x28(%rsp), %r15 /* restore R15 */
- movq 0x30(%rsp), %rbx /* restore RBX */
- movq 0x38(%rsp), %rbp /* restore RBP */
+#if defined(TLS_STACK_PROTECTOR)
+ movq 0x8(%rsp), %rdx /* load stack guard */
+ movq %rdx, %fs:0x28 /* restore stack guard to TLS record */
+#endif
- leaq 0x40(%rsp), %rsp /* prepare stack */
+ movq 0x10(%rsp), %r12 /* restore R12 */
+ movq 0x18(%rsp), %r13 /* restore R13 */
+ movq 0x20(%rsp), %r14 /* restore R14 */
+ movq 0x28(%rsp), %r15 /* restore R15 */
+ movq 0x30(%rsp), %rbx /* restore RBX */
+ movq 0x38(%rsp), %rbp /* restore RBP */
+ leaq 0x40(%rsp), %rsp /* prepare stack */
+
/* return transfer_t from jump */
/* RAX == fctx, RDX == data */
movq %rsi, %rdx
diff --git a/contrib/restricted/boost/libs/coroutine/ya.make b/contrib/restricted/boost/libs/coroutine/ya.make
index b0093b9475..6491a8a400 100644
--- a/contrib/restricted/boost/libs/coroutine/ya.make
+++ b/contrib/restricted/boost/libs/coroutine/ya.make
@@ -12,10 +12,10 @@ OWNER(
INCLUDE(${ARCADIA_ROOT}/contrib/restricted/boost/boost_common.inc)
-PEERDIR(
+PEERDIR(
${BOOST_ROOT}/libs/context
-)
-
+)
+
IF (OS_WINDOWS)
SRCS(
src/windows/stack_traits.cpp
diff --git a/contrib/restricted/boost/libs/filesystem/ya.make b/contrib/restricted/boost/libs/filesystem/ya.make
index bfad363675..0800b703ff 100644
--- a/contrib/restricted/boost/libs/filesystem/ya.make
+++ b/contrib/restricted/boost/libs/filesystem/ya.make
@@ -12,15 +12,15 @@ OWNER(
INCLUDE(${ARCADIA_ROOT}/contrib/restricted/boost/boost_common.inc)
-IF (DYNAMIC_BOOST)
+IF (DYNAMIC_BOOST)
CFLAGS(
-DBOOST_FILESYSTEM_DYN_LINK=1
)
-ELSE()
+ELSE()
CFLAGS(
-DBOOST_FILESYSTEM_STATIC_LINK=1
)
-ENDIF()
+ENDIF()
PEERDIR(
${BOOST_ROOT}/libs/system
diff --git a/contrib/restricted/boost/libs/ya.make b/contrib/restricted/boost/libs/ya.make
index c42a994cdc..7095662df7 100644
--- a/contrib/restricted/boost/libs/ya.make
+++ b/contrib/restricted/boost/libs/ya.make
@@ -41,28 +41,28 @@ PEERDIR(
END()
-RECURSE(
+RECURSE(
asio
- atomic
- chrono
- container
- context
- coroutine
- date_time
- exception
- filesystem
- iostreams
- locale
- log
- program_options
- random
- regex
- serialization
- system
- test
- thread
- timer
-)
+ atomic
+ chrono
+ container
+ context
+ coroutine
+ date_time
+ exception
+ filesystem
+ iostreams
+ locale
+ log
+ program_options
+ random
+ regex
+ serialization
+ system
+ test
+ thread
+ timer
+)
IF (NOT OS_ANDROID)
RECURSE(
diff --git a/contrib/restricted/boost/ya.make b/contrib/restricted/boost/ya.make
index 77e2dc66c0..c1f5975860 100644
--- a/contrib/restricted/boost/ya.make
+++ b/contrib/restricted/boost/ya.make
@@ -32,10 +32,10 @@ ADDINCL(
END()
-RECURSE(
- libs
-)
-
+RECURSE(
+ libs
+)
+
RECURSE_FOR_TESTS(
arcadia_test
)