diff options
| author | monster <[email protected]> | 2022-07-07 14:41:37 +0300 | 
|---|---|---|
| committer | monster <[email protected]> | 2022-07-07 14:41:37 +0300 | 
| commit | 06e5c21a835c0e923506c4ff27929f34e00761c2 (patch) | |
| tree | 75efcbc6854ef9bd476eb8bf00cc5c900da436a2 /contrib/tools/python3/src/Python/dtoa.c | |
| parent | 03f024c4412e3aa613bb543cf1660176320ba8f4 (diff) | |
fix ya.make
Diffstat (limited to 'contrib/tools/python3/src/Python/dtoa.c')
| -rw-r--r-- | contrib/tools/python3/src/Python/dtoa.c | 2859 | 
1 files changed, 0 insertions, 2859 deletions
diff --git a/contrib/tools/python3/src/Python/dtoa.c b/contrib/tools/python3/src/Python/dtoa.c deleted file mode 100644 index e629b296426..00000000000 --- a/contrib/tools/python3/src/Python/dtoa.c +++ /dev/null @@ -1,2859 +0,0 @@ -/**************************************************************** - * - * The author of this software is David M. Gay. - * - * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. - * - * Permission to use, copy, modify, and distribute this software for any - * purpose without fee is hereby granted, provided that this entire notice - * is included in all copies of any software which is or includes a copy - * or modification of this software and in all copies of the supporting - * documentation for such software. - * - * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED - * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY - * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY - * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. - * - ***************************************************************/ - -/**************************************************************** - * This is dtoa.c by David M. Gay, downloaded from - * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for - * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith. - * - * Please remember to check http://www.netlib.org/fp regularly (and especially - * before any Python release) for bugfixes and updates. - * - * The major modifications from Gay's original code are as follows: - * - *  0. The original code has been specialized to Python's needs by removing - *     many of the #ifdef'd sections.  In particular, code to support VAX and - *     IBM floating-point formats, hex NaNs, hex floats, locale-aware - *     treatment of the decimal point, and setting of the inexact flag have - *     been removed. - * - *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free. - * - *  2. The public functions strtod, dtoa and freedtoa all now have - *     a _Py_dg_ prefix. - * - *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread - *     PyMem_Malloc failures through the code.  The functions - * - *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b - * - *     of return type *Bigint all return NULL to indicate a malloc failure. - *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on - *     failure.  bigcomp now has return type int (it used to be void) and - *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL - *     on failure.  _Py_dg_strtod indicates failure due to malloc failure - *     by returning -1.0, setting errno=ENOMEM and *se to s00. - * - *  4. The static variable dtoa_result has been removed.  Callers of - *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free - *     the memory allocated by _Py_dg_dtoa. - * - *  5. The code has been reformatted to better fit with Python's - *     C style guide (PEP 7). - * - *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory - *     that hasn't been MALLOC'ed, private_mem should only be used when k <= - *     Kmax. - * - *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with - *     leading whitespace. - * - *  8. A corner case where _Py_dg_dtoa didn't strip trailing zeros has been - *     fixed. (bugs.python.org/issue40780) - * - ***************************************************************/ - -/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg - * at acm dot org, with " at " changed at "@" and " dot " changed to "."). - * Please report bugs for this modified version using the Python issue tracker - * (http://bugs.python.org). */ - -/* On a machine with IEEE extended-precision registers, it is - * necessary to specify double-precision (53-bit) rounding precision - * before invoking strtod or dtoa.  If the machine uses (the equivalent - * of) Intel 80x87 arithmetic, the call - *      _control87(PC_53, MCW_PC); - * does this with many compilers.  Whether this or another call is - * appropriate depends on the compiler; for this to work, it may be - * necessary to #include "float.h" or another system-dependent header - * file. - */ - -/* strtod for IEEE-, VAX-, and IBM-arithmetic machines. - * - * This strtod returns a nearest machine number to the input decimal - * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are - * broken by the IEEE round-even rule.  Otherwise ties are broken by - * biased rounding (add half and chop). - * - * Inspired loosely by William D. Clinger's paper "How to Read Floating - * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. - * - * Modifications: - * - *      1. We only require IEEE, IBM, or VAX double-precision - *              arithmetic (not IEEE double-extended). - *      2. We get by with floating-point arithmetic in a case that - *              Clinger missed -- when we're computing d * 10^n - *              for a small integer d and the integer n is not too - *              much larger than 22 (the maximum integer k for which - *              we can represent 10^k exactly), we may be able to - *              compute (d*10^k) * 10^(e-k) with just one roundoff. - *      3. Rather than a bit-at-a-time adjustment of the binary - *              result in the hard case, we use floating-point - *              arithmetic to determine the adjustment to within - *              one bit; only in really hard cases do we need to - *              compute a second residual. - *      4. Because of 3., we don't need a large table of powers of 10 - *              for ten-to-e (just some small tables, e.g. of 10^k - *              for 0 <= k <= 22). - */ - -/* Linking of Python's #defines to Gay's #defines starts here. */ - -#include "Python.h" -#include "pycore_dtoa.h" - -/* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile -   the following code */ -#ifndef PY_NO_SHORT_FLOAT_REPR - -#include "float.h" - -#define MALLOC PyMem_Malloc -#define FREE PyMem_Free - -/* This code should also work for ARM mixed-endian format on little-endian -   machines, where doubles have byte order 45670123 (in increasing address -   order, 0 being the least significant byte). */ -#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754 -#  define IEEE_8087 -#endif -#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \ -  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754) -#  define IEEE_MC68k -#endif -#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1 -#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined." -#endif - -/* The code below assumes that the endianness of integers matches the -   endianness of the two 32-bit words of a double.  Check this. */ -#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \ -                                 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)) -#error "doubles and ints have incompatible endianness" -#endif - -#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) -#error "doubles and ints have incompatible endianness" -#endif - - -typedef uint32_t ULong; -typedef int32_t Long; -typedef uint64_t ULLong; - -#undef DEBUG -#ifdef Py_DEBUG -#define DEBUG -#endif - -/* End Python #define linking */ - -#ifdef DEBUG -#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} -#endif - -#ifndef PRIVATE_MEM -#define PRIVATE_MEM 2304 -#endif -#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) -static double private_mem[PRIVATE_mem], *pmem_next = private_mem; - -#ifdef __cplusplus -extern "C" { -#endif - -typedef union { double d; ULong L[2]; } U; - -#ifdef IEEE_8087 -#define word0(x) (x)->L[1] -#define word1(x) (x)->L[0] -#else -#define word0(x) (x)->L[0] -#define word1(x) (x)->L[1] -#endif -#define dval(x) (x)->d - -#ifndef STRTOD_DIGLIM -#define STRTOD_DIGLIM 40 -#endif - -/* maximum permitted exponent value for strtod; exponents larger than -   MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP -   should fit into an int. */ -#ifndef MAX_ABS_EXP -#define MAX_ABS_EXP 1100000000U -#endif -/* Bound on length of pieces of input strings in _Py_dg_strtod; specifically, -   this is used to bound the total number of digits ignoring leading zeros and -   the number of digits that follow the decimal point.  Ideally, MAX_DIGITS -   should satisfy MAX_DIGITS + 400 < MAX_ABS_EXP; that ensures that the -   exponent clipping in _Py_dg_strtod can't affect the value of the output. */ -#ifndef MAX_DIGITS -#define MAX_DIGITS 1000000000U -#endif - -/* Guard against trying to use the above values on unusual platforms with ints - * of width less than 32 bits. */ -#if MAX_ABS_EXP > INT_MAX -#error "MAX_ABS_EXP should fit in an int" -#endif -#if MAX_DIGITS > INT_MAX -#error "MAX_DIGITS should fit in an int" -#endif - -/* The following definition of Storeinc is appropriate for MIPS processors. - * An alternative that might be better on some machines is - * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) - */ -#if defined(IEEE_8087) -#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \ -                         ((unsigned short *)a)[0] = (unsigned short)c, a++) -#else -#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \ -                         ((unsigned short *)a)[1] = (unsigned short)c, a++) -#endif - -/* #define P DBL_MANT_DIG */ -/* Ten_pmax = floor(P*log(2)/log(5)) */ -/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ -/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ -/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ - -#define Exp_shift  20 -#define Exp_shift1 20 -#define Exp_msk1    0x100000 -#define Exp_msk11   0x100000 -#define Exp_mask  0x7ff00000 -#define P 53 -#define Nbits 53 -#define Bias 1023 -#define Emax 1023 -#define Emin (-1022) -#define Etiny (-1074)  /* smallest denormal is 2**Etiny */ -#define Exp_1  0x3ff00000 -#define Exp_11 0x3ff00000 -#define Ebits 11 -#define Frac_mask  0xfffff -#define Frac_mask1 0xfffff -#define Ten_pmax 22 -#define Bletch 0x10 -#define Bndry_mask  0xfffff -#define Bndry_mask1 0xfffff -#define Sign_bit 0x80000000 -#define Log2P 1 -#define Tiny0 0 -#define Tiny1 1 -#define Quick_max 14 -#define Int_max 14 - -#ifndef Flt_Rounds -#ifdef FLT_ROUNDS -#define Flt_Rounds FLT_ROUNDS -#else -#define Flt_Rounds 1 -#endif -#endif /*Flt_Rounds*/ - -#define Rounding Flt_Rounds - -#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) -#define Big1 0xffffffff - -/* Standard NaN used by _Py_dg_stdnan. */ - -#define NAN_WORD0 0x7ff80000 -#define NAN_WORD1 0 - -/* Bits of the representation of positive infinity. */ - -#define POSINF_WORD0 0x7ff00000 -#define POSINF_WORD1 0 - -/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */ - -typedef struct BCinfo BCinfo; -struct -BCinfo { -    int e0, nd, nd0, scale; -}; - -#define FFFFFFFF 0xffffffffUL - -#define Kmax 7 - -/* struct Bigint is used to represent arbitrary-precision integers.  These -   integers are stored in sign-magnitude format, with the magnitude stored as -   an array of base 2**32 digits.  Bigints are always normalized: if x is a -   Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero. - -   The Bigint fields are as follows: - -     - next is a header used by Balloc and Bfree to keep track of lists -         of freed Bigints;  it's also used for the linked list of -         powers of 5 of the form 5**2**i used by pow5mult. -     - k indicates which pool this Bigint was allocated from -     - maxwds is the maximum number of words space was allocated for -       (usually maxwds == 2**k) -     - sign is 1 for negative Bigints, 0 for positive.  The sign is unused -       (ignored on inputs, set to 0 on outputs) in almost all operations -       involving Bigints: a notable exception is the diff function, which -       ignores signs on inputs but sets the sign of the output correctly. -     - wds is the actual number of significant words -     - x contains the vector of words (digits) for this Bigint, from least -       significant (x[0]) to most significant (x[wds-1]). -*/ - -struct -Bigint { -    struct Bigint *next; -    int k, maxwds, sign, wds; -    ULong x[1]; -}; - -typedef struct Bigint Bigint; - -#ifndef Py_USING_MEMORY_DEBUGGER - -/* Memory management: memory is allocated from, and returned to, Kmax+1 pools -   of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds == -   1 << k.  These pools are maintained as linked lists, with freelist[k] -   pointing to the head of the list for pool k. - -   On allocation, if there's no free slot in the appropriate pool, MALLOC is -   called to get more memory.  This memory is not returned to the system until -   Python quits.  There's also a private memory pool that's allocated from -   in preference to using MALLOC. - -   For Bigints with more than (1 << Kmax) digits (which implies at least 1233 -   decimal digits), memory is directly allocated using MALLOC, and freed using -   FREE. - -   XXX: it would be easy to bypass this memory-management system and -   translate each call to Balloc into a call to PyMem_Malloc, and each -   Bfree to PyMem_Free.  Investigate whether this has any significant -   performance on impact. */ - -static Bigint *freelist[Kmax+1]; - -/* Allocate space for a Bigint with up to 1<<k digits */ - -static Bigint * -Balloc(int k) -{ -    int x; -    Bigint *rv; -    unsigned int len; - -    if (k <= Kmax && (rv = freelist[k])) -        freelist[k] = rv->next; -    else { -        x = 1 << k; -        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) -            /sizeof(double); -        if (k <= Kmax && pmem_next - private_mem + len <= (Py_ssize_t)PRIVATE_mem) { -            rv = (Bigint*)pmem_next; -            pmem_next += len; -        } -        else { -            rv = (Bigint*)MALLOC(len*sizeof(double)); -            if (rv == NULL) -                return NULL; -        } -        rv->k = k; -        rv->maxwds = x; -    } -    rv->sign = rv->wds = 0; -    return rv; -} - -/* Free a Bigint allocated with Balloc */ - -static void -Bfree(Bigint *v) -{ -    if (v) { -        if (v->k > Kmax) -            FREE((void*)v); -        else { -            v->next = freelist[v->k]; -            freelist[v->k] = v; -        } -    } -} - -#else - -/* Alternative versions of Balloc and Bfree that use PyMem_Malloc and -   PyMem_Free directly in place of the custom memory allocation scheme above. -   These are provided for the benefit of memory debugging tools like -   Valgrind. */ - -/* Allocate space for a Bigint with up to 1<<k digits */ - -static Bigint * -Balloc(int k) -{ -    int x; -    Bigint *rv; -    unsigned int len; - -    x = 1 << k; -    len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) -        /sizeof(double); - -    rv = (Bigint*)MALLOC(len*sizeof(double)); -    if (rv == NULL) -        return NULL; - -    rv->k = k; -    rv->maxwds = x; -    rv->sign = rv->wds = 0; -    return rv; -} - -/* Free a Bigint allocated with Balloc */ - -static void -Bfree(Bigint *v) -{ -    if (v) { -        FREE((void*)v); -    } -} - -#endif /* Py_USING_MEMORY_DEBUGGER */ - -#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \ -                          y->wds*sizeof(Long) + 2*sizeof(int)) - -/* Multiply a Bigint b by m and add a.  Either modifies b in place and returns -   a pointer to the modified b, or Bfrees b and returns a pointer to a copy. -   On failure, return NULL.  In this case, b will have been already freed. */ - -static Bigint * -multadd(Bigint *b, int m, int a)       /* multiply by m and add a */ -{ -    int i, wds; -    ULong *x; -    ULLong carry, y; -    Bigint *b1; - -    wds = b->wds; -    x = b->x; -    i = 0; -    carry = a; -    do { -        y = *x * (ULLong)m + carry; -        carry = y >> 32; -        *x++ = (ULong)(y & FFFFFFFF); -    } -    while(++i < wds); -    if (carry) { -        if (wds >= b->maxwds) { -            b1 = Balloc(b->k+1); -            if (b1 == NULL){ -                Bfree(b); -                return NULL; -            } -            Bcopy(b1, b); -            Bfree(b); -            b = b1; -        } -        b->x[wds++] = (ULong)carry; -        b->wds = wds; -    } -    return b; -} - -/* convert a string s containing nd decimal digits (possibly containing a -   decimal separator at position nd0, which is ignored) to a Bigint.  This -   function carries on where the parsing code in _Py_dg_strtod leaves off: on -   entry, y9 contains the result of converting the first 9 digits.  Returns -   NULL on failure. */ - -static Bigint * -s2b(const char *s, int nd0, int nd, ULong y9) -{ -    Bigint *b; -    int i, k; -    Long x, y; - -    x = (nd + 8) / 9; -    for(k = 0, y = 1; x > y; y <<= 1, k++) ; -    b = Balloc(k); -    if (b == NULL) -        return NULL; -    b->x[0] = y9; -    b->wds = 1; - -    if (nd <= 9) -      return b; - -    s += 9; -    for (i = 9; i < nd0; i++) { -        b = multadd(b, 10, *s++ - '0'); -        if (b == NULL) -            return NULL; -    } -    s++; -    for(; i < nd; i++) { -        b = multadd(b, 10, *s++ - '0'); -        if (b == NULL) -            return NULL; -    } -    return b; -} - -/* count leading 0 bits in the 32-bit integer x. */ - -static int -hi0bits(ULong x) -{ -    int k = 0; - -    if (!(x & 0xffff0000)) { -        k = 16; -        x <<= 16; -    } -    if (!(x & 0xff000000)) { -        k += 8; -        x <<= 8; -    } -    if (!(x & 0xf0000000)) { -        k += 4; -        x <<= 4; -    } -    if (!(x & 0xc0000000)) { -        k += 2; -        x <<= 2; -    } -    if (!(x & 0x80000000)) { -        k++; -        if (!(x & 0x40000000)) -            return 32; -    } -    return k; -} - -/* count trailing 0 bits in the 32-bit integer y, and shift y right by that -   number of bits. */ - -static int -lo0bits(ULong *y) -{ -    int k; -    ULong x = *y; - -    if (x & 7) { -        if (x & 1) -            return 0; -        if (x & 2) { -            *y = x >> 1; -            return 1; -        } -        *y = x >> 2; -        return 2; -    } -    k = 0; -    if (!(x & 0xffff)) { -        k = 16; -        x >>= 16; -    } -    if (!(x & 0xff)) { -        k += 8; -        x >>= 8; -    } -    if (!(x & 0xf)) { -        k += 4; -        x >>= 4; -    } -    if (!(x & 0x3)) { -        k += 2; -        x >>= 2; -    } -    if (!(x & 1)) { -        k++; -        x >>= 1; -        if (!x) -            return 32; -    } -    *y = x; -    return k; -} - -/* convert a small nonnegative integer to a Bigint */ - -static Bigint * -i2b(int i) -{ -    Bigint *b; - -    b = Balloc(1); -    if (b == NULL) -        return NULL; -    b->x[0] = i; -    b->wds = 1; -    return b; -} - -/* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores -   the signs of a and b. */ - -static Bigint * -mult(Bigint *a, Bigint *b) -{ -    Bigint *c; -    int k, wa, wb, wc; -    ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; -    ULong y; -    ULLong carry, z; - -    if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) { -        c = Balloc(0); -        if (c == NULL) -            return NULL; -        c->wds = 1; -        c->x[0] = 0; -        return c; -    } - -    if (a->wds < b->wds) { -        c = a; -        a = b; -        b = c; -    } -    k = a->k; -    wa = a->wds; -    wb = b->wds; -    wc = wa + wb; -    if (wc > a->maxwds) -        k++; -    c = Balloc(k); -    if (c == NULL) -        return NULL; -    for(x = c->x, xa = x + wc; x < xa; x++) -        *x = 0; -    xa = a->x; -    xae = xa + wa; -    xb = b->x; -    xbe = xb + wb; -    xc0 = c->x; -    for(; xb < xbe; xc0++) { -        if ((y = *xb++)) { -            x = xa; -            xc = xc0; -            carry = 0; -            do { -                z = *x++ * (ULLong)y + *xc + carry; -                carry = z >> 32; -                *xc++ = (ULong)(z & FFFFFFFF); -            } -            while(x < xae); -            *xc = (ULong)carry; -        } -    } -    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; -    c->wds = wc; -    return c; -} - -#ifndef Py_USING_MEMORY_DEBUGGER - -/* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */ - -static Bigint *p5s; - -/* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on -   failure; if the returned pointer is distinct from b then the original -   Bigint b will have been Bfree'd.   Ignores the sign of b. */ - -static Bigint * -pow5mult(Bigint *b, int k) -{ -    Bigint *b1, *p5, *p51; -    int i; -    static const int p05[3] = { 5, 25, 125 }; - -    if ((i = k & 3)) { -        b = multadd(b, p05[i-1], 0); -        if (b == NULL) -            return NULL; -    } - -    if (!(k >>= 2)) -        return b; -    p5 = p5s; -    if (!p5) { -        /* first time */ -        p5 = i2b(625); -        if (p5 == NULL) { -            Bfree(b); -            return NULL; -        } -        p5s = p5; -        p5->next = 0; -    } -    for(;;) { -        if (k & 1) { -            b1 = mult(b, p5); -            Bfree(b); -            b = b1; -            if (b == NULL) -                return NULL; -        } -        if (!(k >>= 1)) -            break; -        p51 = p5->next; -        if (!p51) { -            p51 = mult(p5,p5); -            if (p51 == NULL) { -                Bfree(b); -                return NULL; -            } -            p51->next = 0; -            p5->next = p51; -        } -        p5 = p51; -    } -    return b; -} - -#else - -/* Version of pow5mult that doesn't cache powers of 5. Provided for -   the benefit of memory debugging tools like Valgrind. */ - -static Bigint * -pow5mult(Bigint *b, int k) -{ -    Bigint *b1, *p5, *p51; -    int i; -    static const int p05[3] = { 5, 25, 125 }; - -    if ((i = k & 3)) { -        b = multadd(b, p05[i-1], 0); -        if (b == NULL) -            return NULL; -    } - -    if (!(k >>= 2)) -        return b; -    p5 = i2b(625); -    if (p5 == NULL) { -        Bfree(b); -        return NULL; -    } - -    for(;;) { -        if (k & 1) { -            b1 = mult(b, p5); -            Bfree(b); -            b = b1; -            if (b == NULL) { -                Bfree(p5); -                return NULL; -            } -        } -        if (!(k >>= 1)) -            break; -        p51 = mult(p5, p5); -        Bfree(p5); -        p5 = p51; -        if (p5 == NULL) { -            Bfree(b); -            return NULL; -        } -    } -    Bfree(p5); -    return b; -} - -#endif /* Py_USING_MEMORY_DEBUGGER */ - -/* shift a Bigint b left by k bits.  Return a pointer to the shifted result, -   or NULL on failure.  If the returned pointer is distinct from b then the -   original b will have been Bfree'd.   Ignores the sign of b. */ - -static Bigint * -lshift(Bigint *b, int k) -{ -    int i, k1, n, n1; -    Bigint *b1; -    ULong *x, *x1, *xe, z; - -    if (!k || (!b->x[0] && b->wds == 1)) -        return b; - -    n = k >> 5; -    k1 = b->k; -    n1 = n + b->wds + 1; -    for(i = b->maxwds; n1 > i; i <<= 1) -        k1++; -    b1 = Balloc(k1); -    if (b1 == NULL) { -        Bfree(b); -        return NULL; -    } -    x1 = b1->x; -    for(i = 0; i < n; i++) -        *x1++ = 0; -    x = b->x; -    xe = x + b->wds; -    if (k &= 0x1f) { -        k1 = 32 - k; -        z = 0; -        do { -            *x1++ = *x << k | z; -            z = *x++ >> k1; -        } -        while(x < xe); -        if ((*x1 = z)) -            ++n1; -    } -    else do -             *x1++ = *x++; -        while(x < xe); -    b1->wds = n1 - 1; -    Bfree(b); -    return b1; -} - -/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and -   1 if a > b.  Ignores signs of a and b. */ - -static int -cmp(Bigint *a, Bigint *b) -{ -    ULong *xa, *xa0, *xb, *xb0; -    int i, j; - -    i = a->wds; -    j = b->wds; -#ifdef DEBUG -    if (i > 1 && !a->x[i-1]) -        Bug("cmp called with a->x[a->wds-1] == 0"); -    if (j > 1 && !b->x[j-1]) -        Bug("cmp called with b->x[b->wds-1] == 0"); -#endif -    if (i -= j) -        return i; -    xa0 = a->x; -    xa = xa0 + j; -    xb0 = b->x; -    xb = xb0 + j; -    for(;;) { -        if (*--xa != *--xb) -            return *xa < *xb ? -1 : 1; -        if (xa <= xa0) -            break; -    } -    return 0; -} - -/* Take the difference of Bigints a and b, returning a new Bigint.  Returns -   NULL on failure.  The signs of a and b are ignored, but the sign of the -   result is set appropriately. */ - -static Bigint * -diff(Bigint *a, Bigint *b) -{ -    Bigint *c; -    int i, wa, wb; -    ULong *xa, *xae, *xb, *xbe, *xc; -    ULLong borrow, y; - -    i = cmp(a,b); -    if (!i) { -        c = Balloc(0); -        if (c == NULL) -            return NULL; -        c->wds = 1; -        c->x[0] = 0; -        return c; -    } -    if (i < 0) { -        c = a; -        a = b; -        b = c; -        i = 1; -    } -    else -        i = 0; -    c = Balloc(a->k); -    if (c == NULL) -        return NULL; -    c->sign = i; -    wa = a->wds; -    xa = a->x; -    xae = xa + wa; -    wb = b->wds; -    xb = b->x; -    xbe = xb + wb; -    xc = c->x; -    borrow = 0; -    do { -        y = (ULLong)*xa++ - *xb++ - borrow; -        borrow = y >> 32 & (ULong)1; -        *xc++ = (ULong)(y & FFFFFFFF); -    } -    while(xb < xbe); -    while(xa < xae) { -        y = *xa++ - borrow; -        borrow = y >> 32 & (ULong)1; -        *xc++ = (ULong)(y & FFFFFFFF); -    } -    while(!*--xc) -        wa--; -    c->wds = wa; -    return c; -} - -/* Given a positive normal double x, return the difference between x and the -   next double up.  Doesn't give correct results for subnormals. */ - -static double -ulp(U *x) -{ -    Long L; -    U u; - -    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; -    word0(&u) = L; -    word1(&u) = 0; -    return dval(&u); -} - -/* Convert a Bigint to a double plus an exponent */ - -static double -b2d(Bigint *a, int *e) -{ -    ULong *xa, *xa0, w, y, z; -    int k; -    U d; - -    xa0 = a->x; -    xa = xa0 + a->wds; -    y = *--xa; -#ifdef DEBUG -    if (!y) Bug("zero y in b2d"); -#endif -    k = hi0bits(y); -    *e = 32 - k; -    if (k < Ebits) { -        word0(&d) = Exp_1 | y >> (Ebits - k); -        w = xa > xa0 ? *--xa : 0; -        word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k); -        goto ret_d; -    } -    z = xa > xa0 ? *--xa : 0; -    if (k -= Ebits) { -        word0(&d) = Exp_1 | y << k | z >> (32 - k); -        y = xa > xa0 ? *--xa : 0; -        word1(&d) = z << k | y >> (32 - k); -    } -    else { -        word0(&d) = Exp_1 | y; -        word1(&d) = z; -    } -  ret_d: -    return dval(&d); -} - -/* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b, -   except that it accepts the scale parameter used in _Py_dg_strtod (which -   should be either 0 or 2*P), and the normalization for the return value is -   different (see below).  On input, d should be finite and nonnegative, and d -   / 2**scale should be exactly representable as an IEEE 754 double. - -   Returns a Bigint b and an integer e such that - -     dval(d) / 2**scale = b * 2**e. - -   Unlike d2b, b is not necessarily odd: b and e are normalized so -   that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P -   and e == Etiny.  This applies equally to an input of 0.0: in that -   case the return values are b = 0 and e = Etiny. - -   The above normalization ensures that for all possible inputs d, -   2**e gives ulp(d/2**scale). - -   Returns NULL on failure. -*/ - -static Bigint * -sd2b(U *d, int scale, int *e) -{ -    Bigint *b; - -    b = Balloc(1); -    if (b == NULL) -        return NULL; - -    /* First construct b and e assuming that scale == 0. */ -    b->wds = 2; -    b->x[0] = word1(d); -    b->x[1] = word0(d) & Frac_mask; -    *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift); -    if (*e < Etiny) -        *e = Etiny; -    else -        b->x[1] |= Exp_msk1; - -    /* Now adjust for scale, provided that b != 0. */ -    if (scale && (b->x[0] || b->x[1])) { -        *e -= scale; -        if (*e < Etiny) { -            scale = Etiny - *e; -            *e = Etiny; -            /* We can't shift more than P-1 bits without shifting out a 1. */ -            assert(0 < scale && scale <= P - 1); -            if (scale >= 32) { -                /* The bits shifted out should all be zero. */ -                assert(b->x[0] == 0); -                b->x[0] = b->x[1]; -                b->x[1] = 0; -                scale -= 32; -            } -            if (scale) { -                /* The bits shifted out should all be zero. */ -                assert(b->x[0] << (32 - scale) == 0); -                b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale)); -                b->x[1] >>= scale; -            } -        } -    } -    /* Ensure b is normalized. */ -    if (!b->x[1]) -        b->wds = 1; - -    return b; -} - -/* Convert a double to a Bigint plus an exponent.  Return NULL on failure. - -   Given a finite nonzero double d, return an odd Bigint b and exponent *e -   such that fabs(d) = b * 2**e.  On return, *bbits gives the number of -   significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits). - -   If d is zero, then b == 0, *e == -1010, *bbits = 0. - */ - -static Bigint * -d2b(U *d, int *e, int *bits) -{ -    Bigint *b; -    int de, k; -    ULong *x, y, z; -    int i; - -    b = Balloc(1); -    if (b == NULL) -        return NULL; -    x = b->x; - -    z = word0(d) & Frac_mask; -    word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */ -    if ((de = (int)(word0(d) >> Exp_shift))) -        z |= Exp_msk1; -    if ((y = word1(d))) { -        if ((k = lo0bits(&y))) { -            x[0] = y | z << (32 - k); -            z >>= k; -        } -        else -            x[0] = y; -        i = -            b->wds = (x[1] = z) ? 2 : 1; -    } -    else { -        k = lo0bits(&z); -        x[0] = z; -        i = -            b->wds = 1; -        k += 32; -    } -    if (de) { -        *e = de - Bias - (P-1) + k; -        *bits = P - k; -    } -    else { -        *e = de - Bias - (P-1) + 1 + k; -        *bits = 32*i - hi0bits(x[i-1]); -    } -    return b; -} - -/* Compute the ratio of two Bigints, as a double.  The result may have an -   error of up to 2.5 ulps. */ - -static double -ratio(Bigint *a, Bigint *b) -{ -    U da, db; -    int k, ka, kb; - -    dval(&da) = b2d(a, &ka); -    dval(&db) = b2d(b, &kb); -    k = ka - kb + 32*(a->wds - b->wds); -    if (k > 0) -        word0(&da) += k*Exp_msk1; -    else { -        k = -k; -        word0(&db) += k*Exp_msk1; -    } -    return dval(&da) / dval(&db); -} - -static const double -tens[] = { -    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, -    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, -    1e20, 1e21, 1e22 -}; - -static const double -bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; -static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, -                                   9007199254740992.*9007199254740992.e-256 -                                   /* = 2^106 * 1e-256 */ -}; -/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ -/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */ -#define Scale_Bit 0x10 -#define n_bigtens 5 - -#define ULbits 32 -#define kshift 5 -#define kmask 31 - - -static int -dshift(Bigint *b, int p2) -{ -    int rv = hi0bits(b->x[b->wds-1]) - 4; -    if (p2 > 0) -        rv -= p2; -    return rv & kmask; -} - -/* special case of Bigint division.  The quotient is always in the range 0 <= -   quotient < 10, and on entry the divisor S is normalized so that its top 4 -   bits (28--31) are zero and bit 27 is set. */ - -static int -quorem(Bigint *b, Bigint *S) -{ -    int n; -    ULong *bx, *bxe, q, *sx, *sxe; -    ULLong borrow, carry, y, ys; - -    n = S->wds; -#ifdef DEBUG -    /*debug*/ if (b->wds > n) -        /*debug*/       Bug("oversize b in quorem"); -#endif -    if (b->wds < n) -        return 0; -    sx = S->x; -    sxe = sx + --n; -    bx = b->x; -    bxe = bx + n; -    q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */ -#ifdef DEBUG -    /*debug*/ if (q > 9) -        /*debug*/       Bug("oversized quotient in quorem"); -#endif -    if (q) { -        borrow = 0; -        carry = 0; -        do { -            ys = *sx++ * (ULLong)q + carry; -            carry = ys >> 32; -            y = *bx - (ys & FFFFFFFF) - borrow; -            borrow = y >> 32 & (ULong)1; -            *bx++ = (ULong)(y & FFFFFFFF); -        } -        while(sx <= sxe); -        if (!*bxe) { -            bx = b->x; -            while(--bxe > bx && !*bxe) -                --n; -            b->wds = n; -        } -    } -    if (cmp(b, S) >= 0) { -        q++; -        borrow = 0; -        carry = 0; -        bx = b->x; -        sx = S->x; -        do { -            ys = *sx++ + carry; -            carry = ys >> 32; -            y = *bx - (ys & FFFFFFFF) - borrow; -            borrow = y >> 32 & (ULong)1; -            *bx++ = (ULong)(y & FFFFFFFF); -        } -        while(sx <= sxe); -        bx = b->x; -        bxe = bx + n; -        if (!*bxe) { -            while(--bxe > bx && !*bxe) -                --n; -            b->wds = n; -        } -    } -    return q; -} - -/* sulp(x) is a version of ulp(x) that takes bc.scale into account. - -   Assuming that x is finite and nonnegative (positive zero is fine -   here) and x / 2^bc.scale is exactly representable as a double, -   sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */ - -static double -sulp(U *x, BCinfo *bc) -{ -    U u; - -    if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) { -        /* rv/2^bc->scale is subnormal */ -        word0(&u) = (P+2)*Exp_msk1; -        word1(&u) = 0; -        return u.d; -    } -    else { -        assert(word0(x) || word1(x)); /* x != 0.0 */ -        return ulp(x); -    } -} - -/* The bigcomp function handles some hard cases for strtod, for inputs -   with more than STRTOD_DIGLIM digits.  It's called once an initial -   estimate for the double corresponding to the input string has -   already been obtained by the code in _Py_dg_strtod. - -   The bigcomp function is only called after _Py_dg_strtod has found a -   double value rv such that either rv or rv + 1ulp represents the -   correctly rounded value corresponding to the original string.  It -   determines which of these two values is the correct one by -   computing the decimal digits of rv + 0.5ulp and comparing them with -   the corresponding digits of s0. - -   In the following, write dv for the absolute value of the number represented -   by the input string. - -   Inputs: - -     s0 points to the first significant digit of the input string. - -     rv is a (possibly scaled) estimate for the closest double value to the -        value represented by the original input to _Py_dg_strtod.  If -        bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to -        the input value. - -     bc is a struct containing information gathered during the parsing and -        estimation steps of _Py_dg_strtod.  Description of fields follows: - -        bc->e0 gives the exponent of the input value, such that dv = (integer -           given by the bd->nd digits of s0) * 10**e0 - -        bc->nd gives the total number of significant digits of s0.  It will -           be at least 1. - -        bc->nd0 gives the number of significant digits of s0 before the -           decimal separator.  If there's no decimal separator, bc->nd0 == -           bc->nd. - -        bc->scale is the value used to scale rv to avoid doing arithmetic with -           subnormal values.  It's either 0 or 2*P (=106). - -   Outputs: - -     On successful exit, rv/2^(bc->scale) is the closest double to dv. - -     Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */ - -static int -bigcomp(U *rv, const char *s0, BCinfo *bc) -{ -    Bigint *b, *d; -    int b2, d2, dd, i, nd, nd0, odd, p2, p5; - -    nd = bc->nd; -    nd0 = bc->nd0; -    p5 = nd + bc->e0; -    b = sd2b(rv, bc->scale, &p2); -    if (b == NULL) -        return -1; - -    /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway -       case, this is used for round to even. */ -    odd = b->x[0] & 1; - -    /* left shift b by 1 bit and or a 1 into the least significant bit; -       this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */ -    b = lshift(b, 1); -    if (b == NULL) -        return -1; -    b->x[0] |= 1; -    p2--; - -    p2 -= p5; -    d = i2b(1); -    if (d == NULL) { -        Bfree(b); -        return -1; -    } -    /* Arrange for convenient computation of quotients: -     * shift left if necessary so divisor has 4 leading 0 bits. -     */ -    if (p5 > 0) { -        d = pow5mult(d, p5); -        if (d == NULL) { -            Bfree(b); -            return -1; -        } -    } -    else if (p5 < 0) { -        b = pow5mult(b, -p5); -        if (b == NULL) { -            Bfree(d); -            return -1; -        } -    } -    if (p2 > 0) { -        b2 = p2; -        d2 = 0; -    } -    else { -        b2 = 0; -        d2 = -p2; -    } -    i = dshift(d, d2); -    if ((b2 += i) > 0) { -        b = lshift(b, b2); -        if (b == NULL) { -            Bfree(d); -            return -1; -        } -    } -    if ((d2 += i) > 0) { -        d = lshift(d, d2); -        if (d == NULL) { -            Bfree(b); -            return -1; -        } -    } - -    /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 == -     * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing -     * a number in the range [0.1, 1). */ -    if (cmp(b, d) >= 0) -        /* b/d >= 1 */ -        dd = -1; -    else { -        i = 0; -        for(;;) { -            b = multadd(b, 10, 0); -            if (b == NULL) { -                Bfree(d); -                return -1; -            } -            dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d); -            i++; - -            if (dd) -                break; -            if (!b->x[0] && b->wds == 1) { -                /* b/d == 0 */ -                dd = i < nd; -                break; -            } -            if (!(i < nd)) { -                /* b/d != 0, but digits of s0 exhausted */ -                dd = -1; -                break; -            } -        } -    } -    Bfree(b); -    Bfree(d); -    if (dd > 0 || (dd == 0 && odd)) -        dval(rv) += sulp(rv, bc); -    return 0; -} - -/* Return a 'standard' NaN value. - -   There are exactly two quiet NaNs that don't arise by 'quieting' signaling -   NaNs (see IEEE 754-2008, section 6.2.1).  If sign == 0, return the one whose -   sign bit is cleared.  Otherwise, return the one whose sign bit is set. -*/ - -double -_Py_dg_stdnan(int sign) -{ -    U rv; -    word0(&rv) = NAN_WORD0; -    word1(&rv) = NAN_WORD1; -    if (sign) -        word0(&rv) |= Sign_bit; -    return dval(&rv); -} - -/* Return positive or negative infinity, according to the given sign (0 for - * positive infinity, 1 for negative infinity). */ - -double -_Py_dg_infinity(int sign) -{ -    U rv; -    word0(&rv) = POSINF_WORD0; -    word1(&rv) = POSINF_WORD1; -    return sign ? -dval(&rv) : dval(&rv); -} - -double -_Py_dg_strtod(const char *s00, char **se) -{ -    int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error; -    int esign, i, j, k, lz, nd, nd0, odd, sign; -    const char *s, *s0, *s1; -    double aadj, aadj1; -    U aadj2, adj, rv, rv0; -    ULong y, z, abs_exp; -    Long L; -    BCinfo bc; -    Bigint *bb = NULL, *bd = NULL, *bd0 = NULL, *bs = NULL, *delta = NULL; -    size_t ndigits, fraclen; -    double result; - -    dval(&rv) = 0.; - -    /* Start parsing. */ -    c = *(s = s00); - -    /* Parse optional sign, if present. */ -    sign = 0; -    switch (c) { -    case '-': -        sign = 1; -        /* fall through */ -    case '+': -        c = *++s; -    } - -    /* Skip leading zeros: lz is true iff there were leading zeros. */ -    s1 = s; -    while (c == '0') -        c = *++s; -    lz = s != s1; - -    /* Point s0 at the first nonzero digit (if any).  fraclen will be the -       number of digits between the decimal point and the end of the -       digit string.  ndigits will be the total number of digits ignoring -       leading zeros. */ -    s0 = s1 = s; -    while ('0' <= c && c <= '9') -        c = *++s; -    ndigits = s - s1; -    fraclen = 0; - -    /* Parse decimal point and following digits. */ -    if (c == '.') { -        c = *++s; -        if (!ndigits) { -            s1 = s; -            while (c == '0') -                c = *++s; -            lz = lz || s != s1; -            fraclen += (s - s1); -            s0 = s; -        } -        s1 = s; -        while ('0' <= c && c <= '9') -            c = *++s; -        ndigits += s - s1; -        fraclen += s - s1; -    } - -    /* Now lz is true if and only if there were leading zero digits, and -       ndigits gives the total number of digits ignoring leading zeros.  A -       valid input must have at least one digit. */ -    if (!ndigits && !lz) { -        if (se) -            *se = (char *)s00; -        goto parse_error; -    } - -    /* Range check ndigits and fraclen to make sure that they, and values -       computed with them, can safely fit in an int. */ -    if (ndigits > MAX_DIGITS || fraclen > MAX_DIGITS) { -        if (se) -            *se = (char *)s00; -        goto parse_error; -    } -    nd = (int)ndigits; -    nd0 = (int)ndigits - (int)fraclen; - -    /* Parse exponent. */ -    e = 0; -    if (c == 'e' || c == 'E') { -        s00 = s; -        c = *++s; - -        /* Exponent sign. */ -        esign = 0; -        switch (c) { -        case '-': -            esign = 1; -            /* fall through */ -        case '+': -            c = *++s; -        } - -        /* Skip zeros.  lz is true iff there are leading zeros. */ -        s1 = s; -        while (c == '0') -            c = *++s; -        lz = s != s1; - -        /* Get absolute value of the exponent. */ -        s1 = s; -        abs_exp = 0; -        while ('0' <= c && c <= '9') { -            abs_exp = 10*abs_exp + (c - '0'); -            c = *++s; -        } - -        /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if -           there are at most 9 significant exponent digits then overflow is -           impossible. */ -        if (s - s1 > 9 || abs_exp > MAX_ABS_EXP) -            e = (int)MAX_ABS_EXP; -        else -            e = (int)abs_exp; -        if (esign) -            e = -e; - -        /* A valid exponent must have at least one digit. */ -        if (s == s1 && !lz) -            s = s00; -    } - -    /* Adjust exponent to take into account position of the point. */ -    e -= nd - nd0; -    if (nd0 <= 0) -        nd0 = nd; - -    /* Finished parsing.  Set se to indicate how far we parsed */ -    if (se) -        *se = (char *)s; - -    /* If all digits were zero, exit with return value +-0.0.  Otherwise, -       strip trailing zeros: scan back until we hit a nonzero digit. */ -    if (!nd) -        goto ret; -    for (i = nd; i > 0; ) { -        --i; -        if (s0[i < nd0 ? i : i+1] != '0') { -            ++i; -            break; -        } -    } -    e += nd - i; -    nd = i; -    if (nd0 > nd) -        nd0 = nd; - -    /* Summary of parsing results.  After parsing, and dealing with zero -     * inputs, we have values s0, nd0, nd, e, sign, where: -     * -     *  - s0 points to the first significant digit of the input string -     * -     *  - nd is the total number of significant digits (here, and -     *    below, 'significant digits' means the set of digits of the -     *    significand of the input that remain after ignoring leading -     *    and trailing zeros). -     * -     *  - nd0 indicates the position of the decimal point, if present; it -     *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in -     *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice -     *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if -     *    nd0 == nd, then s0[nd0] could be any non-digit character.) -     * -     *  - e is the adjusted exponent: the absolute value of the number -     *    represented by the original input string is n * 10**e, where -     *    n is the integer represented by the concatenation of -     *    s0[0:nd0] and s0[nd0+1:nd+1] -     * -     *  - sign gives the sign of the input:  1 for negative, 0 for positive -     * -     *  - the first and last significant digits are nonzero -     */ - -    /* put first DBL_DIG+1 digits into integer y and z. -     * -     *  - y contains the value represented by the first min(9, nd) -     *    significant digits -     * -     *  - if nd > 9, z contains the value represented by significant digits -     *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z -     *    gives the value represented by the first min(16, nd) sig. digits. -     */ - -    bc.e0 = e1 = e; -    y = z = 0; -    for (i = 0; i < nd; i++) { -        if (i < 9) -            y = 10*y + s0[i < nd0 ? i : i+1] - '0'; -        else if (i < DBL_DIG+1) -            z = 10*z + s0[i < nd0 ? i : i+1] - '0'; -        else -            break; -    } - -    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; -    dval(&rv) = y; -    if (k > 9) { -        dval(&rv) = tens[k - 9] * dval(&rv) + z; -    } -    if (nd <= DBL_DIG -        && Flt_Rounds == 1 -        ) { -        if (!e) -            goto ret; -        if (e > 0) { -            if (e <= Ten_pmax) { -                dval(&rv) *= tens[e]; -                goto ret; -            } -            i = DBL_DIG - nd; -            if (e <= Ten_pmax + i) { -                /* A fancier test would sometimes let us do -                 * this for larger i values. -                 */ -                e -= i; -                dval(&rv) *= tens[i]; -                dval(&rv) *= tens[e]; -                goto ret; -            } -        } -        else if (e >= -Ten_pmax) { -            dval(&rv) /= tens[-e]; -            goto ret; -        } -    } -    e1 += nd - k; - -    bc.scale = 0; - -    /* Get starting approximation = rv * 10**e1 */ - -    if (e1 > 0) { -        if ((i = e1 & 15)) -            dval(&rv) *= tens[i]; -        if (e1 &= ~15) { -            if (e1 > DBL_MAX_10_EXP) -                goto ovfl; -            e1 >>= 4; -            for(j = 0; e1 > 1; j++, e1 >>= 1) -                if (e1 & 1) -                    dval(&rv) *= bigtens[j]; -            /* The last multiplication could overflow. */ -            word0(&rv) -= P*Exp_msk1; -            dval(&rv) *= bigtens[j]; -            if ((z = word0(&rv) & Exp_mask) -                > Exp_msk1*(DBL_MAX_EXP+Bias-P)) -                goto ovfl; -            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { -                /* set to largest number */ -                /* (Can't trust DBL_MAX) */ -                word0(&rv) = Big0; -                word1(&rv) = Big1; -            } -            else -                word0(&rv) += P*Exp_msk1; -        } -    } -    else if (e1 < 0) { -        /* The input decimal value lies in [10**e1, 10**(e1+16)). - -           If e1 <= -512, underflow immediately. -           If e1 <= -256, set bc.scale to 2*P. - -           So for input value < 1e-256, bc.scale is always set; -           for input value >= 1e-240, bc.scale is never set. -           For input values in [1e-256, 1e-240), bc.scale may or may -           not be set. */ - -        e1 = -e1; -        if ((i = e1 & 15)) -            dval(&rv) /= tens[i]; -        if (e1 >>= 4) { -            if (e1 >= 1 << n_bigtens) -                goto undfl; -            if (e1 & Scale_Bit) -                bc.scale = 2*P; -            for(j = 0; e1 > 0; j++, e1 >>= 1) -                if (e1 & 1) -                    dval(&rv) *= tinytens[j]; -            if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask) -                                            >> Exp_shift)) > 0) { -                /* scaled rv is denormal; clear j low bits */ -                if (j >= 32) { -                    word1(&rv) = 0; -                    if (j >= 53) -                        word0(&rv) = (P+2)*Exp_msk1; -                    else -                        word0(&rv) &= 0xffffffff << (j-32); -                } -                else -                    word1(&rv) &= 0xffffffff << j; -            } -            if (!dval(&rv)) -                goto undfl; -        } -    } - -    /* Now the hard part -- adjusting rv to the correct value.*/ - -    /* Put digits into bd: true value = bd * 10^e */ - -    bc.nd = nd; -    bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */ -                        /* to silence an erroneous warning about bc.nd0 */ -                        /* possibly not being initialized. */ -    if (nd > STRTOD_DIGLIM) { -        /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */ -        /* minimum number of decimal digits to distinguish double values */ -        /* in IEEE arithmetic. */ - -        /* Truncate input to 18 significant digits, then discard any trailing -           zeros on the result by updating nd, nd0, e and y suitably. (There's -           no need to update z; it's not reused beyond this point.) */ -        for (i = 18; i > 0; ) { -            /* scan back until we hit a nonzero digit.  significant digit 'i' -            is s0[i] if i < nd0, s0[i+1] if i >= nd0. */ -            --i; -            if (s0[i < nd0 ? i : i+1] != '0') { -                ++i; -                break; -            } -        } -        e += nd - i; -        nd = i; -        if (nd0 > nd) -            nd0 = nd; -        if (nd < 9) { /* must recompute y */ -            y = 0; -            for(i = 0; i < nd0; ++i) -                y = 10*y + s0[i] - '0'; -            for(; i < nd; ++i) -                y = 10*y + s0[i+1] - '0'; -        } -    } -    bd0 = s2b(s0, nd0, nd, y); -    if (bd0 == NULL) -        goto failed_malloc; - -    /* Notation for the comments below.  Write: - -         - dv for the absolute value of the number represented by the original -           decimal input string. - -         - if we've truncated dv, write tdv for the truncated value. -           Otherwise, set tdv == dv. - -         - srv for the quantity rv/2^bc.scale; so srv is the current binary -           approximation to tdv (and dv).  It should be exactly representable -           in an IEEE 754 double. -    */ - -    for(;;) { - -        /* This is the main correction loop for _Py_dg_strtod. - -           We've got a decimal value tdv, and a floating-point approximation -           srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is -           close enough (i.e., within 0.5 ulps) to tdv, and to compute a new -           approximation if not. - -           To determine whether srv is close enough to tdv, compute integers -           bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv) -           respectively, and then use integer arithmetic to determine whether -           |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv). -        */ - -        bd = Balloc(bd0->k); -        if (bd == NULL) { -            goto failed_malloc; -        } -        Bcopy(bd, bd0); -        bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */ -        if (bb == NULL) { -            goto failed_malloc; -        } -        /* Record whether lsb of bb is odd, in case we need this -           for the round-to-even step later. */ -        odd = bb->x[0] & 1; - -        /* tdv = bd * 10**e;  srv = bb * 2**bbe */ -        bs = i2b(1); -        if (bs == NULL) { -            goto failed_malloc; -        } - -        if (e >= 0) { -            bb2 = bb5 = 0; -            bd2 = bd5 = e; -        } -        else { -            bb2 = bb5 = -e; -            bd2 = bd5 = 0; -        } -        if (bbe >= 0) -            bb2 += bbe; -        else -            bd2 -= bbe; -        bs2 = bb2; -        bb2++; -        bd2++; - -        /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1, -           and bs == 1, so: - -              tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5) -              srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2) -              0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2) - -           It follows that: - -              M * tdv = bd * 2**bd2 * 5**bd5 -              M * srv = bb * 2**bb2 * 5**bb5 -              M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5 - -           for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but -           this fact is not needed below.) -        */ - -        /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */ -        i = bb2 < bd2 ? bb2 : bd2; -        if (i > bs2) -            i = bs2; -        if (i > 0) { -            bb2 -= i; -            bd2 -= i; -            bs2 -= i; -        } - -        /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */ -        if (bb5 > 0) { -            bs = pow5mult(bs, bb5); -            if (bs == NULL) { -                goto failed_malloc; -            } -            Bigint *bb1 = mult(bs, bb); -            Bfree(bb); -            bb = bb1; -            if (bb == NULL) { -                goto failed_malloc; -            } -        } -        if (bb2 > 0) { -            bb = lshift(bb, bb2); -            if (bb == NULL) { -                goto failed_malloc; -            } -        } -        if (bd5 > 0) { -            bd = pow5mult(bd, bd5); -            if (bd == NULL) { -                goto failed_malloc; -            } -        } -        if (bd2 > 0) { -            bd = lshift(bd, bd2); -            if (bd == NULL) { -                goto failed_malloc; -            } -        } -        if (bs2 > 0) { -            bs = lshift(bs, bs2); -            if (bs == NULL) { -                goto failed_malloc; -            } -        } - -        /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv), -           respectively.  Compute the difference |tdv - srv|, and compare -           with 0.5 ulp(srv). */ - -        delta = diff(bb, bd); -        if (delta == NULL) { -            goto failed_malloc; -        } -        dsign = delta->sign; -        delta->sign = 0; -        i = cmp(delta, bs); -        if (bc.nd > nd && i <= 0) { -            if (dsign) -                break;  /* Must use bigcomp(). */ - -            /* Here rv overestimates the truncated decimal value by at most -               0.5 ulp(rv).  Hence rv either overestimates the true decimal -               value by <= 0.5 ulp(rv), or underestimates it by some small -               amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of -               the true decimal value, so it's possible to exit. - -               Exception: if scaled rv is a normal exact power of 2, but not -               DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the -               next double, so the correctly rounded result is either rv - 0.5 -               ulp(rv) or rv; in this case, use bigcomp to distinguish. */ - -            if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) { -                /* rv can't be 0, since it's an overestimate for some -                   nonzero value.  So rv is a normal power of 2. */ -                j = (int)(word0(&rv) & Exp_mask) >> Exp_shift; -                /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if -                   rv / 2^bc.scale >= 2^-1021. */ -                if (j - bc.scale >= 2) { -                    dval(&rv) -= 0.5 * sulp(&rv, &bc); -                    break; /* Use bigcomp. */ -                } -            } - -            { -                bc.nd = nd; -                i = -1; /* Discarded digits make delta smaller. */ -            } -        } - -        if (i < 0) { -            /* Error is less than half an ulp -- check for -             * special case of mantissa a power of two. -             */ -            if (dsign || word1(&rv) || word0(&rv) & Bndry_mask -                || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1 -                ) { -                break; -            } -            if (!delta->x[0] && delta->wds <= 1) { -                /* exact result */ -                break; -            } -            delta = lshift(delta,Log2P); -            if (delta == NULL) { -                goto failed_malloc; -            } -            if (cmp(delta, bs) > 0) -                goto drop_down; -            break; -        } -        if (i == 0) { -            /* exactly half-way between */ -            if (dsign) { -                if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 -                    &&  word1(&rv) == ( -                        (bc.scale && -                         (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ? -                        (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : -                        0xffffffff)) { -                    /*boundary case -- increment exponent*/ -                    word0(&rv) = (word0(&rv) & Exp_mask) -                        + Exp_msk1 -                        ; -                    word1(&rv) = 0; -                    /* dsign = 0; */ -                    break; -                } -            } -            else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { -              drop_down: -                /* boundary case -- decrement exponent */ -                if (bc.scale) { -                    L = word0(&rv) & Exp_mask; -                    if (L <= (2*P+1)*Exp_msk1) { -                        if (L > (P+2)*Exp_msk1) -                            /* round even ==> */ -                            /* accept rv */ -                            break; -                        /* rv = smallest denormal */ -                        if (bc.nd > nd) -                            break; -                        goto undfl; -                    } -                } -                L = (word0(&rv) & Exp_mask) - Exp_msk1; -                word0(&rv) = L | Bndry_mask1; -                word1(&rv) = 0xffffffff; -                break; -            } -            if (!odd) -                break; -            if (dsign) -                dval(&rv) += sulp(&rv, &bc); -            else { -                dval(&rv) -= sulp(&rv, &bc); -                if (!dval(&rv)) { -                    if (bc.nd >nd) -                        break; -                    goto undfl; -                } -            } -            /* dsign = 1 - dsign; */ -            break; -        } -        if ((aadj = ratio(delta, bs)) <= 2.) { -            if (dsign) -                aadj = aadj1 = 1.; -            else if (word1(&rv) || word0(&rv) & Bndry_mask) { -                if (word1(&rv) == Tiny1 && !word0(&rv)) { -                    if (bc.nd >nd) -                        break; -                    goto undfl; -                } -                aadj = 1.; -                aadj1 = -1.; -            } -            else { -                /* special case -- power of FLT_RADIX to be */ -                /* rounded down... */ - -                if (aadj < 2./FLT_RADIX) -                    aadj = 1./FLT_RADIX; -                else -                    aadj *= 0.5; -                aadj1 = -aadj; -            } -        } -        else { -            aadj *= 0.5; -            aadj1 = dsign ? aadj : -aadj; -            if (Flt_Rounds == 0) -                aadj1 += 0.5; -        } -        y = word0(&rv) & Exp_mask; - -        /* Check for overflow */ - -        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { -            dval(&rv0) = dval(&rv); -            word0(&rv) -= P*Exp_msk1; -            adj.d = aadj1 * ulp(&rv); -            dval(&rv) += adj.d; -            if ((word0(&rv) & Exp_mask) >= -                Exp_msk1*(DBL_MAX_EXP+Bias-P)) { -                if (word0(&rv0) == Big0 && word1(&rv0) == Big1) { -                    goto ovfl; -                } -                word0(&rv) = Big0; -                word1(&rv) = Big1; -                goto cont; -            } -            else -                word0(&rv) += P*Exp_msk1; -        } -        else { -            if (bc.scale && y <= 2*P*Exp_msk1) { -                if (aadj <= 0x7fffffff) { -                    if ((z = (ULong)aadj) <= 0) -                        z = 1; -                    aadj = z; -                    aadj1 = dsign ? aadj : -aadj; -                } -                dval(&aadj2) = aadj1; -                word0(&aadj2) += (2*P+1)*Exp_msk1 - y; -                aadj1 = dval(&aadj2); -            } -            adj.d = aadj1 * ulp(&rv); -            dval(&rv) += adj.d; -        } -        z = word0(&rv) & Exp_mask; -        if (bc.nd == nd) { -            if (!bc.scale) -                if (y == z) { -                    /* Can we stop now? */ -                    L = (Long)aadj; -                    aadj -= L; -                    /* The tolerances below are conservative. */ -                    if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { -                        if (aadj < .4999999 || aadj > .5000001) -                            break; -                    } -                    else if (aadj < .4999999/FLT_RADIX) -                        break; -                } -        } -      cont: -        Bfree(bb); bb = NULL; -        Bfree(bd); bd = NULL; -        Bfree(bs); bs = NULL; -        Bfree(delta); delta = NULL; -    } -    if (bc.nd > nd) { -        error = bigcomp(&rv, s0, &bc); -        if (error) -            goto failed_malloc; -    } - -    if (bc.scale) { -        word0(&rv0) = Exp_1 - 2*P*Exp_msk1; -        word1(&rv0) = 0; -        dval(&rv) *= dval(&rv0); -    } - -  ret: -    result = sign ? -dval(&rv) : dval(&rv); -    goto done; - -  parse_error: -    result = 0.0; -    goto done; - -  failed_malloc: -    errno = ENOMEM; -    result = -1.0; -    goto done; - -  undfl: -    result = sign ? -0.0 : 0.0; -    goto done; - -  ovfl: -    errno = ERANGE; -    /* Can't trust HUGE_VAL */ -    word0(&rv) = Exp_mask; -    word1(&rv) = 0; -    result = sign ? -dval(&rv) : dval(&rv); -    goto done; - -  done: -    Bfree(bb); -    Bfree(bd); -    Bfree(bs); -    Bfree(bd0); -    Bfree(delta); -    return result; - -} - -static char * -rv_alloc(int i) -{ -    int j, k, *r; - -    j = sizeof(ULong); -    for(k = 0; -        sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i; -        j <<= 1) -        k++; -    r = (int*)Balloc(k); -    if (r == NULL) -        return NULL; -    *r = k; -    return (char *)(r+1); -} - -static char * -nrv_alloc(const char *s, char **rve, int n) -{ -    char *rv, *t; - -    rv = rv_alloc(n); -    if (rv == NULL) -        return NULL; -    t = rv; -    while((*t = *s++)) t++; -    if (rve) -        *rve = t; -    return rv; -} - -/* freedtoa(s) must be used to free values s returned by dtoa - * when MULTIPLE_THREADS is #defined.  It should be used in all cases, - * but for consistency with earlier versions of dtoa, it is optional - * when MULTIPLE_THREADS is not defined. - */ - -void -_Py_dg_freedtoa(char *s) -{ -    Bigint *b = (Bigint *)((int *)s - 1); -    b->maxwds = 1 << (b->k = *(int*)b); -    Bfree(b); -} - -/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. - * - * Inspired by "How to Print Floating-Point Numbers Accurately" by - * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. - * - * Modifications: - *      1. Rather than iterating, we use a simple numeric overestimate - *         to determine k = floor(log10(d)).  We scale relevant - *         quantities using O(log2(k)) rather than O(k) multiplications. - *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't - *         try to generate digits strictly left to right.  Instead, we - *         compute with fewer bits and propagate the carry if necessary - *         when rounding the final digit up.  This is often faster. - *      3. Under the assumption that input will be rounded nearest, - *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. - *         That is, we allow equality in stopping tests when the - *         round-nearest rule will give the same floating-point value - *         as would satisfaction of the stopping test with strict - *         inequality. - *      4. We remove common factors of powers of 2 from relevant - *         quantities. - *      5. When converting floating-point integers less than 1e16, - *         we use floating-point arithmetic rather than resorting - *         to multiple-precision integers. - *      6. When asked to produce fewer than 15 digits, we first try - *         to get by with floating-point arithmetic; we resort to - *         multiple-precision integer arithmetic only if we cannot - *         guarantee that the floating-point calculation has given - *         the correctly rounded result.  For k requested digits and - *         "uniformly" distributed input, the probability is - *         something like 10^(k-15) that we must resort to the Long - *         calculation. - */ - -/* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory -   leakage, a successful call to _Py_dg_dtoa should always be matched by a -   call to _Py_dg_freedtoa. */ - -char * -_Py_dg_dtoa(double dd, int mode, int ndigits, -            int *decpt, int *sign, char **rve) -{ -    /*  Arguments ndigits, decpt, sign are similar to those -        of ecvt and fcvt; trailing zeros are suppressed from -        the returned string.  If not null, *rve is set to point -        to the end of the return value.  If d is +-Infinity or NaN, -        then *decpt is set to 9999. - -        mode: -        0 ==> shortest string that yields d when read in -        and rounded to nearest. -        1 ==> like 0, but with Steele & White stopping rule; -        e.g. with IEEE P754 arithmetic , mode 0 gives -        1e23 whereas mode 1 gives 9.999999999999999e22. -        2 ==> max(1,ndigits) significant digits.  This gives a -        return value similar to that of ecvt, except -        that trailing zeros are suppressed. -        3 ==> through ndigits past the decimal point.  This -        gives a return value similar to that from fcvt, -        except that trailing zeros are suppressed, and -        ndigits can be negative. -        4,5 ==> similar to 2 and 3, respectively, but (in -        round-nearest mode) with the tests of mode 0 to -        possibly return a shorter string that rounds to d. -        With IEEE arithmetic and compilation with -        -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same -        as modes 2 and 3 when FLT_ROUNDS != 1. -        6-9 ==> Debugging modes similar to mode - 4:  don't try -        fast floating-point estimate (if applicable). - -        Values of mode other than 0-9 are treated as mode 0. - -        Sufficient space is allocated to the return value -        to hold the suppressed trailing zeros. -    */ - -    int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, -        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, -        spec_case, try_quick; -    Long L; -    int denorm; -    ULong x; -    Bigint *b, *b1, *delta, *mlo, *mhi, *S; -    U d2, eps, u; -    double ds; -    char *s, *s0; - -    /* set pointers to NULL, to silence gcc compiler warnings and make -       cleanup easier on error */ -    mlo = mhi = S = 0; -    s0 = 0; - -    u.d = dd; -    if (word0(&u) & Sign_bit) { -        /* set sign for everything, including 0's and NaNs */ -        *sign = 1; -        word0(&u) &= ~Sign_bit; /* clear sign bit */ -    } -    else -        *sign = 0; - -    /* quick return for Infinities, NaNs and zeros */ -    if ((word0(&u) & Exp_mask) == Exp_mask) -    { -        /* Infinity or NaN */ -        *decpt = 9999; -        if (!word1(&u) && !(word0(&u) & 0xfffff)) -            return nrv_alloc("Infinity", rve, 8); -        return nrv_alloc("NaN", rve, 3); -    } -    if (!dval(&u)) { -        *decpt = 1; -        return nrv_alloc("0", rve, 1); -    } - -    /* compute k = floor(log10(d)).  The computation may leave k -       one too large, but should never leave k too small. */ -    b = d2b(&u, &be, &bbits); -    if (b == NULL) -        goto failed_malloc; -    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { -        dval(&d2) = dval(&u); -        word0(&d2) &= Frac_mask1; -        word0(&d2) |= Exp_11; - -        /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5 -         * log10(x)      =  log(x) / log(10) -         *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) -         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) -         * -         * This suggests computing an approximation k to log10(d) by -         * -         * k = (i - Bias)*0.301029995663981 -         *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); -         * -         * We want k to be too large rather than too small. -         * The error in the first-order Taylor series approximation -         * is in our favor, so we just round up the constant enough -         * to compensate for any error in the multiplication of -         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, -         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, -         * adding 1e-13 to the constant term more than suffices. -         * Hence we adjust the constant term to 0.1760912590558. -         * (We could get a more accurate k by invoking log10, -         *  but this is probably not worthwhile.) -         */ - -        i -= Bias; -        denorm = 0; -    } -    else { -        /* d is denormalized */ - -        i = bbits + be + (Bias + (P-1) - 1); -        x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) -            : word1(&u) << (32 - i); -        dval(&d2) = x; -        word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ -        i -= (Bias + (P-1) - 1) + 1; -        denorm = 1; -    } -    ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + -        i*0.301029995663981; -    k = (int)ds; -    if (ds < 0. && ds != k) -        k--;    /* want k = floor(ds) */ -    k_check = 1; -    if (k >= 0 && k <= Ten_pmax) { -        if (dval(&u) < tens[k]) -            k--; -        k_check = 0; -    } -    j = bbits - i - 1; -    if (j >= 0) { -        b2 = 0; -        s2 = j; -    } -    else { -        b2 = -j; -        s2 = 0; -    } -    if (k >= 0) { -        b5 = 0; -        s5 = k; -        s2 += k; -    } -    else { -        b2 -= k; -        b5 = -k; -        s5 = 0; -    } -    if (mode < 0 || mode > 9) -        mode = 0; - -    try_quick = 1; - -    if (mode > 5) { -        mode -= 4; -        try_quick = 0; -    } -    leftright = 1; -    ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */ -    /* silence erroneous "gcc -Wall" warning. */ -    switch(mode) { -    case 0: -    case 1: -        i = 18; -        ndigits = 0; -        break; -    case 2: -        leftright = 0; -        /* fall through */ -    case 4: -        if (ndigits <= 0) -            ndigits = 1; -        ilim = ilim1 = i = ndigits; -        break; -    case 3: -        leftright = 0; -        /* fall through */ -    case 5: -        i = ndigits + k + 1; -        ilim = i; -        ilim1 = i - 1; -        if (i <= 0) -            i = 1; -    } -    s0 = rv_alloc(i); -    if (s0 == NULL) -        goto failed_malloc; -    s = s0; - - -    if (ilim >= 0 && ilim <= Quick_max && try_quick) { - -        /* Try to get by with floating-point arithmetic. */ - -        i = 0; -        dval(&d2) = dval(&u); -        k0 = k; -        ilim0 = ilim; -        ieps = 2; /* conservative */ -        if (k > 0) { -            ds = tens[k&0xf]; -            j = k >> 4; -            if (j & Bletch) { -                /* prevent overflows */ -                j &= Bletch - 1; -                dval(&u) /= bigtens[n_bigtens-1]; -                ieps++; -            } -            for(; j; j >>= 1, i++) -                if (j & 1) { -                    ieps++; -                    ds *= bigtens[i]; -                } -            dval(&u) /= ds; -        } -        else if ((j1 = -k)) { -            dval(&u) *= tens[j1 & 0xf]; -            for(j = j1 >> 4; j; j >>= 1, i++) -                if (j & 1) { -                    ieps++; -                    dval(&u) *= bigtens[i]; -                } -        } -        if (k_check && dval(&u) < 1. && ilim > 0) { -            if (ilim1 <= 0) -                goto fast_failed; -            ilim = ilim1; -            k--; -            dval(&u) *= 10.; -            ieps++; -        } -        dval(&eps) = ieps*dval(&u) + 7.; -        word0(&eps) -= (P-1)*Exp_msk1; -        if (ilim == 0) { -            S = mhi = 0; -            dval(&u) -= 5.; -            if (dval(&u) > dval(&eps)) -                goto one_digit; -            if (dval(&u) < -dval(&eps)) -                goto no_digits; -            goto fast_failed; -        } -        if (leftright) { -            /* Use Steele & White method of only -             * generating digits needed. -             */ -            dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); -            for(i = 0;;) { -                L = (Long)dval(&u); -                dval(&u) -= L; -                *s++ = '0' + (int)L; -                if (dval(&u) < dval(&eps)) -                    goto ret1; -                if (1. - dval(&u) < dval(&eps)) -                    goto bump_up; -                if (++i >= ilim) -                    break; -                dval(&eps) *= 10.; -                dval(&u) *= 10.; -            } -        } -        else { -            /* Generate ilim digits, then fix them up. */ -            dval(&eps) *= tens[ilim-1]; -            for(i = 1;; i++, dval(&u) *= 10.) { -                L = (Long)(dval(&u)); -                if (!(dval(&u) -= L)) -                    ilim = i; -                *s++ = '0' + (int)L; -                if (i == ilim) { -                    if (dval(&u) > 0.5 + dval(&eps)) -                        goto bump_up; -                    else if (dval(&u) < 0.5 - dval(&eps)) { -                        while(*--s == '0'); -                        s++; -                        goto ret1; -                    } -                    break; -                } -            } -        } -      fast_failed: -        s = s0; -        dval(&u) = dval(&d2); -        k = k0; -        ilim = ilim0; -    } - -    /* Do we have a "small" integer? */ - -    if (be >= 0 && k <= Int_max) { -        /* Yes. */ -        ds = tens[k]; -        if (ndigits < 0 && ilim <= 0) { -            S = mhi = 0; -            if (ilim < 0 || dval(&u) <= 5*ds) -                goto no_digits; -            goto one_digit; -        } -        for(i = 1;; i++, dval(&u) *= 10.) { -            L = (Long)(dval(&u) / ds); -            dval(&u) -= L*ds; -            *s++ = '0' + (int)L; -            if (!dval(&u)) { -                break; -            } -            if (i == ilim) { -                dval(&u) += dval(&u); -                if (dval(&u) > ds || (dval(&u) == ds && L & 1)) { -                  bump_up: -                    while(*--s == '9') -                        if (s == s0) { -                            k++; -                            *s = '0'; -                            break; -                        } -                    ++*s++; -                } -                else { -                    /* Strip trailing zeros. This branch was missing from the -                       original dtoa.c, leading to surplus trailing zeros in -                       some cases. See bugs.python.org/issue40780. */ -                    while (s > s0 && s[-1] == '0') { -                        --s; -                    } -                } -                break; -            } -        } -        goto ret1; -    } - -    m2 = b2; -    m5 = b5; -    if (leftright) { -        i = -            denorm ? be + (Bias + (P-1) - 1 + 1) : -            1 + P - bbits; -        b2 += i; -        s2 += i; -        mhi = i2b(1); -        if (mhi == NULL) -            goto failed_malloc; -    } -    if (m2 > 0 && s2 > 0) { -        i = m2 < s2 ? m2 : s2; -        b2 -= i; -        m2 -= i; -        s2 -= i; -    } -    if (b5 > 0) { -        if (leftright) { -            if (m5 > 0) { -                mhi = pow5mult(mhi, m5); -                if (mhi == NULL) -                    goto failed_malloc; -                b1 = mult(mhi, b); -                Bfree(b); -                b = b1; -                if (b == NULL) -                    goto failed_malloc; -            } -            if ((j = b5 - m5)) { -                b = pow5mult(b, j); -                if (b == NULL) -                    goto failed_malloc; -            } -        } -        else { -            b = pow5mult(b, b5); -            if (b == NULL) -                goto failed_malloc; -        } -    } -    S = i2b(1); -    if (S == NULL) -        goto failed_malloc; -    if (s5 > 0) { -        S = pow5mult(S, s5); -        if (S == NULL) -            goto failed_malloc; -    } - -    /* Check for special case that d is a normalized power of 2. */ - -    spec_case = 0; -    if ((mode < 2 || leftright) -        ) { -        if (!word1(&u) && !(word0(&u) & Bndry_mask) -            && word0(&u) & (Exp_mask & ~Exp_msk1) -            ) { -            /* The special case */ -            b2 += Log2P; -            s2 += Log2P; -            spec_case = 1; -        } -    } - -    /* Arrange for convenient computation of quotients: -     * shift left if necessary so divisor has 4 leading 0 bits. -     * -     * Perhaps we should just compute leading 28 bits of S once -     * and for all and pass them and a shift to quorem, so it -     * can do shifts and ors to compute the numerator for q. -     */ -#define iInc 28 -    i = dshift(S, s2); -    b2 += i; -    m2 += i; -    s2 += i; -    if (b2 > 0) { -        b = lshift(b, b2); -        if (b == NULL) -            goto failed_malloc; -    } -    if (s2 > 0) { -        S = lshift(S, s2); -        if (S == NULL) -            goto failed_malloc; -    } -    if (k_check) { -        if (cmp(b,S) < 0) { -            k--; -            b = multadd(b, 10, 0);      /* we botched the k estimate */ -            if (b == NULL) -                goto failed_malloc; -            if (leftright) { -                mhi = multadd(mhi, 10, 0); -                if (mhi == NULL) -                    goto failed_malloc; -            } -            ilim = ilim1; -        } -    } -    if (ilim <= 0 && (mode == 3 || mode == 5)) { -        if (ilim < 0) { -            /* no digits, fcvt style */ -          no_digits: -            k = -1 - ndigits; -            goto ret; -        } -        else { -            S = multadd(S, 5, 0); -            if (S == NULL) -                goto failed_malloc; -            if (cmp(b, S) <= 0) -                goto no_digits; -        } -      one_digit: -        *s++ = '1'; -        k++; -        goto ret; -    } -    if (leftright) { -        if (m2 > 0) { -            mhi = lshift(mhi, m2); -            if (mhi == NULL) -                goto failed_malloc; -        } - -        /* Compute mlo -- check for special case -         * that d is a normalized power of 2. -         */ - -        mlo = mhi; -        if (spec_case) { -            mhi = Balloc(mhi->k); -            if (mhi == NULL) -                goto failed_malloc; -            Bcopy(mhi, mlo); -            mhi = lshift(mhi, Log2P); -            if (mhi == NULL) -                goto failed_malloc; -        } - -        for(i = 1;;i++) { -            dig = quorem(b,S) + '0'; -            /* Do we yet have the shortest decimal string -             * that will round to d? -             */ -            j = cmp(b, mlo); -            delta = diff(S, mhi); -            if (delta == NULL) -                goto failed_malloc; -            j1 = delta->sign ? 1 : cmp(b, delta); -            Bfree(delta); -            if (j1 == 0 && mode != 1 && !(word1(&u) & 1) -                ) { -                if (dig == '9') -                    goto round_9_up; -                if (j > 0) -                    dig++; -                *s++ = dig; -                goto ret; -            } -            if (j < 0 || (j == 0 && mode != 1 -                          && !(word1(&u) & 1) -                    )) { -                if (!b->x[0] && b->wds <= 1) { -                    goto accept_dig; -                } -                if (j1 > 0) { -                    b = lshift(b, 1); -                    if (b == NULL) -                        goto failed_malloc; -                    j1 = cmp(b, S); -                    if ((j1 > 0 || (j1 == 0 && dig & 1)) -                        && dig++ == '9') -                        goto round_9_up; -                } -              accept_dig: -                *s++ = dig; -                goto ret; -            } -            if (j1 > 0) { -                if (dig == '9') { /* possible if i == 1 */ -                  round_9_up: -                    *s++ = '9'; -                    goto roundoff; -                } -                *s++ = dig + 1; -                goto ret; -            } -            *s++ = dig; -            if (i == ilim) -                break; -            b = multadd(b, 10, 0); -            if (b == NULL) -                goto failed_malloc; -            if (mlo == mhi) { -                mlo = mhi = multadd(mhi, 10, 0); -                if (mlo == NULL) -                    goto failed_malloc; -            } -            else { -                mlo = multadd(mlo, 10, 0); -                if (mlo == NULL) -                    goto failed_malloc; -                mhi = multadd(mhi, 10, 0); -                if (mhi == NULL) -                    goto failed_malloc; -            } -        } -    } -    else -        for(i = 1;; i++) { -            *s++ = dig = quorem(b,S) + '0'; -            if (!b->x[0] && b->wds <= 1) { -                goto ret; -            } -            if (i >= ilim) -                break; -            b = multadd(b, 10, 0); -            if (b == NULL) -                goto failed_malloc; -        } - -    /* Round off last digit */ - -    b = lshift(b, 1); -    if (b == NULL) -        goto failed_malloc; -    j = cmp(b, S); -    if (j > 0 || (j == 0 && dig & 1)) { -      roundoff: -        while(*--s == '9') -            if (s == s0) { -                k++; -                *s++ = '1'; -                goto ret; -            } -        ++*s++; -    } -    else { -        while(*--s == '0'); -        s++; -    } -  ret: -    Bfree(S); -    if (mhi) { -        if (mlo && mlo != mhi) -            Bfree(mlo); -        Bfree(mhi); -    } -  ret1: -    Bfree(b); -    *s = 0; -    *decpt = k + 1; -    if (rve) -        *rve = s; -    return s0; -  failed_malloc: -    if (S) -        Bfree(S); -    if (mlo && mlo != mhi) -        Bfree(mlo); -    if (mhi) -        Bfree(mhi); -    if (b) -        Bfree(b); -    if (s0) -        _Py_dg_freedtoa(s0); -    return NULL; -} -#ifdef __cplusplus -} -#endif - -#endif  /* PY_NO_SHORT_FLOAT_REPR */  | 
