diff options
| author | monster <[email protected]> | 2022-07-07 14:41:37 +0300 | 
|---|---|---|
| committer | monster <[email protected]> | 2022-07-07 14:41:37 +0300 | 
| commit | 06e5c21a835c0e923506c4ff27929f34e00761c2 (patch) | |
| tree | 75efcbc6854ef9bd476eb8bf00cc5c900da436a2 /contrib/tools/python3/src/Objects/floatobject.c | |
| parent | 03f024c4412e3aa613bb543cf1660176320ba8f4 (diff) | |
fix ya.make
Diffstat (limited to 'contrib/tools/python3/src/Objects/floatobject.c')
| -rw-r--r-- | contrib/tools/python3/src/Objects/floatobject.c | 2660 | 
1 files changed, 0 insertions, 2660 deletions
| diff --git a/contrib/tools/python3/src/Objects/floatobject.c b/contrib/tools/python3/src/Objects/floatobject.c deleted file mode 100644 index 5af26787731..00000000000 --- a/contrib/tools/python3/src/Objects/floatobject.c +++ /dev/null @@ -1,2660 +0,0 @@ -/* Float object implementation */ - -/* XXX There should be overflow checks here, but it's hard to check -   for any kind of float exception without losing portability. */ - -#include "Python.h" -#include "pycore_dtoa.h"          // _Py_dg_dtoa() -#include "pycore_interp.h"        // _PyInterpreterState.float_state -#include "pycore_long.h"          // _PyLong_GetOne() -#include "pycore_object.h"        // _PyObject_Init() -#include "pycore_pystate.h"       // _PyInterpreterState_GET() - -#include <ctype.h> -#include <float.h> - -/*[clinic input] -class float "PyObject *" "&PyFloat_Type" -[clinic start generated code]*/ -/*[clinic end generated code: output=da39a3ee5e6b4b0d input=dd0003f68f144284]*/ - -#include "clinic/floatobject.c.h" - -#ifndef PyFloat_MAXFREELIST -#  define PyFloat_MAXFREELIST   100 -#endif - - -static struct _Py_float_state * -get_float_state(void) -{ -    PyInterpreterState *interp = _PyInterpreterState_GET(); -    return &interp->float_state; -} - - -double -PyFloat_GetMax(void) -{ -    return DBL_MAX; -} - -double -PyFloat_GetMin(void) -{ -    return DBL_MIN; -} - -static PyTypeObject FloatInfoType; - -PyDoc_STRVAR(floatinfo__doc__, -"sys.float_info\n\ -\n\ -A named tuple holding information about the float type. It contains low level\n\ -information about the precision and internal representation. Please study\n\ -your system's :file:`float.h` for more information."); - -static PyStructSequence_Field floatinfo_fields[] = { -    {"max",             "DBL_MAX -- maximum representable finite float"}, -    {"max_exp",         "DBL_MAX_EXP -- maximum int e such that radix**(e-1) " -                    "is representable"}, -    {"max_10_exp",      "DBL_MAX_10_EXP -- maximum int e such that 10**e " -                    "is representable"}, -    {"min",             "DBL_MIN -- Minimum positive normalized float"}, -    {"min_exp",         "DBL_MIN_EXP -- minimum int e such that radix**(e-1) " -                    "is a normalized float"}, -    {"min_10_exp",      "DBL_MIN_10_EXP -- minimum int e such that 10**e is " -                    "a normalized float"}, -    {"dig",             "DBL_DIG -- maximum number of decimal digits that " -                    "can be faithfully represented in a float"}, -    {"mant_dig",        "DBL_MANT_DIG -- mantissa digits"}, -    {"epsilon",         "DBL_EPSILON -- Difference between 1 and the next " -                    "representable float"}, -    {"radix",           "FLT_RADIX -- radix of exponent"}, -    {"rounds",          "FLT_ROUNDS -- rounding mode used for arithmetic " -                    "operations"}, -    {0} -}; - -static PyStructSequence_Desc floatinfo_desc = { -    "sys.float_info",           /* name */ -    floatinfo__doc__,           /* doc */ -    floatinfo_fields,           /* fields */ -    11 -}; - -PyObject * -PyFloat_GetInfo(void) -{ -    PyObject* floatinfo; -    int pos = 0; - -    floatinfo = PyStructSequence_New(&FloatInfoType); -    if (floatinfo == NULL) { -        return NULL; -    } - -#define SetIntFlag(flag) \ -    PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag)) -#define SetDblFlag(flag) \ -    PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag)) - -    SetDblFlag(DBL_MAX); -    SetIntFlag(DBL_MAX_EXP); -    SetIntFlag(DBL_MAX_10_EXP); -    SetDblFlag(DBL_MIN); -    SetIntFlag(DBL_MIN_EXP); -    SetIntFlag(DBL_MIN_10_EXP); -    SetIntFlag(DBL_DIG); -    SetIntFlag(DBL_MANT_DIG); -    SetDblFlag(DBL_EPSILON); -    SetIntFlag(FLT_RADIX); -    SetIntFlag(FLT_ROUNDS); -#undef SetIntFlag -#undef SetDblFlag - -    if (PyErr_Occurred()) { -        Py_CLEAR(floatinfo); -        return NULL; -    } -    return floatinfo; -} - -PyObject * -PyFloat_FromDouble(double fval) -{ -    struct _Py_float_state *state = get_float_state(); -    PyFloatObject *op = state->free_list; -    if (op != NULL) { -#ifdef Py_DEBUG -        // PyFloat_FromDouble() must not be called after _PyFloat_Fini() -        assert(state->numfree != -1); -#endif -        state->free_list = (PyFloatObject *) Py_TYPE(op); -        state->numfree--; -    } -    else { -        op = PyObject_Malloc(sizeof(PyFloatObject)); -        if (!op) { -            return PyErr_NoMemory(); -        } -    } -    _PyObject_Init((PyObject*)op, &PyFloat_Type); -    op->ob_fval = fval; -    return (PyObject *) op; -} - -static PyObject * -float_from_string_inner(const char *s, Py_ssize_t len, void *obj) -{ -    double x; -    const char *end; -    const char *last = s + len; -    /* strip space */ -    while (s < last && Py_ISSPACE(*s)) { -        s++; -    } - -    while (s < last - 1 && Py_ISSPACE(last[-1])) { -        last--; -    } - -    /* We don't care about overflow or underflow.  If the platform -     * supports them, infinities and signed zeroes (on underflow) are -     * fine. */ -    x = PyOS_string_to_double(s, (char **)&end, NULL); -    if (end != last) { -        PyErr_Format(PyExc_ValueError, -                     "could not convert string to float: " -                     "%R", obj); -        return NULL; -    } -    else if (x == -1.0 && PyErr_Occurred()) { -        return NULL; -    } -    else { -        return PyFloat_FromDouble(x); -    } -} - -PyObject * -PyFloat_FromString(PyObject *v) -{ -    const char *s; -    PyObject *s_buffer = NULL; -    Py_ssize_t len; -    Py_buffer view = {NULL, NULL}; -    PyObject *result = NULL; - -    if (PyUnicode_Check(v)) { -        s_buffer = _PyUnicode_TransformDecimalAndSpaceToASCII(v); -        if (s_buffer == NULL) -            return NULL; -        assert(PyUnicode_IS_ASCII(s_buffer)); -        /* Simply get a pointer to existing ASCII characters. */ -        s = PyUnicode_AsUTF8AndSize(s_buffer, &len); -        assert(s != NULL); -    } -    else if (PyBytes_Check(v)) { -        s = PyBytes_AS_STRING(v); -        len = PyBytes_GET_SIZE(v); -    } -    else if (PyByteArray_Check(v)) { -        s = PyByteArray_AS_STRING(v); -        len = PyByteArray_GET_SIZE(v); -    } -    else if (PyObject_GetBuffer(v, &view, PyBUF_SIMPLE) == 0) { -        s = (const char *)view.buf; -        len = view.len; -        /* Copy to NUL-terminated buffer. */ -        s_buffer = PyBytes_FromStringAndSize(s, len); -        if (s_buffer == NULL) { -            PyBuffer_Release(&view); -            return NULL; -        } -        s = PyBytes_AS_STRING(s_buffer); -    } -    else { -        PyErr_Format(PyExc_TypeError, -            "float() argument must be a string or a real number, not '%.200s'", -            Py_TYPE(v)->tp_name); -        return NULL; -    } -    result = _Py_string_to_number_with_underscores(s, len, "float", v, v, -                                                   float_from_string_inner); -    PyBuffer_Release(&view); -    Py_XDECREF(s_buffer); -    return result; -} - -static void -float_dealloc(PyFloatObject *op) -{ -    if (PyFloat_CheckExact(op)) { -        struct _Py_float_state *state = get_float_state(); -#ifdef Py_DEBUG -        // float_dealloc() must not be called after _PyFloat_Fini() -        assert(state->numfree != -1); -#endif -        if (state->numfree >= PyFloat_MAXFREELIST)  { -            PyObject_Free(op); -            return; -        } -        state->numfree++; -        Py_SET_TYPE(op, (PyTypeObject *)state->free_list); -        state->free_list = op; -    } -    else { -        Py_TYPE(op)->tp_free((PyObject *)op); -    } -} - -double -PyFloat_AsDouble(PyObject *op) -{ -    PyNumberMethods *nb; -    PyObject *res; -    double val; - -    if (op == NULL) { -        PyErr_BadArgument(); -        return -1; -    } - -    if (PyFloat_Check(op)) { -        return PyFloat_AS_DOUBLE(op); -    } - -    nb = Py_TYPE(op)->tp_as_number; -    if (nb == NULL || nb->nb_float == NULL) { -        if (nb && nb->nb_index) { -            PyObject *res = _PyNumber_Index(op); -            if (!res) { -                return -1; -            } -            double val = PyLong_AsDouble(res); -            Py_DECREF(res); -            return val; -        } -        PyErr_Format(PyExc_TypeError, "must be real number, not %.50s", -                     Py_TYPE(op)->tp_name); -        return -1; -    } - -    res = (*nb->nb_float) (op); -    if (res == NULL) { -        return -1; -    } -    if (!PyFloat_CheckExact(res)) { -        if (!PyFloat_Check(res)) { -            PyErr_Format(PyExc_TypeError, -                         "%.50s.__float__ returned non-float (type %.50s)", -                         Py_TYPE(op)->tp_name, Py_TYPE(res)->tp_name); -            Py_DECREF(res); -            return -1; -        } -        if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, -                "%.50s.__float__ returned non-float (type %.50s).  " -                "The ability to return an instance of a strict subclass of float " -                "is deprecated, and may be removed in a future version of Python.", -                Py_TYPE(op)->tp_name, Py_TYPE(res)->tp_name)) { -            Py_DECREF(res); -            return -1; -        } -    } - -    val = PyFloat_AS_DOUBLE(res); -    Py_DECREF(res); -    return val; -} - -/* Macro and helper that convert PyObject obj to a C double and store -   the value in dbl.  If conversion to double raises an exception, obj is -   set to NULL, and the function invoking this macro returns NULL.  If -   obj is not of float or int type, Py_NotImplemented is incref'ed, -   stored in obj, and returned from the function invoking this macro. -*/ -#define CONVERT_TO_DOUBLE(obj, dbl)                     \ -    if (PyFloat_Check(obj))                             \ -        dbl = PyFloat_AS_DOUBLE(obj);                   \ -    else if (convert_to_double(&(obj), &(dbl)) < 0)     \ -        return obj; - -/* Methods */ - -static int -convert_to_double(PyObject **v, double *dbl) -{ -    PyObject *obj = *v; - -    if (PyLong_Check(obj)) { -        *dbl = PyLong_AsDouble(obj); -        if (*dbl == -1.0 && PyErr_Occurred()) { -            *v = NULL; -            return -1; -        } -    } -    else { -        Py_INCREF(Py_NotImplemented); -        *v = Py_NotImplemented; -        return -1; -    } -    return 0; -} - -static PyObject * -float_repr(PyFloatObject *v) -{ -    PyObject *result; -    char *buf; - -    buf = PyOS_double_to_string(PyFloat_AS_DOUBLE(v), -                                'r', 0, -                                Py_DTSF_ADD_DOT_0, -                                NULL); -    if (!buf) -        return PyErr_NoMemory(); -    result = _PyUnicode_FromASCII(buf, strlen(buf)); -    PyMem_Free(buf); -    return result; -} - -/* Comparison is pretty much a nightmare.  When comparing float to float, - * we do it as straightforwardly (and long-windedly) as conceivable, so - * that, e.g., Python x == y delivers the same result as the platform - * C x == y when x and/or y is a NaN. - * When mixing float with an integer type, there's no good *uniform* approach. - * Converting the double to an integer obviously doesn't work, since we - * may lose info from fractional bits.  Converting the integer to a double - * also has two failure modes:  (1) an int may trigger overflow (too - * large to fit in the dynamic range of a C double); (2) even a C long may have - * more bits than fit in a C double (e.g., on a 64-bit box long may have - * 63 bits of precision, but a C double probably has only 53), and then - * we can falsely claim equality when low-order integer bits are lost by - * coercion to double.  So this part is painful too. - */ - -static PyObject* -float_richcompare(PyObject *v, PyObject *w, int op) -{ -    double i, j; -    int r = 0; - -    assert(PyFloat_Check(v)); -    i = PyFloat_AS_DOUBLE(v); - -    /* Switch on the type of w.  Set i and j to doubles to be compared, -     * and op to the richcomp to use. -     */ -    if (PyFloat_Check(w)) -        j = PyFloat_AS_DOUBLE(w); - -    else if (!Py_IS_FINITE(i)) { -        if (PyLong_Check(w)) -            /* If i is an infinity, its magnitude exceeds any -             * finite integer, so it doesn't matter which int we -             * compare i with.  If i is a NaN, similarly. -             */ -            j = 0.0; -        else -            goto Unimplemented; -    } - -    else if (PyLong_Check(w)) { -        int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1; -        int wsign = _PyLong_Sign(w); -        size_t nbits; -        int exponent; - -        if (vsign != wsign) { -            /* Magnitudes are irrelevant -- the signs alone -             * determine the outcome. -             */ -            i = (double)vsign; -            j = (double)wsign; -            goto Compare; -        } -        /* The signs are the same. */ -        /* Convert w to a double if it fits.  In particular, 0 fits. */ -        nbits = _PyLong_NumBits(w); -        if (nbits == (size_t)-1 && PyErr_Occurred()) { -            /* This long is so large that size_t isn't big enough -             * to hold the # of bits.  Replace with little doubles -             * that give the same outcome -- w is so large that -             * its magnitude must exceed the magnitude of any -             * finite float. -             */ -            PyErr_Clear(); -            i = (double)vsign; -            assert(wsign != 0); -            j = wsign * 2.0; -            goto Compare; -        } -        if (nbits <= 48) { -            j = PyLong_AsDouble(w); -            /* It's impossible that <= 48 bits overflowed. */ -            assert(j != -1.0 || ! PyErr_Occurred()); -            goto Compare; -        } -        assert(wsign != 0); /* else nbits was 0 */ -        assert(vsign != 0); /* if vsign were 0, then since wsign is -                             * not 0, we would have taken the -                             * vsign != wsign branch at the start */ -        /* We want to work with non-negative numbers. */ -        if (vsign < 0) { -            /* "Multiply both sides" by -1; this also swaps the -             * comparator. -             */ -            i = -i; -            op = _Py_SwappedOp[op]; -        } -        assert(i > 0.0); -        (void) frexp(i, &exponent); -        /* exponent is the # of bits in v before the radix point; -         * we know that nbits (the # of bits in w) > 48 at this point -         */ -        if (exponent < 0 || (size_t)exponent < nbits) { -            i = 1.0; -            j = 2.0; -            goto Compare; -        } -        if ((size_t)exponent > nbits) { -            i = 2.0; -            j = 1.0; -            goto Compare; -        } -        /* v and w have the same number of bits before the radix -         * point.  Construct two ints that have the same comparison -         * outcome. -         */ -        { -            double fracpart; -            double intpart; -            PyObject *result = NULL; -            PyObject *vv = NULL; -            PyObject *ww = w; - -            if (wsign < 0) { -                ww = PyNumber_Negative(w); -                if (ww == NULL) -                    goto Error; -            } -            else -                Py_INCREF(ww); - -            fracpart = modf(i, &intpart); -            vv = PyLong_FromDouble(intpart); -            if (vv == NULL) -                goto Error; - -            if (fracpart != 0.0) { -                /* Shift left, and or a 1 bit into vv -                 * to represent the lost fraction. -                 */ -                PyObject *temp; - -                temp = _PyLong_Lshift(ww, 1); -                if (temp == NULL) -                    goto Error; -                Py_DECREF(ww); -                ww = temp; - -                temp = _PyLong_Lshift(vv, 1); -                if (temp == NULL) -                    goto Error; -                Py_DECREF(vv); -                vv = temp; - -                temp = PyNumber_Or(vv, _PyLong_GetOne()); -                if (temp == NULL) -                    goto Error; -                Py_DECREF(vv); -                vv = temp; -            } - -            r = PyObject_RichCompareBool(vv, ww, op); -            if (r < 0) -                goto Error; -            result = PyBool_FromLong(r); -         Error: -            Py_XDECREF(vv); -            Py_XDECREF(ww); -            return result; -        } -    } /* else if (PyLong_Check(w)) */ - -    else        /* w isn't float or int */ -        goto Unimplemented; - - Compare: -    switch (op) { -    case Py_EQ: -        r = i == j; -        break; -    case Py_NE: -        r = i != j; -        break; -    case Py_LE: -        r = i <= j; -        break; -    case Py_GE: -        r = i >= j; -        break; -    case Py_LT: -        r = i < j; -        break; -    case Py_GT: -        r = i > j; -        break; -    } -    return PyBool_FromLong(r); - - Unimplemented: -    Py_RETURN_NOTIMPLEMENTED; -} - -static Py_hash_t -float_hash(PyFloatObject *v) -{ -    return _Py_HashDouble((PyObject *)v, v->ob_fval); -} - -static PyObject * -float_add(PyObject *v, PyObject *w) -{ -    double a,b; -    CONVERT_TO_DOUBLE(v, a); -    CONVERT_TO_DOUBLE(w, b); -    a = a + b; -    return PyFloat_FromDouble(a); -} - -static PyObject * -float_sub(PyObject *v, PyObject *w) -{ -    double a,b; -    CONVERT_TO_DOUBLE(v, a); -    CONVERT_TO_DOUBLE(w, b); -    a = a - b; -    return PyFloat_FromDouble(a); -} - -static PyObject * -float_mul(PyObject *v, PyObject *w) -{ -    double a,b; -    CONVERT_TO_DOUBLE(v, a); -    CONVERT_TO_DOUBLE(w, b); -    a = a * b; -    return PyFloat_FromDouble(a); -} - -static PyObject * -float_div(PyObject *v, PyObject *w) -{ -    double a,b; -    CONVERT_TO_DOUBLE(v, a); -    CONVERT_TO_DOUBLE(w, b); -    if (b == 0.0) { -        PyErr_SetString(PyExc_ZeroDivisionError, -                        "float division by zero"); -        return NULL; -    } -    a = a / b; -    return PyFloat_FromDouble(a); -} - -static PyObject * -float_rem(PyObject *v, PyObject *w) -{ -    double vx, wx; -    double mod; -    CONVERT_TO_DOUBLE(v, vx); -    CONVERT_TO_DOUBLE(w, wx); -    if (wx == 0.0) { -        PyErr_SetString(PyExc_ZeroDivisionError, -                        "float modulo"); -        return NULL; -    } -    mod = fmod(vx, wx); -    if (mod) { -        /* ensure the remainder has the same sign as the denominator */ -        if ((wx < 0) != (mod < 0)) { -            mod += wx; -        } -    } -    else { -        /* the remainder is zero, and in the presence of signed zeroes -           fmod returns different results across platforms; ensure -           it has the same sign as the denominator. */ -        mod = copysign(0.0, wx); -    } -    return PyFloat_FromDouble(mod); -} - -static void -_float_div_mod(double vx, double wx, double *floordiv, double *mod) -{ -    double div; -    *mod = fmod(vx, wx); -    /* fmod is typically exact, so vx-mod is *mathematically* an -       exact multiple of wx.  But this is fp arithmetic, and fp -       vx - mod is an approximation; the result is that div may -       not be an exact integral value after the division, although -       it will always be very close to one. -    */ -    div = (vx - *mod) / wx; -    if (*mod) { -        /* ensure the remainder has the same sign as the denominator */ -        if ((wx < 0) != (*mod < 0)) { -            *mod += wx; -            div -= 1.0; -        } -    } -    else { -        /* the remainder is zero, and in the presence of signed zeroes -           fmod returns different results across platforms; ensure -           it has the same sign as the denominator. */ -        *mod = copysign(0.0, wx); -    } -    /* snap quotient to nearest integral value */ -    if (div) { -        *floordiv = floor(div); -        if (div - *floordiv > 0.5) { -            *floordiv += 1.0; -        } -    } -    else { -        /* div is zero - get the same sign as the true quotient */ -        *floordiv = copysign(0.0, vx / wx); /* zero w/ sign of vx/wx */ -    } -} - -static PyObject * -float_divmod(PyObject *v, PyObject *w) -{ -    double vx, wx; -    double mod, floordiv; -    CONVERT_TO_DOUBLE(v, vx); -    CONVERT_TO_DOUBLE(w, wx); -    if (wx == 0.0) { -        PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()"); -        return NULL; -    } -    _float_div_mod(vx, wx, &floordiv, &mod); -    return Py_BuildValue("(dd)", floordiv, mod); -} - -static PyObject * -float_floor_div(PyObject *v, PyObject *w) -{ -    double vx, wx; -    double mod, floordiv; -    CONVERT_TO_DOUBLE(v, vx); -    CONVERT_TO_DOUBLE(w, wx); -    if (wx == 0.0) { -        PyErr_SetString(PyExc_ZeroDivisionError, "float floor division by zero"); -        return NULL; -    } -    _float_div_mod(vx, wx, &floordiv, &mod); -    return PyFloat_FromDouble(floordiv); -} - -/* determine whether x is an odd integer or not;  assumes that -   x is not an infinity or nan. */ -#define DOUBLE_IS_ODD_INTEGER(x) (fmod(fabs(x), 2.0) == 1.0) - -static PyObject * -float_pow(PyObject *v, PyObject *w, PyObject *z) -{ -    double iv, iw, ix; -    int negate_result = 0; - -    if ((PyObject *)z != Py_None) { -        PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not " -            "allowed unless all arguments are integers"); -        return NULL; -    } - -    CONVERT_TO_DOUBLE(v, iv); -    CONVERT_TO_DOUBLE(w, iw); - -    /* Sort out special cases here instead of relying on pow() */ -    if (iw == 0) {              /* v**0 is 1, even 0**0 */ -        return PyFloat_FromDouble(1.0); -    } -    if (Py_IS_NAN(iv)) {        /* nan**w = nan, unless w == 0 */ -        return PyFloat_FromDouble(iv); -    } -    if (Py_IS_NAN(iw)) {        /* v**nan = nan, unless v == 1; 1**nan = 1 */ -        return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw); -    } -    if (Py_IS_INFINITY(iw)) { -        /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if -         *     abs(v) > 1 (including case where v infinite) -         * -         * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if -         *     abs(v) > 1 (including case where v infinite) -         */ -        iv = fabs(iv); -        if (iv == 1.0) -            return PyFloat_FromDouble(1.0); -        else if ((iw > 0.0) == (iv > 1.0)) -            return PyFloat_FromDouble(fabs(iw)); /* return inf */ -        else -            return PyFloat_FromDouble(0.0); -    } -    if (Py_IS_INFINITY(iv)) { -        /* (+-inf)**w is: inf for w positive, 0 for w negative; in -         *     both cases, we need to add the appropriate sign if w is -         *     an odd integer. -         */ -        int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw); -        if (iw > 0.0) -            return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv)); -        else -            return PyFloat_FromDouble(iw_is_odd ? -                                      copysign(0.0, iv) : 0.0); -    } -    if (iv == 0.0) {  /* 0**w is: 0 for w positive, 1 for w zero -                         (already dealt with above), and an error -                         if w is negative. */ -        int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw); -        if (iw < 0.0) { -            PyErr_SetString(PyExc_ZeroDivisionError, -                            "0.0 cannot be raised to a " -                            "negative power"); -            return NULL; -        } -        /* use correct sign if iw is odd */ -        return PyFloat_FromDouble(iw_is_odd ? iv : 0.0); -    } - -    if (iv < 0.0) { -        /* Whether this is an error is a mess, and bumps into libm -         * bugs so we have to figure it out ourselves. -         */ -        if (iw != floor(iw)) { -            /* Negative numbers raised to fractional powers -             * become complex. -             */ -            return PyComplex_Type.tp_as_number->nb_power(v, w, z); -        } -        /* iw is an exact integer, albeit perhaps a very large -         * one.  Replace iv by its absolute value and remember -         * to negate the pow result if iw is odd. -         */ -        iv = -iv; -        negate_result = DOUBLE_IS_ODD_INTEGER(iw); -    } - -    if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */ -        /* (-1) ** large_integer also ends up here.  Here's an -         * extract from the comments for the previous -         * implementation explaining why this special case is -         * necessary: -         * -         * -1 raised to an exact integer should never be exceptional. -         * Alas, some libms (chiefly glibc as of early 2003) return -         * NaN and set EDOM on pow(-1, large_int) if the int doesn't -         * happen to be representable in a *C* integer.  That's a -         * bug. -         */ -        return PyFloat_FromDouble(negate_result ? -1.0 : 1.0); -    } - -    /* Now iv and iw are finite, iw is nonzero, and iv is -     * positive and not equal to 1.0.  We finally allow -     * the platform pow to step in and do the rest. -     */ -    errno = 0; -    ix = pow(iv, iw); -    Py_ADJUST_ERANGE1(ix); -    if (negate_result) -        ix = -ix; - -    if (errno != 0) { -        /* We don't expect any errno value other than ERANGE, but -         * the range of libm bugs appears unbounded. -         */ -        PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : -                             PyExc_ValueError); -        return NULL; -    } -    return PyFloat_FromDouble(ix); -} - -#undef DOUBLE_IS_ODD_INTEGER - -static PyObject * -float_neg(PyFloatObject *v) -{ -    return PyFloat_FromDouble(-v->ob_fval); -} - -static PyObject * -float_abs(PyFloatObject *v) -{ -    return PyFloat_FromDouble(fabs(v->ob_fval)); -} - -static int -float_bool(PyFloatObject *v) -{ -    return v->ob_fval != 0.0; -} - -/*[clinic input] -float.is_integer - -Return True if the float is an integer. -[clinic start generated code]*/ - -static PyObject * -float_is_integer_impl(PyObject *self) -/*[clinic end generated code: output=7112acf95a4d31ea input=311810d3f777e10d]*/ -{ -    double x = PyFloat_AsDouble(self); -    PyObject *o; - -    if (x == -1.0 && PyErr_Occurred()) -        return NULL; -    if (!Py_IS_FINITE(x)) -        Py_RETURN_FALSE; -    errno = 0; -    o = (floor(x) == x) ? Py_True : Py_False; -    if (errno != 0) { -        PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : -                             PyExc_ValueError); -        return NULL; -    } -    Py_INCREF(o); -    return o; -} - -/*[clinic input] -float.__trunc__ - -Return the Integral closest to x between 0 and x. -[clinic start generated code]*/ - -static PyObject * -float___trunc___impl(PyObject *self) -/*[clinic end generated code: output=dd3e289dd4c6b538 input=591b9ba0d650fdff]*/ -{ -    return PyLong_FromDouble(PyFloat_AS_DOUBLE(self)); -} - -/*[clinic input] -float.__floor__ - -Return the floor as an Integral. -[clinic start generated code]*/ - -static PyObject * -float___floor___impl(PyObject *self) -/*[clinic end generated code: output=e0551dbaea8c01d1 input=77bb13eb12e268df]*/ -{ -    double x = PyFloat_AS_DOUBLE(self); -    return PyLong_FromDouble(floor(x)); -} - -/*[clinic input] -float.__ceil__ - -Return the ceiling as an Integral. -[clinic start generated code]*/ - -static PyObject * -float___ceil___impl(PyObject *self) -/*[clinic end generated code: output=a2fd8858f73736f9 input=79e41ae94aa0a516]*/ -{ -    double x = PyFloat_AS_DOUBLE(self); -    return PyLong_FromDouble(ceil(x)); -} - -/* double_round: rounds a finite double to the closest multiple of -   10**-ndigits; here ndigits is within reasonable bounds (typically, -308 <= -   ndigits <= 323).  Returns a Python float, or sets a Python error and -   returns NULL on failure (OverflowError and memory errors are possible). */ - -#ifndef PY_NO_SHORT_FLOAT_REPR -/* version of double_round that uses the correctly-rounded string<->double -   conversions from Python/dtoa.c */ - -static PyObject * -double_round(double x, int ndigits) { - -    double rounded; -    Py_ssize_t buflen, mybuflen=100; -    char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf; -    int decpt, sign; -    PyObject *result = NULL; -    _Py_SET_53BIT_PRECISION_HEADER; - -    /* round to a decimal string */ -    _Py_SET_53BIT_PRECISION_START; -    buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end); -    _Py_SET_53BIT_PRECISION_END; -    if (buf == NULL) { -        PyErr_NoMemory(); -        return NULL; -    } - -    /* Get new buffer if shortbuf is too small.  Space needed <= buf_end - -    buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0').  */ -    buflen = buf_end - buf; -    if (buflen + 8 > mybuflen) { -        mybuflen = buflen+8; -        mybuf = (char *)PyMem_Malloc(mybuflen); -        if (mybuf == NULL) { -            PyErr_NoMemory(); -            goto exit; -        } -    } -    /* copy buf to mybuf, adding exponent, sign and leading 0 */ -    PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""), -                  buf, decpt - (int)buflen); - -    /* and convert the resulting string back to a double */ -    errno = 0; -    _Py_SET_53BIT_PRECISION_START; -    rounded = _Py_dg_strtod(mybuf, NULL); -    _Py_SET_53BIT_PRECISION_END; -    if (errno == ERANGE && fabs(rounded) >= 1.) -        PyErr_SetString(PyExc_OverflowError, -                        "rounded value too large to represent"); -    else -        result = PyFloat_FromDouble(rounded); - -    /* done computing value;  now clean up */ -    if (mybuf != shortbuf) -        PyMem_Free(mybuf); -  exit: -    _Py_dg_freedtoa(buf); -    return result; -} - -#else /* PY_NO_SHORT_FLOAT_REPR */ - -/* fallback version, to be used when correctly rounded binary<->decimal -   conversions aren't available */ - -static PyObject * -double_round(double x, int ndigits) { -    double pow1, pow2, y, z; -    if (ndigits >= 0) { -        if (ndigits > 22) { -            /* pow1 and pow2 are each safe from overflow, but -               pow1*pow2 ~= pow(10.0, ndigits) might overflow */ -            pow1 = pow(10.0, (double)(ndigits-22)); -            pow2 = 1e22; -        } -        else { -            pow1 = pow(10.0, (double)ndigits); -            pow2 = 1.0; -        } -        y = (x*pow1)*pow2; -        /* if y overflows, then rounded value is exactly x */ -        if (!Py_IS_FINITE(y)) -            return PyFloat_FromDouble(x); -    } -    else { -        pow1 = pow(10.0, (double)-ndigits); -        pow2 = 1.0; /* unused; silences a gcc compiler warning */ -        y = x / pow1; -    } - -    z = round(y); -    if (fabs(y-z) == 0.5) -        /* halfway between two integers; use round-half-even */ -        z = 2.0*round(y/2.0); - -    if (ndigits >= 0) -        z = (z / pow2) / pow1; -    else -        z *= pow1; - -    /* if computation resulted in overflow, raise OverflowError */ -    if (!Py_IS_FINITE(z)) { -        PyErr_SetString(PyExc_OverflowError, -                        "overflow occurred during round"); -        return NULL; -    } - -    return PyFloat_FromDouble(z); -} - -#endif /* PY_NO_SHORT_FLOAT_REPR */ - -/* round a Python float v to the closest multiple of 10**-ndigits */ - -/*[clinic input] -float.__round__ - -    ndigits as o_ndigits: object = None -    / - -Return the Integral closest to x, rounding half toward even. - -When an argument is passed, work like built-in round(x, ndigits). -[clinic start generated code]*/ - -static PyObject * -float___round___impl(PyObject *self, PyObject *o_ndigits) -/*[clinic end generated code: output=374c36aaa0f13980 input=fc0fe25924fbc9ed]*/ -{ -    double x, rounded; -    Py_ssize_t ndigits; - -    x = PyFloat_AsDouble(self); -    if (o_ndigits == Py_None) { -        /* single-argument round or with None ndigits: -         * round to nearest integer */ -        rounded = round(x); -        if (fabs(x-rounded) == 0.5) -            /* halfway case: round to even */ -            rounded = 2.0*round(x/2.0); -        return PyLong_FromDouble(rounded); -    } - -    /* interpret second argument as a Py_ssize_t; clips on overflow */ -    ndigits = PyNumber_AsSsize_t(o_ndigits, NULL); -    if (ndigits == -1 && PyErr_Occurred()) -        return NULL; - -    /* nans and infinities round to themselves */ -    if (!Py_IS_FINITE(x)) -        return PyFloat_FromDouble(x); - -    /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x -       always rounds to itself.  For ndigits < NDIGITS_MIN, x always -       rounds to +-0.0.  Here 0.30103 is an upper bound for log10(2). */ -#define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103)) -#define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103)) -    if (ndigits > NDIGITS_MAX) -        /* return x */ -        return PyFloat_FromDouble(x); -    else if (ndigits < NDIGITS_MIN) -        /* return 0.0, but with sign of x */ -        return PyFloat_FromDouble(0.0*x); -    else -        /* finite x, and ndigits is not unreasonably large */ -        return double_round(x, (int)ndigits); -#undef NDIGITS_MAX -#undef NDIGITS_MIN -} - -static PyObject * -float_float(PyObject *v) -{ -    if (PyFloat_CheckExact(v)) -        Py_INCREF(v); -    else -        v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval); -    return v; -} - -/*[clinic input] -float.conjugate - -Return self, the complex conjugate of any float. -[clinic start generated code]*/ - -static PyObject * -float_conjugate_impl(PyObject *self) -/*[clinic end generated code: output=8ca292c2479194af input=82ba6f37a9ff91dd]*/ -{ -    return float_float(self); -} - -/* turn ASCII hex characters into integer values and vice versa */ - -static char -char_from_hex(int x) -{ -    assert(0 <= x && x < 16); -    return Py_hexdigits[x]; -} - -static int -hex_from_char(char c) { -    int x; -    switch(c) { -    case '0': -        x = 0; -        break; -    case '1': -        x = 1; -        break; -    case '2': -        x = 2; -        break; -    case '3': -        x = 3; -        break; -    case '4': -        x = 4; -        break; -    case '5': -        x = 5; -        break; -    case '6': -        x = 6; -        break; -    case '7': -        x = 7; -        break; -    case '8': -        x = 8; -        break; -    case '9': -        x = 9; -        break; -    case 'a': -    case 'A': -        x = 10; -        break; -    case 'b': -    case 'B': -        x = 11; -        break; -    case 'c': -    case 'C': -        x = 12; -        break; -    case 'd': -    case 'D': -        x = 13; -        break; -    case 'e': -    case 'E': -        x = 14; -        break; -    case 'f': -    case 'F': -        x = 15; -        break; -    default: -        x = -1; -        break; -    } -    return x; -} - -/* convert a float to a hexadecimal string */ - -/* TOHEX_NBITS is DBL_MANT_DIG rounded up to the next integer -   of the form 4k+1. */ -#define TOHEX_NBITS DBL_MANT_DIG + 3 - (DBL_MANT_DIG+2)%4 - -/*[clinic input] -float.hex - -Return a hexadecimal representation of a floating-point number. - ->>> (-0.1).hex() -'-0x1.999999999999ap-4' ->>> 3.14159.hex() -'0x1.921f9f01b866ep+1' -[clinic start generated code]*/ - -static PyObject * -float_hex_impl(PyObject *self) -/*[clinic end generated code: output=0ebc9836e4d302d4 input=bec1271a33d47e67]*/ -{ -    double x, m; -    int e, shift, i, si, esign; -    /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the -       trailing NUL byte. */ -    char s[(TOHEX_NBITS-1)/4+3]; - -    CONVERT_TO_DOUBLE(self, x); - -    if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) -        return float_repr((PyFloatObject *)self); - -    if (x == 0.0) { -        if (copysign(1.0, x) == -1.0) -            return PyUnicode_FromString("-0x0.0p+0"); -        else -            return PyUnicode_FromString("0x0.0p+0"); -    } - -    m = frexp(fabs(x), &e); -    shift = 1 - Py_MAX(DBL_MIN_EXP - e, 0); -    m = ldexp(m, shift); -    e -= shift; - -    si = 0; -    s[si] = char_from_hex((int)m); -    si++; -    m -= (int)m; -    s[si] = '.'; -    si++; -    for (i=0; i < (TOHEX_NBITS-1)/4; i++) { -        m *= 16.0; -        s[si] = char_from_hex((int)m); -        si++; -        m -= (int)m; -    } -    s[si] = '\0'; - -    if (e < 0) { -        esign = (int)'-'; -        e = -e; -    } -    else -        esign = (int)'+'; - -    if (x < 0.0) -        return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e); -    else -        return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e); -} - -/* Convert a hexadecimal string to a float. */ - -/*[clinic input] -@classmethod -float.fromhex - -    string: object -    / - -Create a floating-point number from a hexadecimal string. - ->>> float.fromhex('0x1.ffffp10') -2047.984375 ->>> float.fromhex('-0x1p-1074') --5e-324 -[clinic start generated code]*/ - -static PyObject * -float_fromhex(PyTypeObject *type, PyObject *string) -/*[clinic end generated code: output=46c0274d22b78e82 input=0407bebd354bca89]*/ -{ -    PyObject *result; -    double x; -    long exp, top_exp, lsb, key_digit; -    const char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end; -    int half_eps, digit, round_up, negate=0; -    Py_ssize_t length, ndigits, fdigits, i; - -    /* -     * For the sake of simplicity and correctness, we impose an artificial -     * limit on ndigits, the total number of hex digits in the coefficient -     * The limit is chosen to ensure that, writing exp for the exponent, -     * -     *   (1) if exp > LONG_MAX/2 then the value of the hex string is -     *   guaranteed to overflow (provided it's nonzero) -     * -     *   (2) if exp < LONG_MIN/2 then the value of the hex string is -     *   guaranteed to underflow to 0. -     * -     *   (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of -     *   overflow in the calculation of exp and top_exp below. -     * -     * More specifically, ndigits is assumed to satisfy the following -     * inequalities: -     * -     *   4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2 -     *   4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP -     * -     * If either of these inequalities is not satisfied, a ValueError is -     * raised.  Otherwise, write x for the value of the hex string, and -     * assume x is nonzero.  Then -     * -     *   2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits). -     * -     * Now if exp > LONG_MAX/2 then: -     * -     *   exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP) -     *                    = DBL_MAX_EXP -     * -     * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C -     * double, so overflows.  If exp < LONG_MIN/2, then -     * -     *   exp + 4*ndigits <= LONG_MIN/2 - 1 + ( -     *                      DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2) -     *                    = DBL_MIN_EXP - DBL_MANT_DIG - 1 -     * -     * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0 -     * when converted to a C double. -     * -     * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both -     * exp+4*ndigits and exp-4*ndigits are within the range of a long. -     */ - -    s = PyUnicode_AsUTF8AndSize(string, &length); -    if (s == NULL) -        return NULL; -    s_end = s + length; - -    /******************** -     * Parse the string * -     ********************/ - -    /* leading whitespace */ -    while (Py_ISSPACE(*s)) -        s++; - -    /* infinities and nans */ -    x = _Py_parse_inf_or_nan(s, (char **)&coeff_end); -    if (coeff_end != s) { -        s = coeff_end; -        goto finished; -    } - -    /* optional sign */ -    if (*s == '-') { -        s++; -        negate = 1; -    } -    else if (*s == '+') -        s++; - -    /* [0x] */ -    s_store = s; -    if (*s == '0') { -        s++; -        if (*s == 'x' || *s == 'X') -            s++; -        else -            s = s_store; -    } - -    /* coefficient: <integer> [. <fraction>] */ -    coeff_start = s; -    while (hex_from_char(*s) >= 0) -        s++; -    s_store = s; -    if (*s == '.') { -        s++; -        while (hex_from_char(*s) >= 0) -            s++; -        coeff_end = s-1; -    } -    else -        coeff_end = s; - -    /* ndigits = total # of hex digits; fdigits = # after point */ -    ndigits = coeff_end - coeff_start; -    fdigits = coeff_end - s_store; -    if (ndigits == 0) -        goto parse_error; -    if (ndigits > Py_MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2, -                         LONG_MAX/2 + 1 - DBL_MAX_EXP)/4) -        goto insane_length_error; - -    /* [p <exponent>] */ -    if (*s == 'p' || *s == 'P') { -        s++; -        exp_start = s; -        if (*s == '-' || *s == '+') -            s++; -        if (!('0' <= *s && *s <= '9')) -            goto parse_error; -        s++; -        while ('0' <= *s && *s <= '9') -            s++; -        exp = strtol(exp_start, NULL, 10); -    } -    else -        exp = 0; - -/* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */ -#define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ?            \ -                     coeff_end-(j) :                                    \ -                     coeff_end-1-(j))) - -    /******************************************* -     * Compute rounded value of the hex string * -     *******************************************/ - -    /* Discard leading zeros, and catch extreme overflow and underflow */ -    while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0) -        ndigits--; -    if (ndigits == 0 || exp < LONG_MIN/2) { -        x = 0.0; -        goto finished; -    } -    if (exp > LONG_MAX/2) -        goto overflow_error; - -    /* Adjust exponent for fractional part. */ -    exp = exp - 4*((long)fdigits); - -    /* top_exp = 1 more than exponent of most sig. bit of coefficient */ -    top_exp = exp + 4*((long)ndigits - 1); -    for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2) -        top_exp++; - -    /* catch almost all nonextreme cases of overflow and underflow here */ -    if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) { -        x = 0.0; -        goto finished; -    } -    if (top_exp > DBL_MAX_EXP) -        goto overflow_error; - -    /* lsb = exponent of least significant bit of the *rounded* value. -       This is top_exp - DBL_MANT_DIG unless result is subnormal. */ -    lsb = Py_MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG; - -    x = 0.0; -    if (exp >= lsb) { -        /* no rounding required */ -        for (i = ndigits-1; i >= 0; i--) -            x = 16.0*x + HEX_DIGIT(i); -        x = ldexp(x, (int)(exp)); -        goto finished; -    } -    /* rounding required.  key_digit is the index of the hex digit -       containing the first bit to be rounded away. */ -    half_eps = 1 << (int)((lsb - exp - 1) % 4); -    key_digit = (lsb - exp - 1) / 4; -    for (i = ndigits-1; i > key_digit; i--) -        x = 16.0*x + HEX_DIGIT(i); -    digit = HEX_DIGIT(key_digit); -    x = 16.0*x + (double)(digit & (16-2*half_eps)); - -    /* round-half-even: round up if bit lsb-1 is 1 and at least one of -       bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */ -    if ((digit & half_eps) != 0) { -        round_up = 0; -        if ((digit & (3*half_eps-1)) != 0 || (half_eps == 8 && -                key_digit+1 < ndigits && (HEX_DIGIT(key_digit+1) & 1) != 0)) -            round_up = 1; -        else -            for (i = key_digit-1; i >= 0; i--) -                if (HEX_DIGIT(i) != 0) { -                    round_up = 1; -                    break; -                } -        if (round_up) { -            x += 2*half_eps; -            if (top_exp == DBL_MAX_EXP && -                x == ldexp((double)(2*half_eps), DBL_MANT_DIG)) -                /* overflow corner case: pre-rounded value < -                   2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */ -                goto overflow_error; -        } -    } -    x = ldexp(x, (int)(exp+4*key_digit)); - -  finished: -    /* optional trailing whitespace leading to the end of the string */ -    while (Py_ISSPACE(*s)) -        s++; -    if (s != s_end) -        goto parse_error; -    result = PyFloat_FromDouble(negate ? -x : x); -    if (type != &PyFloat_Type && result != NULL) { -        Py_SETREF(result, PyObject_CallOneArg((PyObject *)type, result)); -    } -    return result; - -  overflow_error: -    PyErr_SetString(PyExc_OverflowError, -                    "hexadecimal value too large to represent as a float"); -    return NULL; - -  parse_error: -    PyErr_SetString(PyExc_ValueError, -                    "invalid hexadecimal floating-point string"); -    return NULL; - -  insane_length_error: -    PyErr_SetString(PyExc_ValueError, -                    "hexadecimal string too long to convert"); -    return NULL; -} - -/*[clinic input] -float.as_integer_ratio - -Return integer ratio. - -Return a pair of integers, whose ratio is exactly equal to the original float -and with a positive denominator. - -Raise OverflowError on infinities and a ValueError on NaNs. - ->>> (10.0).as_integer_ratio() -(10, 1) ->>> (0.0).as_integer_ratio() -(0, 1) ->>> (-.25).as_integer_ratio() -(-1, 4) -[clinic start generated code]*/ - -static PyObject * -float_as_integer_ratio_impl(PyObject *self) -/*[clinic end generated code: output=65f25f0d8d30a712 input=e21d08b4630c2e44]*/ -{ -    double self_double; -    double float_part; -    int exponent; -    int i; - -    PyObject *py_exponent = NULL; -    PyObject *numerator = NULL; -    PyObject *denominator = NULL; -    PyObject *result_pair = NULL; -    PyNumberMethods *long_methods = PyLong_Type.tp_as_number; - -    CONVERT_TO_DOUBLE(self, self_double); - -    if (Py_IS_INFINITY(self_double)) { -        PyErr_SetString(PyExc_OverflowError, -                        "cannot convert Infinity to integer ratio"); -        return NULL; -    } -    if (Py_IS_NAN(self_double)) { -        PyErr_SetString(PyExc_ValueError, -                        "cannot convert NaN to integer ratio"); -        return NULL; -    } - -    float_part = frexp(self_double, &exponent);        /* self_double == float_part * 2**exponent exactly */ - -    for (i=0; i<300 && float_part != floor(float_part) ; i++) { -        float_part *= 2.0; -        exponent--; -    } -    /* self == float_part * 2**exponent exactly and float_part is integral. -       If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part -       to be truncated by PyLong_FromDouble(). */ - -    numerator = PyLong_FromDouble(float_part); -    if (numerator == NULL) -        goto error; -    denominator = PyLong_FromLong(1); -    if (denominator == NULL) -        goto error; -    py_exponent = PyLong_FromLong(Py_ABS(exponent)); -    if (py_exponent == NULL) -        goto error; - -    /* fold in 2**exponent */ -    if (exponent > 0) { -        Py_SETREF(numerator, -                  long_methods->nb_lshift(numerator, py_exponent)); -        if (numerator == NULL) -            goto error; -    } -    else { -        Py_SETREF(denominator, -                  long_methods->nb_lshift(denominator, py_exponent)); -        if (denominator == NULL) -            goto error; -    } - -    result_pair = PyTuple_Pack(2, numerator, denominator); - -error: -    Py_XDECREF(py_exponent); -    Py_XDECREF(denominator); -    Py_XDECREF(numerator); -    return result_pair; -} - -static PyObject * -float_subtype_new(PyTypeObject *type, PyObject *x); - -/*[clinic input] -@classmethod -float.__new__ as float_new -    x: object(c_default="NULL") = 0 -    / - -Convert a string or number to a floating point number, if possible. -[clinic start generated code]*/ - -static PyObject * -float_new_impl(PyTypeObject *type, PyObject *x) -/*[clinic end generated code: output=ccf1e8dc460ba6ba input=f43661b7de03e9d8]*/ -{ -    if (type != &PyFloat_Type) { -        if (x == NULL) { -            x = _PyLong_GetZero(); -        } -        return float_subtype_new(type, x); /* Wimp out */ -    } - -    if (x == NULL) { -        return PyFloat_FromDouble(0.0); -    } -    /* If it's a string, but not a string subclass, use -       PyFloat_FromString. */ -    if (PyUnicode_CheckExact(x)) -        return PyFloat_FromString(x); -    return PyNumber_Float(x); -} - -/* Wimpy, slow approach to tp_new calls for subtypes of float: -   first create a regular float from whatever arguments we got, -   then allocate a subtype instance and initialize its ob_fval -   from the regular float.  The regular float is then thrown away. -*/ -static PyObject * -float_subtype_new(PyTypeObject *type, PyObject *x) -{ -    PyObject *tmp, *newobj; - -    assert(PyType_IsSubtype(type, &PyFloat_Type)); -    tmp = float_new_impl(&PyFloat_Type, x); -    if (tmp == NULL) -        return NULL; -    assert(PyFloat_Check(tmp)); -    newobj = type->tp_alloc(type, 0); -    if (newobj == NULL) { -        Py_DECREF(tmp); -        return NULL; -    } -    ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval; -    Py_DECREF(tmp); -    return newobj; -} - -static PyObject * -float_vectorcall(PyObject *type, PyObject * const*args, -                 size_t nargsf, PyObject *kwnames) -{ -    if (!_PyArg_NoKwnames("float", kwnames)) { -        return NULL; -    } - -    Py_ssize_t nargs = PyVectorcall_NARGS(nargsf); -    if (!_PyArg_CheckPositional("float", nargs, 0, 1)) { -        return NULL; -    } - -    PyObject *x = nargs >= 1 ? args[0] : NULL; -    return float_new_impl((PyTypeObject *)type, x); -} - - -/*[clinic input] -float.__getnewargs__ -[clinic start generated code]*/ - -static PyObject * -float___getnewargs___impl(PyObject *self) -/*[clinic end generated code: output=873258c9d206b088 input=002279d1d77891e6]*/ -{ -    return Py_BuildValue("(d)", ((PyFloatObject *)self)->ob_fval); -} - -/* this is for the benefit of the pack/unpack routines below */ - -typedef enum { -    unknown_format, ieee_big_endian_format, ieee_little_endian_format -} float_format_type; - -static float_format_type double_format, float_format; -static float_format_type detected_double_format, detected_float_format; - -/*[clinic input] -@classmethod -float.__getformat__ - -    typestr: str -        Must be 'double' or 'float'. -    / - -You probably don't want to use this function. - -It exists mainly to be used in Python's test suite. - -This function returns whichever of 'unknown', 'IEEE, big-endian' or 'IEEE, -little-endian' best describes the format of floating point numbers used by the -C type named by typestr. -[clinic start generated code]*/ - -static PyObject * -float___getformat___impl(PyTypeObject *type, const char *typestr) -/*[clinic end generated code: output=2bfb987228cc9628 input=d5a52600f835ad67]*/ -{ -    float_format_type r; - -    if (strcmp(typestr, "double") == 0) { -        r = double_format; -    } -    else if (strcmp(typestr, "float") == 0) { -        r = float_format; -    } -    else { -        PyErr_SetString(PyExc_ValueError, -                        "__getformat__() argument 1 must be " -                        "'double' or 'float'"); -        return NULL; -    } - -    switch (r) { -    case unknown_format: -        return PyUnicode_FromString("unknown"); -    case ieee_little_endian_format: -        return PyUnicode_FromString("IEEE, little-endian"); -    case ieee_big_endian_format: -        return PyUnicode_FromString("IEEE, big-endian"); -    default: -        PyErr_SetString(PyExc_RuntimeError, -                        "insane float_format or double_format"); -        return NULL; -    } -} - -/*[clinic input] -@classmethod -float.__setformat__ - -    typestr: str -        Must be 'double' or 'float'. -    fmt: str -        Must be one of 'unknown', 'IEEE, big-endian' or 'IEEE, little-endian', -        and in addition can only be one of the latter two if it appears to -        match the underlying C reality. -    / - -You probably don't want to use this function. - -It exists mainly to be used in Python's test suite. - -Override the automatic determination of C-level floating point type. -This affects how floats are converted to and from binary strings. -[clinic start generated code]*/ - -static PyObject * -float___setformat___impl(PyTypeObject *type, const char *typestr, -                         const char *fmt) -/*[clinic end generated code: output=06864de1fb5f1f04 input=c0e9e04dd87f9988]*/ -{ -    float_format_type f; -    float_format_type detected; -    float_format_type *p; - -    if (strcmp(typestr, "double") == 0) { -        p = &double_format; -        detected = detected_double_format; -    } -    else if (strcmp(typestr, "float") == 0) { -        p = &float_format; -        detected = detected_float_format; -    } -    else { -        PyErr_SetString(PyExc_ValueError, -                        "__setformat__() argument 1 must " -                        "be 'double' or 'float'"); -        return NULL; -    } - -    if (strcmp(fmt, "unknown") == 0) { -        f = unknown_format; -    } -    else if (strcmp(fmt, "IEEE, little-endian") == 0) { -        f = ieee_little_endian_format; -    } -    else if (strcmp(fmt, "IEEE, big-endian") == 0) { -        f = ieee_big_endian_format; -    } -    else { -        PyErr_SetString(PyExc_ValueError, -                        "__setformat__() argument 2 must be " -                        "'unknown', 'IEEE, little-endian' or " -                        "'IEEE, big-endian'"); -        return NULL; - -    } - -    if (f != unknown_format && f != detected) { -        PyErr_Format(PyExc_ValueError, -                     "can only set %s format to 'unknown' or the " -                     "detected platform value", typestr); -        return NULL; -    } - -    *p = f; -    Py_RETURN_NONE; -} - -static PyObject * -float_getreal(PyObject *v, void *closure) -{ -    return float_float(v); -} - -static PyObject * -float_getimag(PyObject *v, void *closure) -{ -    return PyFloat_FromDouble(0.0); -} - -/*[clinic input] -float.__format__ - -  format_spec: unicode -  / - -Formats the float according to format_spec. -[clinic start generated code]*/ - -static PyObject * -float___format___impl(PyObject *self, PyObject *format_spec) -/*[clinic end generated code: output=b260e52a47eade56 input=2ece1052211fd0e6]*/ -{ -    _PyUnicodeWriter writer; -    int ret; - -    _PyUnicodeWriter_Init(&writer); -    ret = _PyFloat_FormatAdvancedWriter( -        &writer, -        self, -        format_spec, 0, PyUnicode_GET_LENGTH(format_spec)); -    if (ret == -1) { -        _PyUnicodeWriter_Dealloc(&writer); -        return NULL; -    } -    return _PyUnicodeWriter_Finish(&writer); -} - -static PyMethodDef float_methods[] = { -    FLOAT_CONJUGATE_METHODDEF -    FLOAT___TRUNC___METHODDEF -    FLOAT___FLOOR___METHODDEF -    FLOAT___CEIL___METHODDEF -    FLOAT___ROUND___METHODDEF -    FLOAT_AS_INTEGER_RATIO_METHODDEF -    FLOAT_FROMHEX_METHODDEF -    FLOAT_HEX_METHODDEF -    FLOAT_IS_INTEGER_METHODDEF -    FLOAT___GETNEWARGS___METHODDEF -    FLOAT___GETFORMAT___METHODDEF -    FLOAT___SETFORMAT___METHODDEF -    FLOAT___FORMAT___METHODDEF -    {NULL,              NULL}           /* sentinel */ -}; - -static PyGetSetDef float_getset[] = { -    {"real", -     float_getreal, (setter)NULL, -     "the real part of a complex number", -     NULL}, -    {"imag", -     float_getimag, (setter)NULL, -     "the imaginary part of a complex number", -     NULL}, -    {NULL}  /* Sentinel */ -}; - - -static PyNumberMethods float_as_number = { -    float_add,          /* nb_add */ -    float_sub,          /* nb_subtract */ -    float_mul,          /* nb_multiply */ -    float_rem,          /* nb_remainder */ -    float_divmod,       /* nb_divmod */ -    float_pow,          /* nb_power */ -    (unaryfunc)float_neg, /* nb_negative */ -    float_float,        /* nb_positive */ -    (unaryfunc)float_abs, /* nb_absolute */ -    (inquiry)float_bool, /* nb_bool */ -    0,                  /* nb_invert */ -    0,                  /* nb_lshift */ -    0,                  /* nb_rshift */ -    0,                  /* nb_and */ -    0,                  /* nb_xor */ -    0,                  /* nb_or */ -    float___trunc___impl, /* nb_int */ -    0,                  /* nb_reserved */ -    float_float,        /* nb_float */ -    0,                  /* nb_inplace_add */ -    0,                  /* nb_inplace_subtract */ -    0,                  /* nb_inplace_multiply */ -    0,                  /* nb_inplace_remainder */ -    0,                  /* nb_inplace_power */ -    0,                  /* nb_inplace_lshift */ -    0,                  /* nb_inplace_rshift */ -    0,                  /* nb_inplace_and */ -    0,                  /* nb_inplace_xor */ -    0,                  /* nb_inplace_or */ -    float_floor_div,    /* nb_floor_divide */ -    float_div,          /* nb_true_divide */ -    0,                  /* nb_inplace_floor_divide */ -    0,                  /* nb_inplace_true_divide */ -}; - -PyTypeObject PyFloat_Type = { -    PyVarObject_HEAD_INIT(&PyType_Type, 0) -    "float", -    sizeof(PyFloatObject), -    0, -    (destructor)float_dealloc,                  /* tp_dealloc */ -    0,                                          /* tp_vectorcall_offset */ -    0,                                          /* tp_getattr */ -    0,                                          /* tp_setattr */ -    0,                                          /* tp_as_async */ -    (reprfunc)float_repr,                       /* tp_repr */ -    &float_as_number,                           /* tp_as_number */ -    0,                                          /* tp_as_sequence */ -    0,                                          /* tp_as_mapping */ -    (hashfunc)float_hash,                       /* tp_hash */ -    0,                                          /* tp_call */ -    0,                                          /* tp_str */ -    PyObject_GenericGetAttr,                    /* tp_getattro */ -    0,                                          /* tp_setattro */ -    0,                                          /* tp_as_buffer */ -    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | -        _Py_TPFLAGS_MATCH_SELF,               /* tp_flags */ -    float_new__doc__,                           /* tp_doc */ -    0,                                          /* tp_traverse */ -    0,                                          /* tp_clear */ -    float_richcompare,                          /* tp_richcompare */ -    0,                                          /* tp_weaklistoffset */ -    0,                                          /* tp_iter */ -    0,                                          /* tp_iternext */ -    float_methods,                              /* tp_methods */ -    0,                                          /* tp_members */ -    float_getset,                               /* tp_getset */ -    0,                                          /* tp_base */ -    0,                                          /* tp_dict */ -    0,                                          /* tp_descr_get */ -    0,                                          /* tp_descr_set */ -    0,                                          /* tp_dictoffset */ -    0,                                          /* tp_init */ -    0,                                          /* tp_alloc */ -    float_new,                                  /* tp_new */ -    .tp_vectorcall = (vectorcallfunc)float_vectorcall, -}; - -void -_PyFloat_Init(void) -{ -    /* We attempt to determine if this machine is using IEEE -       floating point formats by peering at the bits of some -       carefully chosen values.  If it looks like we are on an -       IEEE platform, the float packing/unpacking routines can -       just copy bits, if not they resort to arithmetic & shifts -       and masks.  The shifts & masks approach works on all finite -       values, but what happens to infinities, NaNs and signed -       zeroes on packing is an accident, and attempting to unpack -       a NaN or an infinity will raise an exception. - -       Note that if we're on some whacked-out platform which uses -       IEEE formats but isn't strictly little-endian or big- -       endian, we will fall back to the portable shifts & masks -       method. */ - -#if SIZEOF_DOUBLE == 8 -    { -        double x = 9006104071832581.0; -        if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0) -            detected_double_format = ieee_big_endian_format; -        else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0) -            detected_double_format = ieee_little_endian_format; -        else -            detected_double_format = unknown_format; -    } -#else -    detected_double_format = unknown_format; -#endif - -#if SIZEOF_FLOAT == 4 -    { -        float y = 16711938.0; -        if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0) -            detected_float_format = ieee_big_endian_format; -        else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0) -            detected_float_format = ieee_little_endian_format; -        else -            detected_float_format = unknown_format; -    } -#else -    detected_float_format = unknown_format; -#endif - -    double_format = detected_double_format; -    float_format = detected_float_format; -} - -int -_PyFloat_InitTypes(void) -{ -    /* Init float info */ -    if (FloatInfoType.tp_name == NULL) { -        if (PyStructSequence_InitType2(&FloatInfoType, &floatinfo_desc) < 0) { -            return -1; -        } -    } -    return 0; -} - -void -_PyFloat_ClearFreeList(PyInterpreterState *interp) -{ -    struct _Py_float_state *state = &interp->float_state; -    PyFloatObject *f = state->free_list; -    while (f != NULL) { -        PyFloatObject *next = (PyFloatObject*) Py_TYPE(f); -        PyObject_Free(f); -        f = next; -    } -    state->free_list = NULL; -    state->numfree = 0; -} - -void -_PyFloat_Fini(PyInterpreterState *interp) -{ -    _PyFloat_ClearFreeList(interp); -#ifdef Py_DEBUG -    struct _Py_float_state *state = &interp->float_state; -    state->numfree = -1; -#endif -} - -/* Print summary info about the state of the optimized allocator */ -void -_PyFloat_DebugMallocStats(FILE *out) -{ -    struct _Py_float_state *state = get_float_state(); -    _PyDebugAllocatorStats(out, -                           "free PyFloatObject", -                           state->numfree, sizeof(PyFloatObject)); -} - - -/*---------------------------------------------------------------------------- - * _PyFloat_{Pack,Unpack}{2,4,8}.  See floatobject.h. - * To match the NPY_HALF_ROUND_TIES_TO_EVEN behavior in: - * https://github.com/numpy/numpy/blob/master/numpy/core/src/npymath/halffloat.c - * We use: - *       bits = (unsigned short)f;    Note the truncation - *       if ((f - bits > 0.5) || (f - bits == 0.5 && bits % 2)) { - *           bits++; - *       } - */ - -int -_PyFloat_Pack2(double x, unsigned char *p, int le) -{ -    unsigned char sign; -    int e; -    double f; -    unsigned short bits; -    int incr = 1; - -    if (x == 0.0) { -        sign = (copysign(1.0, x) == -1.0); -        e = 0; -        bits = 0; -    } -    else if (Py_IS_INFINITY(x)) { -        sign = (x < 0.0); -        e = 0x1f; -        bits = 0; -    } -    else if (Py_IS_NAN(x)) { -        /* There are 2046 distinct half-precision NaNs (1022 signaling and -           1024 quiet), but there are only two quiet NaNs that don't arise by -           quieting a signaling NaN; we get those by setting the topmost bit -           of the fraction field and clearing all other fraction bits. We -           choose the one with the appropriate sign. */ -        sign = (copysign(1.0, x) == -1.0); -        e = 0x1f; -        bits = 512; -    } -    else { -        sign = (x < 0.0); -        if (sign) { -            x = -x; -        } - -        f = frexp(x, &e); -        if (f < 0.5 || f >= 1.0) { -            PyErr_SetString(PyExc_SystemError, -                            "frexp() result out of range"); -            return -1; -        } - -        /* Normalize f to be in the range [1.0, 2.0) */ -        f *= 2.0; -        e--; - -        if (e >= 16) { -            goto Overflow; -        } -        else if (e < -25) { -            /* |x| < 2**-25. Underflow to zero. */ -            f = 0.0; -            e = 0; -        } -        else if (e < -14) { -            /* |x| < 2**-14. Gradual underflow */ -            f = ldexp(f, 14 + e); -            e = 0; -        } -        else /* if (!(e == 0 && f == 0.0)) */ { -            e += 15; -            f -= 1.0; /* Get rid of leading 1 */ -        } - -        f *= 1024.0; /* 2**10 */ -        /* Round to even */ -        bits = (unsigned short)f; /* Note the truncation */ -        assert(bits < 1024); -        assert(e < 31); -        if ((f - bits > 0.5) || ((f - bits == 0.5) && (bits % 2 == 1))) { -            ++bits; -            if (bits == 1024) { -                /* The carry propagated out of a string of 10 1 bits. */ -                bits = 0; -                ++e; -                if (e == 31) -                    goto Overflow; -            } -        } -    } - -    bits |= (e << 10) | (sign << 15); - -    /* Write out result. */ -    if (le) { -        p += 1; -        incr = -1; -    } - -    /* First byte */ -    *p = (unsigned char)((bits >> 8) & 0xFF); -    p += incr; - -    /* Second byte */ -    *p = (unsigned char)(bits & 0xFF); - -    return 0; - -  Overflow: -    PyErr_SetString(PyExc_OverflowError, -                    "float too large to pack with e format"); -    return -1; -} - -int -_PyFloat_Pack4(double x, unsigned char *p, int le) -{ -    if (float_format == unknown_format) { -        unsigned char sign; -        int e; -        double f; -        unsigned int fbits; -        int incr = 1; - -        if (le) { -            p += 3; -            incr = -1; -        } - -        if (x < 0) { -            sign = 1; -            x = -x; -        } -        else -            sign = 0; - -        f = frexp(x, &e); - -        /* Normalize f to be in the range [1.0, 2.0) */ -        if (0.5 <= f && f < 1.0) { -            f *= 2.0; -            e--; -        } -        else if (f == 0.0) -            e = 0; -        else { -            PyErr_SetString(PyExc_SystemError, -                            "frexp() result out of range"); -            return -1; -        } - -        if (e >= 128) -            goto Overflow; -        else if (e < -126) { -            /* Gradual underflow */ -            f = ldexp(f, 126 + e); -            e = 0; -        } -        else if (!(e == 0 && f == 0.0)) { -            e += 127; -            f -= 1.0; /* Get rid of leading 1 */ -        } - -        f *= 8388608.0; /* 2**23 */ -        fbits = (unsigned int)(f + 0.5); /* Round */ -        assert(fbits <= 8388608); -        if (fbits >> 23) { -            /* The carry propagated out of a string of 23 1 bits. */ -            fbits = 0; -            ++e; -            if (e >= 255) -                goto Overflow; -        } - -        /* First byte */ -        *p = (sign << 7) | (e >> 1); -        p += incr; - -        /* Second byte */ -        *p = (char) (((e & 1) << 7) | (fbits >> 16)); -        p += incr; - -        /* Third byte */ -        *p = (fbits >> 8) & 0xFF; -        p += incr; - -        /* Fourth byte */ -        *p = fbits & 0xFF; - -        /* Done */ -        return 0; - -    } -    else { -        float y = (float)x; -        int i, incr = 1; - -        if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x)) -            goto Overflow; - -        unsigned char s[sizeof(float)]; -        memcpy(s, &y, sizeof(float)); - -        if ((float_format == ieee_little_endian_format && !le) -            || (float_format == ieee_big_endian_format && le)) { -            p += 3; -            incr = -1; -        } - -        for (i = 0; i < 4; i++) { -            *p = s[i]; -            p += incr; -        } -        return 0; -    } -  Overflow: -    PyErr_SetString(PyExc_OverflowError, -                    "float too large to pack with f format"); -    return -1; -} - -int -_PyFloat_Pack8(double x, unsigned char *p, int le) -{ -    if (double_format == unknown_format) { -        unsigned char sign; -        int e; -        double f; -        unsigned int fhi, flo; -        int incr = 1; - -        if (le) { -            p += 7; -            incr = -1; -        } - -        if (x < 0) { -            sign = 1; -            x = -x; -        } -        else -            sign = 0; - -        f = frexp(x, &e); - -        /* Normalize f to be in the range [1.0, 2.0) */ -        if (0.5 <= f && f < 1.0) { -            f *= 2.0; -            e--; -        } -        else if (f == 0.0) -            e = 0; -        else { -            PyErr_SetString(PyExc_SystemError, -                            "frexp() result out of range"); -            return -1; -        } - -        if (e >= 1024) -            goto Overflow; -        else if (e < -1022) { -            /* Gradual underflow */ -            f = ldexp(f, 1022 + e); -            e = 0; -        } -        else if (!(e == 0 && f == 0.0)) { -            e += 1023; -            f -= 1.0; /* Get rid of leading 1 */ -        } - -        /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */ -        f *= 268435456.0; /* 2**28 */ -        fhi = (unsigned int)f; /* Truncate */ -        assert(fhi < 268435456); - -        f -= (double)fhi; -        f *= 16777216.0; /* 2**24 */ -        flo = (unsigned int)(f + 0.5); /* Round */ -        assert(flo <= 16777216); -        if (flo >> 24) { -            /* The carry propagated out of a string of 24 1 bits. */ -            flo = 0; -            ++fhi; -            if (fhi >> 28) { -                /* And it also propagated out of the next 28 bits. */ -                fhi = 0; -                ++e; -                if (e >= 2047) -                    goto Overflow; -            } -        } - -        /* First byte */ -        *p = (sign << 7) | (e >> 4); -        p += incr; - -        /* Second byte */ -        *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24)); -        p += incr; - -        /* Third byte */ -        *p = (fhi >> 16) & 0xFF; -        p += incr; - -        /* Fourth byte */ -        *p = (fhi >> 8) & 0xFF; -        p += incr; - -        /* Fifth byte */ -        *p = fhi & 0xFF; -        p += incr; - -        /* Sixth byte */ -        *p = (flo >> 16) & 0xFF; -        p += incr; - -        /* Seventh byte */ -        *p = (flo >> 8) & 0xFF; -        p += incr; - -        /* Eighth byte */ -        *p = flo & 0xFF; -        /* p += incr; */ - -        /* Done */ -        return 0; - -      Overflow: -        PyErr_SetString(PyExc_OverflowError, -                        "float too large to pack with d format"); -        return -1; -    } -    else { -        const unsigned char *s = (unsigned char*)&x; -        int i, incr = 1; - -        if ((double_format == ieee_little_endian_format && !le) -            || (double_format == ieee_big_endian_format && le)) { -            p += 7; -            incr = -1; -        } - -        for (i = 0; i < 8; i++) { -            *p = *s++; -            p += incr; -        } -        return 0; -    } -} - -double -_PyFloat_Unpack2(const unsigned char *p, int le) -{ -    unsigned char sign; -    int e; -    unsigned int f; -    double x; -    int incr = 1; - -    if (le) { -        p += 1; -        incr = -1; -    } - -    /* First byte */ -    sign = (*p >> 7) & 1; -    e = (*p & 0x7C) >> 2; -    f = (*p & 0x03) << 8; -    p += incr; - -    /* Second byte */ -    f |= *p; - -    if (e == 0x1f) { -#ifdef PY_NO_SHORT_FLOAT_REPR -        if (f == 0) { -            /* Infinity */ -            return sign ? -Py_HUGE_VAL : Py_HUGE_VAL; -        } -        else { -            /* NaN */ -#ifdef Py_NAN -            return sign ? -Py_NAN : Py_NAN; -#else -            PyErr_SetString( -                PyExc_ValueError, -                "can't unpack IEEE 754 NaN " -                "on platform that does not support NaNs"); -            return -1; -#endif  /* #ifdef Py_NAN */ -        } -#else -        if (f == 0) { -            /* Infinity */ -            return _Py_dg_infinity(sign); -        } -        else { -            /* NaN */ -            return _Py_dg_stdnan(sign); -        } -#endif  /* #ifdef PY_NO_SHORT_FLOAT_REPR */ -    } - -    x = (double)f / 1024.0; - -    if (e == 0) { -        e = -14; -    } -    else { -        x += 1.0; -        e -= 15; -    } -    x = ldexp(x, e); - -    if (sign) -        x = -x; - -    return x; -} - -double -_PyFloat_Unpack4(const unsigned char *p, int le) -{ -    if (float_format == unknown_format) { -        unsigned char sign; -        int e; -        unsigned int f; -        double x; -        int incr = 1; - -        if (le) { -            p += 3; -            incr = -1; -        } - -        /* First byte */ -        sign = (*p >> 7) & 1; -        e = (*p & 0x7F) << 1; -        p += incr; - -        /* Second byte */ -        e |= (*p >> 7) & 1; -        f = (*p & 0x7F) << 16; -        p += incr; - -        if (e == 255) { -            PyErr_SetString( -                PyExc_ValueError, -                "can't unpack IEEE 754 special value " -                "on non-IEEE platform"); -            return -1; -        } - -        /* Third byte */ -        f |= *p << 8; -        p += incr; - -        /* Fourth byte */ -        f |= *p; - -        x = (double)f / 8388608.0; - -        /* XXX This sadly ignores Inf/NaN issues */ -        if (e == 0) -            e = -126; -        else { -            x += 1.0; -            e -= 127; -        } -        x = ldexp(x, e); - -        if (sign) -            x = -x; - -        return x; -    } -    else { -        float x; - -        if ((float_format == ieee_little_endian_format && !le) -            || (float_format == ieee_big_endian_format && le)) { -            char buf[4]; -            char *d = &buf[3]; -            int i; - -            for (i = 0; i < 4; i++) { -                *d-- = *p++; -            } -            memcpy(&x, buf, 4); -        } -        else { -            memcpy(&x, p, 4); -        } - -        return x; -    } -} - -double -_PyFloat_Unpack8(const unsigned char *p, int le) -{ -    if (double_format == unknown_format) { -        unsigned char sign; -        int e; -        unsigned int fhi, flo; -        double x; -        int incr = 1; - -        if (le) { -            p += 7; -            incr = -1; -        } - -        /* First byte */ -        sign = (*p >> 7) & 1; -        e = (*p & 0x7F) << 4; - -        p += incr; - -        /* Second byte */ -        e |= (*p >> 4) & 0xF; -        fhi = (*p & 0xF) << 24; -        p += incr; - -        if (e == 2047) { -            PyErr_SetString( -                PyExc_ValueError, -                "can't unpack IEEE 754 special value " -                "on non-IEEE platform"); -            return -1.0; -        } - -        /* Third byte */ -        fhi |= *p << 16; -        p += incr; - -        /* Fourth byte */ -        fhi |= *p  << 8; -        p += incr; - -        /* Fifth byte */ -        fhi |= *p; -        p += incr; - -        /* Sixth byte */ -        flo = *p << 16; -        p += incr; - -        /* Seventh byte */ -        flo |= *p << 8; -        p += incr; - -        /* Eighth byte */ -        flo |= *p; - -        x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */ -        x /= 268435456.0; /* 2**28 */ - -        if (e == 0) -            e = -1022; -        else { -            x += 1.0; -            e -= 1023; -        } -        x = ldexp(x, e); - -        if (sign) -            x = -x; - -        return x; -    } -    else { -        double x; - -        if ((double_format == ieee_little_endian_format && !le) -            || (double_format == ieee_big_endian_format && le)) { -            char buf[8]; -            char *d = &buf[7]; -            int i; - -            for (i = 0; i < 8; i++) { -                *d-- = *p++; -            } -            memcpy(&x, buf, 8); -        } -        else { -            memcpy(&x, p, 8); -        } - -        return x; -    } -} | 
