aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/src/Modules/gcmodule.c
diff options
context:
space:
mode:
authorshadchin <shadchin@yandex-team.ru>2022-02-10 16:44:39 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:44:39 +0300
commite9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (patch)
tree64175d5cadab313b3e7039ebaa06c5bc3295e274 /contrib/tools/python3/src/Modules/gcmodule.c
parent2598ef1d0aee359b4b6d5fdd1758916d5907d04f (diff)
downloadydb-e9656aae26e0358d5378e5b63dcac5c8dbe0e4d0.tar.gz
Restoring authorship annotation for <shadchin@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/tools/python3/src/Modules/gcmodule.c')
-rw-r--r--contrib/tools/python3/src/Modules/gcmodule.c2264
1 files changed, 1132 insertions, 1132 deletions
diff --git a/contrib/tools/python3/src/Modules/gcmodule.c b/contrib/tools/python3/src/Modules/gcmodule.c
index 2f80ff3189..3cf1a00b00 100644
--- a/contrib/tools/python3/src/Modules/gcmodule.c
+++ b/contrib/tools/python3/src/Modules/gcmodule.c
@@ -24,99 +24,99 @@
*/
#include "Python.h"
-#include "pycore_context.h"
-#include "pycore_initconfig.h"
-#include "pycore_interp.h" // PyInterpreterState.gc
-#include "pycore_object.h"
-#include "pycore_pyerrors.h"
-#include "pycore_pystate.h" // _PyThreadState_GET()
+#include "pycore_context.h"
+#include "pycore_initconfig.h"
+#include "pycore_interp.h" // PyInterpreterState.gc
+#include "pycore_object.h"
+#include "pycore_pyerrors.h"
+#include "pycore_pystate.h" // _PyThreadState_GET()
#include "pydtrace.h"
-#include "pytime.h" // _PyTime_GetMonotonicClock()
+#include "pytime.h" // _PyTime_GetMonotonicClock()
+
+typedef struct _gc_runtime_state GCState;
-typedef struct _gc_runtime_state GCState;
-
/*[clinic input]
module gc
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=b5c9690ecc842d79]*/
-
-#ifdef Py_DEBUG
-# define GC_DEBUG
-#endif
-
-#define GC_NEXT _PyGCHead_NEXT
-#define GC_PREV _PyGCHead_PREV
-
-// update_refs() set this bit for all objects in current generation.
-// subtract_refs() and move_unreachable() uses this to distinguish
-// visited object is in GCing or not.
-//
-// move_unreachable() removes this flag from reachable objects.
-// Only unreachable objects have this flag.
-//
-// No objects in interpreter have this flag after GC ends.
-#define PREV_MASK_COLLECTING _PyGC_PREV_MASK_COLLECTING
-
-// Lowest bit of _gc_next is used for UNREACHABLE flag.
-//
-// This flag represents the object is in unreachable list in move_unreachable()
-//
-// Although this flag is used only in move_unreachable(), move_unreachable()
-// doesn't clear this flag to skip unnecessary iteration.
-// move_legacy_finalizers() removes this flag instead.
-// Between them, unreachable list is not normal list and we can not use
-// most gc_list_* functions for it.
-#define NEXT_MASK_UNREACHABLE (1)
-
+
+#ifdef Py_DEBUG
+# define GC_DEBUG
+#endif
+
+#define GC_NEXT _PyGCHead_NEXT
+#define GC_PREV _PyGCHead_PREV
+
+// update_refs() set this bit for all objects in current generation.
+// subtract_refs() and move_unreachable() uses this to distinguish
+// visited object is in GCing or not.
+//
+// move_unreachable() removes this flag from reachable objects.
+// Only unreachable objects have this flag.
+//
+// No objects in interpreter have this flag after GC ends.
+#define PREV_MASK_COLLECTING _PyGC_PREV_MASK_COLLECTING
+
+// Lowest bit of _gc_next is used for UNREACHABLE flag.
+//
+// This flag represents the object is in unreachable list in move_unreachable()
+//
+// Although this flag is used only in move_unreachable(), move_unreachable()
+// doesn't clear this flag to skip unnecessary iteration.
+// move_legacy_finalizers() removes this flag instead.
+// Between them, unreachable list is not normal list and we can not use
+// most gc_list_* functions for it.
+#define NEXT_MASK_UNREACHABLE (1)
+
/* Get an object's GC head */
#define AS_GC(o) ((PyGC_Head *)(o)-1)
/* Get the object given the GC head */
#define FROM_GC(g) ((PyObject *)(((PyGC_Head *)g)+1))
-static inline int
-gc_is_collecting(PyGC_Head *g)
-{
- return (g->_gc_prev & PREV_MASK_COLLECTING) != 0;
-}
-
-static inline void
-gc_clear_collecting(PyGC_Head *g)
-{
- g->_gc_prev &= ~PREV_MASK_COLLECTING;
-}
-
-static inline Py_ssize_t
-gc_get_refs(PyGC_Head *g)
-{
- return (Py_ssize_t)(g->_gc_prev >> _PyGC_PREV_SHIFT);
-}
-
-static inline void
-gc_set_refs(PyGC_Head *g, Py_ssize_t refs)
-{
- g->_gc_prev = (g->_gc_prev & ~_PyGC_PREV_MASK)
- | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
-}
-
-static inline void
-gc_reset_refs(PyGC_Head *g, Py_ssize_t refs)
-{
- g->_gc_prev = (g->_gc_prev & _PyGC_PREV_MASK_FINALIZED)
- | PREV_MASK_COLLECTING
- | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
-}
-
-static inline void
-gc_decref(PyGC_Head *g)
-{
- _PyObject_ASSERT_WITH_MSG(FROM_GC(g),
- gc_get_refs(g) > 0,
- "refcount is too small");
- g->_gc_prev -= 1 << _PyGC_PREV_SHIFT;
-}
-
+static inline int
+gc_is_collecting(PyGC_Head *g)
+{
+ return (g->_gc_prev & PREV_MASK_COLLECTING) != 0;
+}
+
+static inline void
+gc_clear_collecting(PyGC_Head *g)
+{
+ g->_gc_prev &= ~PREV_MASK_COLLECTING;
+}
+
+static inline Py_ssize_t
+gc_get_refs(PyGC_Head *g)
+{
+ return (Py_ssize_t)(g->_gc_prev >> _PyGC_PREV_SHIFT);
+}
+
+static inline void
+gc_set_refs(PyGC_Head *g, Py_ssize_t refs)
+{
+ g->_gc_prev = (g->_gc_prev & ~_PyGC_PREV_MASK)
+ | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
+}
+
+static inline void
+gc_reset_refs(PyGC_Head *g, Py_ssize_t refs)
+{
+ g->_gc_prev = (g->_gc_prev & _PyGC_PREV_MASK_FINALIZED)
+ | PREV_MASK_COLLECTING
+ | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
+}
+
+static inline void
+gc_decref(PyGC_Head *g)
+{
+ _PyObject_ASSERT_WITH_MSG(FROM_GC(g),
+ gc_get_refs(g) > 0,
+ "refcount is too small");
+ g->_gc_prev -= 1 << _PyGC_PREV_SHIFT;
+}
+
/* set for debugging information */
#define DEBUG_STATS (1<<0) /* print collection statistics */
#define DEBUG_COLLECTABLE (1<<1) /* print collectable objects */
@@ -126,140 +126,140 @@ gc_decref(PyGC_Head *g)
DEBUG_UNCOLLECTABLE | \
DEBUG_SAVEALL
-#define GEN_HEAD(gcstate, n) (&(gcstate)->generations[n].head)
+#define GEN_HEAD(gcstate, n) (&(gcstate)->generations[n].head)
void
-_PyGC_InitState(GCState *gcstate)
+_PyGC_InitState(GCState *gcstate)
{
- gcstate->enabled = 1; /* automatic collection enabled? */
+ gcstate->enabled = 1; /* automatic collection enabled? */
-#define _GEN_HEAD(n) GEN_HEAD(gcstate, n)
+#define _GEN_HEAD(n) GEN_HEAD(gcstate, n)
struct gc_generation generations[NUM_GENERATIONS] = {
- /* PyGC_Head, threshold, count */
- {{(uintptr_t)_GEN_HEAD(0), (uintptr_t)_GEN_HEAD(0)}, 700, 0},
- {{(uintptr_t)_GEN_HEAD(1), (uintptr_t)_GEN_HEAD(1)}, 10, 0},
- {{(uintptr_t)_GEN_HEAD(2), (uintptr_t)_GEN_HEAD(2)}, 10, 0},
+ /* PyGC_Head, threshold, count */
+ {{(uintptr_t)_GEN_HEAD(0), (uintptr_t)_GEN_HEAD(0)}, 700, 0},
+ {{(uintptr_t)_GEN_HEAD(1), (uintptr_t)_GEN_HEAD(1)}, 10, 0},
+ {{(uintptr_t)_GEN_HEAD(2), (uintptr_t)_GEN_HEAD(2)}, 10, 0},
};
for (int i = 0; i < NUM_GENERATIONS; i++) {
- gcstate->generations[i] = generations[i];
+ gcstate->generations[i] = generations[i];
};
- gcstate->generation0 = GEN_HEAD(gcstate, 0);
+ gcstate->generation0 = GEN_HEAD(gcstate, 0);
struct gc_generation permanent_generation = {
- {(uintptr_t)&gcstate->permanent_generation.head,
- (uintptr_t)&gcstate->permanent_generation.head}, 0, 0
+ {(uintptr_t)&gcstate->permanent_generation.head,
+ (uintptr_t)&gcstate->permanent_generation.head}, 0, 0
};
- gcstate->permanent_generation = permanent_generation;
-}
-
-
-PyStatus
-_PyGC_Init(PyThreadState *tstate)
-{
- GCState *gcstate = &tstate->interp->gc;
- if (gcstate->garbage == NULL) {
- gcstate->garbage = PyList_New(0);
- if (gcstate->garbage == NULL) {
- return _PyStatus_NO_MEMORY();
- }
- }
- return _PyStatus_OK();
-}
-
-
-/*
-_gc_prev values
----------------
-
-Between collections, _gc_prev is used for doubly linked list.
-
-Lowest two bits of _gc_prev are used for flags.
-PREV_MASK_COLLECTING is used only while collecting and cleared before GC ends
-or _PyObject_GC_UNTRACK() is called.
-
-During a collection, _gc_prev is temporary used for gc_refs, and the gc list
-is singly linked until _gc_prev is restored.
-
-gc_refs
+ gcstate->permanent_generation = permanent_generation;
+}
+
+
+PyStatus
+_PyGC_Init(PyThreadState *tstate)
+{
+ GCState *gcstate = &tstate->interp->gc;
+ if (gcstate->garbage == NULL) {
+ gcstate->garbage = PyList_New(0);
+ if (gcstate->garbage == NULL) {
+ return _PyStatus_NO_MEMORY();
+ }
+ }
+ return _PyStatus_OK();
+}
+
+
+/*
+_gc_prev values
+---------------
+
+Between collections, _gc_prev is used for doubly linked list.
+
+Lowest two bits of _gc_prev are used for flags.
+PREV_MASK_COLLECTING is used only while collecting and cleared before GC ends
+or _PyObject_GC_UNTRACK() is called.
+
+During a collection, _gc_prev is temporary used for gc_refs, and the gc list
+is singly linked until _gc_prev is restored.
+
+gc_refs
At the start of a collection, update_refs() copies the true refcount
to gc_refs, for each object in the generation being collected.
subtract_refs() then adjusts gc_refs so that it equals the number of
times an object is referenced directly from outside the generation
being collected.
-PREV_MASK_COLLECTING
- Objects in generation being collected are marked PREV_MASK_COLLECTING in
- update_refs().
-
-
-_gc_next values
----------------
-
-_gc_next takes these values:
-
-0
- The object is not tracked
-
-!= 0
- Pointer to the next object in the GC list.
- Additionally, lowest bit is used temporary for
- NEXT_MASK_UNREACHABLE flag described below.
-
-NEXT_MASK_UNREACHABLE
+PREV_MASK_COLLECTING
+ Objects in generation being collected are marked PREV_MASK_COLLECTING in
+ update_refs().
+
+
+_gc_next values
+---------------
+
+_gc_next takes these values:
+
+0
+ The object is not tracked
+
+!= 0
+ Pointer to the next object in the GC list.
+ Additionally, lowest bit is used temporary for
+ NEXT_MASK_UNREACHABLE flag described below.
+
+NEXT_MASK_UNREACHABLE
move_unreachable() then moves objects not reachable (whether directly or
- indirectly) from outside the generation into an "unreachable" set and
- set this flag.
-
- Objects that are found to be reachable have gc_refs set to 1.
- When this flag is set for the reachable object, the object must be in
- "unreachable" set.
- The flag is unset and the object is moved back to "reachable" set.
-
- move_legacy_finalizers() will remove this flag from "unreachable" set.
+ indirectly) from outside the generation into an "unreachable" set and
+ set this flag.
+
+ Objects that are found to be reachable have gc_refs set to 1.
+ When this flag is set for the reachable object, the object must be in
+ "unreachable" set.
+ The flag is unset and the object is moved back to "reachable" set.
+
+ move_legacy_finalizers() will remove this flag from "unreachable" set.
*/
/*** list functions ***/
-static inline void
+static inline void
gc_list_init(PyGC_Head *list)
{
- // List header must not have flags.
- // We can assign pointer by simple cast.
- list->_gc_prev = (uintptr_t)list;
- list->_gc_next = (uintptr_t)list;
+ // List header must not have flags.
+ // We can assign pointer by simple cast.
+ list->_gc_prev = (uintptr_t)list;
+ list->_gc_next = (uintptr_t)list;
}
-static inline int
+static inline int
gc_list_is_empty(PyGC_Head *list)
{
- return (list->_gc_next == (uintptr_t)list);
+ return (list->_gc_next == (uintptr_t)list);
}
/* Append `node` to `list`. */
-static inline void
+static inline void
gc_list_append(PyGC_Head *node, PyGC_Head *list)
{
- PyGC_Head *last = (PyGC_Head *)list->_gc_prev;
-
- // last <-> node
- _PyGCHead_SET_PREV(node, last);
- _PyGCHead_SET_NEXT(last, node);
-
- // node <-> list
- _PyGCHead_SET_NEXT(node, list);
- list->_gc_prev = (uintptr_t)node;
+ PyGC_Head *last = (PyGC_Head *)list->_gc_prev;
+
+ // last <-> node
+ _PyGCHead_SET_PREV(node, last);
+ _PyGCHead_SET_NEXT(last, node);
+
+ // node <-> list
+ _PyGCHead_SET_NEXT(node, list);
+ list->_gc_prev = (uintptr_t)node;
}
/* Remove `node` from the gc list it's currently in. */
-static inline void
+static inline void
gc_list_remove(PyGC_Head *node)
{
- PyGC_Head *prev = GC_PREV(node);
- PyGC_Head *next = GC_NEXT(node);
-
- _PyGCHead_SET_NEXT(prev, next);
- _PyGCHead_SET_PREV(next, prev);
-
- node->_gc_next = 0; /* object is not currently tracked */
+ PyGC_Head *prev = GC_PREV(node);
+ PyGC_Head *next = GC_NEXT(node);
+
+ _PyGCHead_SET_NEXT(prev, next);
+ _PyGCHead_SET_PREV(next, prev);
+
+ node->_gc_next = 0; /* object is not currently tracked */
}
/* Move `node` from the gc list it's currently in (which is not explicitly
@@ -270,18 +270,18 @@ static void
gc_list_move(PyGC_Head *node, PyGC_Head *list)
{
/* Unlink from current list. */
- PyGC_Head *from_prev = GC_PREV(node);
- PyGC_Head *from_next = GC_NEXT(node);
- _PyGCHead_SET_NEXT(from_prev, from_next);
- _PyGCHead_SET_PREV(from_next, from_prev);
-
+ PyGC_Head *from_prev = GC_PREV(node);
+ PyGC_Head *from_next = GC_NEXT(node);
+ _PyGCHead_SET_NEXT(from_prev, from_next);
+ _PyGCHead_SET_PREV(from_next, from_prev);
+
/* Relink at end of new list. */
- // list must not have flags. So we can skip macros.
- PyGC_Head *to_prev = (PyGC_Head*)list->_gc_prev;
- _PyGCHead_SET_PREV(node, to_prev);
- _PyGCHead_SET_NEXT(to_prev, node);
- list->_gc_prev = (uintptr_t)node;
- _PyGCHead_SET_NEXT(node, list);
+ // list must not have flags. So we can skip macros.
+ PyGC_Head *to_prev = (PyGC_Head*)list->_gc_prev;
+ _PyGCHead_SET_PREV(node, to_prev);
+ _PyGCHead_SET_NEXT(to_prev, node);
+ list->_gc_prev = (uintptr_t)node;
+ _PyGCHead_SET_NEXT(node, list);
}
/* append list `from` onto list `to`; `from` becomes an empty list */
@@ -290,17 +290,17 @@ gc_list_merge(PyGC_Head *from, PyGC_Head *to)
{
assert(from != to);
if (!gc_list_is_empty(from)) {
- PyGC_Head *to_tail = GC_PREV(to);
- PyGC_Head *from_head = GC_NEXT(from);
- PyGC_Head *from_tail = GC_PREV(from);
- assert(from_head != from);
- assert(from_tail != from);
-
- _PyGCHead_SET_NEXT(to_tail, from_head);
- _PyGCHead_SET_PREV(from_head, to_tail);
-
- _PyGCHead_SET_NEXT(from_tail, to);
- _PyGCHead_SET_PREV(to, from_tail);
+ PyGC_Head *to_tail = GC_PREV(to);
+ PyGC_Head *from_head = GC_NEXT(from);
+ PyGC_Head *from_tail = GC_PREV(from);
+ assert(from_head != from);
+ assert(from_tail != from);
+
+ _PyGCHead_SET_NEXT(to_tail, from_head);
+ _PyGCHead_SET_PREV(from_head, to_tail);
+
+ _PyGCHead_SET_NEXT(from_tail, to);
+ _PyGCHead_SET_PREV(to, from_tail);
}
gc_list_init(from);
}
@@ -310,30 +310,30 @@ gc_list_size(PyGC_Head *list)
{
PyGC_Head *gc;
Py_ssize_t n = 0;
- for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
+ for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
n++;
}
return n;
}
-/* Walk the list and mark all objects as non-collecting */
-static inline void
-gc_list_clear_collecting(PyGC_Head *collectable)
-{
- PyGC_Head *gc;
- for (gc = GC_NEXT(collectable); gc != collectable; gc = GC_NEXT(gc)) {
- gc_clear_collecting(gc);
- }
-}
-
+/* Walk the list and mark all objects as non-collecting */
+static inline void
+gc_list_clear_collecting(PyGC_Head *collectable)
+{
+ PyGC_Head *gc;
+ for (gc = GC_NEXT(collectable); gc != collectable; gc = GC_NEXT(gc)) {
+ gc_clear_collecting(gc);
+ }
+}
+
/* Append objects in a GC list to a Python list.
- * Return 0 if all OK, < 0 if error (out of memory for list)
+ * Return 0 if all OK, < 0 if error (out of memory for list)
*/
static int
append_objects(PyObject *py_list, PyGC_Head *gc_list)
{
PyGC_Head *gc;
- for (gc = GC_NEXT(gc_list); gc != gc_list; gc = GC_NEXT(gc)) {
+ for (gc = GC_NEXT(gc_list); gc != gc_list; gc = GC_NEXT(gc)) {
PyObject *op = FROM_GC(gc);
if (op != py_list) {
if (PyList_Append(py_list, op)) {
@@ -344,74 +344,74 @@ append_objects(PyObject *py_list, PyGC_Head *gc_list)
return 0;
}
-// Constants for validate_list's flags argument.
-enum flagstates {collecting_clear_unreachable_clear,
- collecting_clear_unreachable_set,
- collecting_set_unreachable_clear,
- collecting_set_unreachable_set};
-
-#ifdef GC_DEBUG
-// validate_list checks list consistency. And it works as document
-// describing when flags are expected to be set / unset.
-// `head` must be a doubly-linked gc list, although it's fine (expected!) if
-// the prev and next pointers are "polluted" with flags.
-// What's checked:
-// - The `head` pointers are not polluted.
-// - The objects' PREV_MASK_COLLECTING and NEXT_MASK_UNREACHABLE flags are all
-// `set or clear, as specified by the 'flags' argument.
-// - The prev and next pointers are mutually consistent.
-static void
-validate_list(PyGC_Head *head, enum flagstates flags)
-{
- assert((head->_gc_prev & PREV_MASK_COLLECTING) == 0);
- assert((head->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
- uintptr_t prev_value = 0, next_value = 0;
- switch (flags) {
- case collecting_clear_unreachable_clear:
- break;
- case collecting_set_unreachable_clear:
- prev_value = PREV_MASK_COLLECTING;
- break;
- case collecting_clear_unreachable_set:
- next_value = NEXT_MASK_UNREACHABLE;
- break;
- case collecting_set_unreachable_set:
- prev_value = PREV_MASK_COLLECTING;
- next_value = NEXT_MASK_UNREACHABLE;
- break;
- default:
- assert(! "bad internal flags argument");
- }
- PyGC_Head *prev = head;
- PyGC_Head *gc = GC_NEXT(head);
- while (gc != head) {
- PyGC_Head *trueprev = GC_PREV(gc);
- PyGC_Head *truenext = (PyGC_Head *)(gc->_gc_next & ~NEXT_MASK_UNREACHABLE);
- assert(truenext != NULL);
- assert(trueprev == prev);
- assert((gc->_gc_prev & PREV_MASK_COLLECTING) == prev_value);
- assert((gc->_gc_next & NEXT_MASK_UNREACHABLE) == next_value);
- prev = gc;
- gc = truenext;
- }
- assert(prev == GC_PREV(head));
-}
-#else
-#define validate_list(x, y) do{}while(0)
-#endif
-
+// Constants for validate_list's flags argument.
+enum flagstates {collecting_clear_unreachable_clear,
+ collecting_clear_unreachable_set,
+ collecting_set_unreachable_clear,
+ collecting_set_unreachable_set};
+
+#ifdef GC_DEBUG
+// validate_list checks list consistency. And it works as document
+// describing when flags are expected to be set / unset.
+// `head` must be a doubly-linked gc list, although it's fine (expected!) if
+// the prev and next pointers are "polluted" with flags.
+// What's checked:
+// - The `head` pointers are not polluted.
+// - The objects' PREV_MASK_COLLECTING and NEXT_MASK_UNREACHABLE flags are all
+// `set or clear, as specified by the 'flags' argument.
+// - The prev and next pointers are mutually consistent.
+static void
+validate_list(PyGC_Head *head, enum flagstates flags)
+{
+ assert((head->_gc_prev & PREV_MASK_COLLECTING) == 0);
+ assert((head->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
+ uintptr_t prev_value = 0, next_value = 0;
+ switch (flags) {
+ case collecting_clear_unreachable_clear:
+ break;
+ case collecting_set_unreachable_clear:
+ prev_value = PREV_MASK_COLLECTING;
+ break;
+ case collecting_clear_unreachable_set:
+ next_value = NEXT_MASK_UNREACHABLE;
+ break;
+ case collecting_set_unreachable_set:
+ prev_value = PREV_MASK_COLLECTING;
+ next_value = NEXT_MASK_UNREACHABLE;
+ break;
+ default:
+ assert(! "bad internal flags argument");
+ }
+ PyGC_Head *prev = head;
+ PyGC_Head *gc = GC_NEXT(head);
+ while (gc != head) {
+ PyGC_Head *trueprev = GC_PREV(gc);
+ PyGC_Head *truenext = (PyGC_Head *)(gc->_gc_next & ~NEXT_MASK_UNREACHABLE);
+ assert(truenext != NULL);
+ assert(trueprev == prev);
+ assert((gc->_gc_prev & PREV_MASK_COLLECTING) == prev_value);
+ assert((gc->_gc_next & NEXT_MASK_UNREACHABLE) == next_value);
+ prev = gc;
+ gc = truenext;
+ }
+ assert(prev == GC_PREV(head));
+}
+#else
+#define validate_list(x, y) do{}while(0)
+#endif
+
/*** end of list stuff ***/
-/* Set all gc_refs = ob_refcnt. After this, gc_refs is > 0 and
- * PREV_MASK_COLLECTING bit is set for all objects in containers.
+/* Set all gc_refs = ob_refcnt. After this, gc_refs is > 0 and
+ * PREV_MASK_COLLECTING bit is set for all objects in containers.
*/
static void
update_refs(PyGC_Head *containers)
{
- PyGC_Head *gc = GC_NEXT(containers);
- for (; gc != containers; gc = GC_NEXT(gc)) {
- gc_reset_refs(gc, Py_REFCNT(FROM_GC(gc)));
+ PyGC_Head *gc = GC_NEXT(containers);
+ for (; gc != containers; gc = GC_NEXT(gc)) {
+ gc_reset_refs(gc, Py_REFCNT(FROM_GC(gc)));
/* Python's cyclic gc should never see an incoming refcount
* of 0: if something decref'ed to 0, it should have been
* deallocated immediately at that time.
@@ -430,25 +430,25 @@ update_refs(PyGC_Head *containers)
* so serious that maybe this should be a release-build
* check instead of an assert?
*/
- _PyObject_ASSERT(FROM_GC(gc), gc_get_refs(gc) != 0);
+ _PyObject_ASSERT(FROM_GC(gc), gc_get_refs(gc) != 0);
}
}
/* A traversal callback for subtract_refs. */
static int
-visit_decref(PyObject *op, void *parent)
+visit_decref(PyObject *op, void *parent)
{
- _PyObject_ASSERT(_PyObject_CAST(parent), !_PyObject_IsFreed(op));
-
- if (_PyObject_IS_GC(op)) {
+ _PyObject_ASSERT(_PyObject_CAST(parent), !_PyObject_IsFreed(op));
+
+ if (_PyObject_IS_GC(op)) {
PyGC_Head *gc = AS_GC(op);
/* We're only interested in gc_refs for objects in the
* generation being collected, which can be recognized
* because only they have positive gc_refs.
*/
- if (gc_is_collecting(gc)) {
- gc_decref(gc);
- }
+ if (gc_is_collecting(gc)) {
+ gc_decref(gc);
+ }
}
return 0;
}
@@ -462,13 +462,13 @@ static void
subtract_refs(PyGC_Head *containers)
{
traverseproc traverse;
- PyGC_Head *gc = GC_NEXT(containers);
- for (; gc != containers; gc = GC_NEXT(gc)) {
- PyObject *op = FROM_GC(gc);
- traverse = Py_TYPE(op)->tp_traverse;
+ PyGC_Head *gc = GC_NEXT(containers);
+ for (; gc != containers; gc = GC_NEXT(gc)) {
+ PyObject *op = FROM_GC(gc);
+ traverse = Py_TYPE(op)->tp_traverse;
(void) traverse(FROM_GC(gc),
(visitproc)visit_decref,
- op);
+ op);
}
}
@@ -476,93 +476,93 @@ subtract_refs(PyGC_Head *containers)
static int
visit_reachable(PyObject *op, PyGC_Head *reachable)
{
- if (!_PyObject_IS_GC(op)) {
- return 0;
- }
-
- PyGC_Head *gc = AS_GC(op);
- const Py_ssize_t gc_refs = gc_get_refs(gc);
-
- // Ignore objects in other generation.
- // This also skips objects "to the left" of the current position in
- // move_unreachable's scan of the 'young' list - they've already been
- // traversed, and no longer have the PREV_MASK_COLLECTING flag.
- if (! gc_is_collecting(gc)) {
- return 0;
- }
- // It would be a logic error elsewhere if the collecting flag were set on
- // an untracked object.
- assert(gc->_gc_next != 0);
-
- if (gc->_gc_next & NEXT_MASK_UNREACHABLE) {
- /* This had gc_refs = 0 when move_unreachable got
- * to it, but turns out it's reachable after all.
- * Move it back to move_unreachable's 'young' list,
- * and move_unreachable will eventually get to it
- * again.
+ if (!_PyObject_IS_GC(op)) {
+ return 0;
+ }
+
+ PyGC_Head *gc = AS_GC(op);
+ const Py_ssize_t gc_refs = gc_get_refs(gc);
+
+ // Ignore objects in other generation.
+ // This also skips objects "to the left" of the current position in
+ // move_unreachable's scan of the 'young' list - they've already been
+ // traversed, and no longer have the PREV_MASK_COLLECTING flag.
+ if (! gc_is_collecting(gc)) {
+ return 0;
+ }
+ // It would be a logic error elsewhere if the collecting flag were set on
+ // an untracked object.
+ assert(gc->_gc_next != 0);
+
+ if (gc->_gc_next & NEXT_MASK_UNREACHABLE) {
+ /* This had gc_refs = 0 when move_unreachable got
+ * to it, but turns out it's reachable after all.
+ * Move it back to move_unreachable's 'young' list,
+ * and move_unreachable will eventually get to it
+ * again.
+ */
+ // Manually unlink gc from unreachable list because the list functions
+ // don't work right in the presence of NEXT_MASK_UNREACHABLE flags.
+ PyGC_Head *prev = GC_PREV(gc);
+ PyGC_Head *next = (PyGC_Head*)(gc->_gc_next & ~NEXT_MASK_UNREACHABLE);
+ _PyObject_ASSERT(FROM_GC(prev),
+ prev->_gc_next & NEXT_MASK_UNREACHABLE);
+ _PyObject_ASSERT(FROM_GC(next),
+ next->_gc_next & NEXT_MASK_UNREACHABLE);
+ prev->_gc_next = gc->_gc_next; // copy NEXT_MASK_UNREACHABLE
+ _PyGCHead_SET_PREV(next, prev);
+
+ gc_list_append(gc, reachable);
+ gc_set_refs(gc, 1);
+ }
+ else if (gc_refs == 0) {
+ /* This is in move_unreachable's 'young' list, but
+ * the traversal hasn't yet gotten to it. All
+ * we need to do is tell move_unreachable that it's
+ * reachable.
*/
- // Manually unlink gc from unreachable list because the list functions
- // don't work right in the presence of NEXT_MASK_UNREACHABLE flags.
- PyGC_Head *prev = GC_PREV(gc);
- PyGC_Head *next = (PyGC_Head*)(gc->_gc_next & ~NEXT_MASK_UNREACHABLE);
- _PyObject_ASSERT(FROM_GC(prev),
- prev->_gc_next & NEXT_MASK_UNREACHABLE);
- _PyObject_ASSERT(FROM_GC(next),
- next->_gc_next & NEXT_MASK_UNREACHABLE);
- prev->_gc_next = gc->_gc_next; // copy NEXT_MASK_UNREACHABLE
- _PyGCHead_SET_PREV(next, prev);
-
- gc_list_append(gc, reachable);
- gc_set_refs(gc, 1);
- }
- else if (gc_refs == 0) {
- /* This is in move_unreachable's 'young' list, but
- * the traversal hasn't yet gotten to it. All
- * we need to do is tell move_unreachable that it's
- * reachable.
- */
- gc_set_refs(gc, 1);
- }
- /* Else there's nothing to do.
- * If gc_refs > 0, it must be in move_unreachable's 'young'
- * list, and move_unreachable will eventually get to it.
- */
- else {
- _PyObject_ASSERT_WITH_MSG(op, gc_refs > 0, "refcount is too small");
- }
+ gc_set_refs(gc, 1);
+ }
+ /* Else there's nothing to do.
+ * If gc_refs > 0, it must be in move_unreachable's 'young'
+ * list, and move_unreachable will eventually get to it.
+ */
+ else {
+ _PyObject_ASSERT_WITH_MSG(op, gc_refs > 0, "refcount is too small");
+ }
return 0;
}
/* Move the unreachable objects from young to unreachable. After this,
- * all objects in young don't have PREV_MASK_COLLECTING flag and
- * unreachable have the flag.
+ * all objects in young don't have PREV_MASK_COLLECTING flag and
+ * unreachable have the flag.
* All objects in young after this are directly or indirectly reachable
* from outside the original young; and all objects in unreachable are
* not.
- *
- * This function restores _gc_prev pointer. young and unreachable are
- * doubly linked list after this function.
- * But _gc_next in unreachable list has NEXT_MASK_UNREACHABLE flag.
- * So we can not gc_list_* functions for unreachable until we remove the flag.
+ *
+ * This function restores _gc_prev pointer. young and unreachable are
+ * doubly linked list after this function.
+ * But _gc_next in unreachable list has NEXT_MASK_UNREACHABLE flag.
+ * So we can not gc_list_* functions for unreachable until we remove the flag.
*/
static void
move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
{
- // previous elem in the young list, used for restore gc_prev.
- PyGC_Head *prev = young;
- PyGC_Head *gc = GC_NEXT(young);
+ // previous elem in the young list, used for restore gc_prev.
+ PyGC_Head *prev = young;
+ PyGC_Head *gc = GC_NEXT(young);
- /* Invariants: all objects "to the left" of us in young are reachable
- * (directly or indirectly) from outside the young list as it was at entry.
- *
- * All other objects from the original young "to the left" of us are in
- * unreachable now, and have NEXT_MASK_UNREACHABLE. All objects to the
+ /* Invariants: all objects "to the left" of us in young are reachable
+ * (directly or indirectly) from outside the young list as it was at entry.
+ *
+ * All other objects from the original young "to the left" of us are in
+ * unreachable now, and have NEXT_MASK_UNREACHABLE. All objects to the
* left of us in 'young' now have been scanned, and no objects here
* or to the right have been scanned yet.
*/
while (gc != young) {
- if (gc_get_refs(gc)) {
+ if (gc_get_refs(gc)) {
/* gc is definitely reachable from outside the
* original 'young'. Mark it as such, and traverse
* its pointers to find any other objects that may
@@ -573,18 +573,18 @@ move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
*/
PyObject *op = FROM_GC(gc);
traverseproc traverse = Py_TYPE(op)->tp_traverse;
- _PyObject_ASSERT_WITH_MSG(op, gc_get_refs(gc) > 0,
- "refcount is too small");
- // NOTE: visit_reachable may change gc->_gc_next when
- // young->_gc_prev == gc. Don't do gc = GC_NEXT(gc) before!
+ _PyObject_ASSERT_WITH_MSG(op, gc_get_refs(gc) > 0,
+ "refcount is too small");
+ // NOTE: visit_reachable may change gc->_gc_next when
+ // young->_gc_prev == gc. Don't do gc = GC_NEXT(gc) before!
(void) traverse(op,
- (visitproc)visit_reachable,
- (void *)young);
- // relink gc_prev to prev element.
- _PyGCHead_SET_PREV(gc, prev);
- // gc is not COLLECTING state after here.
- gc_clear_collecting(gc);
- prev = gc;
+ (visitproc)visit_reachable,
+ (void *)young);
+ // relink gc_prev to prev element.
+ _PyGCHead_SET_PREV(gc, prev);
+ // gc is not COLLECTING state after here.
+ gc_clear_collecting(gc);
+ prev = gc;
}
else {
/* This *may* be unreachable. To make progress,
@@ -594,41 +594,41 @@ move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
* visit_reachable will eventually move gc back into
* young if that's so, and we'll see it again.
*/
- // Move gc to unreachable.
- // No need to gc->next->prev = prev because it is single linked.
- prev->_gc_next = gc->_gc_next;
-
- // We can't use gc_list_append() here because we use
- // NEXT_MASK_UNREACHABLE here.
- PyGC_Head *last = GC_PREV(unreachable);
- // NOTE: Since all objects in unreachable set has
- // NEXT_MASK_UNREACHABLE flag, we set it unconditionally.
- // But this may pollute the unreachable list head's 'next' pointer
- // too. That's semantically senseless but expedient here - the
- // damage is repaired when this function ends.
- last->_gc_next = (NEXT_MASK_UNREACHABLE | (uintptr_t)gc);
- _PyGCHead_SET_PREV(gc, last);
- gc->_gc_next = (NEXT_MASK_UNREACHABLE | (uintptr_t)unreachable);
- unreachable->_gc_prev = (uintptr_t)gc;
+ // Move gc to unreachable.
+ // No need to gc->next->prev = prev because it is single linked.
+ prev->_gc_next = gc->_gc_next;
+
+ // We can't use gc_list_append() here because we use
+ // NEXT_MASK_UNREACHABLE here.
+ PyGC_Head *last = GC_PREV(unreachable);
+ // NOTE: Since all objects in unreachable set has
+ // NEXT_MASK_UNREACHABLE flag, we set it unconditionally.
+ // But this may pollute the unreachable list head's 'next' pointer
+ // too. That's semantically senseless but expedient here - the
+ // damage is repaired when this function ends.
+ last->_gc_next = (NEXT_MASK_UNREACHABLE | (uintptr_t)gc);
+ _PyGCHead_SET_PREV(gc, last);
+ gc->_gc_next = (NEXT_MASK_UNREACHABLE | (uintptr_t)unreachable);
+ unreachable->_gc_prev = (uintptr_t)gc;
+ }
+ gc = (PyGC_Head*)prev->_gc_next;
+ }
+ // young->_gc_prev must be last element remained in the list.
+ young->_gc_prev = (uintptr_t)prev;
+ // don't let the pollution of the list head's next pointer leak
+ unreachable->_gc_next &= ~NEXT_MASK_UNREACHABLE;
+}
+
+static void
+untrack_tuples(PyGC_Head *head)
+{
+ PyGC_Head *next, *gc = GC_NEXT(head);
+ while (gc != head) {
+ PyObject *op = FROM_GC(gc);
+ next = GC_NEXT(gc);
+ if (PyTuple_CheckExact(op)) {
+ _PyTuple_MaybeUntrack(op);
}
- gc = (PyGC_Head*)prev->_gc_next;
- }
- // young->_gc_prev must be last element remained in the list.
- young->_gc_prev = (uintptr_t)prev;
- // don't let the pollution of the list head's next pointer leak
- unreachable->_gc_next &= ~NEXT_MASK_UNREACHABLE;
-}
-
-static void
-untrack_tuples(PyGC_Head *head)
-{
- PyGC_Head *next, *gc = GC_NEXT(head);
- while (gc != head) {
- PyObject *op = FROM_GC(gc);
- next = GC_NEXT(gc);
- if (PyTuple_CheckExact(op)) {
- _PyTuple_MaybeUntrack(op);
- }
gc = next;
}
}
@@ -637,13 +637,13 @@ untrack_tuples(PyGC_Head *head)
static void
untrack_dicts(PyGC_Head *head)
{
- PyGC_Head *next, *gc = GC_NEXT(head);
+ PyGC_Head *next, *gc = GC_NEXT(head);
while (gc != head) {
PyObject *op = FROM_GC(gc);
- next = GC_NEXT(gc);
- if (PyDict_CheckExact(op)) {
+ next = GC_NEXT(gc);
+ if (PyDict_CheckExact(op)) {
_PyDict_MaybeUntrack(op);
- }
+ }
gc = next;
}
}
@@ -652,62 +652,62 @@ untrack_dicts(PyGC_Head *head)
static int
has_legacy_finalizer(PyObject *op)
{
- return Py_TYPE(op)->tp_del != NULL;
+ return Py_TYPE(op)->tp_del != NULL;
}
/* Move the objects in unreachable with tp_del slots into `finalizers`.
- *
- * This function also removes NEXT_MASK_UNREACHABLE flag
- * from _gc_next in unreachable.
+ *
+ * This function also removes NEXT_MASK_UNREACHABLE flag
+ * from _gc_next in unreachable.
*/
static void
move_legacy_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
{
- PyGC_Head *gc, *next;
- assert((unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
+ PyGC_Head *gc, *next;
+ assert((unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
/* March over unreachable. Move objects with finalizers into
* `finalizers`.
*/
- for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
+ for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
PyObject *op = FROM_GC(gc);
- _PyObject_ASSERT(op, gc->_gc_next & NEXT_MASK_UNREACHABLE);
- gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
- next = (PyGC_Head*)gc->_gc_next;
+ _PyObject_ASSERT(op, gc->_gc_next & NEXT_MASK_UNREACHABLE);
+ gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
+ next = (PyGC_Head*)gc->_gc_next;
if (has_legacy_finalizer(op)) {
- gc_clear_collecting(gc);
+ gc_clear_collecting(gc);
gc_list_move(gc, finalizers);
}
}
}
-static inline void
-clear_unreachable_mask(PyGC_Head *unreachable)
-{
- /* Check that the list head does not have the unreachable bit set */
- assert(((uintptr_t)unreachable & NEXT_MASK_UNREACHABLE) == 0);
-
- PyGC_Head *gc, *next;
- assert((unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
- for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
- _PyObject_ASSERT((PyObject*)FROM_GC(gc), gc->_gc_next & NEXT_MASK_UNREACHABLE);
- gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
- next = (PyGC_Head*)gc->_gc_next;
- }
- validate_list(unreachable, collecting_set_unreachable_clear);
-}
-
+static inline void
+clear_unreachable_mask(PyGC_Head *unreachable)
+{
+ /* Check that the list head does not have the unreachable bit set */
+ assert(((uintptr_t)unreachable & NEXT_MASK_UNREACHABLE) == 0);
+
+ PyGC_Head *gc, *next;
+ assert((unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
+ for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
+ _PyObject_ASSERT((PyObject*)FROM_GC(gc), gc->_gc_next & NEXT_MASK_UNREACHABLE);
+ gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
+ next = (PyGC_Head*)gc->_gc_next;
+ }
+ validate_list(unreachable, collecting_set_unreachable_clear);
+}
+
/* A traversal callback for move_legacy_finalizer_reachable. */
static int
visit_move(PyObject *op, PyGC_Head *tolist)
{
- if (_PyObject_IS_GC(op)) {
- PyGC_Head *gc = AS_GC(op);
- if (gc_is_collecting(gc)) {
+ if (_PyObject_IS_GC(op)) {
+ PyGC_Head *gc = AS_GC(op);
+ if (gc_is_collecting(gc)) {
gc_list_move(gc, tolist);
- gc_clear_collecting(gc);
+ gc_clear_collecting(gc);
}
}
return 0;
@@ -720,8 +720,8 @@ static void
move_legacy_finalizer_reachable(PyGC_Head *finalizers)
{
traverseproc traverse;
- PyGC_Head *gc = GC_NEXT(finalizers);
- for (; gc != finalizers; gc = GC_NEXT(gc)) {
+ PyGC_Head *gc = GC_NEXT(finalizers);
+ for (; gc != finalizers; gc = GC_NEXT(gc)) {
/* Note that the finalizers list may grow during this. */
traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
(void) traverse(FROM_GC(gc),
@@ -761,33 +761,33 @@ handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
* make another pass over wrcb_to_call, invoking callbacks, after this
* pass completes.
*/
- for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
+ for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
PyWeakReference **wrlist;
op = FROM_GC(gc);
- next = GC_NEXT(gc);
-
- if (PyWeakref_Check(op)) {
- /* A weakref inside the unreachable set must be cleared. If we
- * allow its callback to execute inside delete_garbage(), it
- * could expose objects that have tp_clear already called on
- * them. Or, it could resurrect unreachable objects. One way
- * this can happen is if some container objects do not implement
- * tp_traverse. Then, wr_object can be outside the unreachable
- * set but can be deallocated as a result of breaking the
- * reference cycle. If we don't clear the weakref, the callback
- * will run and potentially cause a crash. See bpo-38006 for
- * one example.
- */
- _PyWeakref_ClearRef((PyWeakReference *)op);
- }
-
+ next = GC_NEXT(gc);
+
+ if (PyWeakref_Check(op)) {
+ /* A weakref inside the unreachable set must be cleared. If we
+ * allow its callback to execute inside delete_garbage(), it
+ * could expose objects that have tp_clear already called on
+ * them. Or, it could resurrect unreachable objects. One way
+ * this can happen is if some container objects do not implement
+ * tp_traverse. Then, wr_object can be outside the unreachable
+ * set but can be deallocated as a result of breaking the
+ * reference cycle. If we don't clear the weakref, the callback
+ * will run and potentially cause a crash. See bpo-38006 for
+ * one example.
+ */
+ _PyWeakref_ClearRef((PyWeakReference *)op);
+ }
+
if (! PyType_SUPPORTS_WEAKREFS(Py_TYPE(op)))
continue;
/* It supports weakrefs. Does it have any? */
wrlist = (PyWeakReference **)
- _PyObject_GET_WEAKREFS_LISTPTR(op);
+ _PyObject_GET_WEAKREFS_LISTPTR(op);
/* `op` may have some weakrefs. March over the list, clear
* all the weakrefs, and move the weakrefs with callbacks
@@ -800,47 +800,47 @@ handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
* the callback pointer intact. Obscure: it also
* changes *wrlist.
*/
- _PyObject_ASSERT((PyObject *)wr, wr->wr_object == op);
+ _PyObject_ASSERT((PyObject *)wr, wr->wr_object == op);
_PyWeakref_ClearRef(wr);
- _PyObject_ASSERT((PyObject *)wr, wr->wr_object == Py_None);
- if (wr->wr_callback == NULL) {
- /* no callback */
- continue;
- }
-
- /* Headache time. `op` is going away, and is weakly referenced by
- * `wr`, which has a callback. Should the callback be invoked? If wr
- * is also trash, no:
- *
- * 1. There's no need to call it. The object and the weakref are
- * both going away, so it's legitimate to pretend the weakref is
- * going away first. The user has to ensure a weakref outlives its
- * referent if they want a guarantee that the wr callback will get
- * invoked.
- *
- * 2. It may be catastrophic to call it. If the callback is also in
- * cyclic trash (CT), then although the CT is unreachable from
- * outside the current generation, CT may be reachable from the
- * callback. Then the callback could resurrect insane objects.
- *
- * Since the callback is never needed and may be unsafe in this case,
- * wr is simply left in the unreachable set. Note that because we
- * already called _PyWeakref_ClearRef(wr), its callback will never
- * trigger.
- *
- * OTOH, if wr isn't part of CT, we should invoke the callback: the
- * weakref outlived the trash. Note that since wr isn't CT in this
- * case, its callback can't be CT either -- wr acted as an external
- * root to this generation, and therefore its callback did too. So
- * nothing in CT is reachable from the callback either, so it's hard
- * to imagine how calling it later could create a problem for us. wr
- * is moved to wrcb_to_call in this case.
- */
- if (gc_is_collecting(AS_GC(wr))) {
- /* it should already have been cleared above */
- assert(wr->wr_object == Py_None);
+ _PyObject_ASSERT((PyObject *)wr, wr->wr_object == Py_None);
+ if (wr->wr_callback == NULL) {
+ /* no callback */
+ continue;
+ }
+
+ /* Headache time. `op` is going away, and is weakly referenced by
+ * `wr`, which has a callback. Should the callback be invoked? If wr
+ * is also trash, no:
+ *
+ * 1. There's no need to call it. The object and the weakref are
+ * both going away, so it's legitimate to pretend the weakref is
+ * going away first. The user has to ensure a weakref outlives its
+ * referent if they want a guarantee that the wr callback will get
+ * invoked.
+ *
+ * 2. It may be catastrophic to call it. If the callback is also in
+ * cyclic trash (CT), then although the CT is unreachable from
+ * outside the current generation, CT may be reachable from the
+ * callback. Then the callback could resurrect insane objects.
+ *
+ * Since the callback is never needed and may be unsafe in this case,
+ * wr is simply left in the unreachable set. Note that because we
+ * already called _PyWeakref_ClearRef(wr), its callback will never
+ * trigger.
+ *
+ * OTOH, if wr isn't part of CT, we should invoke the callback: the
+ * weakref outlived the trash. Note that since wr isn't CT in this
+ * case, its callback can't be CT either -- wr acted as an external
+ * root to this generation, and therefore its callback did too. So
+ * nothing in CT is reachable from the callback either, so it's hard
+ * to imagine how calling it later could create a problem for us. wr
+ * is moved to wrcb_to_call in this case.
+ */
+ if (gc_is_collecting(AS_GC(wr))) {
+ /* it should already have been cleared above */
+ assert(wr->wr_object == Py_None);
continue;
- }
+ }
/* Create a new reference so that wr can't go away
* before we can process it again.
@@ -863,15 +863,15 @@ handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
PyObject *temp;
PyObject *callback;
- gc = (PyGC_Head*)wrcb_to_call._gc_next;
+ gc = (PyGC_Head*)wrcb_to_call._gc_next;
op = FROM_GC(gc);
- _PyObject_ASSERT(op, PyWeakref_Check(op));
+ _PyObject_ASSERT(op, PyWeakref_Check(op));
wr = (PyWeakReference *)op;
callback = wr->wr_callback;
- _PyObject_ASSERT(op, callback != NULL);
+ _PyObject_ASSERT(op, callback != NULL);
/* copy-paste of weakrefobject.c's handle_callback() */
- temp = PyObject_CallOneArg(callback, (PyObject *)wr);
+ temp = PyObject_CallOneArg(callback, (PyObject *)wr);
if (temp == NULL)
PyErr_WriteUnraisable(callback);
else
@@ -889,13 +889,13 @@ handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
* ours).
*/
Py_DECREF(op);
- if (wrcb_to_call._gc_next == (uintptr_t)gc) {
+ if (wrcb_to_call._gc_next == (uintptr_t)gc) {
/* object is still alive -- move it */
gc_list_move(gc, old);
}
- else {
+ else {
++num_freed;
- }
+ }
}
return num_freed;
@@ -916,22 +916,22 @@ debug_cycle(const char *msg, PyObject *op)
* merged into the old list regardless.
*/
static void
-handle_legacy_finalizers(PyThreadState *tstate,
- GCState *gcstate,
- PyGC_Head *finalizers, PyGC_Head *old)
+handle_legacy_finalizers(PyThreadState *tstate,
+ GCState *gcstate,
+ PyGC_Head *finalizers, PyGC_Head *old)
{
- assert(!_PyErr_Occurred(tstate));
- assert(gcstate->garbage != NULL);
+ assert(!_PyErr_Occurred(tstate));
+ assert(gcstate->garbage != NULL);
- PyGC_Head *gc = GC_NEXT(finalizers);
- for (; gc != finalizers; gc = GC_NEXT(gc)) {
+ PyGC_Head *gc = GC_NEXT(finalizers);
+ for (; gc != finalizers; gc = GC_NEXT(gc)) {
PyObject *op = FROM_GC(gc);
- if ((gcstate->debug & DEBUG_SAVEALL) || has_legacy_finalizer(op)) {
- if (PyList_Append(gcstate->garbage, op) < 0) {
- _PyErr_Clear(tstate);
+ if ((gcstate->debug & DEBUG_SAVEALL) || has_legacy_finalizer(op)) {
+ if (PyList_Append(gcstate->garbage, op) < 0) {
+ _PyErr_Clear(tstate);
break;
- }
+ }
}
}
@@ -943,7 +943,7 @@ handle_legacy_finalizers(PyThreadState *tstate,
* list, due to refcounts falling to 0.
*/
static void
-finalize_garbage(PyThreadState *tstate, PyGC_Head *collectable)
+finalize_garbage(PyThreadState *tstate, PyGC_Head *collectable)
{
destructor finalize;
PyGC_Head seen;
@@ -959,15 +959,15 @@ finalize_garbage(PyThreadState *tstate, PyGC_Head *collectable)
gc_list_init(&seen);
while (!gc_list_is_empty(collectable)) {
- PyGC_Head *gc = GC_NEXT(collectable);
+ PyGC_Head *gc = GC_NEXT(collectable);
PyObject *op = FROM_GC(gc);
gc_list_move(gc, &seen);
if (!_PyGCHead_FINALIZED(gc) &&
(finalize = Py_TYPE(op)->tp_finalize) != NULL) {
- _PyGCHead_SET_FINALIZED(gc);
+ _PyGCHead_SET_FINALIZED(gc);
Py_INCREF(op);
finalize(op);
- assert(!_PyErr_Occurred(tstate));
+ assert(!_PyErr_Occurred(tstate));
Py_DECREF(op);
}
}
@@ -979,39 +979,39 @@ finalize_garbage(PyThreadState *tstate, PyGC_Head *collectable)
* objects may be freed. It is possible I screwed something up here.
*/
static void
-delete_garbage(PyThreadState *tstate, GCState *gcstate,
- PyGC_Head *collectable, PyGC_Head *old)
+delete_garbage(PyThreadState *tstate, GCState *gcstate,
+ PyGC_Head *collectable, PyGC_Head *old)
{
- assert(!_PyErr_Occurred(tstate));
+ assert(!_PyErr_Occurred(tstate));
while (!gc_list_is_empty(collectable)) {
- PyGC_Head *gc = GC_NEXT(collectable);
+ PyGC_Head *gc = GC_NEXT(collectable);
PyObject *op = FROM_GC(gc);
- _PyObject_ASSERT_WITH_MSG(op, Py_REFCNT(op) > 0,
- "refcount is too small");
-
- if (gcstate->debug & DEBUG_SAVEALL) {
- assert(gcstate->garbage != NULL);
- if (PyList_Append(gcstate->garbage, op) < 0) {
- _PyErr_Clear(tstate);
- }
+ _PyObject_ASSERT_WITH_MSG(op, Py_REFCNT(op) > 0,
+ "refcount is too small");
+
+ if (gcstate->debug & DEBUG_SAVEALL) {
+ assert(gcstate->garbage != NULL);
+ if (PyList_Append(gcstate->garbage, op) < 0) {
+ _PyErr_Clear(tstate);
+ }
}
else {
- inquiry clear;
+ inquiry clear;
if ((clear = Py_TYPE(op)->tp_clear) != NULL) {
Py_INCREF(op);
- (void) clear(op);
- if (_PyErr_Occurred(tstate)) {
- _PyErr_WriteUnraisableMsg("in tp_clear of",
- (PyObject*)Py_TYPE(op));
- }
+ (void) clear(op);
+ if (_PyErr_Occurred(tstate)) {
+ _PyErr_WriteUnraisableMsg("in tp_clear of",
+ (PyObject*)Py_TYPE(op));
+ }
Py_DECREF(op);
}
}
- if (GC_NEXT(collectable) == gc) {
+ if (GC_NEXT(collectable) == gc) {
/* object is still alive, move it, it may die later */
- gc_clear_collecting(gc);
+ gc_clear_collecting(gc);
gc_list_move(gc, old);
}
}
@@ -1025,150 +1025,150 @@ delete_garbage(PyThreadState *tstate, GCState *gcstate,
static void
clear_freelists(void)
{
- _PyFrame_ClearFreeList();
- _PyTuple_ClearFreeList();
- _PyFloat_ClearFreeList();
- _PyList_ClearFreeList();
- _PyDict_ClearFreeList();
- _PyAsyncGen_ClearFreeLists();
- _PyContext_ClearFreeList();
-}
-
-// Show stats for objects in each generations
-static void
-show_stats_each_generations(GCState *gcstate)
-{
- char buf[100];
- size_t pos = 0;
-
- for (int i = 0; i < NUM_GENERATIONS && pos < sizeof(buf); i++) {
- pos += PyOS_snprintf(buf+pos, sizeof(buf)-pos,
- " %"PY_FORMAT_SIZE_T"d",
- gc_list_size(GEN_HEAD(gcstate, i)));
- }
-
- PySys_FormatStderr(
- "gc: objects in each generation:%s\n"
- "gc: objects in permanent generation: %zd\n",
- buf, gc_list_size(&gcstate->permanent_generation.head));
-}
-
-/* Deduce which objects among "base" are unreachable from outside the list
- and move them to 'unreachable'. The process consist in the following steps:
-
-1. Copy all reference counts to a different field (gc_prev is used to hold
- this copy to save memory).
-2. Traverse all objects in "base" and visit all referred objects using
- "tp_traverse" and for every visited object, subtract 1 to the reference
- count (the one that we copied in the previous step). After this step, all
- objects that can be reached directly from outside must have strictly positive
- reference count, while all unreachable objects must have a count of exactly 0.
-3. Identify all unreachable objects (the ones with 0 reference count) and move
- them to the "unreachable" list. This step also needs to move back to "base" all
- objects that were initially marked as unreachable but are referred transitively
- by the reachable objects (the ones with strictly positive reference count).
-
-Contracts:
-
- * The "base" has to be a valid list with no mask set.
-
- * The "unreachable" list must be uninitialized (this function calls
- gc_list_init over 'unreachable').
-
-IMPORTANT: This function leaves 'unreachable' with the NEXT_MASK_UNREACHABLE
-flag set but it does not clear it to skip unnecessary iteration. Before the
-flag is cleared (for example, by using 'clear_unreachable_mask' function or
-by a call to 'move_legacy_finalizers'), the 'unreachable' list is not a normal
-list and we can not use most gc_list_* functions for it. */
-static inline void
-deduce_unreachable(PyGC_Head *base, PyGC_Head *unreachable) {
- validate_list(base, collecting_clear_unreachable_clear);
- /* Using ob_refcnt and gc_refs, calculate which objects in the
- * container set are reachable from outside the set (i.e., have a
- * refcount greater than 0 when all the references within the
- * set are taken into account).
- */
- update_refs(base); // gc_prev is used for gc_refs
- subtract_refs(base);
-
- /* Leave everything reachable from outside base in base, and move
- * everything else (in base) to unreachable.
- *
- * NOTE: This used to move the reachable objects into a reachable
- * set instead. But most things usually turn out to be reachable,
- * so it's more efficient to move the unreachable things. It "sounds slick"
- * to move the unreachable objects, until you think about it - the reason it
- * pays isn't actually obvious.
- *
- * Suppose we create objects A, B, C in that order. They appear in the young
- * generation in the same order. If B points to A, and C to B, and C is
- * reachable from outside, then the adjusted refcounts will be 0, 0, and 1
- * respectively.
- *
- * When move_unreachable finds A, A is moved to the unreachable list. The
- * same for B when it's first encountered. Then C is traversed, B is moved
- * _back_ to the reachable list. B is eventually traversed, and then A is
- * moved back to the reachable list.
- *
- * So instead of not moving at all, the reachable objects B and A are moved
- * twice each. Why is this a win? A straightforward algorithm to move the
- * reachable objects instead would move A, B, and C once each.
- *
- * The key is that this dance leaves the objects in order C, B, A - it's
- * reversed from the original order. On all _subsequent_ scans, none of
- * them will move. Since most objects aren't in cycles, this can save an
- * unbounded number of moves across an unbounded number of later collections.
- * It can cost more only the first time the chain is scanned.
- *
- * Drawback: move_unreachable is also used to find out what's still trash
- * after finalizers may resurrect objects. In _that_ case most unreachable
- * objects will remain unreachable, so it would be more efficient to move
- * the reachable objects instead. But this is a one-time cost, probably not
- * worth complicating the code to speed just a little.
- */
- gc_list_init(unreachable);
- move_unreachable(base, unreachable); // gc_prev is pointer again
- validate_list(base, collecting_clear_unreachable_clear);
- validate_list(unreachable, collecting_set_unreachable_set);
-}
-
-/* Handle objects that may have resurrected after a call to 'finalize_garbage', moving
- them to 'old_generation' and placing the rest on 'still_unreachable'.
-
- Contracts:
- * After this function 'unreachable' must not be used anymore and 'still_unreachable'
- will contain the objects that did not resurrect.
-
- * The "still_unreachable" list must be uninitialized (this function calls
- gc_list_init over 'still_unreachable').
-
-IMPORTANT: After a call to this function, the 'still_unreachable' set will have the
-PREV_MARK_COLLECTING set, but the objects in this set are going to be removed so
-we can skip the expense of clearing the flag to avoid extra iteration. */
-static inline void
-handle_resurrected_objects(PyGC_Head *unreachable, PyGC_Head* still_unreachable,
- PyGC_Head *old_generation)
-{
- // Remove the PREV_MASK_COLLECTING from unreachable
- // to prepare it for a new call to 'deduce_unreachable'
- gc_list_clear_collecting(unreachable);
-
- // After the call to deduce_unreachable, the 'still_unreachable' set will
- // have the PREV_MARK_COLLECTING set, but the objects are going to be
- // removed so we can skip the expense of clearing the flag.
- PyGC_Head* resurrected = unreachable;
- deduce_unreachable(resurrected, still_unreachable);
- clear_unreachable_mask(still_unreachable);
-
- // Move the resurrected objects to the old generation for future collection.
- gc_list_merge(resurrected, old_generation);
-}
-
+ _PyFrame_ClearFreeList();
+ _PyTuple_ClearFreeList();
+ _PyFloat_ClearFreeList();
+ _PyList_ClearFreeList();
+ _PyDict_ClearFreeList();
+ _PyAsyncGen_ClearFreeLists();
+ _PyContext_ClearFreeList();
+}
+
+// Show stats for objects in each generations
+static void
+show_stats_each_generations(GCState *gcstate)
+{
+ char buf[100];
+ size_t pos = 0;
+
+ for (int i = 0; i < NUM_GENERATIONS && pos < sizeof(buf); i++) {
+ pos += PyOS_snprintf(buf+pos, sizeof(buf)-pos,
+ " %"PY_FORMAT_SIZE_T"d",
+ gc_list_size(GEN_HEAD(gcstate, i)));
+ }
+
+ PySys_FormatStderr(
+ "gc: objects in each generation:%s\n"
+ "gc: objects in permanent generation: %zd\n",
+ buf, gc_list_size(&gcstate->permanent_generation.head));
+}
+
+/* Deduce which objects among "base" are unreachable from outside the list
+ and move them to 'unreachable'. The process consist in the following steps:
+
+1. Copy all reference counts to a different field (gc_prev is used to hold
+ this copy to save memory).
+2. Traverse all objects in "base" and visit all referred objects using
+ "tp_traverse" and for every visited object, subtract 1 to the reference
+ count (the one that we copied in the previous step). After this step, all
+ objects that can be reached directly from outside must have strictly positive
+ reference count, while all unreachable objects must have a count of exactly 0.
+3. Identify all unreachable objects (the ones with 0 reference count) and move
+ them to the "unreachable" list. This step also needs to move back to "base" all
+ objects that were initially marked as unreachable but are referred transitively
+ by the reachable objects (the ones with strictly positive reference count).
+
+Contracts:
+
+ * The "base" has to be a valid list with no mask set.
+
+ * The "unreachable" list must be uninitialized (this function calls
+ gc_list_init over 'unreachable').
+
+IMPORTANT: This function leaves 'unreachable' with the NEXT_MASK_UNREACHABLE
+flag set but it does not clear it to skip unnecessary iteration. Before the
+flag is cleared (for example, by using 'clear_unreachable_mask' function or
+by a call to 'move_legacy_finalizers'), the 'unreachable' list is not a normal
+list and we can not use most gc_list_* functions for it. */
+static inline void
+deduce_unreachable(PyGC_Head *base, PyGC_Head *unreachable) {
+ validate_list(base, collecting_clear_unreachable_clear);
+ /* Using ob_refcnt and gc_refs, calculate which objects in the
+ * container set are reachable from outside the set (i.e., have a
+ * refcount greater than 0 when all the references within the
+ * set are taken into account).
+ */
+ update_refs(base); // gc_prev is used for gc_refs
+ subtract_refs(base);
+
+ /* Leave everything reachable from outside base in base, and move
+ * everything else (in base) to unreachable.
+ *
+ * NOTE: This used to move the reachable objects into a reachable
+ * set instead. But most things usually turn out to be reachable,
+ * so it's more efficient to move the unreachable things. It "sounds slick"
+ * to move the unreachable objects, until you think about it - the reason it
+ * pays isn't actually obvious.
+ *
+ * Suppose we create objects A, B, C in that order. They appear in the young
+ * generation in the same order. If B points to A, and C to B, and C is
+ * reachable from outside, then the adjusted refcounts will be 0, 0, and 1
+ * respectively.
+ *
+ * When move_unreachable finds A, A is moved to the unreachable list. The
+ * same for B when it's first encountered. Then C is traversed, B is moved
+ * _back_ to the reachable list. B is eventually traversed, and then A is
+ * moved back to the reachable list.
+ *
+ * So instead of not moving at all, the reachable objects B and A are moved
+ * twice each. Why is this a win? A straightforward algorithm to move the
+ * reachable objects instead would move A, B, and C once each.
+ *
+ * The key is that this dance leaves the objects in order C, B, A - it's
+ * reversed from the original order. On all _subsequent_ scans, none of
+ * them will move. Since most objects aren't in cycles, this can save an
+ * unbounded number of moves across an unbounded number of later collections.
+ * It can cost more only the first time the chain is scanned.
+ *
+ * Drawback: move_unreachable is also used to find out what's still trash
+ * after finalizers may resurrect objects. In _that_ case most unreachable
+ * objects will remain unreachable, so it would be more efficient to move
+ * the reachable objects instead. But this is a one-time cost, probably not
+ * worth complicating the code to speed just a little.
+ */
+ gc_list_init(unreachable);
+ move_unreachable(base, unreachable); // gc_prev is pointer again
+ validate_list(base, collecting_clear_unreachable_clear);
+ validate_list(unreachable, collecting_set_unreachable_set);
+}
+
+/* Handle objects that may have resurrected after a call to 'finalize_garbage', moving
+ them to 'old_generation' and placing the rest on 'still_unreachable'.
+
+ Contracts:
+ * After this function 'unreachable' must not be used anymore and 'still_unreachable'
+ will contain the objects that did not resurrect.
+
+ * The "still_unreachable" list must be uninitialized (this function calls
+ gc_list_init over 'still_unreachable').
+
+IMPORTANT: After a call to this function, the 'still_unreachable' set will have the
+PREV_MARK_COLLECTING set, but the objects in this set are going to be removed so
+we can skip the expense of clearing the flag to avoid extra iteration. */
+static inline void
+handle_resurrected_objects(PyGC_Head *unreachable, PyGC_Head* still_unreachable,
+ PyGC_Head *old_generation)
+{
+ // Remove the PREV_MASK_COLLECTING from unreachable
+ // to prepare it for a new call to 'deduce_unreachable'
+ gc_list_clear_collecting(unreachable);
+
+ // After the call to deduce_unreachable, the 'still_unreachable' set will
+ // have the PREV_MARK_COLLECTING set, but the objects are going to be
+ // removed so we can skip the expense of clearing the flag.
+ PyGC_Head* resurrected = unreachable;
+ deduce_unreachable(resurrected, still_unreachable);
+ clear_unreachable_mask(still_unreachable);
+
+ // Move the resurrected objects to the old generation for future collection.
+ gc_list_merge(resurrected, old_generation);
+}
+
/* This is the main function. Read this to understand how the
* collection process works. */
static Py_ssize_t
-collect(PyThreadState *tstate, int generation,
- Py_ssize_t *n_collected, Py_ssize_t *n_uncollectable, int nofail)
+collect(PyThreadState *tstate, int generation,
+ Py_ssize_t *n_collected, Py_ssize_t *n_uncollectable, int nofail)
{
int i;
Py_ssize_t m = 0; /* # objects collected */
@@ -1179,11 +1179,11 @@ collect(PyThreadState *tstate, int generation,
PyGC_Head finalizers; /* objects with, & reachable from, __del__ */
PyGC_Head *gc;
_PyTime_t t1 = 0; /* initialize to prevent a compiler warning */
- GCState *gcstate = &tstate->interp->gc;
+ GCState *gcstate = &tstate->interp->gc;
- if (gcstate->debug & DEBUG_STATS) {
- PySys_WriteStderr("gc: collecting generation %d...\n", generation);
- show_stats_each_generations(gcstate);
+ if (gcstate->debug & DEBUG_STATS) {
+ PySys_WriteStderr("gc: collecting generation %d...\n", generation);
+ show_stats_each_generations(gcstate);
t1 = _PyTime_GetMonotonicClock();
}
@@ -1192,47 +1192,47 @@ collect(PyThreadState *tstate, int generation,
/* update collection and allocation counters */
if (generation+1 < NUM_GENERATIONS)
- gcstate->generations[generation+1].count += 1;
+ gcstate->generations[generation+1].count += 1;
for (i = 0; i <= generation; i++)
- gcstate->generations[i].count = 0;
+ gcstate->generations[i].count = 0;
/* merge younger generations with one we are currently collecting */
for (i = 0; i < generation; i++) {
- gc_list_merge(GEN_HEAD(gcstate, i), GEN_HEAD(gcstate, generation));
+ gc_list_merge(GEN_HEAD(gcstate, i), GEN_HEAD(gcstate, generation));
}
/* handy references */
- young = GEN_HEAD(gcstate, generation);
+ young = GEN_HEAD(gcstate, generation);
if (generation < NUM_GENERATIONS-1)
- old = GEN_HEAD(gcstate, generation+1);
+ old = GEN_HEAD(gcstate, generation+1);
else
old = young;
- validate_list(old, collecting_clear_unreachable_clear);
+ validate_list(old, collecting_clear_unreachable_clear);
- deduce_unreachable(young, &unreachable);
+ deduce_unreachable(young, &unreachable);
- untrack_tuples(young);
+ untrack_tuples(young);
/* Move reachable objects to next generation. */
if (young != old) {
if (generation == NUM_GENERATIONS - 2) {
- gcstate->long_lived_pending += gc_list_size(young);
+ gcstate->long_lived_pending += gc_list_size(young);
}
gc_list_merge(young, old);
}
else {
- /* We only un-track dicts in full collections, to avoid quadratic
+ /* We only un-track dicts in full collections, to avoid quadratic
dict build-up. See issue #14775. */
untrack_dicts(young);
- gcstate->long_lived_pending = 0;
- gcstate->long_lived_total = gc_list_size(young);
+ gcstate->long_lived_pending = 0;
+ gcstate->long_lived_total = gc_list_size(young);
}
/* All objects in unreachable are trash, but objects reachable from
* legacy finalizers (e.g. tp_del) can't safely be deleted.
*/
gc_list_init(&finalizers);
- // NEXT_MASK_UNREACHABLE is cleared here.
- // After move_legacy_finalizers(), unreachable is normal list.
+ // NEXT_MASK_UNREACHABLE is cleared here.
+ // After move_legacy_finalizers(), unreachable is normal list.
move_legacy_finalizers(&unreachable, &finalizers);
/* finalizers contains the unreachable objects with a legacy finalizer;
* unreachable objects reachable *from* those are also uncollectable,
@@ -1240,12 +1240,12 @@ collect(PyThreadState *tstate, int generation,
*/
move_legacy_finalizer_reachable(&finalizers);
- validate_list(&finalizers, collecting_clear_unreachable_clear);
- validate_list(&unreachable, collecting_set_unreachable_clear);
-
- /* Print debugging information. */
- if (gcstate->debug & DEBUG_COLLECTABLE) {
- for (gc = GC_NEXT(&unreachable); gc != &unreachable; gc = GC_NEXT(gc)) {
+ validate_list(&finalizers, collecting_clear_unreachable_clear);
+ validate_list(&unreachable, collecting_set_unreachable_clear);
+
+ /* Print debugging information. */
+ if (gcstate->debug & DEBUG_COLLECTABLE) {
+ for (gc = GC_NEXT(&unreachable); gc != &unreachable; gc = GC_NEXT(gc)) {
debug_cycle("collectable", FROM_GC(gc));
}
}
@@ -1253,46 +1253,46 @@ collect(PyThreadState *tstate, int generation,
/* Clear weakrefs and invoke callbacks as necessary. */
m += handle_weakrefs(&unreachable, old);
- validate_list(old, collecting_clear_unreachable_clear);
- validate_list(&unreachable, collecting_set_unreachable_clear);
-
+ validate_list(old, collecting_clear_unreachable_clear);
+ validate_list(&unreachable, collecting_set_unreachable_clear);
+
/* Call tp_finalize on objects which have one. */
- finalize_garbage(tstate, &unreachable);
-
- /* Handle any objects that may have resurrected after the call
- * to 'finalize_garbage' and continue the collection with the
- * objects that are still unreachable */
- PyGC_Head final_unreachable;
- handle_resurrected_objects(&unreachable, &final_unreachable, old);
-
- /* Call tp_clear on objects in the final_unreachable set. This will cause
- * the reference cycles to be broken. It may also cause some objects
- * in finalizers to be freed.
- */
- m += gc_list_size(&final_unreachable);
- delete_garbage(tstate, gcstate, &final_unreachable, old);
-
+ finalize_garbage(tstate, &unreachable);
+
+ /* Handle any objects that may have resurrected after the call
+ * to 'finalize_garbage' and continue the collection with the
+ * objects that are still unreachable */
+ PyGC_Head final_unreachable;
+ handle_resurrected_objects(&unreachable, &final_unreachable, old);
+
+ /* Call tp_clear on objects in the final_unreachable set. This will cause
+ * the reference cycles to be broken. It may also cause some objects
+ * in finalizers to be freed.
+ */
+ m += gc_list_size(&final_unreachable);
+ delete_garbage(tstate, gcstate, &final_unreachable, old);
+
/* Collect statistics on uncollectable objects found and print
* debugging information. */
- for (gc = GC_NEXT(&finalizers); gc != &finalizers; gc = GC_NEXT(gc)) {
+ for (gc = GC_NEXT(&finalizers); gc != &finalizers; gc = GC_NEXT(gc)) {
n++;
- if (gcstate->debug & DEBUG_UNCOLLECTABLE)
+ if (gcstate->debug & DEBUG_UNCOLLECTABLE)
debug_cycle("uncollectable", FROM_GC(gc));
}
- if (gcstate->debug & DEBUG_STATS) {
- double d = _PyTime_AsSecondsDouble(_PyTime_GetMonotonicClock() - t1);
- PySys_WriteStderr(
- "gc: done, %" PY_FORMAT_SIZE_T "d unreachable, "
- "%" PY_FORMAT_SIZE_T "d uncollectable, %.4fs elapsed\n",
- n+m, n, d);
+ if (gcstate->debug & DEBUG_STATS) {
+ double d = _PyTime_AsSecondsDouble(_PyTime_GetMonotonicClock() - t1);
+ PySys_WriteStderr(
+ "gc: done, %" PY_FORMAT_SIZE_T "d unreachable, "
+ "%" PY_FORMAT_SIZE_T "d uncollectable, %.4fs elapsed\n",
+ n+m, n, d);
}
/* Append instances in the uncollectable set to a Python
* reachable list of garbage. The programmer has to deal with
* this if they insist on creating this type of structure.
*/
- handle_legacy_finalizers(tstate, gcstate, &finalizers, old);
- validate_list(old, collecting_clear_unreachable_clear);
+ handle_legacy_finalizers(tstate, gcstate, &finalizers, old);
+ validate_list(old, collecting_clear_unreachable_clear);
/* Clear free list only during the collection of the highest
* generation */
@@ -1300,56 +1300,56 @@ collect(PyThreadState *tstate, int generation,
clear_freelists();
}
- if (_PyErr_Occurred(tstate)) {
+ if (_PyErr_Occurred(tstate)) {
if (nofail) {
- _PyErr_Clear(tstate);
+ _PyErr_Clear(tstate);
}
else {
- _PyErr_WriteUnraisableMsg("in garbage collection", NULL);
+ _PyErr_WriteUnraisableMsg("in garbage collection", NULL);
}
}
/* Update stats */
- if (n_collected) {
+ if (n_collected) {
*n_collected = m;
- }
- if (n_uncollectable) {
+ }
+ if (n_uncollectable) {
*n_uncollectable = n;
- }
-
- struct gc_generation_stats *stats = &gcstate->generation_stats[generation];
+ }
+
+ struct gc_generation_stats *stats = &gcstate->generation_stats[generation];
stats->collections++;
stats->collected += m;
stats->uncollectable += n;
- if (PyDTrace_GC_DONE_ENABLED()) {
- PyDTrace_GC_DONE(n + m);
- }
+ if (PyDTrace_GC_DONE_ENABLED()) {
+ PyDTrace_GC_DONE(n + m);
+ }
- assert(!_PyErr_Occurred(tstate));
- return n + m;
+ assert(!_PyErr_Occurred(tstate));
+ return n + m;
}
/* Invoke progress callbacks to notify clients that garbage collection
* is starting or stopping
*/
static void
-invoke_gc_callback(PyThreadState *tstate, const char *phase,
- int generation, Py_ssize_t collected,
- Py_ssize_t uncollectable)
+invoke_gc_callback(PyThreadState *tstate, const char *phase,
+ int generation, Py_ssize_t collected,
+ Py_ssize_t uncollectable)
{
- assert(!_PyErr_Occurred(tstate));
+ assert(!_PyErr_Occurred(tstate));
/* we may get called very early */
- GCState *gcstate = &tstate->interp->gc;
- if (gcstate->callbacks == NULL) {
+ GCState *gcstate = &tstate->interp->gc;
+ if (gcstate->callbacks == NULL) {
return;
- }
-
+ }
+
/* The local variable cannot be rebound, check it for sanity */
- assert(PyList_CheckExact(gcstate->callbacks));
- PyObject *info = NULL;
- if (PyList_GET_SIZE(gcstate->callbacks) != 0) {
+ assert(PyList_CheckExact(gcstate->callbacks));
+ PyObject *info = NULL;
+ if (PyList_GET_SIZE(gcstate->callbacks) != 0) {
info = Py_BuildValue("{sisnsn}",
"generation", generation,
"collected", collected,
@@ -1359,8 +1359,8 @@ invoke_gc_callback(PyThreadState *tstate, const char *phase,
return;
}
}
- for (Py_ssize_t i=0; i<PyList_GET_SIZE(gcstate->callbacks); i++) {
- PyObject *r, *cb = PyList_GET_ITEM(gcstate->callbacks, i);
+ for (Py_ssize_t i=0; i<PyList_GET_SIZE(gcstate->callbacks); i++) {
+ PyObject *r, *cb = PyList_GET_ITEM(gcstate->callbacks, i);
Py_INCREF(cb); /* make sure cb doesn't go away */
r = PyObject_CallFunction(cb, "sO", phase, info);
if (r == NULL) {
@@ -1372,74 +1372,74 @@ invoke_gc_callback(PyThreadState *tstate, const char *phase,
Py_DECREF(cb);
}
Py_XDECREF(info);
- assert(!_PyErr_Occurred(tstate));
+ assert(!_PyErr_Occurred(tstate));
}
/* Perform garbage collection of a generation and invoke
* progress callbacks.
*/
static Py_ssize_t
-collect_with_callback(PyThreadState *tstate, int generation)
+collect_with_callback(PyThreadState *tstate, int generation)
{
- assert(!_PyErr_Occurred(tstate));
+ assert(!_PyErr_Occurred(tstate));
Py_ssize_t result, collected, uncollectable;
- invoke_gc_callback(tstate, "start", generation, 0, 0);
- result = collect(tstate, generation, &collected, &uncollectable, 0);
- invoke_gc_callback(tstate, "stop", generation, collected, uncollectable);
- assert(!_PyErr_Occurred(tstate));
+ invoke_gc_callback(tstate, "start", generation, 0, 0);
+ result = collect(tstate, generation, &collected, &uncollectable, 0);
+ invoke_gc_callback(tstate, "stop", generation, collected, uncollectable);
+ assert(!_PyErr_Occurred(tstate));
return result;
}
static Py_ssize_t
-collect_generations(PyThreadState *tstate)
+collect_generations(PyThreadState *tstate)
{
- GCState *gcstate = &tstate->interp->gc;
+ GCState *gcstate = &tstate->interp->gc;
/* Find the oldest generation (highest numbered) where the count
* exceeds the threshold. Objects in the that generation and
* generations younger than it will be collected. */
- Py_ssize_t n = 0;
- for (int i = NUM_GENERATIONS-1; i >= 0; i--) {
- if (gcstate->generations[i].count > gcstate->generations[i].threshold) {
+ Py_ssize_t n = 0;
+ for (int i = NUM_GENERATIONS-1; i >= 0; i--) {
+ if (gcstate->generations[i].count > gcstate->generations[i].threshold) {
/* Avoid quadratic performance degradation in number
- of tracked objects (see also issue #4074):
-
- To limit the cost of garbage collection, there are two strategies;
- - make each collection faster, e.g. by scanning fewer objects
- - do less collections
- This heuristic is about the latter strategy.
-
- In addition to the various configurable thresholds, we only trigger a
- full collection if the ratio
-
- long_lived_pending / long_lived_total
-
- is above a given value (hardwired to 25%).
-
- The reason is that, while "non-full" collections (i.e., collections of
- the young and middle generations) will always examine roughly the same
- number of objects -- determined by the aforementioned thresholds --,
- the cost of a full collection is proportional to the total number of
- long-lived objects, which is virtually unbounded.
-
- Indeed, it has been remarked that doing a full collection every
- <constant number> of object creations entails a dramatic performance
- degradation in workloads which consist in creating and storing lots of
- long-lived objects (e.g. building a large list of GC-tracked objects would
- show quadratic performance, instead of linear as expected: see issue #4074).
-
- Using the above ratio, instead, yields amortized linear performance in
- the total number of objects (the effect of which can be summarized
- thusly: "each full garbage collection is more and more costly as the
- number of objects grows, but we do fewer and fewer of them").
-
- This heuristic was suggested by Martin von Löwis on python-dev in
- June 2008. His original analysis and proposal can be found at:
- http://mail.python.org/pipermail/python-dev/2008-June/080579.html
+ of tracked objects (see also issue #4074):
+
+ To limit the cost of garbage collection, there are two strategies;
+ - make each collection faster, e.g. by scanning fewer objects
+ - do less collections
+ This heuristic is about the latter strategy.
+
+ In addition to the various configurable thresholds, we only trigger a
+ full collection if the ratio
+
+ long_lived_pending / long_lived_total
+
+ is above a given value (hardwired to 25%).
+
+ The reason is that, while "non-full" collections (i.e., collections of
+ the young and middle generations) will always examine roughly the same
+ number of objects -- determined by the aforementioned thresholds --,
+ the cost of a full collection is proportional to the total number of
+ long-lived objects, which is virtually unbounded.
+
+ Indeed, it has been remarked that doing a full collection every
+ <constant number> of object creations entails a dramatic performance
+ degradation in workloads which consist in creating and storing lots of
+ long-lived objects (e.g. building a large list of GC-tracked objects would
+ show quadratic performance, instead of linear as expected: see issue #4074).
+
+ Using the above ratio, instead, yields amortized linear performance in
+ the total number of objects (the effect of which can be summarized
+ thusly: "each full garbage collection is more and more costly as the
+ number of objects grows, but we do fewer and fewer of them").
+
+ This heuristic was suggested by Martin von Löwis on python-dev in
+ June 2008. His original analysis and proposal can be found at:
+ http://mail.python.org/pipermail/python-dev/2008-June/080579.html
*/
if (i == NUM_GENERATIONS - 1
- && gcstate->long_lived_pending < gcstate->long_lived_total / 4)
+ && gcstate->long_lived_pending < gcstate->long_lived_total / 4)
continue;
- n = collect_with_callback(tstate, i);
+ n = collect_with_callback(tstate, i);
break;
}
}
@@ -1458,9 +1458,9 @@ static PyObject *
gc_enable_impl(PyObject *module)
/*[clinic end generated code: output=45a427e9dce9155c input=81ac4940ca579707]*/
{
- PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
- gcstate->enabled = 1;
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
+ gcstate->enabled = 1;
Py_RETURN_NONE;
}
@@ -1474,9 +1474,9 @@ static PyObject *
gc_disable_impl(PyObject *module)
/*[clinic end generated code: output=97d1030f7aa9d279 input=8c2e5a14e800d83b]*/
{
- PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
- gcstate->enabled = 0;
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
+ gcstate->enabled = 0;
Py_RETURN_NONE;
}
@@ -1490,9 +1490,9 @@ static int
gc_isenabled_impl(PyObject *module)
/*[clinic end generated code: output=1874298331c49130 input=30005e0422373b31]*/
{
- PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
- return gcstate->enabled;
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
+ return gcstate->enabled;
}
/*[clinic input]
@@ -1513,23 +1513,23 @@ static Py_ssize_t
gc_collect_impl(PyObject *module, int generation)
/*[clinic end generated code: output=b697e633043233c7 input=40720128b682d879]*/
{
- PyThreadState *tstate = _PyThreadState_GET();
+ PyThreadState *tstate = _PyThreadState_GET();
if (generation < 0 || generation >= NUM_GENERATIONS) {
- _PyErr_SetString(tstate, PyExc_ValueError, "invalid generation");
+ _PyErr_SetString(tstate, PyExc_ValueError, "invalid generation");
return -1;
}
- GCState *gcstate = &tstate->interp->gc;
- Py_ssize_t n;
- if (gcstate->collecting) {
- /* already collecting, don't do anything */
- n = 0;
- }
+ GCState *gcstate = &tstate->interp->gc;
+ Py_ssize_t n;
+ if (gcstate->collecting) {
+ /* already collecting, don't do anything */
+ n = 0;
+ }
else {
- gcstate->collecting = 1;
- n = collect_with_callback(tstate, generation);
- gcstate->collecting = 0;
+ gcstate->collecting = 1;
+ n = collect_with_callback(tstate, generation);
+ gcstate->collecting = 0;
}
return n;
}
@@ -1556,9 +1556,9 @@ static PyObject *
gc_set_debug_impl(PyObject *module, int flags)
/*[clinic end generated code: output=7c8366575486b228 input=5e5ce15e84fbed15]*/
{
- PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
- gcstate->debug = flags;
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
+ gcstate->debug = flags;
Py_RETURN_NONE;
}
@@ -1572,9 +1572,9 @@ static int
gc_get_debug_impl(PyObject *module)
/*[clinic end generated code: output=91242f3506cd1e50 input=91a101e1c3b98366]*/
{
- PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
- return gcstate->debug;
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
+ return gcstate->debug;
}
PyDoc_STRVAR(gc_set_thresh__doc__,
@@ -1584,18 +1584,18 @@ PyDoc_STRVAR(gc_set_thresh__doc__,
"collection.\n");
static PyObject *
-gc_set_threshold(PyObject *self, PyObject *args)
+gc_set_threshold(PyObject *self, PyObject *args)
{
- PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
if (!PyArg_ParseTuple(args, "i|ii:set_threshold",
- &gcstate->generations[0].threshold,
- &gcstate->generations[1].threshold,
- &gcstate->generations[2].threshold))
+ &gcstate->generations[0].threshold,
+ &gcstate->generations[1].threshold,
+ &gcstate->generations[2].threshold))
return NULL;
- for (int i = 3; i < NUM_GENERATIONS; i++) {
+ for (int i = 3; i < NUM_GENERATIONS; i++) {
/* generations higher than 2 get the same threshold */
- gcstate->generations[i].threshold = gcstate->generations[2].threshold;
+ gcstate->generations[i].threshold = gcstate->generations[2].threshold;
}
Py_RETURN_NONE;
}
@@ -1610,12 +1610,12 @@ static PyObject *
gc_get_threshold_impl(PyObject *module)
/*[clinic end generated code: output=7902bc9f41ecbbd8 input=286d79918034d6e6]*/
{
- PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
return Py_BuildValue("(iii)",
- gcstate->generations[0].threshold,
- gcstate->generations[1].threshold,
- gcstate->generations[2].threshold);
+ gcstate->generations[0].threshold,
+ gcstate->generations[1].threshold,
+ gcstate->generations[2].threshold);
}
/*[clinic input]
@@ -1628,12 +1628,12 @@ static PyObject *
gc_get_count_impl(PyObject *module)
/*[clinic end generated code: output=354012e67b16398f input=a392794a08251751]*/
{
- PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
return Py_BuildValue("(iii)",
- gcstate->generations[0].count,
- gcstate->generations[1].count,
- gcstate->generations[2].count);
+ gcstate->generations[0].count,
+ gcstate->generations[1].count,
+ gcstate->generations[2].count);
}
static int
@@ -1652,7 +1652,7 @@ gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
PyGC_Head *gc;
PyObject *obj;
traverseproc traverse;
- for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
+ for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
obj = FROM_GC(gc);
traverse = Py_TYPE(obj)->tp_traverse;
if (obj == objs || obj == resultlist)
@@ -1672,21 +1672,21 @@ Return the list of objects that directly refer to any of objs.");
static PyObject *
gc_get_referrers(PyObject *self, PyObject *args)
{
- PyThreadState *tstate = _PyThreadState_GET();
+ PyThreadState *tstate = _PyThreadState_GET();
int i;
-
- if (PySys_Audit("gc.get_referrers", "(O)", args) < 0) {
- return NULL;
- }
-
+
+ if (PySys_Audit("gc.get_referrers", "(O)", args) < 0) {
+ return NULL;
+ }
+
PyObject *result = PyList_New(0);
- if (!result) {
- return NULL;
- }
+ if (!result) {
+ return NULL;
+ }
- GCState *gcstate = &tstate->interp->gc;
+ GCState *gcstate = &tstate->interp->gc;
for (i = 0; i < NUM_GENERATIONS; i++) {
- if (!(gc_referrers_for(args, GEN_HEAD(gcstate, i), result))) {
+ if (!(gc_referrers_for(args, GEN_HEAD(gcstate, i), result))) {
Py_DECREF(result);
return NULL;
}
@@ -1709,9 +1709,9 @@ static PyObject *
gc_get_referents(PyObject *self, PyObject *args)
{
Py_ssize_t i;
- if (PySys_Audit("gc.get_referents", "(O)", args) < 0) {
- return NULL;
- }
+ if (PySys_Audit("gc.get_referents", "(O)", args) < 0) {
+ return NULL;
+ }
PyObject *result = PyList_New(0);
if (result == NULL)
@@ -1721,7 +1721,7 @@ gc_get_referents(PyObject *self, PyObject *args)
traverseproc traverse;
PyObject *obj = PyTuple_GET_ITEM(args, i);
- if (!_PyObject_IS_GC(obj))
+ if (!_PyObject_IS_GC(obj))
continue;
traverse = Py_TYPE(obj)->tp_traverse;
if (! traverse)
@@ -1736,67 +1736,67 @@ gc_get_referents(PyObject *self, PyObject *args)
/*[clinic input]
gc.get_objects
- generation: Py_ssize_t(accept={int, NoneType}, c_default="-1") = None
- Generation to extract the objects from.
+ generation: Py_ssize_t(accept={int, NoneType}, c_default="-1") = None
+ Generation to extract the objects from.
Return a list of objects tracked by the collector (excluding the list returned).
-
-If generation is not None, return only the objects tracked by the collector
-that are in that generation.
+
+If generation is not None, return only the objects tracked by the collector
+that are in that generation.
[clinic start generated code]*/
static PyObject *
-gc_get_objects_impl(PyObject *module, Py_ssize_t generation)
-/*[clinic end generated code: output=48b35fea4ba6cb0e input=ef7da9df9806754c]*/
+gc_get_objects_impl(PyObject *module, Py_ssize_t generation)
+/*[clinic end generated code: output=48b35fea4ba6cb0e input=ef7da9df9806754c]*/
{
- PyThreadState *tstate = _PyThreadState_GET();
+ PyThreadState *tstate = _PyThreadState_GET();
int i;
PyObject* result;
- GCState *gcstate = &tstate->interp->gc;
+ GCState *gcstate = &tstate->interp->gc;
+
+ if (PySys_Audit("gc.get_objects", "n", generation) < 0) {
+ return NULL;
+ }
- if (PySys_Audit("gc.get_objects", "n", generation) < 0) {
- return NULL;
- }
-
result = PyList_New(0);
- if (result == NULL) {
+ if (result == NULL) {
return NULL;
- }
-
- /* If generation is passed, we extract only that generation */
- if (generation != -1) {
- if (generation >= NUM_GENERATIONS) {
- _PyErr_Format(tstate, PyExc_ValueError,
- "generation parameter must be less than the number of "
- "available generations (%i)",
- NUM_GENERATIONS);
- goto error;
- }
-
- if (generation < 0) {
- _PyErr_SetString(tstate, PyExc_ValueError,
- "generation parameter cannot be negative");
- goto error;
- }
-
- if (append_objects(result, GEN_HEAD(gcstate, generation))) {
- goto error;
- }
-
- return result;
- }
-
- /* If generation is not passed or None, get all objects from all generations */
+ }
+
+ /* If generation is passed, we extract only that generation */
+ if (generation != -1) {
+ if (generation >= NUM_GENERATIONS) {
+ _PyErr_Format(tstate, PyExc_ValueError,
+ "generation parameter must be less than the number of "
+ "available generations (%i)",
+ NUM_GENERATIONS);
+ goto error;
+ }
+
+ if (generation < 0) {
+ _PyErr_SetString(tstate, PyExc_ValueError,
+ "generation parameter cannot be negative");
+ goto error;
+ }
+
+ if (append_objects(result, GEN_HEAD(gcstate, generation))) {
+ goto error;
+ }
+
+ return result;
+ }
+
+ /* If generation is not passed or None, get all objects from all generations */
for (i = 0; i < NUM_GENERATIONS; i++) {
- if (append_objects(result, GEN_HEAD(gcstate, i))) {
- goto error;
+ if (append_objects(result, GEN_HEAD(gcstate, i))) {
+ goto error;
}
}
return result;
-
-error:
- Py_DECREF(result);
- return NULL;
+
+error:
+ Py_DECREF(result);
+ return NULL;
}
/*[clinic input]
@@ -1811,16 +1811,16 @@ gc_get_stats_impl(PyObject *module)
{
int i;
struct gc_generation_stats stats[NUM_GENERATIONS], *st;
- PyThreadState *tstate = _PyThreadState_GET();
+ PyThreadState *tstate = _PyThreadState_GET();
/* To get consistent values despite allocations while constructing
the result list, we use a snapshot of the running stats. */
- GCState *gcstate = &tstate->interp->gc;
+ GCState *gcstate = &tstate->interp->gc;
for (i = 0; i < NUM_GENERATIONS; i++) {
- stats[i] = gcstate->generation_stats[i];
+ stats[i] = gcstate->generation_stats[i];
}
- PyObject *result = PyList_New(0);
+ PyObject *result = PyList_New(0);
if (result == NULL)
return NULL;
@@ -1865,7 +1865,7 @@ gc_is_tracked(PyObject *module, PyObject *obj)
{
PyObject *result;
- if (_PyObject_IS_GC(obj) && _PyObject_GC_IS_TRACKED(obj))
+ if (_PyObject_IS_GC(obj) && _PyObject_GC_IS_TRACKED(obj))
result = Py_True;
else
result = Py_False;
@@ -1874,25 +1874,25 @@ gc_is_tracked(PyObject *module, PyObject *obj)
}
/*[clinic input]
-gc.is_finalized
-
- obj: object
- /
-
-Returns true if the object has been already finalized by the GC.
-[clinic start generated code]*/
-
-static PyObject *
-gc_is_finalized(PyObject *module, PyObject *obj)
-/*[clinic end generated code: output=e1516ac119a918ed input=201d0c58f69ae390]*/
-{
- if (_PyObject_IS_GC(obj) && _PyGCHead_FINALIZED(AS_GC(obj))) {
- Py_RETURN_TRUE;
- }
- Py_RETURN_FALSE;
-}
-
-/*[clinic input]
+gc.is_finalized
+
+ obj: object
+ /
+
+Returns true if the object has been already finalized by the GC.
+[clinic start generated code]*/
+
+static PyObject *
+gc_is_finalized(PyObject *module, PyObject *obj)
+/*[clinic end generated code: output=e1516ac119a918ed input=201d0c58f69ae390]*/
+{
+ if (_PyObject_IS_GC(obj) && _PyGCHead_FINALIZED(AS_GC(obj))) {
+ Py_RETURN_TRUE;
+ }
+ Py_RETURN_FALSE;
+}
+
+/*[clinic input]
gc.freeze
Freeze all current tracked objects and ignore them for future collections.
@@ -1906,11 +1906,11 @@ static PyObject *
gc_freeze_impl(PyObject *module)
/*[clinic end generated code: output=502159d9cdc4c139 input=b602b16ac5febbe5]*/
{
- PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
for (int i = 0; i < NUM_GENERATIONS; ++i) {
- gc_list_merge(GEN_HEAD(gcstate, i), &gcstate->permanent_generation.head);
- gcstate->generations[i].count = 0;
+ gc_list_merge(GEN_HEAD(gcstate, i), &gcstate->permanent_generation.head);
+ gcstate->generations[i].count = 0;
}
Py_RETURN_NONE;
}
@@ -1927,10 +1927,10 @@ static PyObject *
gc_unfreeze_impl(PyObject *module)
/*[clinic end generated code: output=1c15f2043b25e169 input=2dd52b170f4cef6c]*/
{
- PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
- gc_list_merge(&gcstate->permanent_generation.head,
- GEN_HEAD(gcstate, NUM_GENERATIONS-1));
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
+ gc_list_merge(&gcstate->permanent_generation.head,
+ GEN_HEAD(gcstate, NUM_GENERATIONS-1));
Py_RETURN_NONE;
}
@@ -1944,9 +1944,9 @@ static Py_ssize_t
gc_get_freeze_count_impl(PyObject *module)
/*[clinic end generated code: output=61cbd9f43aa032e1 input=45ffbc65cfe2a6ed]*/
{
- PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
- return gc_list_size(&gcstate->permanent_generation.head);
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
+ return gc_list_size(&gcstate->permanent_generation.head);
}
@@ -1965,7 +1965,7 @@ PyDoc_STRVAR(gc__doc__,
"get_threshold() -- Return the current the collection thresholds.\n"
"get_objects() -- Return a list of all objects tracked by the collector.\n"
"is_tracked() -- Returns true if a given object is tracked.\n"
-"is_finalized() -- Returns true if a given object has been already finalized.\n"
+"is_finalized() -- Returns true if a given object has been already finalized.\n"
"get_referrers() -- Return the list of objects that refer to an object.\n"
"get_referents() -- Return the list of objects that an object refers to.\n"
"freeze() -- Freeze all tracked objects and ignore them for future collections.\n"
@@ -1979,13 +1979,13 @@ static PyMethodDef GcMethods[] = {
GC_SET_DEBUG_METHODDEF
GC_GET_DEBUG_METHODDEF
GC_GET_COUNT_METHODDEF
- {"set_threshold", gc_set_threshold, METH_VARARGS, gc_set_thresh__doc__},
+ {"set_threshold", gc_set_threshold, METH_VARARGS, gc_set_thresh__doc__},
GC_GET_THRESHOLD_METHODDEF
GC_COLLECT_METHODDEF
GC_GET_OBJECTS_METHODDEF
GC_GET_STATS_METHODDEF
GC_IS_TRACKED_METHODDEF
- GC_IS_FINALIZED_METHODDEF
+ GC_IS_FINALIZED_METHODDEF
{"get_referrers", gc_get_referrers, METH_VARARGS,
gc_get_referrers__doc__},
{"get_referents", gc_get_referents, METH_VARARGS,
@@ -2011,38 +2011,38 @@ static struct PyModuleDef gcmodule = {
PyMODINIT_FUNC
PyInit_gc(void)
{
- PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
- PyObject *m = PyModule_Create(&gcmodule);
+ PyObject *m = PyModule_Create(&gcmodule);
- if (m == NULL) {
+ if (m == NULL) {
return NULL;
- }
+ }
- if (gcstate->garbage == NULL) {
- gcstate->garbage = PyList_New(0);
- if (gcstate->garbage == NULL) {
+ if (gcstate->garbage == NULL) {
+ gcstate->garbage = PyList_New(0);
+ if (gcstate->garbage == NULL) {
return NULL;
- }
+ }
}
- Py_INCREF(gcstate->garbage);
- if (PyModule_AddObject(m, "garbage", gcstate->garbage) < 0) {
+ Py_INCREF(gcstate->garbage);
+ if (PyModule_AddObject(m, "garbage", gcstate->garbage) < 0) {
return NULL;
- }
+ }
- if (gcstate->callbacks == NULL) {
- gcstate->callbacks = PyList_New(0);
- if (gcstate->callbacks == NULL) {
+ if (gcstate->callbacks == NULL) {
+ gcstate->callbacks = PyList_New(0);
+ if (gcstate->callbacks == NULL) {
return NULL;
- }
+ }
}
- Py_INCREF(gcstate->callbacks);
- if (PyModule_AddObject(m, "callbacks", gcstate->callbacks) < 0) {
+ Py_INCREF(gcstate->callbacks);
+ if (PyModule_AddObject(m, "callbacks", gcstate->callbacks) < 0) {
return NULL;
- }
+ }
-#define ADD_INT(NAME) if (PyModule_AddIntConstant(m, #NAME, NAME) < 0) { return NULL; }
+#define ADD_INT(NAME) if (PyModule_AddIntConstant(m, #NAME, NAME) < 0) { return NULL; }
ADD_INT(DEBUG_STATS);
ADD_INT(DEBUG_COLLECTABLE);
ADD_INT(DEBUG_UNCOLLECTABLE);
@@ -2056,25 +2056,25 @@ PyInit_gc(void)
Py_ssize_t
PyGC_Collect(void)
{
- PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
-
- if (!gcstate->enabled) {
- return 0;
- }
-
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
+
+ if (!gcstate->enabled) {
+ return 0;
+ }
+
Py_ssize_t n;
- if (gcstate->collecting) {
- /* already collecting, don't do anything */
- n = 0;
- }
+ if (gcstate->collecting) {
+ /* already collecting, don't do anything */
+ n = 0;
+ }
else {
PyObject *exc, *value, *tb;
- gcstate->collecting = 1;
- _PyErr_Fetch(tstate, &exc, &value, &tb);
- n = collect_with_callback(tstate, NUM_GENERATIONS - 1);
- _PyErr_Restore(tstate, exc, value, tb);
- gcstate->collecting = 0;
+ gcstate->collecting = 1;
+ _PyErr_Fetch(tstate, &exc, &value, &tb);
+ n = collect_with_callback(tstate, NUM_GENERATIONS - 1);
+ _PyErr_Restore(tstate, exc, value, tb);
+ gcstate->collecting = 0;
}
return n;
@@ -2089,10 +2089,10 @@ _PyGC_CollectIfEnabled(void)
Py_ssize_t
_PyGC_CollectNoFail(void)
{
- PyThreadState *tstate = _PyThreadState_GET();
- assert(!_PyErr_Occurred(tstate));
-
- GCState *gcstate = &tstate->interp->gc;
+ PyThreadState *tstate = _PyThreadState_GET();
+ assert(!_PyErr_Occurred(tstate));
+
+ GCState *gcstate = &tstate->interp->gc;
Py_ssize_t n;
/* Ideally, this function is only called on interpreter shutdown,
@@ -2101,25 +2101,25 @@ _PyGC_CollectNoFail(void)
during interpreter shutdown (and then never finish it).
See http://bugs.python.org/issue8713#msg195178 for an example.
*/
- if (gcstate->collecting) {
+ if (gcstate->collecting) {
n = 0;
- }
+ }
else {
- gcstate->collecting = 1;
- n = collect(tstate, NUM_GENERATIONS - 1, NULL, NULL, 1);
- gcstate->collecting = 0;
+ gcstate->collecting = 1;
+ n = collect(tstate, NUM_GENERATIONS - 1, NULL, NULL, 1);
+ gcstate->collecting = 0;
}
return n;
}
void
-_PyGC_DumpShutdownStats(PyThreadState *tstate)
+_PyGC_DumpShutdownStats(PyThreadState *tstate)
{
- GCState *gcstate = &tstate->interp->gc;
- if (!(gcstate->debug & DEBUG_SAVEALL)
- && gcstate->garbage != NULL && PyList_GET_SIZE(gcstate->garbage) > 0) {
+ GCState *gcstate = &tstate->interp->gc;
+ if (!(gcstate->debug & DEBUG_SAVEALL)
+ && gcstate->garbage != NULL && PyList_GET_SIZE(gcstate->garbage) > 0) {
const char *message;
- if (gcstate->debug & DEBUG_UNCOLLECTABLE)
+ if (gcstate->debug & DEBUG_UNCOLLECTABLE)
message = "gc: %zd uncollectable objects at " \
"shutdown";
else
@@ -2130,13 +2130,13 @@ _PyGC_DumpShutdownStats(PyThreadState *tstate)
already. */
if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
"gc", NULL, message,
- PyList_GET_SIZE(gcstate->garbage)))
+ PyList_GET_SIZE(gcstate->garbage)))
PyErr_WriteUnraisable(NULL);
- if (gcstate->debug & DEBUG_UNCOLLECTABLE) {
+ if (gcstate->debug & DEBUG_UNCOLLECTABLE) {
PyObject *repr = NULL, *bytes = NULL;
- repr = PyObject_Repr(gcstate->garbage);
+ repr = PyObject_Repr(gcstate->garbage);
if (!repr || !(bytes = PyUnicode_EncodeFSDefault(repr)))
- PyErr_WriteUnraisable(gcstate->garbage);
+ PyErr_WriteUnraisable(gcstate->garbage);
else {
PySys_WriteStderr(
" %s\n",
@@ -2149,36 +2149,36 @@ _PyGC_DumpShutdownStats(PyThreadState *tstate)
}
}
-
-static void
-gc_fini_untrack(PyGC_Head *list)
-{
- PyGC_Head *gc;
- for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(list)) {
- PyObject *op = FROM_GC(gc);
- _PyObject_GC_UNTRACK(op);
- }
-}
-
-
+
+static void
+gc_fini_untrack(PyGC_Head *list)
+{
+ PyGC_Head *gc;
+ for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(list)) {
+ PyObject *op = FROM_GC(gc);
+ _PyObject_GC_UNTRACK(op);
+ }
+}
+
+
void
-_PyGC_Fini(PyThreadState *tstate)
-{
- GCState *gcstate = &tstate->interp->gc;
- Py_CLEAR(gcstate->garbage);
- Py_CLEAR(gcstate->callbacks);
-
- if (!_Py_IsMainInterpreter(tstate)) {
- // bpo-46070: Explicitly untrack all objects currently tracked by the
- // GC. Otherwise, if an object is used later by another interpreter,
- // calling PyObject_GC_UnTrack() on the object crashs if the previous
- // or the next object of the PyGC_Head structure became a dangling
- // pointer.
- for (int i = 0; i < NUM_GENERATIONS; i++) {
- PyGC_Head *gen = GEN_HEAD(gcstate, i);
- gc_fini_untrack(gen);
- }
- }
+_PyGC_Fini(PyThreadState *tstate)
+{
+ GCState *gcstate = &tstate->interp->gc;
+ Py_CLEAR(gcstate->garbage);
+ Py_CLEAR(gcstate->callbacks);
+
+ if (!_Py_IsMainInterpreter(tstate)) {
+ // bpo-46070: Explicitly untrack all objects currently tracked by the
+ // GC. Otherwise, if an object is used later by another interpreter,
+ // calling PyObject_GC_UnTrack() on the object crashs if the previous
+ // or the next object of the PyGC_Head structure became a dangling
+ // pointer.
+ for (int i = 0; i < NUM_GENERATIONS; i++) {
+ PyGC_Head *gen = GEN_HEAD(gcstate, i);
+ gc_fini_untrack(gen);
+ }
+ }
}
/* for debugging */
@@ -2188,97 +2188,97 @@ _PyGC_Dump(PyGC_Head *g)
_PyObject_Dump(FROM_GC(g));
}
-
-#ifdef Py_DEBUG
-static int
-visit_validate(PyObject *op, void *parent_raw)
-{
- PyObject *parent = _PyObject_CAST(parent_raw);
- if (_PyObject_IsFreed(op)) {
- _PyObject_ASSERT_FAILED_MSG(parent,
- "PyObject_GC_Track() object is not valid");
- }
- return 0;
-}
-#endif
-
-
+
+#ifdef Py_DEBUG
+static int
+visit_validate(PyObject *op, void *parent_raw)
+{
+ PyObject *parent = _PyObject_CAST(parent_raw);
+ if (_PyObject_IsFreed(op)) {
+ _PyObject_ASSERT_FAILED_MSG(parent,
+ "PyObject_GC_Track() object is not valid");
+ }
+ return 0;
+}
+#endif
+
+
/* extension modules might be compiled with GC support so these
functions must always be available */
void
-PyObject_GC_Track(void *op_raw)
-{
- PyObject *op = _PyObject_CAST(op_raw);
- if (_PyObject_GC_IS_TRACKED(op)) {
- _PyObject_ASSERT_FAILED_MSG(op,
- "object already tracked "
- "by the garbage collector");
- }
+PyObject_GC_Track(void *op_raw)
+{
+ PyObject *op = _PyObject_CAST(op_raw);
+ if (_PyObject_GC_IS_TRACKED(op)) {
+ _PyObject_ASSERT_FAILED_MSG(op,
+ "object already tracked "
+ "by the garbage collector");
+ }
_PyObject_GC_TRACK(op);
-
-#ifdef Py_DEBUG
- /* Check that the object is valid: validate objects traversed
- by tp_traverse() */
- traverseproc traverse = Py_TYPE(op)->tp_traverse;
- (void)traverse(op, visit_validate, op);
-#endif
+
+#ifdef Py_DEBUG
+ /* Check that the object is valid: validate objects traversed
+ by tp_traverse() */
+ traverseproc traverse = Py_TYPE(op)->tp_traverse;
+ (void)traverse(op, visit_validate, op);
+#endif
}
void
-PyObject_GC_UnTrack(void *op_raw)
+PyObject_GC_UnTrack(void *op_raw)
{
- PyObject *op = _PyObject_CAST(op_raw);
+ PyObject *op = _PyObject_CAST(op_raw);
/* Obscure: the Py_TRASHCAN mechanism requires that we be able to
* call PyObject_GC_UnTrack twice on an object.
*/
- if (_PyObject_GC_IS_TRACKED(op)) {
+ if (_PyObject_GC_IS_TRACKED(op)) {
_PyObject_GC_UNTRACK(op);
- }
+ }
+}
+
+int
+PyObject_IS_GC(PyObject *obj)
+{
+ return _PyObject_IS_GC(obj);
}
-int
-PyObject_IS_GC(PyObject *obj)
-{
- return _PyObject_IS_GC(obj);
-}
-
static PyObject *
_PyObject_GC_Alloc(int use_calloc, size_t basicsize)
{
- PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
- if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head)) {
- return _PyErr_NoMemory(tstate);
- }
- size_t size = sizeof(PyGC_Head) + basicsize;
-
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
+ if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head)) {
+ return _PyErr_NoMemory(tstate);
+ }
+ size_t size = sizeof(PyGC_Head) + basicsize;
+
PyGC_Head *g;
- if (use_calloc) {
+ if (use_calloc) {
g = (PyGC_Head *)PyObject_Calloc(1, size);
- }
- else {
+ }
+ else {
g = (PyGC_Head *)PyObject_Malloc(size);
- }
- if (g == NULL) {
- return _PyErr_NoMemory(tstate);
- }
- assert(((uintptr_t)g & 3) == 0); // g must be aligned 4bytes boundary
-
- g->_gc_next = 0;
- g->_gc_prev = 0;
- gcstate->generations[0].count++; /* number of allocated GC objects */
- if (gcstate->generations[0].count > gcstate->generations[0].threshold &&
- gcstate->enabled &&
- gcstate->generations[0].threshold &&
- !gcstate->collecting &&
- !_PyErr_Occurred(tstate))
- {
- gcstate->collecting = 1;
- collect_generations(tstate);
- gcstate->collecting = 0;
- }
- PyObject *op = FROM_GC(g);
+ }
+ if (g == NULL) {
+ return _PyErr_NoMemory(tstate);
+ }
+ assert(((uintptr_t)g & 3) == 0); // g must be aligned 4bytes boundary
+
+ g->_gc_next = 0;
+ g->_gc_prev = 0;
+ gcstate->generations[0].count++; /* number of allocated GC objects */
+ if (gcstate->generations[0].count > gcstate->generations[0].threshold &&
+ gcstate->enabled &&
+ gcstate->generations[0].threshold &&
+ !gcstate->collecting &&
+ !_PyErr_Occurred(tstate))
+ {
+ gcstate->collecting = 1;
+ collect_generations(tstate);
+ gcstate->collecting = 0;
+ }
+ PyObject *op = FROM_GC(g);
return op;
}
@@ -2324,17 +2324,17 @@ PyVarObject *
_PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
{
const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
- _PyObject_ASSERT((PyObject *)op, !_PyObject_GC_IS_TRACKED(op));
- if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head)) {
- return (PyVarObject *)PyErr_NoMemory();
- }
-
+ _PyObject_ASSERT((PyObject *)op, !_PyObject_GC_IS_TRACKED(op));
+ if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head)) {
+ return (PyVarObject *)PyErr_NoMemory();
+ }
+
PyGC_Head *g = AS_GC(op);
g = (PyGC_Head *)PyObject_REALLOC(g, sizeof(PyGC_Head) + basicsize);
if (g == NULL)
return (PyVarObject *)PyErr_NoMemory();
op = (PyVarObject *) FROM_GC(g);
- Py_SET_SIZE(op, nitems);
+ Py_SET_SIZE(op, nitems);
return op;
}
@@ -2342,31 +2342,31 @@ void
PyObject_GC_Del(void *op)
{
PyGC_Head *g = AS_GC(op);
- if (_PyObject_GC_IS_TRACKED(op)) {
+ if (_PyObject_GC_IS_TRACKED(op)) {
gc_list_remove(g);
}
- PyThreadState *tstate = _PyThreadState_GET();
- GCState *gcstate = &tstate->interp->gc;
- if (gcstate->generations[0].count > 0) {
- gcstate->generations[0].count--;
- }
+ PyThreadState *tstate = _PyThreadState_GET();
+ GCState *gcstate = &tstate->interp->gc;
+ if (gcstate->generations[0].count > 0) {
+ gcstate->generations[0].count--;
+ }
PyObject_FREE(g);
}
-
-int
-PyObject_GC_IsTracked(PyObject* obj)
-{
- if (_PyObject_IS_GC(obj) && _PyObject_GC_IS_TRACKED(obj)) {
- return 1;
- }
- return 0;
-}
-
-int
-PyObject_GC_IsFinalized(PyObject *obj)
-{
- if (_PyObject_IS_GC(obj) && _PyGCHead_FINALIZED(AS_GC(obj))) {
- return 1;
- }
- return 0;
-}
+
+int
+PyObject_GC_IsTracked(PyObject* obj)
+{
+ if (_PyObject_IS_GC(obj) && _PyObject_GC_IS_TRACKED(obj)) {
+ return 1;
+ }
+ return 0;
+}
+
+int
+PyObject_GC_IsFinalized(PyObject *obj)
+{
+ if (_PyObject_IS_GC(obj) && _PyGCHead_FINALIZED(AS_GC(obj))) {
+ return 1;
+ }
+ return 0;
+}