diff options
author | shadchin <shadchin@yandex-team.ru> | 2022-02-10 16:44:39 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:44:39 +0300 |
commit | e9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (patch) | |
tree | 64175d5cadab313b3e7039ebaa06c5bc3295e274 /contrib/tools/python3/src/Modules/_statisticsmodule.c | |
parent | 2598ef1d0aee359b4b6d5fdd1758916d5907d04f (diff) | |
download | ydb-e9656aae26e0358d5378e5b63dcac5c8dbe0e4d0.tar.gz |
Restoring authorship annotation for <shadchin@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/tools/python3/src/Modules/_statisticsmodule.c')
-rw-r--r-- | contrib/tools/python3/src/Modules/_statisticsmodule.c | 302 |
1 files changed, 151 insertions, 151 deletions
diff --git a/contrib/tools/python3/src/Modules/_statisticsmodule.c b/contrib/tools/python3/src/Modules/_statisticsmodule.c index fd65b659b4..78c0676a01 100644 --- a/contrib/tools/python3/src/Modules/_statisticsmodule.c +++ b/contrib/tools/python3/src/Modules/_statisticsmodule.c @@ -1,151 +1,151 @@ -/* statistics accelerator C extension: _statistics module. */ - -#include "Python.h" -#include "clinic/_statisticsmodule.c.h" - -/*[clinic input] -module _statistics - -[clinic start generated code]*/ -/*[clinic end generated code: output=da39a3ee5e6b4b0d input=864a6f59b76123b2]*/ - -/* - * There is no closed-form solution to the inverse CDF for the normal - * distribution, so we use a rational approximation instead: - * Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the - * Normal Distribution". Applied Statistics. Blackwell Publishing. 37 - * (3): 477–484. doi:10.2307/2347330. JSTOR 2347330. - */ - -/*[clinic input] -_statistics._normal_dist_inv_cdf -> double - p: double - mu: double - sigma: double - / -[clinic start generated code]*/ - -static double -_statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu, - double sigma) -/*[clinic end generated code: output=02fd19ddaab36602 input=24715a74be15296a]*/ -{ - double q, num, den, r, x; - if (p <= 0.0 || p >= 1.0 || sigma <= 0.0) { - goto error; - } - - q = p - 0.5; - if(fabs(q) <= 0.425) { - r = 0.180625 - q * q; - // Hash sum-55.8831928806149014439 - num = (((((((2.5090809287301226727e+3 * r + - 3.3430575583588128105e+4) * r + - 6.7265770927008700853e+4) * r + - 4.5921953931549871457e+4) * r + - 1.3731693765509461125e+4) * r + - 1.9715909503065514427e+3) * r + - 1.3314166789178437745e+2) * r + - 3.3871328727963666080e+0) * q; - den = (((((((5.2264952788528545610e+3 * r + - 2.8729085735721942674e+4) * r + - 3.9307895800092710610e+4) * r + - 2.1213794301586595867e+4) * r + - 5.3941960214247511077e+3) * r + - 6.8718700749205790830e+2) * r + - 4.2313330701600911252e+1) * r + - 1.0); - if (den == 0.0) { - goto error; - } - x = num / den; - return mu + (x * sigma); - } - r = (q <= 0.0) ? p : (1.0 - p); - if (r <= 0.0 || r >= 1.0) { - goto error; - } - r = sqrt(-log(r)); - if (r <= 5.0) { - r = r - 1.6; - // Hash sum-49.33206503301610289036 - num = (((((((7.74545014278341407640e-4 * r + - 2.27238449892691845833e-2) * r + - 2.41780725177450611770e-1) * r + - 1.27045825245236838258e+0) * r + - 3.64784832476320460504e+0) * r + - 5.76949722146069140550e+0) * r + - 4.63033784615654529590e+0) * r + - 1.42343711074968357734e+0); - den = (((((((1.05075007164441684324e-9 * r + - 5.47593808499534494600e-4) * r + - 1.51986665636164571966e-2) * r + - 1.48103976427480074590e-1) * r + - 6.89767334985100004550e-1) * r + - 1.67638483018380384940e+0) * r + - 2.05319162663775882187e+0) * r + - 1.0); - } else { - r -= 5.0; - // Hash sum-47.52583317549289671629 - num = (((((((2.01033439929228813265e-7 * r + - 2.71155556874348757815e-5) * r + - 1.24266094738807843860e-3) * r + - 2.65321895265761230930e-2) * r + - 2.96560571828504891230e-1) * r + - 1.78482653991729133580e+0) * r + - 5.46378491116411436990e+0) * r + - 6.65790464350110377720e+0); - den = (((((((2.04426310338993978564e-15 * r + - 1.42151175831644588870e-7) * r + - 1.84631831751005468180e-5) * r + - 7.86869131145613259100e-4) * r + - 1.48753612908506148525e-2) * r + - 1.36929880922735805310e-1) * r + - 5.99832206555887937690e-1) * r + - 1.0); - } - if (den == 0.0) { - goto error; - } - x = num / den; - if (q < 0.0) { - x = -x; - } - return mu + (x * sigma); - - error: - PyErr_SetString(PyExc_ValueError, "inv_cdf undefined for these parameters"); - return -1.0; -} - - -static PyMethodDef statistics_methods[] = { - _STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF - {NULL, NULL, 0, NULL} -}; - -PyDoc_STRVAR(statistics_doc, -"Accelerators for the statistics module.\n"); - -static struct PyModuleDef_Slot _statisticsmodule_slots[] = { - {0, NULL} -}; - -static struct PyModuleDef statisticsmodule = { - PyModuleDef_HEAD_INIT, - "_statistics", - statistics_doc, - 0, - statistics_methods, - _statisticsmodule_slots, - NULL, - NULL, - NULL -}; - -PyMODINIT_FUNC -PyInit__statistics(void) -{ - return PyModuleDef_Init(&statisticsmodule); -} +/* statistics accelerator C extension: _statistics module. */ + +#include "Python.h" +#include "clinic/_statisticsmodule.c.h" + +/*[clinic input] +module _statistics + +[clinic start generated code]*/ +/*[clinic end generated code: output=da39a3ee5e6b4b0d input=864a6f59b76123b2]*/ + +/* + * There is no closed-form solution to the inverse CDF for the normal + * distribution, so we use a rational approximation instead: + * Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the + * Normal Distribution". Applied Statistics. Blackwell Publishing. 37 + * (3): 477–484. doi:10.2307/2347330. JSTOR 2347330. + */ + +/*[clinic input] +_statistics._normal_dist_inv_cdf -> double + p: double + mu: double + sigma: double + / +[clinic start generated code]*/ + +static double +_statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu, + double sigma) +/*[clinic end generated code: output=02fd19ddaab36602 input=24715a74be15296a]*/ +{ + double q, num, den, r, x; + if (p <= 0.0 || p >= 1.0 || sigma <= 0.0) { + goto error; + } + + q = p - 0.5; + if(fabs(q) <= 0.425) { + r = 0.180625 - q * q; + // Hash sum-55.8831928806149014439 + num = (((((((2.5090809287301226727e+3 * r + + 3.3430575583588128105e+4) * r + + 6.7265770927008700853e+4) * r + + 4.5921953931549871457e+4) * r + + 1.3731693765509461125e+4) * r + + 1.9715909503065514427e+3) * r + + 1.3314166789178437745e+2) * r + + 3.3871328727963666080e+0) * q; + den = (((((((5.2264952788528545610e+3 * r + + 2.8729085735721942674e+4) * r + + 3.9307895800092710610e+4) * r + + 2.1213794301586595867e+4) * r + + 5.3941960214247511077e+3) * r + + 6.8718700749205790830e+2) * r + + 4.2313330701600911252e+1) * r + + 1.0); + if (den == 0.0) { + goto error; + } + x = num / den; + return mu + (x * sigma); + } + r = (q <= 0.0) ? p : (1.0 - p); + if (r <= 0.0 || r >= 1.0) { + goto error; + } + r = sqrt(-log(r)); + if (r <= 5.0) { + r = r - 1.6; + // Hash sum-49.33206503301610289036 + num = (((((((7.74545014278341407640e-4 * r + + 2.27238449892691845833e-2) * r + + 2.41780725177450611770e-1) * r + + 1.27045825245236838258e+0) * r + + 3.64784832476320460504e+0) * r + + 5.76949722146069140550e+0) * r + + 4.63033784615654529590e+0) * r + + 1.42343711074968357734e+0); + den = (((((((1.05075007164441684324e-9 * r + + 5.47593808499534494600e-4) * r + + 1.51986665636164571966e-2) * r + + 1.48103976427480074590e-1) * r + + 6.89767334985100004550e-1) * r + + 1.67638483018380384940e+0) * r + + 2.05319162663775882187e+0) * r + + 1.0); + } else { + r -= 5.0; + // Hash sum-47.52583317549289671629 + num = (((((((2.01033439929228813265e-7 * r + + 2.71155556874348757815e-5) * r + + 1.24266094738807843860e-3) * r + + 2.65321895265761230930e-2) * r + + 2.96560571828504891230e-1) * r + + 1.78482653991729133580e+0) * r + + 5.46378491116411436990e+0) * r + + 6.65790464350110377720e+0); + den = (((((((2.04426310338993978564e-15 * r + + 1.42151175831644588870e-7) * r + + 1.84631831751005468180e-5) * r + + 7.86869131145613259100e-4) * r + + 1.48753612908506148525e-2) * r + + 1.36929880922735805310e-1) * r + + 5.99832206555887937690e-1) * r + + 1.0); + } + if (den == 0.0) { + goto error; + } + x = num / den; + if (q < 0.0) { + x = -x; + } + return mu + (x * sigma); + + error: + PyErr_SetString(PyExc_ValueError, "inv_cdf undefined for these parameters"); + return -1.0; +} + + +static PyMethodDef statistics_methods[] = { + _STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF + {NULL, NULL, 0, NULL} +}; + +PyDoc_STRVAR(statistics_doc, +"Accelerators for the statistics module.\n"); + +static struct PyModuleDef_Slot _statisticsmodule_slots[] = { + {0, NULL} +}; + +static struct PyModuleDef statisticsmodule = { + PyModuleDef_HEAD_INIT, + "_statistics", + statistics_doc, + 0, + statistics_methods, + _statisticsmodule_slots, + NULL, + NULL, + NULL +}; + +PyMODINIT_FUNC +PyInit__statistics(void) +{ + return PyModuleDef_Init(&statisticsmodule); +} |