diff options
author | Alexander Smirnov <alex@ydb.tech> | 2024-07-08 15:54:05 +0000 |
---|---|---|
committer | Alexander Smirnov <alex@ydb.tech> | 2024-07-08 15:54:05 +0000 |
commit | fc7be18c76af2e700641f3598c4856baeef1428e (patch) | |
tree | 11dbca45eb321c3a4dd08b12152acc6ef5dd3fa9 /contrib/tools/python3/Lib/_pydecimal.py | |
parent | ec0e7ed6da6fb317741fd8468602949a1362eca5 (diff) | |
parent | c92cb9d3a19331916f0c274d80e67f02a62caa9b (diff) | |
download | ydb-fc7be18c76af2e700641f3598c4856baeef1428e.tar.gz |
Merge branch 'rightlib' into mergelibs-240708-1553
Diffstat (limited to 'contrib/tools/python3/Lib/_pydecimal.py')
-rw-r--r-- | contrib/tools/python3/Lib/_pydecimal.py | 118 |
1 files changed, 16 insertions, 102 deletions
diff --git a/contrib/tools/python3/Lib/_pydecimal.py b/contrib/tools/python3/Lib/_pydecimal.py index 2692f2fcba..613123ec7b 100644 --- a/contrib/tools/python3/Lib/_pydecimal.py +++ b/contrib/tools/python3/Lib/_pydecimal.py @@ -13,104 +13,7 @@ # bug) and will be backported. At this point the spec is stabilizing # and the updates are becoming fewer, smaller, and less significant. -""" -This is an implementation of decimal floating point arithmetic based on -the General Decimal Arithmetic Specification: - - http://speleotrove.com/decimal/decarith.html - -and IEEE standard 854-1987: - - http://en.wikipedia.org/wiki/IEEE_854-1987 - -Decimal floating point has finite precision with arbitrarily large bounds. - -The purpose of this module is to support arithmetic using familiar -"schoolhouse" rules and to avoid some of the tricky representation -issues associated with binary floating point. The package is especially -useful for financial applications or for contexts where users have -expectations that are at odds with binary floating point (for instance, -in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead -of 0.0; Decimal('1.00') % Decimal('0.1') returns the expected -Decimal('0.00')). - -Here are some examples of using the decimal module: - ->>> from decimal import * ->>> setcontext(ExtendedContext) ->>> Decimal(0) -Decimal('0') ->>> Decimal('1') -Decimal('1') ->>> Decimal('-.0123') -Decimal('-0.0123') ->>> Decimal(123456) -Decimal('123456') ->>> Decimal('123.45e12345678') -Decimal('1.2345E+12345680') ->>> Decimal('1.33') + Decimal('1.27') -Decimal('2.60') ->>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41') -Decimal('-2.20') ->>> dig = Decimal(1) ->>> print(dig / Decimal(3)) -0.333333333 ->>> getcontext().prec = 18 ->>> print(dig / Decimal(3)) -0.333333333333333333 ->>> print(dig.sqrt()) -1 ->>> print(Decimal(3).sqrt()) -1.73205080756887729 ->>> print(Decimal(3) ** 123) -4.85192780976896427E+58 ->>> inf = Decimal(1) / Decimal(0) ->>> print(inf) -Infinity ->>> neginf = Decimal(-1) / Decimal(0) ->>> print(neginf) --Infinity ->>> print(neginf + inf) -NaN ->>> print(neginf * inf) --Infinity ->>> print(dig / 0) -Infinity ->>> getcontext().traps[DivisionByZero] = 1 ->>> print(dig / 0) -Traceback (most recent call last): - ... - ... - ... -decimal.DivisionByZero: x / 0 ->>> c = Context() ->>> c.traps[InvalidOperation] = 0 ->>> print(c.flags[InvalidOperation]) -0 ->>> c.divide(Decimal(0), Decimal(0)) -Decimal('NaN') ->>> c.traps[InvalidOperation] = 1 ->>> print(c.flags[InvalidOperation]) -1 ->>> c.flags[InvalidOperation] = 0 ->>> print(c.flags[InvalidOperation]) -0 ->>> print(c.divide(Decimal(0), Decimal(0))) -Traceback (most recent call last): - ... - ... - ... -decimal.InvalidOperation: 0 / 0 ->>> print(c.flags[InvalidOperation]) -1 ->>> c.flags[InvalidOperation] = 0 ->>> c.traps[InvalidOperation] = 0 ->>> print(c.divide(Decimal(0), Decimal(0))) -NaN ->>> print(c.flags[InvalidOperation]) -1 ->>> -""" +"""Python decimal arithmetic module""" __all__ = [ # Two major classes @@ -2228,10 +2131,16 @@ class Decimal(object): else: return None - if xc >= 10**p: + # An exact power of 10 is representable, but can convert to a + # string of any length. But an exact power of 10 shouldn't be + # possible at this point. + assert xc > 1, self + assert xc % 10 != 0, self + strxc = str(xc) + if len(strxc) > p: return None xe = -e-xe - return _dec_from_triple(0, str(xc), xe) + return _dec_from_triple(0, strxc, xe) # now y is positive; find m and n such that y = m/n if ye >= 0: @@ -2281,13 +2190,18 @@ class Decimal(object): return None xc = xc**m xe *= m - if xc > 10**p: + # An exact power of 10 is representable, but can convert to a string + # of any length. But an exact power of 10 shouldn't be possible at + # this point. + assert xc > 1, self + assert xc % 10 != 0, self + str_xc = str(xc) + if len(str_xc) > p: return None # by this point the result *is* exactly representable # adjust the exponent to get as close as possible to the ideal # exponent, if necessary - str_xc = str(xc) if other._isinteger() and other._sign == 0: ideal_exponent = self._exp*int(other) zeros = min(xe-ideal_exponent, p-len(str_xc)) |