diff options
author | monster <[email protected]> | 2022-07-07 14:41:37 +0300 |
---|---|---|
committer | monster <[email protected]> | 2022-07-07 14:41:37 +0300 |
commit | 06e5c21a835c0e923506c4ff27929f34e00761c2 (patch) | |
tree | 75efcbc6854ef9bd476eb8bf00cc5c900da436a2 /contrib/tools/cython/Cython/Compiler/Optimize.py | |
parent | 03f024c4412e3aa613bb543cf1660176320ba8f4 (diff) |
fix ya.make
Diffstat (limited to 'contrib/tools/cython/Cython/Compiler/Optimize.py')
-rw-r--r-- | contrib/tools/cython/Cython/Compiler/Optimize.py | 4857 |
1 files changed, 0 insertions, 4857 deletions
diff --git a/contrib/tools/cython/Cython/Compiler/Optimize.py b/contrib/tools/cython/Cython/Compiler/Optimize.py deleted file mode 100644 index 3cb77efe2c5..00000000000 --- a/contrib/tools/cython/Cython/Compiler/Optimize.py +++ /dev/null @@ -1,4857 +0,0 @@ -from __future__ import absolute_import - -import re -import sys -import copy -import codecs -import itertools - -from . import TypeSlots -from .ExprNodes import not_a_constant -import cython -cython.declare(UtilityCode=object, EncodedString=object, bytes_literal=object, encoded_string=object, - Nodes=object, ExprNodes=object, PyrexTypes=object, Builtin=object, - UtilNodes=object, _py_int_types=object) - -if sys.version_info[0] >= 3: - _py_int_types = int - _py_string_types = (bytes, str) -else: - _py_int_types = (int, long) - _py_string_types = (bytes, unicode) - -from . import Nodes -from . import ExprNodes -from . import PyrexTypes -from . import Visitor -from . import Builtin -from . import UtilNodes -from . import Options - -from .Code import UtilityCode, TempitaUtilityCode -from .StringEncoding import EncodedString, bytes_literal, encoded_string -from .Errors import error, warning -from .ParseTreeTransforms import SkipDeclarations - -try: - from __builtin__ import reduce -except ImportError: - from functools import reduce - -try: - from __builtin__ import basestring -except ImportError: - basestring = str # Python 3 - - -def load_c_utility(name): - return UtilityCode.load_cached(name, "Optimize.c") - - -def unwrap_coerced_node(node, coercion_nodes=(ExprNodes.CoerceToPyTypeNode, ExprNodes.CoerceFromPyTypeNode)): - if isinstance(node, coercion_nodes): - return node.arg - return node - - -def unwrap_node(node): - while isinstance(node, UtilNodes.ResultRefNode): - node = node.expression - return node - - -def is_common_value(a, b): - a = unwrap_node(a) - b = unwrap_node(b) - if isinstance(a, ExprNodes.NameNode) and isinstance(b, ExprNodes.NameNode): - return a.name == b.name - if isinstance(a, ExprNodes.AttributeNode) and isinstance(b, ExprNodes.AttributeNode): - return not a.is_py_attr and is_common_value(a.obj, b.obj) and a.attribute == b.attribute - return False - - -def filter_none_node(node): - if node is not None and node.constant_result is None: - return None - return node - - -class _YieldNodeCollector(Visitor.TreeVisitor): - """ - YieldExprNode finder for generator expressions. - """ - def __init__(self): - Visitor.TreeVisitor.__init__(self) - self.yield_stat_nodes = {} - self.yield_nodes = [] - - visit_Node = Visitor.TreeVisitor.visitchildren - - def visit_YieldExprNode(self, node): - self.yield_nodes.append(node) - self.visitchildren(node) - - def visit_ExprStatNode(self, node): - self.visitchildren(node) - if node.expr in self.yield_nodes: - self.yield_stat_nodes[node.expr] = node - - # everything below these nodes is out of scope: - - def visit_GeneratorExpressionNode(self, node): - pass - - def visit_LambdaNode(self, node): - pass - - def visit_FuncDefNode(self, node): - pass - - -def _find_single_yield_expression(node): - yield_statements = _find_yield_statements(node) - if len(yield_statements) != 1: - return None, None - return yield_statements[0] - - -def _find_yield_statements(node): - collector = _YieldNodeCollector() - collector.visitchildren(node) - try: - yield_statements = [ - (yield_node.arg, collector.yield_stat_nodes[yield_node]) - for yield_node in collector.yield_nodes - ] - except KeyError: - # found YieldExprNode without ExprStatNode (i.e. a non-statement usage of 'yield') - yield_statements = [] - return yield_statements - - -class IterationTransform(Visitor.EnvTransform): - """Transform some common for-in loop patterns into efficient C loops: - - - for-in-dict loop becomes a while loop calling PyDict_Next() - - for-in-enumerate is replaced by an external counter variable - - for-in-range loop becomes a plain C for loop - """ - def visit_PrimaryCmpNode(self, node): - if node.is_ptr_contains(): - - # for t in operand2: - # if operand1 == t: - # res = True - # break - # else: - # res = False - - pos = node.pos - result_ref = UtilNodes.ResultRefNode(node) - if node.operand2.is_subscript: - base_type = node.operand2.base.type.base_type - else: - base_type = node.operand2.type.base_type - target_handle = UtilNodes.TempHandle(base_type) - target = target_handle.ref(pos) - cmp_node = ExprNodes.PrimaryCmpNode( - pos, operator=u'==', operand1=node.operand1, operand2=target) - if_body = Nodes.StatListNode( - pos, - stats = [Nodes.SingleAssignmentNode(pos, lhs=result_ref, rhs=ExprNodes.BoolNode(pos, value=1)), - Nodes.BreakStatNode(pos)]) - if_node = Nodes.IfStatNode( - pos, - if_clauses=[Nodes.IfClauseNode(pos, condition=cmp_node, body=if_body)], - else_clause=None) - for_loop = UtilNodes.TempsBlockNode( - pos, - temps = [target_handle], - body = Nodes.ForInStatNode( - pos, - target=target, - iterator=ExprNodes.IteratorNode(node.operand2.pos, sequence=node.operand2), - body=if_node, - else_clause=Nodes.SingleAssignmentNode(pos, lhs=result_ref, rhs=ExprNodes.BoolNode(pos, value=0)))) - for_loop = for_loop.analyse_expressions(self.current_env()) - for_loop = self.visit(for_loop) - new_node = UtilNodes.TempResultFromStatNode(result_ref, for_loop) - - if node.operator == 'not_in': - new_node = ExprNodes.NotNode(pos, operand=new_node) - return new_node - - else: - self.visitchildren(node) - return node - - def visit_ForInStatNode(self, node): - self.visitchildren(node) - return self._optimise_for_loop(node, node.iterator.sequence) - - def _optimise_for_loop(self, node, iterable, reversed=False): - annotation_type = None - if (iterable.is_name or iterable.is_attribute) and iterable.entry and iterable.entry.annotation: - annotation = iterable.entry.annotation - if annotation.is_subscript: - annotation = annotation.base # container base type - # FIXME: generalise annotation evaluation => maybe provide a "qualified name" also for imported names? - if annotation.is_name: - if annotation.entry and annotation.entry.qualified_name == 'typing.Dict': - annotation_type = Builtin.dict_type - elif annotation.name == 'Dict': - annotation_type = Builtin.dict_type - if annotation.entry and annotation.entry.qualified_name in ('typing.Set', 'typing.FrozenSet'): - annotation_type = Builtin.set_type - elif annotation.name in ('Set', 'FrozenSet'): - annotation_type = Builtin.set_type - - if Builtin.dict_type in (iterable.type, annotation_type): - # like iterating over dict.keys() - if reversed: - # CPython raises an error here: not a sequence - return node - return self._transform_dict_iteration( - node, dict_obj=iterable, method=None, keys=True, values=False) - - if (Builtin.set_type in (iterable.type, annotation_type) or - Builtin.frozenset_type in (iterable.type, annotation_type)): - if reversed: - # CPython raises an error here: not a sequence - return node - return self._transform_set_iteration(node, iterable) - - # C array (slice) iteration? - if iterable.type.is_ptr or iterable.type.is_array: - return self._transform_carray_iteration(node, iterable, reversed=reversed) - if iterable.type is Builtin.bytes_type: - return self._transform_bytes_iteration(node, iterable, reversed=reversed) - if iterable.type is Builtin.unicode_type: - return self._transform_unicode_iteration(node, iterable, reversed=reversed) - - # the rest is based on function calls - if not isinstance(iterable, ExprNodes.SimpleCallNode): - return node - - if iterable.args is None: - arg_count = iterable.arg_tuple and len(iterable.arg_tuple.args) or 0 - else: - arg_count = len(iterable.args) - if arg_count and iterable.self is not None: - arg_count -= 1 - - function = iterable.function - # dict iteration? - if function.is_attribute and not reversed and not arg_count: - base_obj = iterable.self or function.obj - method = function.attribute - # in Py3, items() is equivalent to Py2's iteritems() - is_safe_iter = self.global_scope().context.language_level >= 3 - - if not is_safe_iter and method in ('keys', 'values', 'items'): - # try to reduce this to the corresponding .iter*() methods - if isinstance(base_obj, ExprNodes.CallNode): - inner_function = base_obj.function - if (inner_function.is_name and inner_function.name == 'dict' - and inner_function.entry - and inner_function.entry.is_builtin): - # e.g. dict(something).items() => safe to use .iter*() - is_safe_iter = True - - keys = values = False - if method == 'iterkeys' or (is_safe_iter and method == 'keys'): - keys = True - elif method == 'itervalues' or (is_safe_iter and method == 'values'): - values = True - elif method == 'iteritems' or (is_safe_iter and method == 'items'): - keys = values = True - - if keys or values: - return self._transform_dict_iteration( - node, base_obj, method, keys, values) - - # enumerate/reversed ? - if iterable.self is None and function.is_name and \ - function.entry and function.entry.is_builtin: - if function.name == 'enumerate': - if reversed: - # CPython raises an error here: not a sequence - return node - return self._transform_enumerate_iteration(node, iterable) - elif function.name == 'reversed': - if reversed: - # CPython raises an error here: not a sequence - return node - return self._transform_reversed_iteration(node, iterable) - - # range() iteration? - if Options.convert_range and 1 <= arg_count <= 3 and ( - iterable.self is None and - function.is_name and function.name in ('range', 'xrange') and - function.entry and function.entry.is_builtin): - if node.target.type.is_int or node.target.type.is_enum: - return self._transform_range_iteration(node, iterable, reversed=reversed) - if node.target.type.is_pyobject: - # Assume that small integer ranges (C long >= 32bit) are best handled in C as well. - for arg in (iterable.arg_tuple.args if iterable.args is None else iterable.args): - if isinstance(arg, ExprNodes.IntNode): - if arg.has_constant_result() and -2**30 <= arg.constant_result < 2**30: - continue - break - else: - return self._transform_range_iteration(node, iterable, reversed=reversed) - - return node - - def _transform_reversed_iteration(self, node, reversed_function): - args = reversed_function.arg_tuple.args - if len(args) == 0: - error(reversed_function.pos, - "reversed() requires an iterable argument") - return node - elif len(args) > 1: - error(reversed_function.pos, - "reversed() takes exactly 1 argument") - return node - arg = args[0] - - # reversed(list/tuple) ? - if arg.type in (Builtin.tuple_type, Builtin.list_type): - node.iterator.sequence = arg.as_none_safe_node("'NoneType' object is not iterable") - node.iterator.reversed = True - return node - - return self._optimise_for_loop(node, arg, reversed=True) - - PyBytes_AS_STRING_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_char_ptr_type, [ - PyrexTypes.CFuncTypeArg("s", Builtin.bytes_type, None) - ]) - - PyBytes_GET_SIZE_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_py_ssize_t_type, [ - PyrexTypes.CFuncTypeArg("s", Builtin.bytes_type, None) - ]) - - def _transform_bytes_iteration(self, node, slice_node, reversed=False): - target_type = node.target.type - if not target_type.is_int and target_type is not Builtin.bytes_type: - # bytes iteration returns bytes objects in Py2, but - # integers in Py3 - return node - - unpack_temp_node = UtilNodes.LetRefNode( - slice_node.as_none_safe_node("'NoneType' is not iterable")) - - slice_base_node = ExprNodes.PythonCapiCallNode( - slice_node.pos, "PyBytes_AS_STRING", - self.PyBytes_AS_STRING_func_type, - args = [unpack_temp_node], - is_temp = 0, - ) - len_node = ExprNodes.PythonCapiCallNode( - slice_node.pos, "PyBytes_GET_SIZE", - self.PyBytes_GET_SIZE_func_type, - args = [unpack_temp_node], - is_temp = 0, - ) - - return UtilNodes.LetNode( - unpack_temp_node, - self._transform_carray_iteration( - node, - ExprNodes.SliceIndexNode( - slice_node.pos, - base = slice_base_node, - start = None, - step = None, - stop = len_node, - type = slice_base_node.type, - is_temp = 1, - ), - reversed = reversed)) - - PyUnicode_READ_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_py_ucs4_type, [ - PyrexTypes.CFuncTypeArg("kind", PyrexTypes.c_int_type, None), - PyrexTypes.CFuncTypeArg("data", PyrexTypes.c_void_ptr_type, None), - PyrexTypes.CFuncTypeArg("index", PyrexTypes.c_py_ssize_t_type, None) - ]) - - init_unicode_iteration_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_int_type, [ - PyrexTypes.CFuncTypeArg("s", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("length", PyrexTypes.c_py_ssize_t_ptr_type, None), - PyrexTypes.CFuncTypeArg("data", PyrexTypes.c_void_ptr_ptr_type, None), - PyrexTypes.CFuncTypeArg("kind", PyrexTypes.c_int_ptr_type, None) - ], - exception_value = '-1') - - def _transform_unicode_iteration(self, node, slice_node, reversed=False): - if slice_node.is_literal: - # try to reduce to byte iteration for plain Latin-1 strings - try: - bytes_value = bytes_literal(slice_node.value.encode('latin1'), 'iso8859-1') - except UnicodeEncodeError: - pass - else: - bytes_slice = ExprNodes.SliceIndexNode( - slice_node.pos, - base=ExprNodes.BytesNode( - slice_node.pos, value=bytes_value, - constant_result=bytes_value, - type=PyrexTypes.c_const_char_ptr_type).coerce_to( - PyrexTypes.c_const_uchar_ptr_type, self.current_env()), - start=None, - stop=ExprNodes.IntNode( - slice_node.pos, value=str(len(bytes_value)), - constant_result=len(bytes_value), - type=PyrexTypes.c_py_ssize_t_type), - type=Builtin.unicode_type, # hint for Python conversion - ) - return self._transform_carray_iteration(node, bytes_slice, reversed) - - unpack_temp_node = UtilNodes.LetRefNode( - slice_node.as_none_safe_node("'NoneType' is not iterable")) - - start_node = ExprNodes.IntNode( - node.pos, value='0', constant_result=0, type=PyrexTypes.c_py_ssize_t_type) - length_temp = UtilNodes.TempHandle(PyrexTypes.c_py_ssize_t_type) - end_node = length_temp.ref(node.pos) - if reversed: - relation1, relation2 = '>', '>=' - start_node, end_node = end_node, start_node - else: - relation1, relation2 = '<=', '<' - - kind_temp = UtilNodes.TempHandle(PyrexTypes.c_int_type) - data_temp = UtilNodes.TempHandle(PyrexTypes.c_void_ptr_type) - counter_temp = UtilNodes.TempHandle(PyrexTypes.c_py_ssize_t_type) - - target_value = ExprNodes.PythonCapiCallNode( - slice_node.pos, "__Pyx_PyUnicode_READ", - self.PyUnicode_READ_func_type, - args = [kind_temp.ref(slice_node.pos), - data_temp.ref(slice_node.pos), - counter_temp.ref(node.target.pos)], - is_temp = False, - ) - if target_value.type != node.target.type: - target_value = target_value.coerce_to(node.target.type, - self.current_env()) - target_assign = Nodes.SingleAssignmentNode( - pos = node.target.pos, - lhs = node.target, - rhs = target_value) - body = Nodes.StatListNode( - node.pos, - stats = [target_assign, node.body]) - - loop_node = Nodes.ForFromStatNode( - node.pos, - bound1=start_node, relation1=relation1, - target=counter_temp.ref(node.target.pos), - relation2=relation2, bound2=end_node, - step=None, body=body, - else_clause=node.else_clause, - from_range=True) - - setup_node = Nodes.ExprStatNode( - node.pos, - expr = ExprNodes.PythonCapiCallNode( - slice_node.pos, "__Pyx_init_unicode_iteration", - self.init_unicode_iteration_func_type, - args = [unpack_temp_node, - ExprNodes.AmpersandNode(slice_node.pos, operand=length_temp.ref(slice_node.pos), - type=PyrexTypes.c_py_ssize_t_ptr_type), - ExprNodes.AmpersandNode(slice_node.pos, operand=data_temp.ref(slice_node.pos), - type=PyrexTypes.c_void_ptr_ptr_type), - ExprNodes.AmpersandNode(slice_node.pos, operand=kind_temp.ref(slice_node.pos), - type=PyrexTypes.c_int_ptr_type), - ], - is_temp = True, - result_is_used = False, - utility_code=UtilityCode.load_cached("unicode_iter", "Optimize.c"), - )) - return UtilNodes.LetNode( - unpack_temp_node, - UtilNodes.TempsBlockNode( - node.pos, temps=[counter_temp, length_temp, data_temp, kind_temp], - body=Nodes.StatListNode(node.pos, stats=[setup_node, loop_node]))) - - def _transform_carray_iteration(self, node, slice_node, reversed=False): - neg_step = False - if isinstance(slice_node, ExprNodes.SliceIndexNode): - slice_base = slice_node.base - start = filter_none_node(slice_node.start) - stop = filter_none_node(slice_node.stop) - step = None - if not stop: - if not slice_base.type.is_pyobject: - error(slice_node.pos, "C array iteration requires known end index") - return node - - elif slice_node.is_subscript: - assert isinstance(slice_node.index, ExprNodes.SliceNode) - slice_base = slice_node.base - index = slice_node.index - start = filter_none_node(index.start) - stop = filter_none_node(index.stop) - step = filter_none_node(index.step) - if step: - if not isinstance(step.constant_result, _py_int_types) \ - or step.constant_result == 0 \ - or step.constant_result > 0 and not stop \ - or step.constant_result < 0 and not start: - if not slice_base.type.is_pyobject: - error(step.pos, "C array iteration requires known step size and end index") - return node - else: - # step sign is handled internally by ForFromStatNode - step_value = step.constant_result - if reversed: - step_value = -step_value - neg_step = step_value < 0 - step = ExprNodes.IntNode(step.pos, type=PyrexTypes.c_py_ssize_t_type, - value=str(abs(step_value)), - constant_result=abs(step_value)) - - elif slice_node.type.is_array: - if slice_node.type.size is None: - error(slice_node.pos, "C array iteration requires known end index") - return node - slice_base = slice_node - start = None - stop = ExprNodes.IntNode( - slice_node.pos, value=str(slice_node.type.size), - type=PyrexTypes.c_py_ssize_t_type, constant_result=slice_node.type.size) - step = None - - else: - if not slice_node.type.is_pyobject: - error(slice_node.pos, "C array iteration requires known end index") - return node - - if start: - start = start.coerce_to(PyrexTypes.c_py_ssize_t_type, self.current_env()) - if stop: - stop = stop.coerce_to(PyrexTypes.c_py_ssize_t_type, self.current_env()) - if stop is None: - if neg_step: - stop = ExprNodes.IntNode( - slice_node.pos, value='-1', type=PyrexTypes.c_py_ssize_t_type, constant_result=-1) - else: - error(slice_node.pos, "C array iteration requires known step size and end index") - return node - - if reversed: - if not start: - start = ExprNodes.IntNode(slice_node.pos, value="0", constant_result=0, - type=PyrexTypes.c_py_ssize_t_type) - # if step was provided, it was already negated above - start, stop = stop, start - - ptr_type = slice_base.type - if ptr_type.is_array: - ptr_type = ptr_type.element_ptr_type() - carray_ptr = slice_base.coerce_to_simple(self.current_env()) - - if start and start.constant_result != 0: - start_ptr_node = ExprNodes.AddNode( - start.pos, - operand1=carray_ptr, - operator='+', - operand2=start, - type=ptr_type) - else: - start_ptr_node = carray_ptr - - if stop and stop.constant_result != 0: - stop_ptr_node = ExprNodes.AddNode( - stop.pos, - operand1=ExprNodes.CloneNode(carray_ptr), - operator='+', - operand2=stop, - type=ptr_type - ).coerce_to_simple(self.current_env()) - else: - stop_ptr_node = ExprNodes.CloneNode(carray_ptr) - - counter = UtilNodes.TempHandle(ptr_type) - counter_temp = counter.ref(node.target.pos) - - if slice_base.type.is_string and node.target.type.is_pyobject: - # special case: char* -> bytes/unicode - if slice_node.type is Builtin.unicode_type: - target_value = ExprNodes.CastNode( - ExprNodes.DereferenceNode( - node.target.pos, operand=counter_temp, - type=ptr_type.base_type), - PyrexTypes.c_py_ucs4_type).coerce_to( - node.target.type, self.current_env()) - else: - # char* -> bytes coercion requires slicing, not indexing - target_value = ExprNodes.SliceIndexNode( - node.target.pos, - start=ExprNodes.IntNode(node.target.pos, value='0', - constant_result=0, - type=PyrexTypes.c_int_type), - stop=ExprNodes.IntNode(node.target.pos, value='1', - constant_result=1, - type=PyrexTypes.c_int_type), - base=counter_temp, - type=Builtin.bytes_type, - is_temp=1) - elif node.target.type.is_ptr and not node.target.type.assignable_from(ptr_type.base_type): - # Allow iteration with pointer target to avoid copy. - target_value = counter_temp - else: - # TODO: can this safely be replaced with DereferenceNode() as above? - target_value = ExprNodes.IndexNode( - node.target.pos, - index=ExprNodes.IntNode(node.target.pos, value='0', - constant_result=0, - type=PyrexTypes.c_int_type), - base=counter_temp, - type=ptr_type.base_type) - - if target_value.type != node.target.type: - target_value = target_value.coerce_to(node.target.type, - self.current_env()) - - target_assign = Nodes.SingleAssignmentNode( - pos = node.target.pos, - lhs = node.target, - rhs = target_value) - - body = Nodes.StatListNode( - node.pos, - stats = [target_assign, node.body]) - - relation1, relation2 = self._find_for_from_node_relations(neg_step, reversed) - - for_node = Nodes.ForFromStatNode( - node.pos, - bound1=start_ptr_node, relation1=relation1, - target=counter_temp, - relation2=relation2, bound2=stop_ptr_node, - step=step, body=body, - else_clause=node.else_clause, - from_range=True) - - return UtilNodes.TempsBlockNode( - node.pos, temps=[counter], - body=for_node) - - def _transform_enumerate_iteration(self, node, enumerate_function): - args = enumerate_function.arg_tuple.args - if len(args) == 0: - error(enumerate_function.pos, - "enumerate() requires an iterable argument") - return node - elif len(args) > 2: - error(enumerate_function.pos, - "enumerate() takes at most 2 arguments") - return node - - if not node.target.is_sequence_constructor: - # leave this untouched for now - return node - targets = node.target.args - if len(targets) != 2: - # leave this untouched for now - return node - - enumerate_target, iterable_target = targets - counter_type = enumerate_target.type - - if not counter_type.is_pyobject and not counter_type.is_int: - # nothing we can do here, I guess - return node - - if len(args) == 2: - start = unwrap_coerced_node(args[1]).coerce_to(counter_type, self.current_env()) - else: - start = ExprNodes.IntNode(enumerate_function.pos, - value='0', - type=counter_type, - constant_result=0) - temp = UtilNodes.LetRefNode(start) - - inc_expression = ExprNodes.AddNode( - enumerate_function.pos, - operand1 = temp, - operand2 = ExprNodes.IntNode(node.pos, value='1', - type=counter_type, - constant_result=1), - operator = '+', - type = counter_type, - #inplace = True, # not worth using in-place operation for Py ints - is_temp = counter_type.is_pyobject - ) - - loop_body = [ - Nodes.SingleAssignmentNode( - pos = enumerate_target.pos, - lhs = enumerate_target, - rhs = temp), - Nodes.SingleAssignmentNode( - pos = enumerate_target.pos, - lhs = temp, - rhs = inc_expression) - ] - - if isinstance(node.body, Nodes.StatListNode): - node.body.stats = loop_body + node.body.stats - else: - loop_body.append(node.body) - node.body = Nodes.StatListNode( - node.body.pos, - stats = loop_body) - - node.target = iterable_target - node.item = node.item.coerce_to(iterable_target.type, self.current_env()) - node.iterator.sequence = args[0] - - # recurse into loop to check for further optimisations - return UtilNodes.LetNode(temp, self._optimise_for_loop(node, node.iterator.sequence)) - - def _find_for_from_node_relations(self, neg_step_value, reversed): - if reversed: - if neg_step_value: - return '<', '<=' - else: - return '>', '>=' - else: - if neg_step_value: - return '>=', '>' - else: - return '<=', '<' - - def _transform_range_iteration(self, node, range_function, reversed=False): - args = range_function.arg_tuple.args - if len(args) < 3: - step_pos = range_function.pos - step_value = 1 - step = ExprNodes.IntNode(step_pos, value='1', constant_result=1) - else: - step = args[2] - step_pos = step.pos - if not isinstance(step.constant_result, _py_int_types): - # cannot determine step direction - return node - step_value = step.constant_result - if step_value == 0: - # will lead to an error elsewhere - return node - step = ExprNodes.IntNode(step_pos, value=str(step_value), - constant_result=step_value) - - if len(args) == 1: - bound1 = ExprNodes.IntNode(range_function.pos, value='0', - constant_result=0) - bound2 = args[0].coerce_to_integer(self.current_env()) - else: - bound1 = args[0].coerce_to_integer(self.current_env()) - bound2 = args[1].coerce_to_integer(self.current_env()) - - relation1, relation2 = self._find_for_from_node_relations(step_value < 0, reversed) - - bound2_ref_node = None - if reversed: - bound1, bound2 = bound2, bound1 - abs_step = abs(step_value) - if abs_step != 1: - if (isinstance(bound1.constant_result, _py_int_types) and - isinstance(bound2.constant_result, _py_int_types)): - # calculate final bounds now - if step_value < 0: - begin_value = bound2.constant_result - end_value = bound1.constant_result - bound1_value = begin_value - abs_step * ((begin_value - end_value - 1) // abs_step) - 1 - else: - begin_value = bound1.constant_result - end_value = bound2.constant_result - bound1_value = end_value + abs_step * ((begin_value - end_value - 1) // abs_step) + 1 - - bound1 = ExprNodes.IntNode( - bound1.pos, value=str(bound1_value), constant_result=bound1_value, - type=PyrexTypes.spanning_type(bound1.type, bound2.type)) - else: - # evaluate the same expression as above at runtime - bound2_ref_node = UtilNodes.LetRefNode(bound2) - bound1 = self._build_range_step_calculation( - bound1, bound2_ref_node, step, step_value) - - if step_value < 0: - step_value = -step_value - step.value = str(step_value) - step.constant_result = step_value - step = step.coerce_to_integer(self.current_env()) - - if not bound2.is_literal: - # stop bound must be immutable => keep it in a temp var - bound2_is_temp = True - bound2 = bound2_ref_node or UtilNodes.LetRefNode(bound2) - else: - bound2_is_temp = False - - for_node = Nodes.ForFromStatNode( - node.pos, - target=node.target, - bound1=bound1, relation1=relation1, - relation2=relation2, bound2=bound2, - step=step, body=node.body, - else_clause=node.else_clause, - from_range=True) - for_node.set_up_loop(self.current_env()) - - if bound2_is_temp: - for_node = UtilNodes.LetNode(bound2, for_node) - - return for_node - - def _build_range_step_calculation(self, bound1, bound2_ref_node, step, step_value): - abs_step = abs(step_value) - spanning_type = PyrexTypes.spanning_type(bound1.type, bound2_ref_node.type) - if step.type.is_int and abs_step < 0x7FFF: - # Avoid loss of integer precision warnings. - spanning_step_type = PyrexTypes.spanning_type(spanning_type, PyrexTypes.c_int_type) - else: - spanning_step_type = PyrexTypes.spanning_type(spanning_type, step.type) - if step_value < 0: - begin_value = bound2_ref_node - end_value = bound1 - final_op = '-' - else: - begin_value = bound1 - end_value = bound2_ref_node - final_op = '+' - - step_calculation_node = ExprNodes.binop_node( - bound1.pos, - operand1=ExprNodes.binop_node( - bound1.pos, - operand1=bound2_ref_node, - operator=final_op, # +/- - operand2=ExprNodes.MulNode( - bound1.pos, - operand1=ExprNodes.IntNode( - bound1.pos, - value=str(abs_step), - constant_result=abs_step, - type=spanning_step_type), - operator='*', - operand2=ExprNodes.DivNode( - bound1.pos, - operand1=ExprNodes.SubNode( - bound1.pos, - operand1=ExprNodes.SubNode( - bound1.pos, - operand1=begin_value, - operator='-', - operand2=end_value, - type=spanning_type), - operator='-', - operand2=ExprNodes.IntNode( - bound1.pos, - value='1', - constant_result=1), - type=spanning_step_type), - operator='//', - operand2=ExprNodes.IntNode( - bound1.pos, - value=str(abs_step), - constant_result=abs_step, - type=spanning_step_type), - type=spanning_step_type), - type=spanning_step_type), - type=spanning_step_type), - operator=final_op, # +/- - operand2=ExprNodes.IntNode( - bound1.pos, - value='1', - constant_result=1), - type=spanning_type) - return step_calculation_node - - def _transform_dict_iteration(self, node, dict_obj, method, keys, values): - temps = [] - temp = UtilNodes.TempHandle(PyrexTypes.py_object_type) - temps.append(temp) - dict_temp = temp.ref(dict_obj.pos) - temp = UtilNodes.TempHandle(PyrexTypes.c_py_ssize_t_type) - temps.append(temp) - pos_temp = temp.ref(node.pos) - - key_target = value_target = tuple_target = None - if keys and values: - if node.target.is_sequence_constructor: - if len(node.target.args) == 2: - key_target, value_target = node.target.args - else: - # unusual case that may or may not lead to an error - return node - else: - tuple_target = node.target - elif keys: - key_target = node.target - else: - value_target = node.target - - if isinstance(node.body, Nodes.StatListNode): - body = node.body - else: - body = Nodes.StatListNode(pos = node.body.pos, - stats = [node.body]) - - # keep original length to guard against dict modification - dict_len_temp = UtilNodes.TempHandle(PyrexTypes.c_py_ssize_t_type) - temps.append(dict_len_temp) - dict_len_temp_addr = ExprNodes.AmpersandNode( - node.pos, operand=dict_len_temp.ref(dict_obj.pos), - type=PyrexTypes.c_ptr_type(dict_len_temp.type)) - temp = UtilNodes.TempHandle(PyrexTypes.c_int_type) - temps.append(temp) - is_dict_temp = temp.ref(node.pos) - is_dict_temp_addr = ExprNodes.AmpersandNode( - node.pos, operand=is_dict_temp, - type=PyrexTypes.c_ptr_type(temp.type)) - - iter_next_node = Nodes.DictIterationNextNode( - dict_temp, dict_len_temp.ref(dict_obj.pos), pos_temp, - key_target, value_target, tuple_target, - is_dict_temp) - iter_next_node = iter_next_node.analyse_expressions(self.current_env()) - body.stats[0:0] = [iter_next_node] - - if method: - method_node = ExprNodes.StringNode( - dict_obj.pos, is_identifier=True, value=method) - dict_obj = dict_obj.as_none_safe_node( - "'NoneType' object has no attribute '%{0}s'".format('.30' if len(method) <= 30 else ''), - error = "PyExc_AttributeError", - format_args = [method]) - else: - method_node = ExprNodes.NullNode(dict_obj.pos) - dict_obj = dict_obj.as_none_safe_node("'NoneType' object is not iterable") - - def flag_node(value): - value = value and 1 or 0 - return ExprNodes.IntNode(node.pos, value=str(value), constant_result=value) - - result_code = [ - Nodes.SingleAssignmentNode( - node.pos, - lhs = pos_temp, - rhs = ExprNodes.IntNode(node.pos, value='0', - constant_result=0)), - Nodes.SingleAssignmentNode( - dict_obj.pos, - lhs = dict_temp, - rhs = ExprNodes.PythonCapiCallNode( - dict_obj.pos, - "__Pyx_dict_iterator", - self.PyDict_Iterator_func_type, - utility_code = UtilityCode.load_cached("dict_iter", "Optimize.c"), - args = [dict_obj, flag_node(dict_obj.type is Builtin.dict_type), - method_node, dict_len_temp_addr, is_dict_temp_addr, - ], - is_temp=True, - )), - Nodes.WhileStatNode( - node.pos, - condition = None, - body = body, - else_clause = node.else_clause - ) - ] - - return UtilNodes.TempsBlockNode( - node.pos, temps=temps, - body=Nodes.StatListNode( - node.pos, - stats = result_code - )) - - PyDict_Iterator_func_type = PyrexTypes.CFuncType( - PyrexTypes.py_object_type, [ - PyrexTypes.CFuncTypeArg("dict", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("is_dict", PyrexTypes.c_int_type, None), - PyrexTypes.CFuncTypeArg("method_name", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("p_orig_length", PyrexTypes.c_py_ssize_t_ptr_type, None), - PyrexTypes.CFuncTypeArg("p_is_dict", PyrexTypes.c_int_ptr_type, None), - ]) - - PySet_Iterator_func_type = PyrexTypes.CFuncType( - PyrexTypes.py_object_type, [ - PyrexTypes.CFuncTypeArg("set", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("is_set", PyrexTypes.c_int_type, None), - PyrexTypes.CFuncTypeArg("p_orig_length", PyrexTypes.c_py_ssize_t_ptr_type, None), - PyrexTypes.CFuncTypeArg("p_is_set", PyrexTypes.c_int_ptr_type, None), - ]) - - def _transform_set_iteration(self, node, set_obj): - temps = [] - temp = UtilNodes.TempHandle(PyrexTypes.py_object_type) - temps.append(temp) - set_temp = temp.ref(set_obj.pos) - temp = UtilNodes.TempHandle(PyrexTypes.c_py_ssize_t_type) - temps.append(temp) - pos_temp = temp.ref(node.pos) - - if isinstance(node.body, Nodes.StatListNode): - body = node.body - else: - body = Nodes.StatListNode(pos = node.body.pos, - stats = [node.body]) - - # keep original length to guard against set modification - set_len_temp = UtilNodes.TempHandle(PyrexTypes.c_py_ssize_t_type) - temps.append(set_len_temp) - set_len_temp_addr = ExprNodes.AmpersandNode( - node.pos, operand=set_len_temp.ref(set_obj.pos), - type=PyrexTypes.c_ptr_type(set_len_temp.type)) - temp = UtilNodes.TempHandle(PyrexTypes.c_int_type) - temps.append(temp) - is_set_temp = temp.ref(node.pos) - is_set_temp_addr = ExprNodes.AmpersandNode( - node.pos, operand=is_set_temp, - type=PyrexTypes.c_ptr_type(temp.type)) - - value_target = node.target - iter_next_node = Nodes.SetIterationNextNode( - set_temp, set_len_temp.ref(set_obj.pos), pos_temp, value_target, is_set_temp) - iter_next_node = iter_next_node.analyse_expressions(self.current_env()) - body.stats[0:0] = [iter_next_node] - - def flag_node(value): - value = value and 1 or 0 - return ExprNodes.IntNode(node.pos, value=str(value), constant_result=value) - - result_code = [ - Nodes.SingleAssignmentNode( - node.pos, - lhs=pos_temp, - rhs=ExprNodes.IntNode(node.pos, value='0', constant_result=0)), - Nodes.SingleAssignmentNode( - set_obj.pos, - lhs=set_temp, - rhs=ExprNodes.PythonCapiCallNode( - set_obj.pos, - "__Pyx_set_iterator", - self.PySet_Iterator_func_type, - utility_code=UtilityCode.load_cached("set_iter", "Optimize.c"), - args=[set_obj, flag_node(set_obj.type is Builtin.set_type), - set_len_temp_addr, is_set_temp_addr, - ], - is_temp=True, - )), - Nodes.WhileStatNode( - node.pos, - condition=None, - body=body, - else_clause=node.else_clause, - ) - ] - - return UtilNodes.TempsBlockNode( - node.pos, temps=temps, - body=Nodes.StatListNode( - node.pos, - stats = result_code - )) - - -class SwitchTransform(Visitor.EnvTransform): - """ - This transformation tries to turn long if statements into C switch statements. - The requirement is that every clause be an (or of) var == value, where the var - is common among all clauses and both var and value are ints. - """ - NO_MATCH = (None, None, None) - - def extract_conditions(self, cond, allow_not_in): - while True: - if isinstance(cond, (ExprNodes.CoerceToTempNode, - ExprNodes.CoerceToBooleanNode)): - cond = cond.arg - elif isinstance(cond, ExprNodes.BoolBinopResultNode): - cond = cond.arg.arg - elif isinstance(cond, UtilNodes.EvalWithTempExprNode): - # this is what we get from the FlattenInListTransform - cond = cond.subexpression - elif isinstance(cond, ExprNodes.TypecastNode): - cond = cond.operand - else: - break - - if isinstance(cond, ExprNodes.PrimaryCmpNode): - if cond.cascade is not None: - return self.NO_MATCH - elif cond.is_c_string_contains() and \ - isinstance(cond.operand2, (ExprNodes.UnicodeNode, ExprNodes.BytesNode)): - not_in = cond.operator == 'not_in' - if not_in and not allow_not_in: - return self.NO_MATCH - if isinstance(cond.operand2, ExprNodes.UnicodeNode) and \ - cond.operand2.contains_surrogates(): - # dealing with surrogates leads to different - # behaviour on wide and narrow Unicode - # platforms => refuse to optimise this case - return self.NO_MATCH - return not_in, cond.operand1, self.extract_in_string_conditions(cond.operand2) - elif not cond.is_python_comparison(): - if cond.operator == '==': - not_in = False - elif allow_not_in and cond.operator == '!=': - not_in = True - else: - return self.NO_MATCH - # this looks somewhat silly, but it does the right - # checks for NameNode and AttributeNode - if is_common_value(cond.operand1, cond.operand1): - if cond.operand2.is_literal: - return not_in, cond.operand1, [cond.operand2] - elif getattr(cond.operand2, 'entry', None) \ - and cond.operand2.entry.is_const: - return not_in, cond.operand1, [cond.operand2] - if is_common_value(cond.operand2, cond.operand2): - if cond.operand1.is_literal: - return not_in, cond.operand2, [cond.operand1] - elif getattr(cond.operand1, 'entry', None) \ - and cond.operand1.entry.is_const: - return not_in, cond.operand2, [cond.operand1] - elif isinstance(cond, ExprNodes.BoolBinopNode): - if cond.operator == 'or' or (allow_not_in and cond.operator == 'and'): - allow_not_in = (cond.operator == 'and') - not_in_1, t1, c1 = self.extract_conditions(cond.operand1, allow_not_in) - not_in_2, t2, c2 = self.extract_conditions(cond.operand2, allow_not_in) - if t1 is not None and not_in_1 == not_in_2 and is_common_value(t1, t2): - if (not not_in_1) or allow_not_in: - return not_in_1, t1, c1+c2 - return self.NO_MATCH - - def extract_in_string_conditions(self, string_literal): - if isinstance(string_literal, ExprNodes.UnicodeNode): - charvals = list(map(ord, set(string_literal.value))) - charvals.sort() - return [ ExprNodes.IntNode(string_literal.pos, value=str(charval), - constant_result=charval) - for charval in charvals ] - else: - # this is a bit tricky as Py3's bytes type returns - # integers on iteration, whereas Py2 returns 1-char byte - # strings - characters = string_literal.value - characters = list(set([ characters[i:i+1] for i in range(len(characters)) ])) - characters.sort() - return [ ExprNodes.CharNode(string_literal.pos, value=charval, - constant_result=charval) - for charval in characters ] - - def extract_common_conditions(self, common_var, condition, allow_not_in): - not_in, var, conditions = self.extract_conditions(condition, allow_not_in) - if var is None: - return self.NO_MATCH - elif common_var is not None and not is_common_value(var, common_var): - return self.NO_MATCH - elif not (var.type.is_int or var.type.is_enum) or sum([not (cond.type.is_int or cond.type.is_enum) for cond in conditions]): - return self.NO_MATCH - return not_in, var, conditions - - def has_duplicate_values(self, condition_values): - # duplicated values don't work in a switch statement - seen = set() - for value in condition_values: - if value.has_constant_result(): - if value.constant_result in seen: - return True - seen.add(value.constant_result) - else: - # this isn't completely safe as we don't know the - # final C value, but this is about the best we can do - try: - if value.entry.cname in seen: - return True - except AttributeError: - return True # play safe - seen.add(value.entry.cname) - return False - - def visit_IfStatNode(self, node): - if not self.current_directives.get('optimize.use_switch'): - self.visitchildren(node) - return node - - common_var = None - cases = [] - for if_clause in node.if_clauses: - _, common_var, conditions = self.extract_common_conditions( - common_var, if_clause.condition, False) - if common_var is None: - self.visitchildren(node) - return node - cases.append(Nodes.SwitchCaseNode(pos=if_clause.pos, - conditions=conditions, - body=if_clause.body)) - - condition_values = [ - cond for case in cases for cond in case.conditions] - if len(condition_values) < 2: - self.visitchildren(node) - return node - if self.has_duplicate_values(condition_values): - self.visitchildren(node) - return node - - # Recurse into body subtrees that we left untouched so far. - self.visitchildren(node, 'else_clause') - for case in cases: - self.visitchildren(case, 'body') - - common_var = unwrap_node(common_var) - switch_node = Nodes.SwitchStatNode(pos=node.pos, - test=common_var, - cases=cases, - else_clause=node.else_clause) - return switch_node - - def visit_CondExprNode(self, node): - if not self.current_directives.get('optimize.use_switch'): - self.visitchildren(node) - return node - - not_in, common_var, conditions = self.extract_common_conditions( - None, node.test, True) - if common_var is None \ - or len(conditions) < 2 \ - or self.has_duplicate_values(conditions): - self.visitchildren(node) - return node - - return self.build_simple_switch_statement( - node, common_var, conditions, not_in, - node.true_val, node.false_val) - - def visit_BoolBinopNode(self, node): - if not self.current_directives.get('optimize.use_switch'): - self.visitchildren(node) - return node - - not_in, common_var, conditions = self.extract_common_conditions( - None, node, True) - if common_var is None \ - or len(conditions) < 2 \ - or self.has_duplicate_values(conditions): - self.visitchildren(node) - node.wrap_operands(self.current_env()) # in case we changed the operands - return node - - return self.build_simple_switch_statement( - node, common_var, conditions, not_in, - ExprNodes.BoolNode(node.pos, value=True, constant_result=True), - ExprNodes.BoolNode(node.pos, value=False, constant_result=False)) - - def visit_PrimaryCmpNode(self, node): - if not self.current_directives.get('optimize.use_switch'): - self.visitchildren(node) - return node - - not_in, common_var, conditions = self.extract_common_conditions( - None, node, True) - if common_var is None \ - or len(conditions) < 2 \ - or self.has_duplicate_values(conditions): - self.visitchildren(node) - return node - - return self.build_simple_switch_statement( - node, common_var, conditions, not_in, - ExprNodes.BoolNode(node.pos, value=True, constant_result=True), - ExprNodes.BoolNode(node.pos, value=False, constant_result=False)) - - def build_simple_switch_statement(self, node, common_var, conditions, - not_in, true_val, false_val): - result_ref = UtilNodes.ResultRefNode(node) - true_body = Nodes.SingleAssignmentNode( - node.pos, - lhs=result_ref, - rhs=true_val.coerce_to(node.type, self.current_env()), - first=True) - false_body = Nodes.SingleAssignmentNode( - node.pos, - lhs=result_ref, - rhs=false_val.coerce_to(node.type, self.current_env()), - first=True) - - if not_in: - true_body, false_body = false_body, true_body - - cases = [Nodes.SwitchCaseNode(pos = node.pos, - conditions = conditions, - body = true_body)] - - common_var = unwrap_node(common_var) - switch_node = Nodes.SwitchStatNode(pos = node.pos, - test = common_var, - cases = cases, - else_clause = false_body) - replacement = UtilNodes.TempResultFromStatNode(result_ref, switch_node) - return replacement - - def visit_EvalWithTempExprNode(self, node): - if not self.current_directives.get('optimize.use_switch'): - self.visitchildren(node) - return node - - # drop unused expression temp from FlattenInListTransform - orig_expr = node.subexpression - temp_ref = node.lazy_temp - self.visitchildren(node) - if node.subexpression is not orig_expr: - # node was restructured => check if temp is still used - if not Visitor.tree_contains(node.subexpression, temp_ref): - return node.subexpression - return node - - visit_Node = Visitor.VisitorTransform.recurse_to_children - - -class FlattenInListTransform(Visitor.VisitorTransform, SkipDeclarations): - """ - This transformation flattens "x in [val1, ..., valn]" into a sequential list - of comparisons. - """ - - def visit_PrimaryCmpNode(self, node): - self.visitchildren(node) - if node.cascade is not None: - return node - elif node.operator == 'in': - conjunction = 'or' - eq_or_neq = '==' - elif node.operator == 'not_in': - conjunction = 'and' - eq_or_neq = '!=' - else: - return node - - if not isinstance(node.operand2, (ExprNodes.TupleNode, - ExprNodes.ListNode, - ExprNodes.SetNode)): - return node - - args = node.operand2.args - if len(args) == 0: - # note: lhs may have side effects - return node - - if any([arg.is_starred for arg in args]): - # Starred arguments do not directly translate to comparisons or "in" tests. - return node - - lhs = UtilNodes.ResultRefNode(node.operand1) - - conds = [] - temps = [] - for arg in args: - try: - # Trial optimisation to avoid redundant temp - # assignments. However, since is_simple() is meant to - # be called after type analysis, we ignore any errors - # and just play safe in that case. - is_simple_arg = arg.is_simple() - except Exception: - is_simple_arg = False - if not is_simple_arg: - # must evaluate all non-simple RHS before doing the comparisons - arg = UtilNodes.LetRefNode(arg) - temps.append(arg) - cond = ExprNodes.PrimaryCmpNode( - pos = node.pos, - operand1 = lhs, - operator = eq_or_neq, - operand2 = arg, - cascade = None) - conds.append(ExprNodes.TypecastNode( - pos = node.pos, - operand = cond, - type = PyrexTypes.c_bint_type)) - def concat(left, right): - return ExprNodes.BoolBinopNode( - pos = node.pos, - operator = conjunction, - operand1 = left, - operand2 = right) - - condition = reduce(concat, conds) - new_node = UtilNodes.EvalWithTempExprNode(lhs, condition) - for temp in temps[::-1]: - new_node = UtilNodes.EvalWithTempExprNode(temp, new_node) - return new_node - - visit_Node = Visitor.VisitorTransform.recurse_to_children - - -class DropRefcountingTransform(Visitor.VisitorTransform): - """Drop ref-counting in safe places. - """ - visit_Node = Visitor.VisitorTransform.recurse_to_children - - def visit_ParallelAssignmentNode(self, node): - """ - Parallel swap assignments like 'a,b = b,a' are safe. - """ - left_names, right_names = [], [] - left_indices, right_indices = [], [] - temps = [] - - for stat in node.stats: - if isinstance(stat, Nodes.SingleAssignmentNode): - if not self._extract_operand(stat.lhs, left_names, - left_indices, temps): - return node - if not self._extract_operand(stat.rhs, right_names, - right_indices, temps): - return node - elif isinstance(stat, Nodes.CascadedAssignmentNode): - # FIXME - return node - else: - return node - - if left_names or right_names: - # lhs/rhs names must be a non-redundant permutation - lnames = [ path for path, n in left_names ] - rnames = [ path for path, n in right_names ] - if set(lnames) != set(rnames): - return node - if len(set(lnames)) != len(right_names): - return node - - if left_indices or right_indices: - # base name and index of index nodes must be a - # non-redundant permutation - lindices = [] - for lhs_node in left_indices: - index_id = self._extract_index_id(lhs_node) - if not index_id: - return node - lindices.append(index_id) - rindices = [] - for rhs_node in right_indices: - index_id = self._extract_index_id(rhs_node) - if not index_id: - return node - rindices.append(index_id) - - if set(lindices) != set(rindices): - return node - if len(set(lindices)) != len(right_indices): - return node - - # really supporting IndexNode requires support in - # __Pyx_GetItemInt(), so let's stop short for now - return node - - temp_args = [t.arg for t in temps] - for temp in temps: - temp.use_managed_ref = False - - for _, name_node in left_names + right_names: - if name_node not in temp_args: - name_node.use_managed_ref = False - - for index_node in left_indices + right_indices: - index_node.use_managed_ref = False - - return node - - def _extract_operand(self, node, names, indices, temps): - node = unwrap_node(node) - if not node.type.is_pyobject: - return False - if isinstance(node, ExprNodes.CoerceToTempNode): - temps.append(node) - node = node.arg - name_path = [] - obj_node = node - while obj_node.is_attribute: - if obj_node.is_py_attr: - return False - name_path.append(obj_node.member) - obj_node = obj_node.obj - if obj_node.is_name: - name_path.append(obj_node.name) - names.append( ('.'.join(name_path[::-1]), node) ) - elif node.is_subscript: - if node.base.type != Builtin.list_type: - return False - if not node.index.type.is_int: - return False - if not node.base.is_name: - return False - indices.append(node) - else: - return False - return True - - def _extract_index_id(self, index_node): - base = index_node.base - index = index_node.index - if isinstance(index, ExprNodes.NameNode): - index_val = index.name - elif isinstance(index, ExprNodes.ConstNode): - # FIXME: - return None - else: - return None - return (base.name, index_val) - - -class EarlyReplaceBuiltinCalls(Visitor.EnvTransform): - """Optimize some common calls to builtin types *before* the type - analysis phase and *after* the declarations analysis phase. - - This transform cannot make use of any argument types, but it can - restructure the tree in a way that the type analysis phase can - respond to. - - Introducing C function calls here may not be a good idea. Move - them to the OptimizeBuiltinCalls transform instead, which runs - after type analysis. - """ - # only intercept on call nodes - visit_Node = Visitor.VisitorTransform.recurse_to_children - - def visit_SimpleCallNode(self, node): - self.visitchildren(node) - function = node.function - if not self._function_is_builtin_name(function): - return node - return self._dispatch_to_handler(node, function, node.args) - - def visit_GeneralCallNode(self, node): - self.visitchildren(node) - function = node.function - if not self._function_is_builtin_name(function): - return node - arg_tuple = node.positional_args - if not isinstance(arg_tuple, ExprNodes.TupleNode): - return node - args = arg_tuple.args - return self._dispatch_to_handler( - node, function, args, node.keyword_args) - - def _function_is_builtin_name(self, function): - if not function.is_name: - return False - env = self.current_env() - entry = env.lookup(function.name) - if entry is not env.builtin_scope().lookup_here(function.name): - return False - # if entry is None, it's at least an undeclared name, so likely builtin - return True - - def _dispatch_to_handler(self, node, function, args, kwargs=None): - if kwargs is None: - handler_name = '_handle_simple_function_%s' % function.name - else: - handler_name = '_handle_general_function_%s' % function.name - handle_call = getattr(self, handler_name, None) - if handle_call is not None: - if kwargs is None: - return handle_call(node, args) - else: - return handle_call(node, args, kwargs) - return node - - def _inject_capi_function(self, node, cname, func_type, utility_code=None): - node.function = ExprNodes.PythonCapiFunctionNode( - node.function.pos, node.function.name, cname, func_type, - utility_code = utility_code) - - def _error_wrong_arg_count(self, function_name, node, args, expected=None): - if not expected: # None or 0 - arg_str = '' - elif isinstance(expected, basestring) or expected > 1: - arg_str = '...' - elif expected == 1: - arg_str = 'x' - else: - arg_str = '' - if expected is not None: - expected_str = 'expected %s, ' % expected - else: - expected_str = '' - error(node.pos, "%s(%s) called with wrong number of args, %sfound %d" % ( - function_name, arg_str, expected_str, len(args))) - - # specific handlers for simple call nodes - - def _handle_simple_function_float(self, node, pos_args): - if not pos_args: - return ExprNodes.FloatNode(node.pos, value='0.0') - if len(pos_args) > 1: - self._error_wrong_arg_count('float', node, pos_args, 1) - arg_type = getattr(pos_args[0], 'type', None) - if arg_type in (PyrexTypes.c_double_type, Builtin.float_type): - return pos_args[0] - return node - - def _handle_simple_function_slice(self, node, pos_args): - arg_count = len(pos_args) - start = step = None - if arg_count == 1: - stop, = pos_args - elif arg_count == 2: - start, stop = pos_args - elif arg_count == 3: - start, stop, step = pos_args - else: - self._error_wrong_arg_count('slice', node, pos_args) - return node - return ExprNodes.SliceNode( - node.pos, - start=start or ExprNodes.NoneNode(node.pos), - stop=stop, - step=step or ExprNodes.NoneNode(node.pos)) - - def _handle_simple_function_ord(self, node, pos_args): - """Unpack ord('X'). - """ - if len(pos_args) != 1: - return node - arg = pos_args[0] - if isinstance(arg, (ExprNodes.UnicodeNode, ExprNodes.BytesNode)): - if len(arg.value) == 1: - return ExprNodes.IntNode( - arg.pos, type=PyrexTypes.c_long_type, - value=str(ord(arg.value)), - constant_result=ord(arg.value) - ) - elif isinstance(arg, ExprNodes.StringNode): - if arg.unicode_value and len(arg.unicode_value) == 1 \ - and ord(arg.unicode_value) <= 255: # Py2/3 portability - return ExprNodes.IntNode( - arg.pos, type=PyrexTypes.c_int_type, - value=str(ord(arg.unicode_value)), - constant_result=ord(arg.unicode_value) - ) - return node - - # sequence processing - - def _handle_simple_function_all(self, node, pos_args): - """Transform - - _result = all(p(x) for L in LL for x in L) - - into - - for L in LL: - for x in L: - if not p(x): - return False - else: - return True - """ - return self._transform_any_all(node, pos_args, False) - - def _handle_simple_function_any(self, node, pos_args): - """Transform - - _result = any(p(x) for L in LL for x in L) - - into - - for L in LL: - for x in L: - if p(x): - return True - else: - return False - """ - return self._transform_any_all(node, pos_args, True) - - def _transform_any_all(self, node, pos_args, is_any): - if len(pos_args) != 1: - return node - if not isinstance(pos_args[0], ExprNodes.GeneratorExpressionNode): - return node - gen_expr_node = pos_args[0] - generator_body = gen_expr_node.def_node.gbody - loop_node = generator_body.body - yield_expression, yield_stat_node = _find_single_yield_expression(loop_node) - if yield_expression is None: - return node - - if is_any: - condition = yield_expression - else: - condition = ExprNodes.NotNode(yield_expression.pos, operand=yield_expression) - - test_node = Nodes.IfStatNode( - yield_expression.pos, else_clause=None, if_clauses=[ - Nodes.IfClauseNode( - yield_expression.pos, - condition=condition, - body=Nodes.ReturnStatNode( - node.pos, - value=ExprNodes.BoolNode(yield_expression.pos, value=is_any, constant_result=is_any)) - )] - ) - loop_node.else_clause = Nodes.ReturnStatNode( - node.pos, - value=ExprNodes.BoolNode(yield_expression.pos, value=not is_any, constant_result=not is_any)) - - Visitor.recursively_replace_node(gen_expr_node, yield_stat_node, test_node) - - return ExprNodes.InlinedGeneratorExpressionNode( - gen_expr_node.pos, gen=gen_expr_node, orig_func='any' if is_any else 'all') - - PySequence_List_func_type = PyrexTypes.CFuncType( - Builtin.list_type, - [PyrexTypes.CFuncTypeArg("it", PyrexTypes.py_object_type, None)]) - - def _handle_simple_function_sorted(self, node, pos_args): - """Transform sorted(genexpr) and sorted([listcomp]) into - [listcomp].sort(). CPython just reads the iterable into a - list and calls .sort() on it. Expanding the iterable in a - listcomp is still faster and the result can be sorted in - place. - """ - if len(pos_args) != 1: - return node - - arg = pos_args[0] - if isinstance(arg, ExprNodes.ComprehensionNode) and arg.type is Builtin.list_type: - list_node = pos_args[0] - loop_node = list_node.loop - - elif isinstance(arg, ExprNodes.GeneratorExpressionNode): - gen_expr_node = arg - loop_node = gen_expr_node.loop - yield_statements = _find_yield_statements(loop_node) - if not yield_statements: - return node - - list_node = ExprNodes.InlinedGeneratorExpressionNode( - node.pos, gen_expr_node, orig_func='sorted', - comprehension_type=Builtin.list_type) - - for yield_expression, yield_stat_node in yield_statements: - append_node = ExprNodes.ComprehensionAppendNode( - yield_expression.pos, - expr=yield_expression, - target=list_node.target) - Visitor.recursively_replace_node(gen_expr_node, yield_stat_node, append_node) - - elif arg.is_sequence_constructor: - # sorted([a, b, c]) or sorted((a, b, c)). The result is always a list, - # so starting off with a fresh one is more efficient. - list_node = loop_node = arg.as_list() - - else: - # Interestingly, PySequence_List works on a lot of non-sequence - # things as well. - list_node = loop_node = ExprNodes.PythonCapiCallNode( - node.pos, "PySequence_List", self.PySequence_List_func_type, - args=pos_args, is_temp=True) - - result_node = UtilNodes.ResultRefNode( - pos=loop_node.pos, type=Builtin.list_type, may_hold_none=False) - list_assign_node = Nodes.SingleAssignmentNode( - node.pos, lhs=result_node, rhs=list_node, first=True) - - sort_method = ExprNodes.AttributeNode( - node.pos, obj=result_node, attribute=EncodedString('sort'), - # entry ? type ? - needs_none_check=False) - sort_node = Nodes.ExprStatNode( - node.pos, expr=ExprNodes.SimpleCallNode( - node.pos, function=sort_method, args=[])) - - sort_node.analyse_declarations(self.current_env()) - - return UtilNodes.TempResultFromStatNode( - result_node, - Nodes.StatListNode(node.pos, stats=[list_assign_node, sort_node])) - - def __handle_simple_function_sum(self, node, pos_args): - """Transform sum(genexpr) into an equivalent inlined aggregation loop. - """ - if len(pos_args) not in (1,2): - return node - if not isinstance(pos_args[0], (ExprNodes.GeneratorExpressionNode, - ExprNodes.ComprehensionNode)): - return node - gen_expr_node = pos_args[0] - loop_node = gen_expr_node.loop - - if isinstance(gen_expr_node, ExprNodes.GeneratorExpressionNode): - yield_expression, yield_stat_node = _find_single_yield_expression(loop_node) - # FIXME: currently nonfunctional - yield_expression = None - if yield_expression is None: - return node - else: # ComprehensionNode - yield_stat_node = gen_expr_node.append - yield_expression = yield_stat_node.expr - try: - if not yield_expression.is_literal or not yield_expression.type.is_int: - return node - except AttributeError: - return node # in case we don't have a type yet - # special case: old Py2 backwards compatible "sum([int_const for ...])" - # can safely be unpacked into a genexpr - - if len(pos_args) == 1: - start = ExprNodes.IntNode(node.pos, value='0', constant_result=0) - else: - start = pos_args[1] - - result_ref = UtilNodes.ResultRefNode(pos=node.pos, type=PyrexTypes.py_object_type) - add_node = Nodes.SingleAssignmentNode( - yield_expression.pos, - lhs = result_ref, - rhs = ExprNodes.binop_node(node.pos, '+', result_ref, yield_expression) - ) - - Visitor.recursively_replace_node(gen_expr_node, yield_stat_node, add_node) - - exec_code = Nodes.StatListNode( - node.pos, - stats = [ - Nodes.SingleAssignmentNode( - start.pos, - lhs = UtilNodes.ResultRefNode(pos=node.pos, expression=result_ref), - rhs = start, - first = True), - loop_node - ]) - - return ExprNodes.InlinedGeneratorExpressionNode( - gen_expr_node.pos, loop = exec_code, result_node = result_ref, - expr_scope = gen_expr_node.expr_scope, orig_func = 'sum', - has_local_scope = gen_expr_node.has_local_scope) - - def _handle_simple_function_min(self, node, pos_args): - return self._optimise_min_max(node, pos_args, '<') - - def _handle_simple_function_max(self, node, pos_args): - return self._optimise_min_max(node, pos_args, '>') - - def _optimise_min_max(self, node, args, operator): - """Replace min(a,b,...) and max(a,b,...) by explicit comparison code. - """ - if len(args) <= 1: - if len(args) == 1 and args[0].is_sequence_constructor: - args = args[0].args - if len(args) <= 1: - # leave this to Python - return node - - cascaded_nodes = list(map(UtilNodes.ResultRefNode, args[1:])) - - last_result = args[0] - for arg_node in cascaded_nodes: - result_ref = UtilNodes.ResultRefNode(last_result) - last_result = ExprNodes.CondExprNode( - arg_node.pos, - true_val = arg_node, - false_val = result_ref, - test = ExprNodes.PrimaryCmpNode( - arg_node.pos, - operand1 = arg_node, - operator = operator, - operand2 = result_ref, - ) - ) - last_result = UtilNodes.EvalWithTempExprNode(result_ref, last_result) - - for ref_node in cascaded_nodes[::-1]: - last_result = UtilNodes.EvalWithTempExprNode(ref_node, last_result) - - return last_result - - # builtin type creation - - def _DISABLED_handle_simple_function_tuple(self, node, pos_args): - if not pos_args: - return ExprNodes.TupleNode(node.pos, args=[], constant_result=()) - # This is a bit special - for iterables (including genexps), - # Python actually overallocates and resizes a newly created - # tuple incrementally while reading items, which we can't - # easily do without explicit node support. Instead, we read - # the items into a list and then copy them into a tuple of the - # final size. This takes up to twice as much memory, but will - # have to do until we have real support for genexps. - result = self._transform_list_set_genexpr(node, pos_args, Builtin.list_type) - if result is not node: - return ExprNodes.AsTupleNode(node.pos, arg=result) - return node - - def _handle_simple_function_frozenset(self, node, pos_args): - """Replace frozenset([...]) by frozenset((...)) as tuples are more efficient. - """ - if len(pos_args) != 1: - return node - if pos_args[0].is_sequence_constructor and not pos_args[0].args: - del pos_args[0] - elif isinstance(pos_args[0], ExprNodes.ListNode): - pos_args[0] = pos_args[0].as_tuple() - return node - - def _handle_simple_function_list(self, node, pos_args): - if not pos_args: - return ExprNodes.ListNode(node.pos, args=[], constant_result=[]) - return self._transform_list_set_genexpr(node, pos_args, Builtin.list_type) - - def _handle_simple_function_set(self, node, pos_args): - if not pos_args: - return ExprNodes.SetNode(node.pos, args=[], constant_result=set()) - return self._transform_list_set_genexpr(node, pos_args, Builtin.set_type) - - def _transform_list_set_genexpr(self, node, pos_args, target_type): - """Replace set(genexpr) and list(genexpr) by an inlined comprehension. - """ - if len(pos_args) > 1: - return node - if not isinstance(pos_args[0], ExprNodes.GeneratorExpressionNode): - return node - gen_expr_node = pos_args[0] - loop_node = gen_expr_node.loop - - yield_statements = _find_yield_statements(loop_node) - if not yield_statements: - return node - - result_node = ExprNodes.InlinedGeneratorExpressionNode( - node.pos, gen_expr_node, - orig_func='set' if target_type is Builtin.set_type else 'list', - comprehension_type=target_type) - - for yield_expression, yield_stat_node in yield_statements: - append_node = ExprNodes.ComprehensionAppendNode( - yield_expression.pos, - expr=yield_expression, - target=result_node.target) - Visitor.recursively_replace_node(gen_expr_node, yield_stat_node, append_node) - - return result_node - - def _handle_simple_function_dict(self, node, pos_args): - """Replace dict( (a,b) for ... ) by an inlined { a:b for ... } - """ - if len(pos_args) == 0: - return ExprNodes.DictNode(node.pos, key_value_pairs=[], constant_result={}) - if len(pos_args) > 1: - return node - if not isinstance(pos_args[0], ExprNodes.GeneratorExpressionNode): - return node - gen_expr_node = pos_args[0] - loop_node = gen_expr_node.loop - - yield_statements = _find_yield_statements(loop_node) - if not yield_statements: - return node - - for yield_expression, _ in yield_statements: - if not isinstance(yield_expression, ExprNodes.TupleNode): - return node - if len(yield_expression.args) != 2: - return node - - result_node = ExprNodes.InlinedGeneratorExpressionNode( - node.pos, gen_expr_node, orig_func='dict', - comprehension_type=Builtin.dict_type) - - for yield_expression, yield_stat_node in yield_statements: - append_node = ExprNodes.DictComprehensionAppendNode( - yield_expression.pos, - key_expr=yield_expression.args[0], - value_expr=yield_expression.args[1], - target=result_node.target) - Visitor.recursively_replace_node(gen_expr_node, yield_stat_node, append_node) - - return result_node - - # specific handlers for general call nodes - - def _handle_general_function_dict(self, node, pos_args, kwargs): - """Replace dict(a=b,c=d,...) by the underlying keyword dict - construction which is done anyway. - """ - if len(pos_args) > 0: - return node - if not isinstance(kwargs, ExprNodes.DictNode): - return node - return kwargs - - -class InlineDefNodeCalls(Visitor.NodeRefCleanupMixin, Visitor.EnvTransform): - visit_Node = Visitor.VisitorTransform.recurse_to_children - - def get_constant_value_node(self, name_node): - if name_node.cf_state is None: - return None - if name_node.cf_state.cf_is_null: - return None - entry = self.current_env().lookup(name_node.name) - if not entry or (not entry.cf_assignments - or len(entry.cf_assignments) != 1): - # not just a single assignment in all closures - return None - return entry.cf_assignments[0].rhs - - def visit_SimpleCallNode(self, node): - self.visitchildren(node) - if not self.current_directives.get('optimize.inline_defnode_calls'): - return node - function_name = node.function - if not function_name.is_name: - return node - function = self.get_constant_value_node(function_name) - if not isinstance(function, ExprNodes.PyCFunctionNode): - return node - inlined = ExprNodes.InlinedDefNodeCallNode( - node.pos, function_name=function_name, - function=function, args=node.args) - if inlined.can_be_inlined(): - return self.replace(node, inlined) - return node - - -class OptimizeBuiltinCalls(Visitor.NodeRefCleanupMixin, - Visitor.MethodDispatcherTransform): - """Optimize some common methods calls and instantiation patterns - for builtin types *after* the type analysis phase. - - Running after type analysis, this transform can only perform - function replacements that do not alter the function return type - in a way that was not anticipated by the type analysis. - """ - ### cleanup to avoid redundant coercions to/from Python types - - def visit_PyTypeTestNode(self, node): - """Flatten redundant type checks after tree changes. - """ - self.visitchildren(node) - return node.reanalyse() - - def _visit_TypecastNode(self, node): - # disabled - the user may have had a reason to put a type - # cast, even if it looks redundant to Cython - """ - Drop redundant type casts. - """ - self.visitchildren(node) - if node.type == node.operand.type: - return node.operand - return node - - def visit_ExprStatNode(self, node): - """ - Drop dead code and useless coercions. - """ - self.visitchildren(node) - if isinstance(node.expr, ExprNodes.CoerceToPyTypeNode): - node.expr = node.expr.arg - expr = node.expr - if expr is None or expr.is_none or expr.is_literal: - # Expression was removed or is dead code => remove ExprStatNode as well. - return None - if expr.is_name and expr.entry and (expr.entry.is_local or expr.entry.is_arg): - # Ignore dead references to local variables etc. - return None - return node - - def visit_CoerceToBooleanNode(self, node): - """Drop redundant conversion nodes after tree changes. - """ - self.visitchildren(node) - arg = node.arg - if isinstance(arg, ExprNodes.PyTypeTestNode): - arg = arg.arg - if isinstance(arg, ExprNodes.CoerceToPyTypeNode): - if arg.type in (PyrexTypes.py_object_type, Builtin.bool_type): - return arg.arg.coerce_to_boolean(self.current_env()) - return node - - PyNumber_Float_func_type = PyrexTypes.CFuncType( - PyrexTypes.py_object_type, [ - PyrexTypes.CFuncTypeArg("o", PyrexTypes.py_object_type, None) - ]) - - def visit_CoerceToPyTypeNode(self, node): - """Drop redundant conversion nodes after tree changes.""" - self.visitchildren(node) - arg = node.arg - if isinstance(arg, ExprNodes.CoerceFromPyTypeNode): - arg = arg.arg - if isinstance(arg, ExprNodes.PythonCapiCallNode): - if arg.function.name == 'float' and len(arg.args) == 1: - # undo redundant Py->C->Py coercion - func_arg = arg.args[0] - if func_arg.type is Builtin.float_type: - return func_arg.as_none_safe_node("float() argument must be a string or a number, not 'NoneType'") - elif func_arg.type.is_pyobject: - return ExprNodes.PythonCapiCallNode( - node.pos, '__Pyx_PyNumber_Float', self.PyNumber_Float_func_type, - args=[func_arg], - py_name='float', - is_temp=node.is_temp, - result_is_used=node.result_is_used, - ).coerce_to(node.type, self.current_env()) - return node - - def visit_CoerceFromPyTypeNode(self, node): - """Drop redundant conversion nodes after tree changes. - - Also, optimise away calls to Python's builtin int() and - float() if the result is going to be coerced back into a C - type anyway. - """ - self.visitchildren(node) - arg = node.arg - if not arg.type.is_pyobject: - # no Python conversion left at all, just do a C coercion instead - if node.type != arg.type: - arg = arg.coerce_to(node.type, self.current_env()) - return arg - if isinstance(arg, ExprNodes.PyTypeTestNode): - arg = arg.arg - if arg.is_literal: - if (node.type.is_int and isinstance(arg, ExprNodes.IntNode) or - node.type.is_float and isinstance(arg, ExprNodes.FloatNode) or - node.type.is_int and isinstance(arg, ExprNodes.BoolNode)): - return arg.coerce_to(node.type, self.current_env()) - elif isinstance(arg, ExprNodes.CoerceToPyTypeNode): - if arg.type is PyrexTypes.py_object_type: - if node.type.assignable_from(arg.arg.type): - # completely redundant C->Py->C coercion - return arg.arg.coerce_to(node.type, self.current_env()) - elif arg.type is Builtin.unicode_type: - if arg.arg.type.is_unicode_char and node.type.is_unicode_char: - return arg.arg.coerce_to(node.type, self.current_env()) - elif isinstance(arg, ExprNodes.SimpleCallNode): - if node.type.is_int or node.type.is_float: - return self._optimise_numeric_cast_call(node, arg) - elif arg.is_subscript: - index_node = arg.index - if isinstance(index_node, ExprNodes.CoerceToPyTypeNode): - index_node = index_node.arg - if index_node.type.is_int: - return self._optimise_int_indexing(node, arg, index_node) - return node - - PyBytes_GetItemInt_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_char_type, [ - PyrexTypes.CFuncTypeArg("bytes", Builtin.bytes_type, None), - PyrexTypes.CFuncTypeArg("index", PyrexTypes.c_py_ssize_t_type, None), - PyrexTypes.CFuncTypeArg("check_bounds", PyrexTypes.c_int_type, None), - ], - exception_value = "((char)-1)", - exception_check = True) - - def _optimise_int_indexing(self, coerce_node, arg, index_node): - env = self.current_env() - bound_check_bool = env.directives['boundscheck'] and 1 or 0 - if arg.base.type is Builtin.bytes_type: - if coerce_node.type in (PyrexTypes.c_char_type, PyrexTypes.c_uchar_type): - # bytes[index] -> char - bound_check_node = ExprNodes.IntNode( - coerce_node.pos, value=str(bound_check_bool), - constant_result=bound_check_bool) - node = ExprNodes.PythonCapiCallNode( - coerce_node.pos, "__Pyx_PyBytes_GetItemInt", - self.PyBytes_GetItemInt_func_type, - args=[ - arg.base.as_none_safe_node("'NoneType' object is not subscriptable"), - index_node.coerce_to(PyrexTypes.c_py_ssize_t_type, env), - bound_check_node, - ], - is_temp=True, - utility_code=UtilityCode.load_cached( - 'bytes_index', 'StringTools.c')) - if coerce_node.type is not PyrexTypes.c_char_type: - node = node.coerce_to(coerce_node.type, env) - return node - return coerce_node - - float_float_func_types = dict( - (float_type, PyrexTypes.CFuncType( - float_type, [ - PyrexTypes.CFuncTypeArg("arg", float_type, None) - ])) - for float_type in (PyrexTypes.c_float_type, PyrexTypes.c_double_type, PyrexTypes.c_longdouble_type)) - - def _optimise_numeric_cast_call(self, node, arg): - function = arg.function - args = None - if isinstance(arg, ExprNodes.PythonCapiCallNode): - args = arg.args - elif isinstance(function, ExprNodes.NameNode): - if function.type.is_builtin_type and isinstance(arg.arg_tuple, ExprNodes.TupleNode): - args = arg.arg_tuple.args - - if args is None or len(args) != 1: - return node - func_arg = args[0] - if isinstance(func_arg, ExprNodes.CoerceToPyTypeNode): - func_arg = func_arg.arg - elif func_arg.type.is_pyobject: - # play it safe: Python conversion might work on all sorts of things - return node - - if function.name == 'int': - if func_arg.type.is_int or node.type.is_int: - if func_arg.type == node.type: - return func_arg - elif node.type.assignable_from(func_arg.type) or func_arg.type.is_float: - return ExprNodes.TypecastNode(node.pos, operand=func_arg, type=node.type) - elif func_arg.type.is_float and node.type.is_numeric: - if func_arg.type.math_h_modifier == 'l': - # Work around missing Cygwin definition. - truncl = '__Pyx_truncl' - else: - truncl = 'trunc' + func_arg.type.math_h_modifier - return ExprNodes.PythonCapiCallNode( - node.pos, truncl, - func_type=self.float_float_func_types[func_arg.type], - args=[func_arg], - py_name='int', - is_temp=node.is_temp, - result_is_used=node.result_is_used, - ).coerce_to(node.type, self.current_env()) - elif function.name == 'float': - if func_arg.type.is_float or node.type.is_float: - if func_arg.type == node.type: - return func_arg - elif node.type.assignable_from(func_arg.type) or func_arg.type.is_float: - return ExprNodes.TypecastNode( - node.pos, operand=func_arg, type=node.type) - return node - - def _error_wrong_arg_count(self, function_name, node, args, expected=None): - if not expected: # None or 0 - arg_str = '' - elif isinstance(expected, basestring) or expected > 1: - arg_str = '...' - elif expected == 1: - arg_str = 'x' - else: - arg_str = '' - if expected is not None: - expected_str = 'expected %s, ' % expected - else: - expected_str = '' - error(node.pos, "%s(%s) called with wrong number of args, %sfound %d" % ( - function_name, arg_str, expected_str, len(args))) - - ### generic fallbacks - - def _handle_function(self, node, function_name, function, arg_list, kwargs): - return node - - def _handle_method(self, node, type_name, attr_name, function, - arg_list, is_unbound_method, kwargs): - """ - Try to inject C-API calls for unbound method calls to builtin types. - While the method declarations in Builtin.py already handle this, we - can additionally resolve bound and unbound methods here that were - assigned to variables ahead of time. - """ - if kwargs: - return node - if not function or not function.is_attribute or not function.obj.is_name: - # cannot track unbound method calls over more than one indirection as - # the names might have been reassigned in the meantime - return node - type_entry = self.current_env().lookup(type_name) - if not type_entry: - return node - method = ExprNodes.AttributeNode( - node.function.pos, - obj=ExprNodes.NameNode( - function.pos, - name=type_name, - entry=type_entry, - type=type_entry.type), - attribute=attr_name, - is_called=True).analyse_as_type_attribute(self.current_env()) - if method is None: - return self._optimise_generic_builtin_method_call( - node, attr_name, function, arg_list, is_unbound_method) - args = node.args - if args is None and node.arg_tuple: - args = node.arg_tuple.args - call_node = ExprNodes.SimpleCallNode( - node.pos, - function=method, - args=args) - if not is_unbound_method: - call_node.self = function.obj - call_node.analyse_c_function_call(self.current_env()) - call_node.analysed = True - return call_node.coerce_to(node.type, self.current_env()) - - ### builtin types - - def _optimise_generic_builtin_method_call(self, node, attr_name, function, arg_list, is_unbound_method): - """ - Try to inject an unbound method call for a call to a method of a known builtin type. - This enables caching the underlying C function of the method at runtime. - """ - arg_count = len(arg_list) - if is_unbound_method or arg_count >= 3 or not (function.is_attribute and function.is_py_attr): - return node - if not function.obj.type.is_builtin_type: - return node - if function.obj.type.name in ('basestring', 'type'): - # these allow different actual types => unsafe - return node - return ExprNodes.CachedBuiltinMethodCallNode( - node, function.obj, attr_name, arg_list) - - PyObject_Unicode_func_type = PyrexTypes.CFuncType( - Builtin.unicode_type, [ - PyrexTypes.CFuncTypeArg("obj", PyrexTypes.py_object_type, None) - ]) - - def _handle_simple_function_unicode(self, node, function, pos_args): - """Optimise single argument calls to unicode(). - """ - if len(pos_args) != 1: - if len(pos_args) == 0: - return ExprNodes.UnicodeNode(node.pos, value=EncodedString(), constant_result=u'') - return node - arg = pos_args[0] - if arg.type is Builtin.unicode_type: - if not arg.may_be_none(): - return arg - cname = "__Pyx_PyUnicode_Unicode" - utility_code = UtilityCode.load_cached('PyUnicode_Unicode', 'StringTools.c') - else: - cname = "__Pyx_PyObject_Unicode" - utility_code = UtilityCode.load_cached('PyObject_Unicode', 'StringTools.c') - return ExprNodes.PythonCapiCallNode( - node.pos, cname, self.PyObject_Unicode_func_type, - args=pos_args, - is_temp=node.is_temp, - utility_code=utility_code, - py_name="unicode") - - def visit_FormattedValueNode(self, node): - """Simplify or avoid plain string formatting of a unicode value. - This seems misplaced here, but plain unicode formatting is essentially - a call to the unicode() builtin, which is optimised right above. - """ - self.visitchildren(node) - if node.value.type is Builtin.unicode_type and not node.c_format_spec and not node.format_spec: - if not node.conversion_char or node.conversion_char == 's': - # value is definitely a unicode string and we don't format it any special - return self._handle_simple_function_unicode(node, None, [node.value]) - return node - - PyDict_Copy_func_type = PyrexTypes.CFuncType( - Builtin.dict_type, [ - PyrexTypes.CFuncTypeArg("dict", Builtin.dict_type, None) - ]) - - def _handle_simple_function_dict(self, node, function, pos_args): - """Replace dict(some_dict) by PyDict_Copy(some_dict). - """ - if len(pos_args) != 1: - return node - arg = pos_args[0] - if arg.type is Builtin.dict_type: - arg = arg.as_none_safe_node("'NoneType' is not iterable") - return ExprNodes.PythonCapiCallNode( - node.pos, "PyDict_Copy", self.PyDict_Copy_func_type, - args = [arg], - is_temp = node.is_temp - ) - return node - - PySequence_List_func_type = PyrexTypes.CFuncType( - Builtin.list_type, - [PyrexTypes.CFuncTypeArg("it", PyrexTypes.py_object_type, None)]) - - def _handle_simple_function_list(self, node, function, pos_args): - """Turn list(ob) into PySequence_List(ob). - """ - if len(pos_args) != 1: - return node - arg = pos_args[0] - return ExprNodes.PythonCapiCallNode( - node.pos, "PySequence_List", self.PySequence_List_func_type, - args=pos_args, is_temp=node.is_temp) - - PyList_AsTuple_func_type = PyrexTypes.CFuncType( - Builtin.tuple_type, [ - PyrexTypes.CFuncTypeArg("list", Builtin.list_type, None) - ]) - - def _handle_simple_function_tuple(self, node, function, pos_args): - """Replace tuple([...]) by PyList_AsTuple or PySequence_Tuple. - """ - if len(pos_args) != 1 or not node.is_temp: - return node - arg = pos_args[0] - if arg.type is Builtin.tuple_type and not arg.may_be_none(): - return arg - if arg.type is Builtin.list_type: - pos_args[0] = arg.as_none_safe_node( - "'NoneType' object is not iterable") - - return ExprNodes.PythonCapiCallNode( - node.pos, "PyList_AsTuple", self.PyList_AsTuple_func_type, - args=pos_args, is_temp=node.is_temp) - else: - return ExprNodes.AsTupleNode(node.pos, arg=arg, type=Builtin.tuple_type) - - PySet_New_func_type = PyrexTypes.CFuncType( - Builtin.set_type, [ - PyrexTypes.CFuncTypeArg("it", PyrexTypes.py_object_type, None) - ]) - - def _handle_simple_function_set(self, node, function, pos_args): - if len(pos_args) != 1: - return node - if pos_args[0].is_sequence_constructor: - # We can optimise set([x,y,z]) safely into a set literal, - # but only if we create all items before adding them - - # adding an item may raise an exception if it is not - # hashable, but creating the later items may have - # side-effects. - args = [] - temps = [] - for arg in pos_args[0].args: - if not arg.is_simple(): - arg = UtilNodes.LetRefNode(arg) - temps.append(arg) - args.append(arg) - result = ExprNodes.SetNode(node.pos, is_temp=1, args=args) - self.replace(node, result) - for temp in temps[::-1]: - result = UtilNodes.EvalWithTempExprNode(temp, result) - return result - else: - # PySet_New(it) is better than a generic Python call to set(it) - return self.replace(node, ExprNodes.PythonCapiCallNode( - node.pos, "PySet_New", - self.PySet_New_func_type, - args=pos_args, - is_temp=node.is_temp, - py_name="set")) - - PyFrozenSet_New_func_type = PyrexTypes.CFuncType( - Builtin.frozenset_type, [ - PyrexTypes.CFuncTypeArg("it", PyrexTypes.py_object_type, None) - ]) - - def _handle_simple_function_frozenset(self, node, function, pos_args): - if not pos_args: - pos_args = [ExprNodes.NullNode(node.pos)] - elif len(pos_args) > 1: - return node - elif pos_args[0].type is Builtin.frozenset_type and not pos_args[0].may_be_none(): - return pos_args[0] - # PyFrozenSet_New(it) is better than a generic Python call to frozenset(it) - return ExprNodes.PythonCapiCallNode( - node.pos, "__Pyx_PyFrozenSet_New", - self.PyFrozenSet_New_func_type, - args=pos_args, - is_temp=node.is_temp, - utility_code=UtilityCode.load_cached('pyfrozenset_new', 'Builtins.c'), - py_name="frozenset") - - PyObject_AsDouble_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_double_type, [ - PyrexTypes.CFuncTypeArg("obj", PyrexTypes.py_object_type, None), - ], - exception_value = "((double)-1)", - exception_check = True) - - def _handle_simple_function_float(self, node, function, pos_args): - """Transform float() into either a C type cast or a faster C - function call. - """ - # Note: this requires the float() function to be typed as - # returning a C 'double' - if len(pos_args) == 0: - return ExprNodes.FloatNode( - node, value="0.0", constant_result=0.0 - ).coerce_to(Builtin.float_type, self.current_env()) - elif len(pos_args) != 1: - self._error_wrong_arg_count('float', node, pos_args, '0 or 1') - return node - func_arg = pos_args[0] - if isinstance(func_arg, ExprNodes.CoerceToPyTypeNode): - func_arg = func_arg.arg - if func_arg.type is PyrexTypes.c_double_type: - return func_arg - elif node.type.assignable_from(func_arg.type) or func_arg.type.is_numeric: - return ExprNodes.TypecastNode( - node.pos, operand=func_arg, type=node.type) - return ExprNodes.PythonCapiCallNode( - node.pos, "__Pyx_PyObject_AsDouble", - self.PyObject_AsDouble_func_type, - args = pos_args, - is_temp = node.is_temp, - utility_code = load_c_utility('pyobject_as_double'), - py_name = "float") - - PyNumber_Int_func_type = PyrexTypes.CFuncType( - PyrexTypes.py_object_type, [ - PyrexTypes.CFuncTypeArg("o", PyrexTypes.py_object_type, None) - ]) - - PyInt_FromDouble_func_type = PyrexTypes.CFuncType( - PyrexTypes.py_object_type, [ - PyrexTypes.CFuncTypeArg("value", PyrexTypes.c_double_type, None) - ]) - - def _handle_simple_function_int(self, node, function, pos_args): - """Transform int() into a faster C function call. - """ - if len(pos_args) == 0: - return ExprNodes.IntNode(node.pos, value="0", constant_result=0, - type=PyrexTypes.py_object_type) - elif len(pos_args) != 1: - return node # int(x, base) - func_arg = pos_args[0] - if isinstance(func_arg, ExprNodes.CoerceToPyTypeNode): - if func_arg.arg.type.is_float: - return ExprNodes.PythonCapiCallNode( - node.pos, "__Pyx_PyInt_FromDouble", self.PyInt_FromDouble_func_type, - args=[func_arg.arg], is_temp=True, py_name='int', - utility_code=UtilityCode.load_cached("PyIntFromDouble", "TypeConversion.c")) - else: - return node # handled in visit_CoerceFromPyTypeNode() - if func_arg.type.is_pyobject and node.type.is_pyobject: - return ExprNodes.PythonCapiCallNode( - node.pos, "__Pyx_PyNumber_Int", self.PyNumber_Int_func_type, - args=pos_args, is_temp=True, py_name='int') - return node - - def _handle_simple_function_bool(self, node, function, pos_args): - """Transform bool(x) into a type coercion to a boolean. - """ - if len(pos_args) == 0: - return ExprNodes.BoolNode( - node.pos, value=False, constant_result=False - ).coerce_to(Builtin.bool_type, self.current_env()) - elif len(pos_args) != 1: - self._error_wrong_arg_count('bool', node, pos_args, '0 or 1') - return node - else: - # => !!<bint>(x) to make sure it's exactly 0 or 1 - operand = pos_args[0].coerce_to_boolean(self.current_env()) - operand = ExprNodes.NotNode(node.pos, operand = operand) - operand = ExprNodes.NotNode(node.pos, operand = operand) - # coerce back to Python object as that's the result we are expecting - return operand.coerce_to_pyobject(self.current_env()) - - ### builtin functions - - Pyx_strlen_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_size_t_type, [ - PyrexTypes.CFuncTypeArg("bytes", PyrexTypes.c_const_char_ptr_type, None) - ]) - - Pyx_Py_UNICODE_strlen_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_size_t_type, [ - PyrexTypes.CFuncTypeArg("unicode", PyrexTypes.c_const_py_unicode_ptr_type, None) - ]) - - PyObject_Size_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_py_ssize_t_type, [ - PyrexTypes.CFuncTypeArg("obj", PyrexTypes.py_object_type, None) - ], - exception_value="-1") - - _map_to_capi_len_function = { - Builtin.unicode_type: "__Pyx_PyUnicode_GET_LENGTH", - Builtin.bytes_type: "PyBytes_GET_SIZE", - Builtin.bytearray_type: 'PyByteArray_GET_SIZE', - Builtin.list_type: "PyList_GET_SIZE", - Builtin.tuple_type: "PyTuple_GET_SIZE", - Builtin.set_type: "PySet_GET_SIZE", - Builtin.frozenset_type: "PySet_GET_SIZE", - Builtin.dict_type: "PyDict_Size", - }.get - - _ext_types_with_pysize = set(["cpython.array.array"]) - - def _handle_simple_function_len(self, node, function, pos_args): - """Replace len(char*) by the equivalent call to strlen(), - len(Py_UNICODE) by the equivalent Py_UNICODE_strlen() and - len(known_builtin_type) by an equivalent C-API call. - """ - if len(pos_args) != 1: - self._error_wrong_arg_count('len', node, pos_args, 1) - return node - arg = pos_args[0] - if isinstance(arg, ExprNodes.CoerceToPyTypeNode): - arg = arg.arg - if arg.type.is_string: - new_node = ExprNodes.PythonCapiCallNode( - node.pos, "strlen", self.Pyx_strlen_func_type, - args = [arg], - is_temp = node.is_temp, - utility_code = UtilityCode.load_cached("IncludeStringH", "StringTools.c")) - elif arg.type.is_pyunicode_ptr: - new_node = ExprNodes.PythonCapiCallNode( - node.pos, "__Pyx_Py_UNICODE_strlen", self.Pyx_Py_UNICODE_strlen_func_type, - args = [arg], - is_temp = node.is_temp) - elif arg.type.is_memoryviewslice: - func_type = PyrexTypes.CFuncType( - PyrexTypes.c_size_t_type, [ - PyrexTypes.CFuncTypeArg("memoryviewslice", arg.type, None) - ], nogil=True) - new_node = ExprNodes.PythonCapiCallNode( - node.pos, "__Pyx_MemoryView_Len", func_type, - args=[arg], is_temp=node.is_temp) - elif arg.type.is_pyobject: - cfunc_name = self._map_to_capi_len_function(arg.type) - if cfunc_name is None: - arg_type = arg.type - if ((arg_type.is_extension_type or arg_type.is_builtin_type) - and arg_type.entry.qualified_name in self._ext_types_with_pysize): - cfunc_name = 'Py_SIZE' - else: - return node - arg = arg.as_none_safe_node( - "object of type 'NoneType' has no len()") - new_node = ExprNodes.PythonCapiCallNode( - node.pos, cfunc_name, self.PyObject_Size_func_type, - args=[arg], is_temp=node.is_temp) - elif arg.type.is_unicode_char: - return ExprNodes.IntNode(node.pos, value='1', constant_result=1, - type=node.type) - else: - return node - if node.type not in (PyrexTypes.c_size_t_type, PyrexTypes.c_py_ssize_t_type): - new_node = new_node.coerce_to(node.type, self.current_env()) - return new_node - - Pyx_Type_func_type = PyrexTypes.CFuncType( - Builtin.type_type, [ - PyrexTypes.CFuncTypeArg("object", PyrexTypes.py_object_type, None) - ]) - - def _handle_simple_function_type(self, node, function, pos_args): - """Replace type(o) by a macro call to Py_TYPE(o). - """ - if len(pos_args) != 1: - return node - node = ExprNodes.PythonCapiCallNode( - node.pos, "Py_TYPE", self.Pyx_Type_func_type, - args = pos_args, - is_temp = False) - return ExprNodes.CastNode(node, PyrexTypes.py_object_type) - - Py_type_check_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_bint_type, [ - PyrexTypes.CFuncTypeArg("arg", PyrexTypes.py_object_type, None) - ]) - - def _handle_simple_function_isinstance(self, node, function, pos_args): - """Replace isinstance() checks against builtin types by the - corresponding C-API call. - """ - if len(pos_args) != 2: - return node - arg, types = pos_args - temps = [] - if isinstance(types, ExprNodes.TupleNode): - types = types.args - if len(types) == 1 and not types[0].type is Builtin.type_type: - return node # nothing to improve here - if arg.is_attribute or not arg.is_simple(): - arg = UtilNodes.ResultRefNode(arg) - temps.append(arg) - elif types.type is Builtin.type_type: - types = [types] - else: - return node - - tests = [] - test_nodes = [] - env = self.current_env() - for test_type_node in types: - builtin_type = None - if test_type_node.is_name: - if test_type_node.entry: - entry = env.lookup(test_type_node.entry.name) - if entry and entry.type and entry.type.is_builtin_type: - builtin_type = entry.type - if builtin_type is Builtin.type_type: - # all types have type "type", but there's only one 'type' - if entry.name != 'type' or not ( - entry.scope and entry.scope.is_builtin_scope): - builtin_type = None - if builtin_type is not None: - type_check_function = entry.type.type_check_function(exact=False) - if type_check_function in tests: - continue - tests.append(type_check_function) - type_check_args = [arg] - elif test_type_node.type is Builtin.type_type: - type_check_function = '__Pyx_TypeCheck' - type_check_args = [arg, test_type_node] - else: - if not test_type_node.is_literal: - test_type_node = UtilNodes.ResultRefNode(test_type_node) - temps.append(test_type_node) - type_check_function = 'PyObject_IsInstance' - type_check_args = [arg, test_type_node] - test_nodes.append( - ExprNodes.PythonCapiCallNode( - test_type_node.pos, type_check_function, self.Py_type_check_func_type, - args=type_check_args, - is_temp=True, - )) - - def join_with_or(a, b, make_binop_node=ExprNodes.binop_node): - or_node = make_binop_node(node.pos, 'or', a, b) - or_node.type = PyrexTypes.c_bint_type - or_node.wrap_operands(env) - return or_node - - test_node = reduce(join_with_or, test_nodes).coerce_to(node.type, env) - for temp in temps[::-1]: - test_node = UtilNodes.EvalWithTempExprNode(temp, test_node) - return test_node - - def _handle_simple_function_ord(self, node, function, pos_args): - """Unpack ord(Py_UNICODE) and ord('X'). - """ - if len(pos_args) != 1: - return node - arg = pos_args[0] - if isinstance(arg, ExprNodes.CoerceToPyTypeNode): - if arg.arg.type.is_unicode_char: - return ExprNodes.TypecastNode( - arg.pos, operand=arg.arg, type=PyrexTypes.c_long_type - ).coerce_to(node.type, self.current_env()) - elif isinstance(arg, ExprNodes.UnicodeNode): - if len(arg.value) == 1: - return ExprNodes.IntNode( - arg.pos, type=PyrexTypes.c_int_type, - value=str(ord(arg.value)), - constant_result=ord(arg.value) - ).coerce_to(node.type, self.current_env()) - elif isinstance(arg, ExprNodes.StringNode): - if arg.unicode_value and len(arg.unicode_value) == 1 \ - and ord(arg.unicode_value) <= 255: # Py2/3 portability - return ExprNodes.IntNode( - arg.pos, type=PyrexTypes.c_int_type, - value=str(ord(arg.unicode_value)), - constant_result=ord(arg.unicode_value) - ).coerce_to(node.type, self.current_env()) - return node - - ### special methods - - Pyx_tp_new_func_type = PyrexTypes.CFuncType( - PyrexTypes.py_object_type, [ - PyrexTypes.CFuncTypeArg("type", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("args", Builtin.tuple_type, None), - ]) - - Pyx_tp_new_kwargs_func_type = PyrexTypes.CFuncType( - PyrexTypes.py_object_type, [ - PyrexTypes.CFuncTypeArg("type", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("args", Builtin.tuple_type, None), - PyrexTypes.CFuncTypeArg("kwargs", Builtin.dict_type, None), - ]) - - def _handle_any_slot__new__(self, node, function, args, - is_unbound_method, kwargs=None): - """Replace 'exttype.__new__(exttype, ...)' by a call to exttype->tp_new() - """ - obj = function.obj - if not is_unbound_method or len(args) < 1: - return node - type_arg = args[0] - if not obj.is_name or not type_arg.is_name: - # play safe - return node - if obj.type != Builtin.type_type or type_arg.type != Builtin.type_type: - # not a known type, play safe - return node - if not type_arg.type_entry or not obj.type_entry: - if obj.name != type_arg.name: - return node - # otherwise, we know it's a type and we know it's the same - # type for both - that should do - elif type_arg.type_entry != obj.type_entry: - # different types - may or may not lead to an error at runtime - return node - - args_tuple = ExprNodes.TupleNode(node.pos, args=args[1:]) - args_tuple = args_tuple.analyse_types( - self.current_env(), skip_children=True) - - if type_arg.type_entry: - ext_type = type_arg.type_entry.type - if (ext_type.is_extension_type and ext_type.typeobj_cname and - ext_type.scope.global_scope() == self.current_env().global_scope()): - # known type in current module - tp_slot = TypeSlots.ConstructorSlot("tp_new", '__new__') - slot_func_cname = TypeSlots.get_slot_function(ext_type.scope, tp_slot) - if slot_func_cname: - cython_scope = self.context.cython_scope - PyTypeObjectPtr = PyrexTypes.CPtrType( - cython_scope.lookup('PyTypeObject').type) - pyx_tp_new_kwargs_func_type = PyrexTypes.CFuncType( - ext_type, [ - PyrexTypes.CFuncTypeArg("type", PyTypeObjectPtr, None), - PyrexTypes.CFuncTypeArg("args", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("kwargs", PyrexTypes.py_object_type, None), - ]) - - type_arg = ExprNodes.CastNode(type_arg, PyTypeObjectPtr) - if not kwargs: - kwargs = ExprNodes.NullNode(node.pos, type=PyrexTypes.py_object_type) # hack? - return ExprNodes.PythonCapiCallNode( - node.pos, slot_func_cname, - pyx_tp_new_kwargs_func_type, - args=[type_arg, args_tuple, kwargs], - may_return_none=False, - is_temp=True) - else: - # arbitrary variable, needs a None check for safety - type_arg = type_arg.as_none_safe_node( - "object.__new__(X): X is not a type object (NoneType)") - - utility_code = UtilityCode.load_cached('tp_new', 'ObjectHandling.c') - if kwargs: - return ExprNodes.PythonCapiCallNode( - node.pos, "__Pyx_tp_new_kwargs", self.Pyx_tp_new_kwargs_func_type, - args=[type_arg, args_tuple, kwargs], - utility_code=utility_code, - is_temp=node.is_temp - ) - else: - return ExprNodes.PythonCapiCallNode( - node.pos, "__Pyx_tp_new", self.Pyx_tp_new_func_type, - args=[type_arg, args_tuple], - utility_code=utility_code, - is_temp=node.is_temp - ) - - ### methods of builtin types - - PyObject_Append_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_returncode_type, [ - PyrexTypes.CFuncTypeArg("list", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("item", PyrexTypes.py_object_type, None), - ], - exception_value="-1") - - def _handle_simple_method_object_append(self, node, function, args, is_unbound_method): - """Optimistic optimisation as X.append() is almost always - referring to a list. - """ - if len(args) != 2 or node.result_is_used: - return node - - return ExprNodes.PythonCapiCallNode( - node.pos, "__Pyx_PyObject_Append", self.PyObject_Append_func_type, - args=args, - may_return_none=False, - is_temp=node.is_temp, - result_is_used=False, - utility_code=load_c_utility('append') - ) - - def _handle_simple_method_list_extend(self, node, function, args, is_unbound_method): - """Replace list.extend([...]) for short sequence literals values by sequential appends - to avoid creating an intermediate sequence argument. - """ - if len(args) != 2: - return node - obj, value = args - if not value.is_sequence_constructor: - return node - items = list(value.args) - if value.mult_factor is not None or len(items) > 8: - # Appending wins for short sequences but slows down when multiple resize operations are needed. - # This seems to be a good enough limit that avoids repeated resizing. - if False and isinstance(value, ExprNodes.ListNode): - # One would expect that tuples are more efficient here, but benchmarking with - # Py3.5 and Py3.7 suggests that they are not. Probably worth revisiting at some point. - # Might be related to the usage of PySequence_FAST() in CPython's list.extend(), - # which is probably tuned more towards lists than tuples (and rightly so). - tuple_node = args[1].as_tuple().analyse_types(self.current_env(), skip_children=True) - Visitor.recursively_replace_node(node, args[1], tuple_node) - return node - wrapped_obj = self._wrap_self_arg(obj, function, is_unbound_method, 'extend') - if not items: - # Empty sequences are not likely to occur, but why waste a call to list.extend() for them? - wrapped_obj.result_is_used = node.result_is_used - return wrapped_obj - cloned_obj = obj = wrapped_obj - if len(items) > 1 and not obj.is_simple(): - cloned_obj = UtilNodes.LetRefNode(obj) - # Use ListComp_Append() for all but the last item and finish with PyList_Append() - # to shrink the list storage size at the very end if necessary. - temps = [] - arg = items[-1] - if not arg.is_simple(): - arg = UtilNodes.LetRefNode(arg) - temps.append(arg) - new_node = ExprNodes.PythonCapiCallNode( - node.pos, "__Pyx_PyList_Append", self.PyObject_Append_func_type, - args=[cloned_obj, arg], - is_temp=True, - utility_code=load_c_utility("ListAppend")) - for arg in items[-2::-1]: - if not arg.is_simple(): - arg = UtilNodes.LetRefNode(arg) - temps.append(arg) - new_node = ExprNodes.binop_node( - node.pos, '|', - ExprNodes.PythonCapiCallNode( - node.pos, "__Pyx_ListComp_Append", self.PyObject_Append_func_type, - args=[cloned_obj, arg], py_name="extend", - is_temp=True, - utility_code=load_c_utility("ListCompAppend")), - new_node, - type=PyrexTypes.c_returncode_type, - ) - new_node.result_is_used = node.result_is_used - if cloned_obj is not obj: - temps.append(cloned_obj) - for temp in temps: - new_node = UtilNodes.EvalWithTempExprNode(temp, new_node) - new_node.result_is_used = node.result_is_used - return new_node - - PyByteArray_Append_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_returncode_type, [ - PyrexTypes.CFuncTypeArg("bytearray", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("value", PyrexTypes.c_int_type, None), - ], - exception_value="-1") - - PyByteArray_AppendObject_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_returncode_type, [ - PyrexTypes.CFuncTypeArg("bytearray", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("value", PyrexTypes.py_object_type, None), - ], - exception_value="-1") - - def _handle_simple_method_bytearray_append(self, node, function, args, is_unbound_method): - if len(args) != 2: - return node - func_name = "__Pyx_PyByteArray_Append" - func_type = self.PyByteArray_Append_func_type - - value = unwrap_coerced_node(args[1]) - if value.type.is_int or isinstance(value, ExprNodes.IntNode): - value = value.coerce_to(PyrexTypes.c_int_type, self.current_env()) - utility_code = UtilityCode.load_cached("ByteArrayAppend", "StringTools.c") - elif value.is_string_literal: - if not value.can_coerce_to_char_literal(): - return node - value = value.coerce_to(PyrexTypes.c_char_type, self.current_env()) - utility_code = UtilityCode.load_cached("ByteArrayAppend", "StringTools.c") - elif value.type.is_pyobject: - func_name = "__Pyx_PyByteArray_AppendObject" - func_type = self.PyByteArray_AppendObject_func_type - utility_code = UtilityCode.load_cached("ByteArrayAppendObject", "StringTools.c") - else: - return node - - new_node = ExprNodes.PythonCapiCallNode( - node.pos, func_name, func_type, - args=[args[0], value], - may_return_none=False, - is_temp=node.is_temp, - utility_code=utility_code, - ) - if node.result_is_used: - new_node = new_node.coerce_to(node.type, self.current_env()) - return new_node - - PyObject_Pop_func_type = PyrexTypes.CFuncType( - PyrexTypes.py_object_type, [ - PyrexTypes.CFuncTypeArg("list", PyrexTypes.py_object_type, None), - ]) - - PyObject_PopIndex_func_type = PyrexTypes.CFuncType( - PyrexTypes.py_object_type, [ - PyrexTypes.CFuncTypeArg("list", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("py_index", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("c_index", PyrexTypes.c_py_ssize_t_type, None), - PyrexTypes.CFuncTypeArg("is_signed", PyrexTypes.c_int_type, None), - ], - has_varargs=True) # to fake the additional macro args that lack a proper C type - - def _handle_simple_method_list_pop(self, node, function, args, is_unbound_method): - return self._handle_simple_method_object_pop( - node, function, args, is_unbound_method, is_list=True) - - def _handle_simple_method_object_pop(self, node, function, args, is_unbound_method, is_list=False): - """Optimistic optimisation as X.pop([n]) is almost always - referring to a list. - """ - if not args: - return node - obj = args[0] - if is_list: - type_name = 'List' - obj = obj.as_none_safe_node( - "'NoneType' object has no attribute '%.30s'", - error="PyExc_AttributeError", - format_args=['pop']) - else: - type_name = 'Object' - if len(args) == 1: - return ExprNodes.PythonCapiCallNode( - node.pos, "__Pyx_Py%s_Pop" % type_name, - self.PyObject_Pop_func_type, - args=[obj], - may_return_none=True, - is_temp=node.is_temp, - utility_code=load_c_utility('pop'), - ) - elif len(args) == 2: - index = unwrap_coerced_node(args[1]) - py_index = ExprNodes.NoneNode(index.pos) - orig_index_type = index.type - if not index.type.is_int: - if isinstance(index, ExprNodes.IntNode): - py_index = index.coerce_to_pyobject(self.current_env()) - index = index.coerce_to(PyrexTypes.c_py_ssize_t_type, self.current_env()) - elif is_list: - if index.type.is_pyobject: - py_index = index.coerce_to_simple(self.current_env()) - index = ExprNodes.CloneNode(py_index) - index = index.coerce_to(PyrexTypes.c_py_ssize_t_type, self.current_env()) - else: - return node - elif not PyrexTypes.numeric_type_fits(index.type, PyrexTypes.c_py_ssize_t_type): - return node - elif isinstance(index, ExprNodes.IntNode): - py_index = index.coerce_to_pyobject(self.current_env()) - # real type might still be larger at runtime - if not orig_index_type.is_int: - orig_index_type = index.type - if not orig_index_type.create_to_py_utility_code(self.current_env()): - return node - convert_func = orig_index_type.to_py_function - conversion_type = PyrexTypes.CFuncType( - PyrexTypes.py_object_type, [PyrexTypes.CFuncTypeArg("intval", orig_index_type, None)]) - return ExprNodes.PythonCapiCallNode( - node.pos, "__Pyx_Py%s_PopIndex" % type_name, - self.PyObject_PopIndex_func_type, - args=[obj, py_index, index, - ExprNodes.IntNode(index.pos, value=str(orig_index_type.signed and 1 or 0), - constant_result=orig_index_type.signed and 1 or 0, - type=PyrexTypes.c_int_type), - ExprNodes.RawCNameExprNode(index.pos, PyrexTypes.c_void_type, - orig_index_type.empty_declaration_code()), - ExprNodes.RawCNameExprNode(index.pos, conversion_type, convert_func)], - may_return_none=True, - is_temp=node.is_temp, - utility_code=load_c_utility("pop_index"), - ) - - return node - - single_param_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_returncode_type, [ - PyrexTypes.CFuncTypeArg("obj", PyrexTypes.py_object_type, None), - ], - exception_value = "-1") - - def _handle_simple_method_list_sort(self, node, function, args, is_unbound_method): - """Call PyList_Sort() instead of the 0-argument l.sort(). - """ - if len(args) != 1: - return node - return self._substitute_method_call( - node, function, "PyList_Sort", self.single_param_func_type, - 'sort', is_unbound_method, args).coerce_to(node.type, self.current_env) - - Pyx_PyDict_GetItem_func_type = PyrexTypes.CFuncType( - PyrexTypes.py_object_type, [ - PyrexTypes.CFuncTypeArg("dict", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("key", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("default", PyrexTypes.py_object_type, None), - ]) - - def _handle_simple_method_dict_get(self, node, function, args, is_unbound_method): - """Replace dict.get() by a call to PyDict_GetItem(). - """ - if len(args) == 2: - args.append(ExprNodes.NoneNode(node.pos)) - elif len(args) != 3: - self._error_wrong_arg_count('dict.get', node, args, "2 or 3") - return node - - return self._substitute_method_call( - node, function, - "__Pyx_PyDict_GetItemDefault", self.Pyx_PyDict_GetItem_func_type, - 'get', is_unbound_method, args, - may_return_none = True, - utility_code = load_c_utility("dict_getitem_default")) - - Pyx_PyDict_SetDefault_func_type = PyrexTypes.CFuncType( - PyrexTypes.py_object_type, [ - PyrexTypes.CFuncTypeArg("dict", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("key", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("default", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("is_safe_type", PyrexTypes.c_int_type, None), - ]) - - def _handle_simple_method_dict_setdefault(self, node, function, args, is_unbound_method): - """Replace dict.setdefault() by calls to PyDict_GetItem() and PyDict_SetItem(). - """ - if len(args) == 2: - args.append(ExprNodes.NoneNode(node.pos)) - elif len(args) != 3: - self._error_wrong_arg_count('dict.setdefault', node, args, "2 or 3") - return node - key_type = args[1].type - if key_type.is_builtin_type: - is_safe_type = int(key_type.name in - 'str bytes unicode float int long bool') - elif key_type is PyrexTypes.py_object_type: - is_safe_type = -1 # don't know - else: - is_safe_type = 0 # definitely not - args.append(ExprNodes.IntNode( - node.pos, value=str(is_safe_type), constant_result=is_safe_type)) - - return self._substitute_method_call( - node, function, - "__Pyx_PyDict_SetDefault", self.Pyx_PyDict_SetDefault_func_type, - 'setdefault', is_unbound_method, args, - may_return_none=True, - utility_code=load_c_utility('dict_setdefault')) - - PyDict_Pop_func_type = PyrexTypes.CFuncType( - PyrexTypes.py_object_type, [ - PyrexTypes.CFuncTypeArg("dict", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("key", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("default", PyrexTypes.py_object_type, None), - ]) - - def _handle_simple_method_dict_pop(self, node, function, args, is_unbound_method): - """Replace dict.pop() by a call to _PyDict_Pop(). - """ - if len(args) == 2: - args.append(ExprNodes.NullNode(node.pos)) - elif len(args) != 3: - self._error_wrong_arg_count('dict.pop', node, args, "2 or 3") - return node - - return self._substitute_method_call( - node, function, - "__Pyx_PyDict_Pop", self.PyDict_Pop_func_type, - 'pop', is_unbound_method, args, - may_return_none=True, - utility_code=load_c_utility('py_dict_pop')) - - Pyx_BinopInt_func_types = dict( - ((ctype, ret_type), PyrexTypes.CFuncType( - ret_type, [ - PyrexTypes.CFuncTypeArg("op1", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("op2", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("cval", ctype, None), - PyrexTypes.CFuncTypeArg("inplace", PyrexTypes.c_bint_type, None), - PyrexTypes.CFuncTypeArg("zerodiv_check", PyrexTypes.c_bint_type, None), - ], exception_value=None if ret_type.is_pyobject else ret_type.exception_value)) - for ctype in (PyrexTypes.c_long_type, PyrexTypes.c_double_type) - for ret_type in (PyrexTypes.py_object_type, PyrexTypes.c_bint_type) - ) - - def _handle_simple_method_object___add__(self, node, function, args, is_unbound_method): - return self._optimise_num_binop('Add', node, function, args, is_unbound_method) - - def _handle_simple_method_object___sub__(self, node, function, args, is_unbound_method): - return self._optimise_num_binop('Subtract', node, function, args, is_unbound_method) - - def _handle_simple_method_object___eq__(self, node, function, args, is_unbound_method): - return self._optimise_num_binop('Eq', node, function, args, is_unbound_method) - - def _handle_simple_method_object___ne__(self, node, function, args, is_unbound_method): - return self._optimise_num_binop('Ne', node, function, args, is_unbound_method) - - def _handle_simple_method_object___and__(self, node, function, args, is_unbound_method): - return self._optimise_num_binop('And', node, function, args, is_unbound_method) - - def _handle_simple_method_object___or__(self, node, function, args, is_unbound_method): - return self._optimise_num_binop('Or', node, function, args, is_unbound_method) - - def _handle_simple_method_object___xor__(self, node, function, args, is_unbound_method): - return self._optimise_num_binop('Xor', node, function, args, is_unbound_method) - - def _handle_simple_method_object___rshift__(self, node, function, args, is_unbound_method): - if len(args) != 2 or not isinstance(args[1], ExprNodes.IntNode): - return node - if not args[1].has_constant_result() or not (1 <= args[1].constant_result <= 63): - return node - return self._optimise_num_binop('Rshift', node, function, args, is_unbound_method) - - def _handle_simple_method_object___lshift__(self, node, function, args, is_unbound_method): - if len(args) != 2 or not isinstance(args[1], ExprNodes.IntNode): - return node - if not args[1].has_constant_result() or not (1 <= args[1].constant_result <= 63): - return node - return self._optimise_num_binop('Lshift', node, function, args, is_unbound_method) - - def _handle_simple_method_object___mod__(self, node, function, args, is_unbound_method): - return self._optimise_num_div('Remainder', node, function, args, is_unbound_method) - - def _handle_simple_method_object___floordiv__(self, node, function, args, is_unbound_method): - return self._optimise_num_div('FloorDivide', node, function, args, is_unbound_method) - - def _handle_simple_method_object___truediv__(self, node, function, args, is_unbound_method): - return self._optimise_num_div('TrueDivide', node, function, args, is_unbound_method) - - def _handle_simple_method_object___div__(self, node, function, args, is_unbound_method): - return self._optimise_num_div('Divide', node, function, args, is_unbound_method) - - def _optimise_num_div(self, operator, node, function, args, is_unbound_method): - if len(args) != 2 or not args[1].has_constant_result() or args[1].constant_result == 0: - return node - if isinstance(args[1], ExprNodes.IntNode): - if not (-2**30 <= args[1].constant_result <= 2**30): - return node - elif isinstance(args[1], ExprNodes.FloatNode): - if not (-2**53 <= args[1].constant_result <= 2**53): - return node - else: - return node - return self._optimise_num_binop(operator, node, function, args, is_unbound_method) - - def _handle_simple_method_float___add__(self, node, function, args, is_unbound_method): - return self._optimise_num_binop('Add', node, function, args, is_unbound_method) - - def _handle_simple_method_float___sub__(self, node, function, args, is_unbound_method): - return self._optimise_num_binop('Subtract', node, function, args, is_unbound_method) - - def _handle_simple_method_float___truediv__(self, node, function, args, is_unbound_method): - return self._optimise_num_binop('TrueDivide', node, function, args, is_unbound_method) - - def _handle_simple_method_float___div__(self, node, function, args, is_unbound_method): - return self._optimise_num_binop('Divide', node, function, args, is_unbound_method) - - def _handle_simple_method_float___mod__(self, node, function, args, is_unbound_method): - return self._optimise_num_binop('Remainder', node, function, args, is_unbound_method) - - def _handle_simple_method_float___eq__(self, node, function, args, is_unbound_method): - return self._optimise_num_binop('Eq', node, function, args, is_unbound_method) - - def _handle_simple_method_float___ne__(self, node, function, args, is_unbound_method): - return self._optimise_num_binop('Ne', node, function, args, is_unbound_method) - - def _optimise_num_binop(self, operator, node, function, args, is_unbound_method): - """ - Optimise math operators for (likely) float or small integer operations. - """ - if len(args) != 2: - return node - - if node.type.is_pyobject: - ret_type = PyrexTypes.py_object_type - elif node.type is PyrexTypes.c_bint_type and operator in ('Eq', 'Ne'): - ret_type = PyrexTypes.c_bint_type - else: - return node - - # When adding IntNode/FloatNode to something else, assume other operand is also numeric. - # Prefer constants on RHS as they allows better size control for some operators. - num_nodes = (ExprNodes.IntNode, ExprNodes.FloatNode) - if isinstance(args[1], num_nodes): - if args[0].type is not PyrexTypes.py_object_type: - return node - numval = args[1] - arg_order = 'ObjC' - elif isinstance(args[0], num_nodes): - if args[1].type is not PyrexTypes.py_object_type: - return node - numval = args[0] - arg_order = 'CObj' - else: - return node - - if not numval.has_constant_result(): - return node - - is_float = isinstance(numval, ExprNodes.FloatNode) - num_type = PyrexTypes.c_double_type if is_float else PyrexTypes.c_long_type - if is_float: - if operator not in ('Add', 'Subtract', 'Remainder', 'TrueDivide', 'Divide', 'Eq', 'Ne'): - return node - elif operator == 'Divide': - # mixed old-/new-style division is not currently optimised for integers - return node - elif abs(numval.constant_result) > 2**30: - # Cut off at an integer border that is still safe for all operations. - return node - - if operator in ('TrueDivide', 'FloorDivide', 'Divide', 'Remainder'): - if args[1].constant_result == 0: - # Don't optimise division by 0. :) - return node - - args = list(args) - args.append((ExprNodes.FloatNode if is_float else ExprNodes.IntNode)( - numval.pos, value=numval.value, constant_result=numval.constant_result, - type=num_type)) - inplace = node.inplace if isinstance(node, ExprNodes.NumBinopNode) else False - args.append(ExprNodes.BoolNode(node.pos, value=inplace, constant_result=inplace)) - if is_float or operator not in ('Eq', 'Ne'): - # "PyFloatBinop" and "PyIntBinop" take an additional "check for zero division" argument. - zerodivision_check = arg_order == 'CObj' and ( - not node.cdivision if isinstance(node, ExprNodes.DivNode) else False) - args.append(ExprNodes.BoolNode(node.pos, value=zerodivision_check, constant_result=zerodivision_check)) - - utility_code = TempitaUtilityCode.load_cached( - "PyFloatBinop" if is_float else "PyIntCompare" if operator in ('Eq', 'Ne') else "PyIntBinop", - "Optimize.c", - context=dict(op=operator, order=arg_order, ret_type=ret_type)) - - call_node = self._substitute_method_call( - node, function, - "__Pyx_Py%s_%s%s%s" % ( - 'Float' if is_float else 'Int', - '' if ret_type.is_pyobject else 'Bool', - operator, - arg_order), - self.Pyx_BinopInt_func_types[(num_type, ret_type)], - '__%s__' % operator[:3].lower(), is_unbound_method, args, - may_return_none=True, - with_none_check=False, - utility_code=utility_code) - - if node.type.is_pyobject and not ret_type.is_pyobject: - call_node = ExprNodes.CoerceToPyTypeNode(call_node, self.current_env(), node.type) - return call_node - - ### unicode type methods - - PyUnicode_uchar_predicate_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_bint_type, [ - PyrexTypes.CFuncTypeArg("uchar", PyrexTypes.c_py_ucs4_type, None), - ]) - - def _inject_unicode_predicate(self, node, function, args, is_unbound_method): - if is_unbound_method or len(args) != 1: - return node - ustring = args[0] - if not isinstance(ustring, ExprNodes.CoerceToPyTypeNode) or \ - not ustring.arg.type.is_unicode_char: - return node - uchar = ustring.arg - method_name = function.attribute - if method_name == 'istitle': - # istitle() doesn't directly map to Py_UNICODE_ISTITLE() - utility_code = UtilityCode.load_cached( - "py_unicode_istitle", "StringTools.c") - function_name = '__Pyx_Py_UNICODE_ISTITLE' - else: - utility_code = None - function_name = 'Py_UNICODE_%s' % method_name.upper() - func_call = self._substitute_method_call( - node, function, - function_name, self.PyUnicode_uchar_predicate_func_type, - method_name, is_unbound_method, [uchar], - utility_code = utility_code) - if node.type.is_pyobject: - func_call = func_call.coerce_to_pyobject(self.current_env) - return func_call - - _handle_simple_method_unicode_isalnum = _inject_unicode_predicate - _handle_simple_method_unicode_isalpha = _inject_unicode_predicate - _handle_simple_method_unicode_isdecimal = _inject_unicode_predicate - _handle_simple_method_unicode_isdigit = _inject_unicode_predicate - _handle_simple_method_unicode_islower = _inject_unicode_predicate - _handle_simple_method_unicode_isnumeric = _inject_unicode_predicate - _handle_simple_method_unicode_isspace = _inject_unicode_predicate - _handle_simple_method_unicode_istitle = _inject_unicode_predicate - _handle_simple_method_unicode_isupper = _inject_unicode_predicate - - PyUnicode_uchar_conversion_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_py_ucs4_type, [ - PyrexTypes.CFuncTypeArg("uchar", PyrexTypes.c_py_ucs4_type, None), - ]) - - def _inject_unicode_character_conversion(self, node, function, args, is_unbound_method): - if is_unbound_method or len(args) != 1: - return node - ustring = args[0] - if not isinstance(ustring, ExprNodes.CoerceToPyTypeNode) or \ - not ustring.arg.type.is_unicode_char: - return node - uchar = ustring.arg - method_name = function.attribute - function_name = 'Py_UNICODE_TO%s' % method_name.upper() - func_call = self._substitute_method_call( - node, function, - function_name, self.PyUnicode_uchar_conversion_func_type, - method_name, is_unbound_method, [uchar]) - if node.type.is_pyobject: - func_call = func_call.coerce_to_pyobject(self.current_env) - return func_call - - _handle_simple_method_unicode_lower = _inject_unicode_character_conversion - _handle_simple_method_unicode_upper = _inject_unicode_character_conversion - _handle_simple_method_unicode_title = _inject_unicode_character_conversion - - PyUnicode_Splitlines_func_type = PyrexTypes.CFuncType( - Builtin.list_type, [ - PyrexTypes.CFuncTypeArg("str", Builtin.unicode_type, None), - PyrexTypes.CFuncTypeArg("keepends", PyrexTypes.c_bint_type, None), - ]) - - def _handle_simple_method_unicode_splitlines(self, node, function, args, is_unbound_method): - """Replace unicode.splitlines(...) by a direct call to the - corresponding C-API function. - """ - if len(args) not in (1,2): - self._error_wrong_arg_count('unicode.splitlines', node, args, "1 or 2") - return node - self._inject_bint_default_argument(node, args, 1, False) - - return self._substitute_method_call( - node, function, - "PyUnicode_Splitlines", self.PyUnicode_Splitlines_func_type, - 'splitlines', is_unbound_method, args) - - PyUnicode_Split_func_type = PyrexTypes.CFuncType( - Builtin.list_type, [ - PyrexTypes.CFuncTypeArg("str", Builtin.unicode_type, None), - PyrexTypes.CFuncTypeArg("sep", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("maxsplit", PyrexTypes.c_py_ssize_t_type, None), - ] - ) - - def _handle_simple_method_unicode_split(self, node, function, args, is_unbound_method): - """Replace unicode.split(...) by a direct call to the - corresponding C-API function. - """ - if len(args) not in (1,2,3): - self._error_wrong_arg_count('unicode.split', node, args, "1-3") - return node - if len(args) < 2: - args.append(ExprNodes.NullNode(node.pos)) - self._inject_int_default_argument( - node, args, 2, PyrexTypes.c_py_ssize_t_type, "-1") - - return self._substitute_method_call( - node, function, - "PyUnicode_Split", self.PyUnicode_Split_func_type, - 'split', is_unbound_method, args) - - PyUnicode_Join_func_type = PyrexTypes.CFuncType( - Builtin.unicode_type, [ - PyrexTypes.CFuncTypeArg("str", Builtin.unicode_type, None), - PyrexTypes.CFuncTypeArg("seq", PyrexTypes.py_object_type, None), - ]) - - def _handle_simple_method_unicode_join(self, node, function, args, is_unbound_method): - """ - unicode.join() builds a list first => see if we can do this more efficiently - """ - if len(args) != 2: - self._error_wrong_arg_count('unicode.join', node, args, "2") - return node - if isinstance(args[1], ExprNodes.GeneratorExpressionNode): - gen_expr_node = args[1] - loop_node = gen_expr_node.loop - - yield_statements = _find_yield_statements(loop_node) - if yield_statements: - inlined_genexpr = ExprNodes.InlinedGeneratorExpressionNode( - node.pos, gen_expr_node, orig_func='list', - comprehension_type=Builtin.list_type) - - for yield_expression, yield_stat_node in yield_statements: - append_node = ExprNodes.ComprehensionAppendNode( - yield_expression.pos, - expr=yield_expression, - target=inlined_genexpr.target) - - Visitor.recursively_replace_node(gen_expr_node, yield_stat_node, append_node) - - args[1] = inlined_genexpr - - return self._substitute_method_call( - node, function, - "PyUnicode_Join", self.PyUnicode_Join_func_type, - 'join', is_unbound_method, args) - - PyString_Tailmatch_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_bint_type, [ - PyrexTypes.CFuncTypeArg("str", PyrexTypes.py_object_type, None), # bytes/str/unicode - PyrexTypes.CFuncTypeArg("substring", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("start", PyrexTypes.c_py_ssize_t_type, None), - PyrexTypes.CFuncTypeArg("end", PyrexTypes.c_py_ssize_t_type, None), - PyrexTypes.CFuncTypeArg("direction", PyrexTypes.c_int_type, None), - ], - exception_value = '-1') - - def _handle_simple_method_unicode_endswith(self, node, function, args, is_unbound_method): - return self._inject_tailmatch( - node, function, args, is_unbound_method, 'unicode', 'endswith', - unicode_tailmatch_utility_code, +1) - - def _handle_simple_method_unicode_startswith(self, node, function, args, is_unbound_method): - return self._inject_tailmatch( - node, function, args, is_unbound_method, 'unicode', 'startswith', - unicode_tailmatch_utility_code, -1) - - def _inject_tailmatch(self, node, function, args, is_unbound_method, type_name, - method_name, utility_code, direction): - """Replace unicode.startswith(...) and unicode.endswith(...) - by a direct call to the corresponding C-API function. - """ - if len(args) not in (2,3,4): - self._error_wrong_arg_count('%s.%s' % (type_name, method_name), node, args, "2-4") - return node - self._inject_int_default_argument( - node, args, 2, PyrexTypes.c_py_ssize_t_type, "0") - self._inject_int_default_argument( - node, args, 3, PyrexTypes.c_py_ssize_t_type, "PY_SSIZE_T_MAX") - args.append(ExprNodes.IntNode( - node.pos, value=str(direction), type=PyrexTypes.c_int_type)) - - method_call = self._substitute_method_call( - node, function, - "__Pyx_Py%s_Tailmatch" % type_name.capitalize(), - self.PyString_Tailmatch_func_type, - method_name, is_unbound_method, args, - utility_code = utility_code) - return method_call.coerce_to(Builtin.bool_type, self.current_env()) - - PyUnicode_Find_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_py_ssize_t_type, [ - PyrexTypes.CFuncTypeArg("str", Builtin.unicode_type, None), - PyrexTypes.CFuncTypeArg("substring", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("start", PyrexTypes.c_py_ssize_t_type, None), - PyrexTypes.CFuncTypeArg("end", PyrexTypes.c_py_ssize_t_type, None), - PyrexTypes.CFuncTypeArg("direction", PyrexTypes.c_int_type, None), - ], - exception_value = '-2') - - def _handle_simple_method_unicode_find(self, node, function, args, is_unbound_method): - return self._inject_unicode_find( - node, function, args, is_unbound_method, 'find', +1) - - def _handle_simple_method_unicode_rfind(self, node, function, args, is_unbound_method): - return self._inject_unicode_find( - node, function, args, is_unbound_method, 'rfind', -1) - - def _inject_unicode_find(self, node, function, args, is_unbound_method, - method_name, direction): - """Replace unicode.find(...) and unicode.rfind(...) by a - direct call to the corresponding C-API function. - """ - if len(args) not in (2,3,4): - self._error_wrong_arg_count('unicode.%s' % method_name, node, args, "2-4") - return node - self._inject_int_default_argument( - node, args, 2, PyrexTypes.c_py_ssize_t_type, "0") - self._inject_int_default_argument( - node, args, 3, PyrexTypes.c_py_ssize_t_type, "PY_SSIZE_T_MAX") - args.append(ExprNodes.IntNode( - node.pos, value=str(direction), type=PyrexTypes.c_int_type)) - - method_call = self._substitute_method_call( - node, function, "PyUnicode_Find", self.PyUnicode_Find_func_type, - method_name, is_unbound_method, args) - return method_call.coerce_to_pyobject(self.current_env()) - - PyUnicode_Count_func_type = PyrexTypes.CFuncType( - PyrexTypes.c_py_ssize_t_type, [ - PyrexTypes.CFuncTypeArg("str", Builtin.unicode_type, None), - PyrexTypes.CFuncTypeArg("substring", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("start", PyrexTypes.c_py_ssize_t_type, None), - PyrexTypes.CFuncTypeArg("end", PyrexTypes.c_py_ssize_t_type, None), - ], - exception_value = '-1') - - def _handle_simple_method_unicode_count(self, node, function, args, is_unbound_method): - """Replace unicode.count(...) by a direct call to the - corresponding C-API function. - """ - if len(args) not in (2,3,4): - self._error_wrong_arg_count('unicode.count', node, args, "2-4") - return node - self._inject_int_default_argument( - node, args, 2, PyrexTypes.c_py_ssize_t_type, "0") - self._inject_int_default_argument( - node, args, 3, PyrexTypes.c_py_ssize_t_type, "PY_SSIZE_T_MAX") - - method_call = self._substitute_method_call( - node, function, "PyUnicode_Count", self.PyUnicode_Count_func_type, - 'count', is_unbound_method, args) - return method_call.coerce_to_pyobject(self.current_env()) - - PyUnicode_Replace_func_type = PyrexTypes.CFuncType( - Builtin.unicode_type, [ - PyrexTypes.CFuncTypeArg("str", Builtin.unicode_type, None), - PyrexTypes.CFuncTypeArg("substring", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("replstr", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("maxcount", PyrexTypes.c_py_ssize_t_type, None), - ]) - - def _handle_simple_method_unicode_replace(self, node, function, args, is_unbound_method): - """Replace unicode.replace(...) by a direct call to the - corresponding C-API function. - """ - if len(args) not in (3,4): - self._error_wrong_arg_count('unicode.replace', node, args, "3-4") - return node - self._inject_int_default_argument( - node, args, 3, PyrexTypes.c_py_ssize_t_type, "-1") - - return self._substitute_method_call( - node, function, "PyUnicode_Replace", self.PyUnicode_Replace_func_type, - 'replace', is_unbound_method, args) - - PyUnicode_AsEncodedString_func_type = PyrexTypes.CFuncType( - Builtin.bytes_type, [ - PyrexTypes.CFuncTypeArg("obj", Builtin.unicode_type, None), - PyrexTypes.CFuncTypeArg("encoding", PyrexTypes.c_const_char_ptr_type, None), - PyrexTypes.CFuncTypeArg("errors", PyrexTypes.c_const_char_ptr_type, None), - ]) - - PyUnicode_AsXyzString_func_type = PyrexTypes.CFuncType( - Builtin.bytes_type, [ - PyrexTypes.CFuncTypeArg("obj", Builtin.unicode_type, None), - ]) - - _special_encodings = ['UTF8', 'UTF16', 'UTF-16LE', 'UTF-16BE', 'Latin1', 'ASCII', - 'unicode_escape', 'raw_unicode_escape'] - - _special_codecs = [ (name, codecs.getencoder(name)) - for name in _special_encodings ] - - def _handle_simple_method_unicode_encode(self, node, function, args, is_unbound_method): - """Replace unicode.encode(...) by a direct C-API call to the - corresponding codec. - """ - if len(args) < 1 or len(args) > 3: - self._error_wrong_arg_count('unicode.encode', node, args, '1-3') - return node - - string_node = args[0] - - if len(args) == 1: - null_node = ExprNodes.NullNode(node.pos) - return self._substitute_method_call( - node, function, "PyUnicode_AsEncodedString", - self.PyUnicode_AsEncodedString_func_type, - 'encode', is_unbound_method, [string_node, null_node, null_node]) - - parameters = self._unpack_encoding_and_error_mode(node.pos, args) - if parameters is None: - return node - encoding, encoding_node, error_handling, error_handling_node = parameters - - if encoding and isinstance(string_node, ExprNodes.UnicodeNode): - # constant, so try to do the encoding at compile time - try: - value = string_node.value.encode(encoding, error_handling) - except: - # well, looks like we can't - pass - else: - value = bytes_literal(value, encoding) - return ExprNodes.BytesNode(string_node.pos, value=value, type=Builtin.bytes_type) - - if encoding and error_handling == 'strict': - # try to find a specific encoder function - codec_name = self._find_special_codec_name(encoding) - if codec_name is not None and '-' not in codec_name: - encode_function = "PyUnicode_As%sString" % codec_name - return self._substitute_method_call( - node, function, encode_function, - self.PyUnicode_AsXyzString_func_type, - 'encode', is_unbound_method, [string_node]) - - return self._substitute_method_call( - node, function, "PyUnicode_AsEncodedString", - self.PyUnicode_AsEncodedString_func_type, - 'encode', is_unbound_method, - [string_node, encoding_node, error_handling_node]) - - PyUnicode_DecodeXyz_func_ptr_type = PyrexTypes.CPtrType(PyrexTypes.CFuncType( - Builtin.unicode_type, [ - PyrexTypes.CFuncTypeArg("string", PyrexTypes.c_const_char_ptr_type, None), - PyrexTypes.CFuncTypeArg("size", PyrexTypes.c_py_ssize_t_type, None), - PyrexTypes.CFuncTypeArg("errors", PyrexTypes.c_const_char_ptr_type, None), - ])) - - _decode_c_string_func_type = PyrexTypes.CFuncType( - Builtin.unicode_type, [ - PyrexTypes.CFuncTypeArg("string", PyrexTypes.c_const_char_ptr_type, None), - PyrexTypes.CFuncTypeArg("start", PyrexTypes.c_py_ssize_t_type, None), - PyrexTypes.CFuncTypeArg("stop", PyrexTypes.c_py_ssize_t_type, None), - PyrexTypes.CFuncTypeArg("encoding", PyrexTypes.c_const_char_ptr_type, None), - PyrexTypes.CFuncTypeArg("errors", PyrexTypes.c_const_char_ptr_type, None), - PyrexTypes.CFuncTypeArg("decode_func", PyUnicode_DecodeXyz_func_ptr_type, None), - ]) - - _decode_bytes_func_type = PyrexTypes.CFuncType( - Builtin.unicode_type, [ - PyrexTypes.CFuncTypeArg("string", PyrexTypes.py_object_type, None), - PyrexTypes.CFuncTypeArg("start", PyrexTypes.c_py_ssize_t_type, None), - PyrexTypes.CFuncTypeArg("stop", PyrexTypes.c_py_ssize_t_type, None), - PyrexTypes.CFuncTypeArg("encoding", PyrexTypes.c_const_char_ptr_type, None), - PyrexTypes.CFuncTypeArg("errors", PyrexTypes.c_const_char_ptr_type, None), - PyrexTypes.CFuncTypeArg("decode_func", PyUnicode_DecodeXyz_func_ptr_type, None), - ]) - - _decode_cpp_string_func_type = None # lazy init - - def _handle_simple_method_bytes_decode(self, node, function, args, is_unbound_method): - """Replace char*.decode() by a direct C-API call to the - corresponding codec, possibly resolving a slice on the char*. - """ - if not (1 <= len(args) <= 3): - self._error_wrong_arg_count('bytes.decode', node, args, '1-3') - return node - - # normalise input nodes - string_node = args[0] - start = stop = None - if isinstance(string_node, ExprNodes.SliceIndexNode): - index_node = string_node - string_node = index_node.base - start, stop = index_node.start, index_node.stop - if not start or start.constant_result == 0: - start = None - if isinstance(string_node, ExprNodes.CoerceToPyTypeNode): - string_node = string_node.arg - - string_type = string_node.type - if string_type in (Builtin.bytes_type, Builtin.bytearray_type): - if is_unbound_method: - string_node = string_node.as_none_safe_node( - "descriptor '%s' requires a '%s' object but received a 'NoneType'", - format_args=['decode', string_type.name]) - else: - string_node = string_node.as_none_safe_node( - "'NoneType' object has no attribute '%.30s'", - error="PyExc_AttributeError", - format_args=['decode']) - elif not string_type.is_string and not string_type.is_cpp_string: - # nothing to optimise here - return node - - parameters = self._unpack_encoding_and_error_mode(node.pos, args) - if parameters is None: - return node - encoding, encoding_node, error_handling, error_handling_node = parameters - - if not start: - start = ExprNodes.IntNode(node.pos, value='0', constant_result=0) - elif not start.type.is_int: - start = start.coerce_to(PyrexTypes.c_py_ssize_t_type, self.current_env()) - if stop and not stop.type.is_int: - stop = stop.coerce_to(PyrexTypes.c_py_ssize_t_type, self.current_env()) - - # try to find a specific encoder function - codec_name = None - if encoding is not None: - codec_name = self._find_special_codec_name(encoding) - if codec_name is not None: - if codec_name in ('UTF16', 'UTF-16LE', 'UTF-16BE'): - codec_cname = "__Pyx_PyUnicode_Decode%s" % codec_name.replace('-', '') - else: - codec_cname = "PyUnicode_Decode%s" % codec_name - decode_function = ExprNodes.RawCNameExprNode( - node.pos, type=self.PyUnicode_DecodeXyz_func_ptr_type, cname=codec_cname) - encoding_node = ExprNodes.NullNode(node.pos) - else: - decode_function = ExprNodes.NullNode(node.pos) - - # build the helper function call - temps = [] - if string_type.is_string: - # C string - if not stop: - # use strlen() to find the string length, just as CPython would - if not string_node.is_name: - string_node = UtilNodes.LetRefNode(string_node) # used twice - temps.append(string_node) - stop = ExprNodes.PythonCapiCallNode( - string_node.pos, "strlen", self.Pyx_strlen_func_type, - args=[string_node], - is_temp=False, - utility_code=UtilityCode.load_cached("IncludeStringH", "StringTools.c"), - ).coerce_to(PyrexTypes.c_py_ssize_t_type, self.current_env()) - helper_func_type = self._decode_c_string_func_type - utility_code_name = 'decode_c_string' - elif string_type.is_cpp_string: - # C++ std::string - if not stop: - stop = ExprNodes.IntNode(node.pos, value='PY_SSIZE_T_MAX', - constant_result=ExprNodes.not_a_constant) - if self._decode_cpp_string_func_type is None: - # lazy init to reuse the C++ string type - self._decode_cpp_string_func_type = PyrexTypes.CFuncType( - Builtin.unicode_type, [ - PyrexTypes.CFuncTypeArg("string", string_type, None), - PyrexTypes.CFuncTypeArg("start", PyrexTypes.c_py_ssize_t_type, None), - PyrexTypes.CFuncTypeArg("stop", PyrexTypes.c_py_ssize_t_type, None), - PyrexTypes.CFuncTypeArg("encoding", PyrexTypes.c_const_char_ptr_type, None), - PyrexTypes.CFuncTypeArg("errors", PyrexTypes.c_const_char_ptr_type, None), - PyrexTypes.CFuncTypeArg("decode_func", self.PyUnicode_DecodeXyz_func_ptr_type, None), - ]) - helper_func_type = self._decode_cpp_string_func_type - utility_code_name = 'decode_cpp_string' - else: - # Python bytes/bytearray object - if not stop: - stop = ExprNodes.IntNode(node.pos, value='PY_SSIZE_T_MAX', - constant_result=ExprNodes.not_a_constant) - helper_func_type = self._decode_bytes_func_type - if string_type is Builtin.bytes_type: - utility_code_name = 'decode_bytes' - else: - utility_code_name = 'decode_bytearray' - - node = ExprNodes.PythonCapiCallNode( - node.pos, '__Pyx_%s' % utility_code_name, helper_func_type, - args=[string_node, start, stop, encoding_node, error_handling_node, decode_function], - is_temp=node.is_temp, - utility_code=UtilityCode.load_cached(utility_code_name, 'StringTools.c'), - ) - - for temp in temps[::-1]: - node = UtilNodes.EvalWithTempExprNode(temp, node) - return node - - _handle_simple_method_bytearray_decode = _handle_simple_method_bytes_decode - - def _find_special_codec_name(self, encoding): - try: - requested_codec = codecs.getencoder(encoding) - except LookupError: - return None - for name, codec in self._special_codecs: - if codec == requested_codec: - if '_' in name: - name = ''.join([s.capitalize() - for s in name.split('_')]) - return name - return None - - def _unpack_encoding_and_error_mode(self, pos, args): - null_node = ExprNodes.NullNode(pos) - - if len(args) >= 2: - encoding, encoding_node = self._unpack_string_and_cstring_node(args[1]) - if encoding_node is None: - return None - else: - encoding = None - encoding_node = null_node - - if len(args) == 3: - error_handling, error_handling_node = self._unpack_string_and_cstring_node(args[2]) - if error_handling_node is None: - return None - if error_handling == 'strict': - error_handling_node = null_node - else: - error_handling = 'strict' - error_handling_node = null_node - - return (encoding, encoding_node, error_handling, error_handling_node) - - def _unpack_string_and_cstring_node(self, node): - if isinstance(node, ExprNodes.CoerceToPyTypeNode): - node = node.arg - if isinstance(node, ExprNodes.UnicodeNode): - encoding = node.value - node = ExprNodes.BytesNode( - node.pos, value=encoding.as_utf8_string(), type=PyrexTypes.c_const_char_ptr_type) - elif isinstance(node, (ExprNodes.StringNode, ExprNodes.BytesNode)): - encoding = node.value.decode('ISO-8859-1') - node = ExprNodes.BytesNode( - node.pos, value=node.value, type=PyrexTypes.c_const_char_ptr_type) - elif node.type is Builtin.bytes_type: - encoding = None - node = node.coerce_to(PyrexTypes.c_const_char_ptr_type, self.current_env()) - elif node.type.is_string: - encoding = None - else: - encoding = node = None - return encoding, node - - def _handle_simple_method_str_endswith(self, node, function, args, is_unbound_method): - return self._inject_tailmatch( - node, function, args, is_unbound_method, 'str', 'endswith', - str_tailmatch_utility_code, +1) - - def _handle_simple_method_str_startswith(self, node, function, args, is_unbound_method): - return self._inject_tailmatch( - node, function, args, is_unbound_method, 'str', 'startswith', - str_tailmatch_utility_code, -1) - - def _handle_simple_method_bytes_endswith(self, node, function, args, is_unbound_method): - return self._inject_tailmatch( - node, function, args, is_unbound_method, 'bytes', 'endswith', - bytes_tailmatch_utility_code, +1) - - def _handle_simple_method_bytes_startswith(self, node, function, args, is_unbound_method): - return self._inject_tailmatch( - node, function, args, is_unbound_method, 'bytes', 'startswith', - bytes_tailmatch_utility_code, -1) - - ''' # disabled for now, enable when we consider it worth it (see StringTools.c) - def _handle_simple_method_bytearray_endswith(self, node, function, args, is_unbound_method): - return self._inject_tailmatch( - node, function, args, is_unbound_method, 'bytearray', 'endswith', - bytes_tailmatch_utility_code, +1) - - def _handle_simple_method_bytearray_startswith(self, node, function, args, is_unbound_method): - return self._inject_tailmatch( - node, function, args, is_unbound_method, 'bytearray', 'startswith', - bytes_tailmatch_utility_code, -1) - ''' - - ### helpers - - def _substitute_method_call(self, node, function, name, func_type, - attr_name, is_unbound_method, args=(), - utility_code=None, is_temp=None, - may_return_none=ExprNodes.PythonCapiCallNode.may_return_none, - with_none_check=True): - args = list(args) - if with_none_check and args: - args[0] = self._wrap_self_arg(args[0], function, is_unbound_method, attr_name) - if is_temp is None: - is_temp = node.is_temp - return ExprNodes.PythonCapiCallNode( - node.pos, name, func_type, - args = args, - is_temp = is_temp, - utility_code = utility_code, - may_return_none = may_return_none, - result_is_used = node.result_is_used, - ) - - def _wrap_self_arg(self, self_arg, function, is_unbound_method, attr_name): - if self_arg.is_literal: - return self_arg - if is_unbound_method: - self_arg = self_arg.as_none_safe_node( - "descriptor '%s' requires a '%s' object but received a 'NoneType'", - format_args=[attr_name, self_arg.type.name]) - else: - self_arg = self_arg.as_none_safe_node( - "'NoneType' object has no attribute '%{0}s'".format('.30' if len(attr_name) <= 30 else ''), - error="PyExc_AttributeError", - format_args=[attr_name]) - return self_arg - - def _inject_int_default_argument(self, node, args, arg_index, type, default_value): - assert len(args) >= arg_index - if len(args) == arg_index: - args.append(ExprNodes.IntNode(node.pos, value=str(default_value), - type=type, constant_result=default_value)) - else: - args[arg_index] = args[arg_index].coerce_to(type, self.current_env()) - - def _inject_bint_default_argument(self, node, args, arg_index, default_value): - assert len(args) >= arg_index - if len(args) == arg_index: - default_value = bool(default_value) - args.append(ExprNodes.BoolNode(node.pos, value=default_value, - constant_result=default_value)) - else: - args[arg_index] = args[arg_index].coerce_to_boolean(self.current_env()) - - -unicode_tailmatch_utility_code = UtilityCode.load_cached('unicode_tailmatch', 'StringTools.c') -bytes_tailmatch_utility_code = UtilityCode.load_cached('bytes_tailmatch', 'StringTools.c') -str_tailmatch_utility_code = UtilityCode.load_cached('str_tailmatch', 'StringTools.c') - - -class ConstantFolding(Visitor.VisitorTransform, SkipDeclarations): - """Calculate the result of constant expressions to store it in - ``expr_node.constant_result``, and replace trivial cases by their - constant result. - - General rules: - - - We calculate float constants to make them available to the - compiler, but we do not aggregate them into a single literal - node to prevent any loss of precision. - - - We recursively calculate constants from non-literal nodes to - make them available to the compiler, but we only aggregate - literal nodes at each step. Non-literal nodes are never merged - into a single node. - """ - - def __init__(self, reevaluate=False): - """ - The reevaluate argument specifies whether constant values that were - previously computed should be recomputed. - """ - super(ConstantFolding, self).__init__() - self.reevaluate = reevaluate - - def _calculate_const(self, node): - if (not self.reevaluate and - node.constant_result is not ExprNodes.constant_value_not_set): - return - - # make sure we always set the value - not_a_constant = ExprNodes.not_a_constant - node.constant_result = not_a_constant - - # check if all children are constant - children = self.visitchildren(node) - for child_result in children.values(): - if type(child_result) is list: - for child in child_result: - if getattr(child, 'constant_result', not_a_constant) is not_a_constant: - return - elif getattr(child_result, 'constant_result', not_a_constant) is not_a_constant: - return - - # now try to calculate the real constant value - try: - node.calculate_constant_result() -# if node.constant_result is not ExprNodes.not_a_constant: -# print node.__class__.__name__, node.constant_result - except (ValueError, TypeError, KeyError, IndexError, AttributeError, ArithmeticError): - # ignore all 'normal' errors here => no constant result - pass - except Exception: - # this looks like a real error - import traceback, sys - traceback.print_exc(file=sys.stdout) - - NODE_TYPE_ORDER = [ExprNodes.BoolNode, ExprNodes.CharNode, - ExprNodes.IntNode, ExprNodes.FloatNode] - - def _widest_node_class(self, *nodes): - try: - return self.NODE_TYPE_ORDER[ - max(map(self.NODE_TYPE_ORDER.index, map(type, nodes)))] - except ValueError: - return None - - def _bool_node(self, node, value): - value = bool(value) - return ExprNodes.BoolNode(node.pos, value=value, constant_result=value) - - def visit_ExprNode(self, node): - self._calculate_const(node) - return node - - def visit_UnopNode(self, node): - self._calculate_const(node) - if not node.has_constant_result(): - if node.operator == '!': - return self._handle_NotNode(node) - return node - if not node.operand.is_literal: - return node - if node.operator == '!': - return self._bool_node(node, node.constant_result) - elif isinstance(node.operand, ExprNodes.BoolNode): - return ExprNodes.IntNode(node.pos, value=str(int(node.constant_result)), - type=PyrexTypes.c_int_type, - constant_result=int(node.constant_result)) - elif node.operator == '+': - return self._handle_UnaryPlusNode(node) - elif node.operator == '-': - return self._handle_UnaryMinusNode(node) - return node - - _negate_operator = { - 'in': 'not_in', - 'not_in': 'in', - 'is': 'is_not', - 'is_not': 'is' - }.get - - def _handle_NotNode(self, node): - operand = node.operand - if isinstance(operand, ExprNodes.PrimaryCmpNode): - operator = self._negate_operator(operand.operator) - if operator: - node = copy.copy(operand) - node.operator = operator - node = self.visit_PrimaryCmpNode(node) - return node - - def _handle_UnaryMinusNode(self, node): - def _negate(value): - if value.startswith('-'): - value = value[1:] - else: - value = '-' + value - return value - - node_type = node.operand.type - if isinstance(node.operand, ExprNodes.FloatNode): - # this is a safe operation - return ExprNodes.FloatNode(node.pos, value=_negate(node.operand.value), - type=node_type, - constant_result=node.constant_result) - if node_type.is_int and node_type.signed or \ - isinstance(node.operand, ExprNodes.IntNode) and node_type.is_pyobject: - return ExprNodes.IntNode(node.pos, value=_negate(node.operand.value), - type=node_type, - longness=node.operand.longness, - constant_result=node.constant_result) - return node - - def _handle_UnaryPlusNode(self, node): - if (node.operand.has_constant_result() and - node.constant_result == node.operand.constant_result): - return node.operand - return node - - def visit_BoolBinopNode(self, node): - self._calculate_const(node) - if not node.operand1.has_constant_result(): - return node - if node.operand1.constant_result: - if node.operator == 'and': - return node.operand2 - else: - return node.operand1 - else: - if node.operator == 'and': - return node.operand1 - else: - return node.operand2 - - def visit_BinopNode(self, node): - self._calculate_const(node) - if node.constant_result is ExprNodes.not_a_constant: - return node - if isinstance(node.constant_result, float): - return node - operand1, operand2 = node.operand1, node.operand2 - if not operand1.is_literal or not operand2.is_literal: - return node - - # now inject a new constant node with the calculated value - try: - type1, type2 = operand1.type, operand2.type - if type1 is None or type2 is None: - return node - except AttributeError: - return node - - if type1.is_numeric and type2.is_numeric: - widest_type = PyrexTypes.widest_numeric_type(type1, type2) - else: - widest_type = PyrexTypes.py_object_type - - target_class = self._widest_node_class(operand1, operand2) - if target_class is None: - return node - elif target_class is ExprNodes.BoolNode and node.operator in '+-//<<%**>>': - # C arithmetic results in at least an int type - target_class = ExprNodes.IntNode - elif target_class is ExprNodes.CharNode and node.operator in '+-//<<%**>>&|^': - # C arithmetic results in at least an int type - target_class = ExprNodes.IntNode - - if target_class is ExprNodes.IntNode: - unsigned = getattr(operand1, 'unsigned', '') and \ - getattr(operand2, 'unsigned', '') - longness = "LL"[:max(len(getattr(operand1, 'longness', '')), - len(getattr(operand2, 'longness', '')))] - new_node = ExprNodes.IntNode(pos=node.pos, - unsigned=unsigned, longness=longness, - value=str(int(node.constant_result)), - constant_result=int(node.constant_result)) - # IntNode is smart about the type it chooses, so we just - # make sure we were not smarter this time - if widest_type.is_pyobject or new_node.type.is_pyobject: - new_node.type = PyrexTypes.py_object_type - else: - new_node.type = PyrexTypes.widest_numeric_type(widest_type, new_node.type) - else: - if target_class is ExprNodes.BoolNode: - node_value = node.constant_result - else: - node_value = str(node.constant_result) - new_node = target_class(pos=node.pos, type = widest_type, - value = node_value, - constant_result = node.constant_result) - return new_node - - def visit_AddNode(self, node): - self._calculate_const(node) - if node.constant_result is ExprNodes.not_a_constant: - return node - if node.operand1.is_string_literal and node.operand2.is_string_literal: - # some people combine string literals with a '+' - str1, str2 = node.operand1, node.operand2 - if isinstance(str1, ExprNodes.UnicodeNode) and isinstance(str2, ExprNodes.UnicodeNode): - bytes_value = None - if str1.bytes_value is not None and str2.bytes_value is not None: - if str1.bytes_value.encoding == str2.bytes_value.encoding: - bytes_value = bytes_literal( - str1.bytes_value + str2.bytes_value, - str1.bytes_value.encoding) - string_value = EncodedString(node.constant_result) - return ExprNodes.UnicodeNode( - str1.pos, value=string_value, constant_result=node.constant_result, bytes_value=bytes_value) - elif isinstance(str1, ExprNodes.BytesNode) and isinstance(str2, ExprNodes.BytesNode): - if str1.value.encoding == str2.value.encoding: - bytes_value = bytes_literal(node.constant_result, str1.value.encoding) - return ExprNodes.BytesNode(str1.pos, value=bytes_value, constant_result=node.constant_result) - # all other combinations are rather complicated - # to get right in Py2/3: encodings, unicode escapes, ... - return self.visit_BinopNode(node) - - def visit_MulNode(self, node): - self._calculate_const(node) - if node.operand1.is_sequence_constructor: - return self._calculate_constant_seq(node, node.operand1, node.operand2) - if isinstance(node.operand1, ExprNodes.IntNode) and \ - node.operand2.is_sequence_constructor: - return self._calculate_constant_seq(node, node.operand2, node.operand1) - if node.operand1.is_string_literal: - return self._multiply_string(node, node.operand1, node.operand2) - elif node.operand2.is_string_literal: - return self._multiply_string(node, node.operand2, node.operand1) - return self.visit_BinopNode(node) - - def _multiply_string(self, node, string_node, multiplier_node): - multiplier = multiplier_node.constant_result - if not isinstance(multiplier, _py_int_types): - return node - if not (node.has_constant_result() and isinstance(node.constant_result, _py_string_types)): - return node - if len(node.constant_result) > 256: - # Too long for static creation, leave it to runtime. (-> arbitrary limit) - return node - - build_string = encoded_string - if isinstance(string_node, ExprNodes.BytesNode): - build_string = bytes_literal - elif isinstance(string_node, ExprNodes.StringNode): - if string_node.unicode_value is not None: - string_node.unicode_value = encoded_string( - string_node.unicode_value * multiplier, - string_node.unicode_value.encoding) - build_string = encoded_string if string_node.value.is_unicode else bytes_literal - elif isinstance(string_node, ExprNodes.UnicodeNode): - if string_node.bytes_value is not None: - string_node.bytes_value = bytes_literal( - string_node.bytes_value * multiplier, - string_node.bytes_value.encoding) - else: - assert False, "unknown string node type: %s" % type(string_node) - string_node.value = build_string( - string_node.value * multiplier, - string_node.value.encoding) - # follow constant-folding and use unicode_value in preference - if isinstance(string_node, ExprNodes.StringNode) and string_node.unicode_value is not None: - string_node.constant_result = string_node.unicode_value - else: - string_node.constant_result = string_node.value - return string_node - - def _calculate_constant_seq(self, node, sequence_node, factor): - if factor.constant_result != 1 and sequence_node.args: - if isinstance(factor.constant_result, _py_int_types) and factor.constant_result <= 0: - del sequence_node.args[:] - sequence_node.mult_factor = None - elif sequence_node.mult_factor is not None: - if (isinstance(factor.constant_result, _py_int_types) and - isinstance(sequence_node.mult_factor.constant_result, _py_int_types)): - value = sequence_node.mult_factor.constant_result * factor.constant_result - sequence_node.mult_factor = ExprNodes.IntNode( - sequence_node.mult_factor.pos, - value=str(value), constant_result=value) - else: - # don't know if we can combine the factors, so don't - return self.visit_BinopNode(node) - else: - sequence_node.mult_factor = factor - return sequence_node - - def visit_ModNode(self, node): - self.visitchildren(node) - if isinstance(node.operand1, ExprNodes.UnicodeNode) and isinstance(node.operand2, ExprNodes.TupleNode): - if not node.operand2.mult_factor: - fstring = self._build_fstring(node.operand1.pos, node.operand1.value, node.operand2.args) - if fstring is not None: - return fstring - return self.visit_BinopNode(node) - - _parse_string_format_regex = ( - u'(%(?:' # %... - u'(?:[-0-9]+|[ ])?' # width (optional) or space prefix fill character (optional) - u'(?:[.][0-9]+)?' # precision (optional) - u')?.)' # format type (or something different for unsupported formats) - ) - - def _build_fstring(self, pos, ustring, format_args): - # Issues formatting warnings instead of errors since we really only catch a few errors by accident. - args = iter(format_args) - substrings = [] - can_be_optimised = True - for s in re.split(self._parse_string_format_regex, ustring): - if not s: - continue - if s == u'%%': - substrings.append(ExprNodes.UnicodeNode(pos, value=EncodedString(u'%'), constant_result=u'%')) - continue - if s[0] != u'%': - if s[-1] == u'%': - warning(pos, "Incomplete format: '...%s'" % s[-3:], level=1) - can_be_optimised = False - substrings.append(ExprNodes.UnicodeNode(pos, value=EncodedString(s), constant_result=s)) - continue - format_type = s[-1] - try: - arg = next(args) - except StopIteration: - warning(pos, "Too few arguments for format placeholders", level=1) - can_be_optimised = False - break - if arg.is_starred: - can_be_optimised = False - break - if format_type in u'asrfdoxX': - format_spec = s[1:] - conversion_char = None - if format_type in u'doxX' and u'.' in format_spec: - # Precision is not allowed for integers in format(), but ok in %-formatting. - can_be_optimised = False - elif format_type in u'ars': - format_spec = format_spec[:-1] - conversion_char = format_type - if format_spec.startswith('0'): - format_spec = '>' + format_spec[1:] # right-alignment '%05s' spells '{:>5}' - elif format_type == u'd': - # '%d' formatting supports float, but '{obj:d}' does not => convert to int first. - conversion_char = 'd' - - if format_spec.startswith('-'): - format_spec = '<' + format_spec[1:] # left-alignment '%-5s' spells '{:<5}' - - substrings.append(ExprNodes.FormattedValueNode( - arg.pos, value=arg, - conversion_char=conversion_char, - format_spec=ExprNodes.UnicodeNode( - pos, value=EncodedString(format_spec), constant_result=format_spec) - if format_spec else None, - )) - else: - # keep it simple for now ... - can_be_optimised = False - break - - if not can_be_optimised: - # Print all warnings we can find before finally giving up here. - return None - - try: - next(args) - except StopIteration: pass - else: - warning(pos, "Too many arguments for format placeholders", level=1) - return None - - node = ExprNodes.JoinedStrNode(pos, values=substrings) - return self.visit_JoinedStrNode(node) - - def visit_FormattedValueNode(self, node): - self.visitchildren(node) - conversion_char = node.conversion_char or 's' - if isinstance(node.format_spec, ExprNodes.UnicodeNode) and not node.format_spec.value: - node.format_spec = None - if node.format_spec is None and isinstance(node.value, ExprNodes.IntNode): - value = EncodedString(node.value.value) - if value.isdigit(): - return ExprNodes.UnicodeNode(node.value.pos, value=value, constant_result=value) - if node.format_spec is None and conversion_char == 's': - value = None - if isinstance(node.value, ExprNodes.UnicodeNode): - value = node.value.value - elif isinstance(node.value, ExprNodes.StringNode): - value = node.value.unicode_value - if value is not None: - return ExprNodes.UnicodeNode(node.value.pos, value=value, constant_result=value) - return node - - def visit_JoinedStrNode(self, node): - """ - Clean up after the parser by discarding empty Unicode strings and merging - substring sequences. Empty or single-value join lists are not uncommon - because f-string format specs are always parsed into JoinedStrNodes. - """ - self.visitchildren(node) - unicode_node = ExprNodes.UnicodeNode - - values = [] - for is_unode_group, substrings in itertools.groupby(node.values, lambda v: isinstance(v, unicode_node)): - if is_unode_group: - substrings = list(substrings) - unode = substrings[0] - if len(substrings) > 1: - value = EncodedString(u''.join(value.value for value in substrings)) - unode = ExprNodes.UnicodeNode(unode.pos, value=value, constant_result=value) - # ignore empty Unicode strings - if unode.value: - values.append(unode) - else: - values.extend(substrings) - - if not values: - value = EncodedString('') - node = ExprNodes.UnicodeNode(node.pos, value=value, constant_result=value) - elif len(values) == 1: - node = values[0] - elif len(values) == 2: - # reduce to string concatenation - node = ExprNodes.binop_node(node.pos, '+', *values) - else: - node.values = values - return node - - def visit_MergedDictNode(self, node): - """Unpack **args in place if we can.""" - self.visitchildren(node) - args = [] - items = [] - - def add(arg): - if arg.is_dict_literal: - if items: - items[0].key_value_pairs.extend(arg.key_value_pairs) - else: - items.append(arg) - elif isinstance(arg, ExprNodes.MergedDictNode): - for child_arg in arg.keyword_args: - add(child_arg) - else: - if items: - args.append(items[0]) - del items[:] - args.append(arg) - - for arg in node.keyword_args: - add(arg) - if items: - args.append(items[0]) - - if len(args) == 1: - arg = args[0] - if arg.is_dict_literal or isinstance(arg, ExprNodes.MergedDictNode): - return arg - node.keyword_args[:] = args - self._calculate_const(node) - return node - - def visit_MergedSequenceNode(self, node): - """Unpack *args in place if we can.""" - self.visitchildren(node) - - is_set = node.type is Builtin.set_type - args = [] - values = [] - - def add(arg): - if (is_set and arg.is_set_literal) or (arg.is_sequence_constructor and not arg.mult_factor): - if values: - values[0].args.extend(arg.args) - else: - values.append(arg) - elif isinstance(arg, ExprNodes.MergedSequenceNode): - for child_arg in arg.args: - add(child_arg) - else: - if values: - args.append(values[0]) - del values[:] - args.append(arg) - - for arg in node.args: - add(arg) - if values: - args.append(values[0]) - - if len(args) == 1: - arg = args[0] - if ((is_set and arg.is_set_literal) or - (arg.is_sequence_constructor and arg.type is node.type) or - isinstance(arg, ExprNodes.MergedSequenceNode)): - return arg - node.args[:] = args - self._calculate_const(node) - return node - - def visit_SequenceNode(self, node): - """Unpack *args in place if we can.""" - self.visitchildren(node) - args = [] - for arg in node.args: - if not arg.is_starred: - args.append(arg) - elif arg.target.is_sequence_constructor and not arg.target.mult_factor: - args.extend(arg.target.args) - else: - args.append(arg) - node.args[:] = args - self._calculate_const(node) - return node - - def visit_PrimaryCmpNode(self, node): - # calculate constant partial results in the comparison cascade - self.visitchildren(node, ['operand1']) - left_node = node.operand1 - cmp_node = node - while cmp_node is not None: - self.visitchildren(cmp_node, ['operand2']) - right_node = cmp_node.operand2 - cmp_node.constant_result = not_a_constant - if left_node.has_constant_result() and right_node.has_constant_result(): - try: - cmp_node.calculate_cascaded_constant_result(left_node.constant_result) - except (ValueError, TypeError, KeyError, IndexError, AttributeError, ArithmeticError): - pass # ignore all 'normal' errors here => no constant result - left_node = right_node - cmp_node = cmp_node.cascade - - if not node.cascade: - if node.has_constant_result(): - return self._bool_node(node, node.constant_result) - return node - - # collect partial cascades: [[value, CmpNode...], [value, CmpNode, ...], ...] - cascades = [[node.operand1]] - final_false_result = [] - - def split_cascades(cmp_node): - if cmp_node.has_constant_result(): - if not cmp_node.constant_result: - # False => short-circuit - final_false_result.append(self._bool_node(cmp_node, False)) - return - else: - # True => discard and start new cascade - cascades.append([cmp_node.operand2]) - else: - # not constant => append to current cascade - cascades[-1].append(cmp_node) - if cmp_node.cascade: - split_cascades(cmp_node.cascade) - - split_cascades(node) - - cmp_nodes = [] - for cascade in cascades: - if len(cascade) < 2: - continue - cmp_node = cascade[1] - pcmp_node = ExprNodes.PrimaryCmpNode( - cmp_node.pos, - operand1=cascade[0], - operator=cmp_node.operator, - operand2=cmp_node.operand2, - constant_result=not_a_constant) - cmp_nodes.append(pcmp_node) - - last_cmp_node = pcmp_node - for cmp_node in cascade[2:]: - last_cmp_node.cascade = cmp_node - last_cmp_node = cmp_node - last_cmp_node.cascade = None - - if final_false_result: - # last cascade was constant False - cmp_nodes.append(final_false_result[0]) - elif not cmp_nodes: - # only constants, but no False result - return self._bool_node(node, True) - node = cmp_nodes[0] - if len(cmp_nodes) == 1: - if node.has_constant_result(): - return self._bool_node(node, node.constant_result) - else: - for cmp_node in cmp_nodes[1:]: - node = ExprNodes.BoolBinopNode( - node.pos, - operand1=node, - operator='and', - operand2=cmp_node, - constant_result=not_a_constant) - return node - - def visit_CondExprNode(self, node): - self._calculate_const(node) - if not node.test.has_constant_result(): - return node - if node.test.constant_result: - return node.true_val - else: - return node.false_val - - def visit_IfStatNode(self, node): - self.visitchildren(node) - # eliminate dead code based on constant condition results - if_clauses = [] - for if_clause in node.if_clauses: - condition = if_clause.condition - if condition.has_constant_result(): - if condition.constant_result: - # always true => subsequent clauses can safely be dropped - node.else_clause = if_clause.body - break - # else: false => drop clause - else: - # unknown result => normal runtime evaluation - if_clauses.append(if_clause) - if if_clauses: - node.if_clauses = if_clauses - return node - elif node.else_clause: - return node.else_clause - else: - return Nodes.StatListNode(node.pos, stats=[]) - - def visit_SliceIndexNode(self, node): - self._calculate_const(node) - # normalise start/stop values - if node.start is None or node.start.constant_result is None: - start = node.start = None - else: - start = node.start.constant_result - if node.stop is None or node.stop.constant_result is None: - stop = node.stop = None - else: - stop = node.stop.constant_result - # cut down sliced constant sequences - if node.constant_result is not not_a_constant: - base = node.base - if base.is_sequence_constructor and base.mult_factor is None: - base.args = base.args[start:stop] - return base - elif base.is_string_literal: - base = base.as_sliced_node(start, stop) - if base is not None: - return base - return node - - def visit_ComprehensionNode(self, node): - self.visitchildren(node) - if isinstance(node.loop, Nodes.StatListNode) and not node.loop.stats: - # loop was pruned already => transform into literal - if node.type is Builtin.list_type: - return ExprNodes.ListNode( - node.pos, args=[], constant_result=[]) - elif node.type is Builtin.set_type: - return ExprNodes.SetNode( - node.pos, args=[], constant_result=set()) - elif node.type is Builtin.dict_type: - return ExprNodes.DictNode( - node.pos, key_value_pairs=[], constant_result={}) - return node - - def visit_ForInStatNode(self, node): - self.visitchildren(node) - sequence = node.iterator.sequence - if isinstance(sequence, ExprNodes.SequenceNode): - if not sequence.args: - if node.else_clause: - return node.else_clause - else: - # don't break list comprehensions - return Nodes.StatListNode(node.pos, stats=[]) - # iterating over a list literal? => tuples are more efficient - if isinstance(sequence, ExprNodes.ListNode): - node.iterator.sequence = sequence.as_tuple() - return node - - def visit_WhileStatNode(self, node): - self.visitchildren(node) - if node.condition and node.condition.has_constant_result(): - if node.condition.constant_result: - node.condition = None - node.else_clause = None - else: - return node.else_clause - return node - - def visit_ExprStatNode(self, node): - self.visitchildren(node) - if not isinstance(node.expr, ExprNodes.ExprNode): - # ParallelRangeTransform does this ... - return node - # drop unused constant expressions - if node.expr.has_constant_result(): - return None - return node - - # in the future, other nodes can have their own handler method here - # that can replace them with a constant result node - - visit_Node = Visitor.VisitorTransform.recurse_to_children - - -class FinalOptimizePhase(Visitor.EnvTransform, Visitor.NodeRefCleanupMixin): - """ - This visitor handles several commuting optimizations, and is run - just before the C code generation phase. - - The optimizations currently implemented in this class are: - - eliminate None assignment and refcounting for first assignment. - - isinstance -> typecheck for cdef types - - eliminate checks for None and/or types that became redundant after tree changes - - eliminate useless string formatting steps - - replace Python function calls that look like method calls by a faster PyMethodCallNode - """ - in_loop = False - - def visit_SingleAssignmentNode(self, node): - """Avoid redundant initialisation of local variables before their - first assignment. - """ - self.visitchildren(node) - if node.first: - lhs = node.lhs - lhs.lhs_of_first_assignment = True - return node - - def visit_SimpleCallNode(self, node): - """ - Replace generic calls to isinstance(x, type) by a more efficient type check. - Replace likely Python method calls by a specialised PyMethodCallNode. - """ - self.visitchildren(node) - function = node.function - if function.type.is_cfunction and function.is_name: - if function.name == 'isinstance' and len(node.args) == 2: - type_arg = node.args[1] - if type_arg.type.is_builtin_type and type_arg.type.name == 'type': - cython_scope = self.context.cython_scope - function.entry = cython_scope.lookup('PyObject_TypeCheck') - function.type = function.entry.type - PyTypeObjectPtr = PyrexTypes.CPtrType(cython_scope.lookup('PyTypeObject').type) - node.args[1] = ExprNodes.CastNode(node.args[1], PyTypeObjectPtr) - elif (node.is_temp and function.type.is_pyobject and self.current_directives.get( - "optimize.unpack_method_calls_in_pyinit" - if not self.in_loop and self.current_env().is_module_scope - else "optimize.unpack_method_calls")): - # optimise simple Python methods calls - if isinstance(node.arg_tuple, ExprNodes.TupleNode) and not ( - node.arg_tuple.mult_factor or (node.arg_tuple.is_literal and len(node.arg_tuple.args) > 1)): - # simple call, now exclude calls to objects that are definitely not methods - may_be_a_method = True - if function.type is Builtin.type_type: - may_be_a_method = False - elif function.is_attribute: - if function.entry and function.entry.type.is_cfunction: - # optimised builtin method - may_be_a_method = False - elif function.is_name: - entry = function.entry - if entry.is_builtin or entry.type.is_cfunction: - may_be_a_method = False - elif entry.cf_assignments: - # local functions/classes are definitely not methods - non_method_nodes = (ExprNodes.PyCFunctionNode, ExprNodes.ClassNode, ExprNodes.Py3ClassNode) - may_be_a_method = any( - assignment.rhs and not isinstance(assignment.rhs, non_method_nodes) - for assignment in entry.cf_assignments) - if may_be_a_method: - if (node.self and function.is_attribute and - isinstance(function.obj, ExprNodes.CloneNode) and function.obj.arg is node.self): - # function self object was moved into a CloneNode => undo - function.obj = function.obj.arg - node = self.replace(node, ExprNodes.PyMethodCallNode.from_node( - node, function=function, arg_tuple=node.arg_tuple, type=node.type)) - return node - - def visit_NumPyMethodCallNode(self, node): - # Exclude from replacement above. - self.visitchildren(node) - return node - - def visit_PyTypeTestNode(self, node): - """Remove tests for alternatively allowed None values from - type tests when we know that the argument cannot be None - anyway. - """ - self.visitchildren(node) - if not node.notnone: - if not node.arg.may_be_none(): - node.notnone = True - return node - - def visit_NoneCheckNode(self, node): - """Remove None checks from expressions that definitely do not - carry a None value. - """ - self.visitchildren(node) - if not node.arg.may_be_none(): - return node.arg - return node - - def visit_LoopNode(self, node): - """Remember when we enter a loop as some expensive optimisations might still be worth it there. - """ - old_val = self.in_loop - self.in_loop = True - self.visitchildren(node) - self.in_loop = old_val - return node - - -class ConsolidateOverflowCheck(Visitor.CythonTransform): - """ - This class facilitates the sharing of overflow checking among all nodes - of a nested arithmetic expression. For example, given the expression - a*b + c, where a, b, and x are all possibly overflowing ints, the entire - sequence will be evaluated and the overflow bit checked only at the end. - """ - overflow_bit_node = None - - def visit_Node(self, node): - if self.overflow_bit_node is not None: - saved = self.overflow_bit_node - self.overflow_bit_node = None - self.visitchildren(node) - self.overflow_bit_node = saved - else: - self.visitchildren(node) - return node - - def visit_NumBinopNode(self, node): - if node.overflow_check and node.overflow_fold: - top_level_overflow = self.overflow_bit_node is None - if top_level_overflow: - self.overflow_bit_node = node - else: - node.overflow_bit_node = self.overflow_bit_node - node.overflow_check = False - self.visitchildren(node) - if top_level_overflow: - self.overflow_bit_node = None - else: - self.visitchildren(node) - return node |