aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/cython/Cython/Compiler/Nodes.py
diff options
context:
space:
mode:
authoralexv-smirnov <alex@ydb.tech>2023-03-15 19:59:12 +0300
committeralexv-smirnov <alex@ydb.tech>2023-03-15 19:59:12 +0300
commit056bb284ccf8dd6793ec3a54ffa36c4fb2b9ad11 (patch)
tree4740980126f32e3af7937ba0ca5f83e59baa4ab0 /contrib/tools/cython/Cython/Compiler/Nodes.py
parent269126dcced1cc8b53eb4398b4a33e5142f10290 (diff)
downloadydb-056bb284ccf8dd6793ec3a54ffa36c4fb2b9ad11.tar.gz
add library/cpp/actors, ymake build to ydb oss export
Diffstat (limited to 'contrib/tools/cython/Cython/Compiler/Nodes.py')
-rw-r--r--contrib/tools/cython/Cython/Compiler/Nodes.py9451
1 files changed, 9451 insertions, 0 deletions
diff --git a/contrib/tools/cython/Cython/Compiler/Nodes.py b/contrib/tools/cython/Cython/Compiler/Nodes.py
new file mode 100644
index 0000000000..b291950b1a
--- /dev/null
+++ b/contrib/tools/cython/Cython/Compiler/Nodes.py
@@ -0,0 +1,9451 @@
+#
+# Parse tree nodes
+#
+
+from __future__ import absolute_import
+
+import cython
+cython.declare(sys=object, os=object, copy=object,
+ Builtin=object, error=object, warning=object, Naming=object, PyrexTypes=object,
+ py_object_type=object, ModuleScope=object, LocalScope=object, ClosureScope=object,
+ StructOrUnionScope=object, PyClassScope=object,
+ CppClassScope=object, UtilityCode=object, EncodedString=object,
+ error_type=object, _py_int_types=object)
+
+import sys, os, copy
+from itertools import chain
+
+from . import Builtin
+from .Errors import error, warning, InternalError, CompileError
+from . import Naming
+from . import PyrexTypes
+from . import TypeSlots
+from .PyrexTypes import py_object_type, error_type
+from .Symtab import (ModuleScope, LocalScope, ClosureScope,
+ StructOrUnionScope, PyClassScope, CppClassScope, TemplateScope)
+from .Code import UtilityCode
+from .StringEncoding import EncodedString
+from . import Future
+from . import Options
+from . import DebugFlags
+from .Pythran import has_np_pythran, pythran_type, is_pythran_buffer
+from ..Utils import add_metaclass
+
+
+if sys.version_info[0] >= 3:
+ _py_int_types = int
+else:
+ _py_int_types = (int, long)
+
+
+def relative_position(pos):
+ return (pos[0].get_filenametable_entry(), pos[1])
+
+
+def embed_position(pos, docstring):
+ if not Options.embed_pos_in_docstring:
+ return docstring
+ pos_line = u'File: %s (starting at line %s)' % relative_position(pos)
+ if docstring is None:
+ # unicode string
+ return EncodedString(pos_line)
+
+ # make sure we can encode the filename in the docstring encoding
+ # otherwise make the docstring a unicode string
+ encoding = docstring.encoding
+ if encoding is not None:
+ try:
+ pos_line.encode(encoding)
+ except UnicodeEncodeError:
+ encoding = None
+
+ if not docstring:
+ # reuse the string encoding of the original docstring
+ doc = EncodedString(pos_line)
+ else:
+ doc = EncodedString(pos_line + u'\n' + docstring)
+ doc.encoding = encoding
+ return doc
+
+
+def analyse_type_annotation(annotation, env, assigned_value=None):
+ base_type = None
+ is_ambiguous = False
+ explicit_pytype = explicit_ctype = False
+ if annotation.is_dict_literal:
+ warning(annotation.pos,
+ "Dicts should no longer be used as type annotations. Use 'cython.int' etc. directly.")
+ for name, value in annotation.key_value_pairs:
+ if not name.is_string_literal:
+ continue
+ if name.value in ('type', b'type'):
+ explicit_pytype = True
+ if not explicit_ctype:
+ annotation = value
+ elif name.value in ('ctype', b'ctype'):
+ explicit_ctype = True
+ annotation = value
+ if explicit_pytype and explicit_ctype:
+ warning(annotation.pos, "Duplicate type declarations found in signature annotation")
+ arg_type = annotation.analyse_as_type(env)
+ if annotation.is_name and not annotation.cython_attribute and annotation.name in ('int', 'long', 'float'):
+ # Map builtin numeric Python types to C types in safe cases.
+ if assigned_value is not None and arg_type is not None and not arg_type.is_pyobject:
+ assigned_type = assigned_value.infer_type(env)
+ if assigned_type and assigned_type.is_pyobject:
+ # C type seems unsafe, e.g. due to 'None' default value => ignore annotation type
+ is_ambiguous = True
+ arg_type = None
+ # ignore 'int' and require 'cython.int' to avoid unsafe integer declarations
+ if arg_type in (PyrexTypes.c_long_type, PyrexTypes.c_int_type, PyrexTypes.c_float_type):
+ arg_type = PyrexTypes.c_double_type if annotation.name == 'float' else py_object_type
+ elif arg_type is not None and annotation.is_string_literal:
+ warning(annotation.pos,
+ "Strings should no longer be used for type declarations. Use 'cython.int' etc. directly.")
+ if arg_type is not None:
+ if explicit_pytype and not explicit_ctype and not arg_type.is_pyobject:
+ warning(annotation.pos,
+ "Python type declaration in signature annotation does not refer to a Python type")
+ base_type = CAnalysedBaseTypeNode(
+ annotation.pos, type=arg_type, is_arg=True)
+ elif is_ambiguous:
+ warning(annotation.pos, "Ambiguous types in annotation, ignoring")
+ else:
+ warning(annotation.pos, "Unknown type declaration in annotation, ignoring")
+ return base_type, arg_type
+
+
+def write_func_call(func, codewriter_class):
+ def f(*args, **kwds):
+ if len(args) > 1 and isinstance(args[1], codewriter_class):
+ # here we annotate the code with this function call
+ # but only if new code is generated
+ node, code = args[:2]
+ marker = ' /* %s -> %s.%s %s */' % (
+ ' ' * code.call_level,
+ node.__class__.__name__,
+ func.__name__,
+ node.pos[1:])
+ pristine = code.buffer.stream.tell()
+ code.putln(marker)
+ start = code.buffer.stream.tell()
+ code.call_level += 4
+ res = func(*args, **kwds)
+ code.call_level -= 4
+ if start == code.buffer.stream.tell():
+ # no code written => undo writing marker
+ code.buffer.stream.truncate(pristine)
+ else:
+ marker = marker.replace('->', '<-', 1)
+ code.putln(marker)
+ return res
+ else:
+ return func(*args, **kwds)
+ return f
+
+
+class VerboseCodeWriter(type):
+ # Set this as a metaclass to trace function calls in code.
+ # This slows down code generation and makes much larger files.
+ def __new__(cls, name, bases, attrs):
+ from types import FunctionType
+ from .Code import CCodeWriter
+ attrs = dict(attrs)
+ for mname, m in attrs.items():
+ if isinstance(m, FunctionType):
+ attrs[mname] = write_func_call(m, CCodeWriter)
+ return super(VerboseCodeWriter, cls).__new__(cls, name, bases, attrs)
+
+
+class CheckAnalysers(type):
+ """Metaclass to check that type analysis functions return a node.
+ """
+ methods = set(['analyse_types',
+ 'analyse_expressions',
+ 'analyse_target_types'])
+
+ def __new__(cls, name, bases, attrs):
+ from types import FunctionType
+ def check(name, func):
+ def call(*args, **kwargs):
+ retval = func(*args, **kwargs)
+ if retval is None:
+ print('%s %s %s' % (name, args, kwargs))
+ return retval
+ return call
+
+ attrs = dict(attrs)
+ for mname, m in attrs.items():
+ if isinstance(m, FunctionType) and mname in cls.methods:
+ attrs[mname] = check(mname, m)
+ return super(CheckAnalysers, cls).__new__(cls, name, bases, attrs)
+
+
+def _with_metaclass(cls):
+ if DebugFlags.debug_trace_code_generation:
+ return add_metaclass(VerboseCodeWriter)(cls)
+ #return add_metaclass(CheckAnalysers)(cls)
+ return cls
+
+
+@_with_metaclass
+class Node(object):
+ # pos (string, int, int) Source file position
+ # is_name boolean Is a NameNode
+ # is_literal boolean Is a ConstNode
+
+ is_name = 0
+ is_none = 0
+ is_nonecheck = 0
+ is_literal = 0
+ is_terminator = 0
+ is_wrapper = False # is a DefNode wrapper for a C function
+ temps = None
+
+ # All descendants should set child_attrs to a list of the attributes
+ # containing nodes considered "children" in the tree. Each such attribute
+ # can either contain a single node or a list of nodes. See Visitor.py.
+ child_attrs = None
+
+ # Subset of attributes that are evaluated in the outer scope (e.g. function default arguments).
+ outer_attrs = None
+
+ cf_state = None
+
+ # This may be an additional (or 'actual') type that will be checked when
+ # this node is coerced to another type. This could be useful to set when
+ # the actual type to which it can coerce is known, but you want to leave
+ # the type a py_object_type
+ coercion_type = None
+
+ def __init__(self, pos, **kw):
+ self.pos = pos
+ self.__dict__.update(kw)
+
+ gil_message = "Operation"
+
+ nogil_check = None
+ in_nogil_context = False # For use only during code generation.
+
+ def gil_error(self, env=None):
+ error(self.pos, "%s not allowed without gil" % self.gil_message)
+
+ cpp_message = "Operation"
+
+ def cpp_check(self, env):
+ if not env.is_cpp():
+ self.cpp_error()
+
+ def cpp_error(self):
+ error(self.pos, "%s only allowed in c++" % self.cpp_message)
+
+ def clone_node(self):
+ """Clone the node. This is defined as a shallow copy, except for member lists
+ amongst the child attributes (from get_child_accessors) which are also
+ copied. Lists containing child nodes are thus seen as a way for the node
+ to hold multiple children directly; the list is not treated as a separate
+ level in the tree."""
+ result = copy.copy(self)
+ for attrname in result.child_attrs:
+ value = getattr(result, attrname)
+ if isinstance(value, list):
+ setattr(result, attrname, [x for x in value])
+ return result
+
+
+ #
+ # There are 3 phases of parse tree processing, applied in order to
+ # all the statements in a given scope-block:
+ #
+ # (0) analyse_declarations
+ # Make symbol table entries for all declarations at the current
+ # level, both explicit (def, cdef, etc.) and implicit (assignment
+ # to an otherwise undeclared name).
+ #
+ # (1) analyse_expressions
+ # Determine the result types of expressions and fill in the
+ # 'type' attribute of each ExprNode. Insert coercion nodes into the
+ # tree where needed to convert to and from Python objects.
+ # Allocate temporary locals for intermediate results. Fill
+ # in the 'result_code' attribute of each ExprNode with a C code
+ # fragment.
+ #
+ # (2) generate_code
+ # Emit C code for all declarations, statements and expressions.
+ # Recursively applies the 3 processing phases to the bodies of
+ # functions.
+ #
+
+ def analyse_declarations(self, env):
+ pass
+
+ def analyse_expressions(self, env):
+ raise InternalError("analyse_expressions not implemented for %s" % \
+ self.__class__.__name__)
+
+ def generate_code(self, code):
+ raise InternalError("generate_code not implemented for %s" % \
+ self.__class__.__name__)
+
+ def annotate(self, code):
+ # mro does the wrong thing
+ if isinstance(self, BlockNode):
+ self.body.annotate(code)
+
+ def end_pos(self):
+ try:
+ return self._end_pos
+ except AttributeError:
+ pos = self.pos
+ if not self.child_attrs:
+ self._end_pos = pos
+ return pos
+ for attr in self.child_attrs:
+ child = getattr(self, attr)
+ # Sometimes lists, sometimes nodes
+ if child is None:
+ pass
+ elif isinstance(child, list):
+ for c in child:
+ pos = max(pos, c.end_pos())
+ else:
+ pos = max(pos, child.end_pos())
+ self._end_pos = pos
+ return pos
+
+ def dump(self, level=0, filter_out=("pos",), cutoff=100, encountered=None):
+ """Debug helper method that returns a recursive string representation of this node.
+ """
+ if cutoff == 0:
+ return "<...nesting level cutoff...>"
+ if encountered is None:
+ encountered = set()
+ if id(self) in encountered:
+ return "<%s (0x%x) -- already output>" % (self.__class__.__name__, id(self))
+ encountered.add(id(self))
+
+ def dump_child(x, level):
+ if isinstance(x, Node):
+ return x.dump(level, filter_out, cutoff-1, encountered)
+ elif isinstance(x, list):
+ return "[%s]" % ", ".join([dump_child(item, level) for item in x])
+ else:
+ return repr(x)
+
+ attrs = [(key, value) for key, value in self.__dict__.items() if key not in filter_out]
+ if len(attrs) == 0:
+ return "<%s (0x%x)>" % (self.__class__.__name__, id(self))
+ else:
+ indent = " " * level
+ res = "<%s (0x%x)\n" % (self.__class__.__name__, id(self))
+ for key, value in attrs:
+ res += "%s %s: %s\n" % (indent, key, dump_child(value, level + 1))
+ res += "%s>" % indent
+ return res
+
+ def dump_pos(self, mark_column=False, marker='(#)'):
+ """Debug helper method that returns the source code context of this node as a string.
+ """
+ if not self.pos:
+ return u''
+ source_desc, line, col = self.pos
+ contents = source_desc.get_lines(encoding='ASCII', error_handling='ignore')
+ # line numbers start at 1
+ lines = contents[max(0, line-3):line]
+ current = lines[-1]
+ if mark_column:
+ current = current[:col] + marker + current[col:]
+ lines[-1] = current.rstrip() + u' # <<<<<<<<<<<<<<\n'
+ lines += contents[line:line+2]
+ return u'"%s":%d:%d\n%s\n' % (
+ source_desc.get_escaped_description(), line, col, u''.join(lines))
+
+class CompilerDirectivesNode(Node):
+ """
+ Sets compiler directives for the children nodes
+ """
+ # directives {string:value} A dictionary holding the right value for
+ # *all* possible directives.
+ # body Node
+ child_attrs = ["body"]
+
+ def analyse_declarations(self, env):
+ old = env.directives
+ env.directives = self.directives
+ self.body.analyse_declarations(env)
+ env.directives = old
+
+ def analyse_expressions(self, env):
+ old = env.directives
+ env.directives = self.directives
+ self.body = self.body.analyse_expressions(env)
+ env.directives = old
+ return self
+
+ def generate_function_definitions(self, env, code):
+ env_old = env.directives
+ code_old = code.globalstate.directives
+ code.globalstate.directives = self.directives
+ self.body.generate_function_definitions(env, code)
+ env.directives = env_old
+ code.globalstate.directives = code_old
+
+ def generate_execution_code(self, code):
+ old = code.globalstate.directives
+ code.globalstate.directives = self.directives
+ self.body.generate_execution_code(code)
+ code.globalstate.directives = old
+
+ def annotate(self, code):
+ old = code.globalstate.directives
+ code.globalstate.directives = self.directives
+ self.body.annotate(code)
+ code.globalstate.directives = old
+
+class BlockNode(object):
+ # Mixin class for nodes representing a declaration block.
+
+ def generate_cached_builtins_decls(self, env, code):
+ entries = env.global_scope().undeclared_cached_builtins
+ for entry in entries:
+ code.globalstate.add_cached_builtin_decl(entry)
+ del entries[:]
+
+ def generate_lambda_definitions(self, env, code):
+ for node in env.lambda_defs:
+ node.generate_function_definitions(env, code)
+
+class StatListNode(Node):
+ # stats a list of StatNode
+
+ child_attrs = ["stats"]
+
+ @staticmethod
+ def create_analysed(pos, env, *args, **kw):
+ node = StatListNode(pos, *args, **kw)
+ return node # No node-specific analysis needed
+
+ def analyse_declarations(self, env):
+ #print "StatListNode.analyse_declarations" ###
+ for stat in self.stats:
+ stat.analyse_declarations(env)
+
+ def analyse_expressions(self, env):
+ #print "StatListNode.analyse_expressions" ###
+ self.stats = [stat.analyse_expressions(env)
+ for stat in self.stats]
+ return self
+
+ def generate_function_definitions(self, env, code):
+ #print "StatListNode.generate_function_definitions" ###
+ for stat in self.stats:
+ stat.generate_function_definitions(env, code)
+
+ def generate_execution_code(self, code):
+ #print "StatListNode.generate_execution_code" ###
+ for stat in self.stats:
+ code.mark_pos(stat.pos)
+ stat.generate_execution_code(code)
+
+ def annotate(self, code):
+ for stat in self.stats:
+ stat.annotate(code)
+
+
+class StatNode(Node):
+ #
+ # Code generation for statements is split into the following subphases:
+ #
+ # (1) generate_function_definitions
+ # Emit C code for the definitions of any structs,
+ # unions, enums and functions defined in the current
+ # scope-block.
+ #
+ # (2) generate_execution_code
+ # Emit C code for executable statements.
+ #
+
+ def generate_function_definitions(self, env, code):
+ pass
+
+ def generate_execution_code(self, code):
+ raise InternalError("generate_execution_code not implemented for %s" % \
+ self.__class__.__name__)
+
+
+class CDefExternNode(StatNode):
+ # include_file string or None
+ # verbatim_include string or None
+ # body StatListNode
+
+ child_attrs = ["body"]
+
+ def analyse_declarations(self, env):
+ old_cinclude_flag = env.in_cinclude
+ env.in_cinclude = 1
+ self.body.analyse_declarations(env)
+ env.in_cinclude = old_cinclude_flag
+
+ if self.include_file or self.verbatim_include:
+ # Determine whether include should be late
+ stats = self.body.stats
+ if not env.directives['preliminary_late_includes_cy28']:
+ late = False
+ elif not stats:
+ # Special case: empty 'cdef extern' blocks are early
+ late = False
+ else:
+ late = all(isinstance(node, CVarDefNode) for node in stats)
+ env.add_include_file(self.include_file, self.verbatim_include, late)
+
+ def analyse_expressions(self, env):
+ return self
+
+ def generate_execution_code(self, code):
+ pass
+
+ def annotate(self, code):
+ self.body.annotate(code)
+
+
+class CDeclaratorNode(Node):
+ # Part of a C declaration.
+ #
+ # Processing during analyse_declarations phase:
+ #
+ # analyse
+ # Returns (name, type) pair where name is the
+ # CNameDeclaratorNode of the name being declared
+ # and type is the type it is being declared as.
+ #
+ # calling_convention string Calling convention of CFuncDeclaratorNode
+ # for which this is a base
+
+ child_attrs = []
+
+ calling_convention = ""
+
+ def analyse_templates(self):
+ # Only C++ functions have templates.
+ return None
+
+
+class CNameDeclaratorNode(CDeclaratorNode):
+ # name string The Cython name being declared
+ # cname string or None C name, if specified
+ # default ExprNode or None the value assigned on declaration
+
+ child_attrs = ['default']
+
+ default = None
+
+ def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False):
+ if nonempty and self.name == '':
+ # May have mistaken the name for the type.
+ if base_type.is_ptr or base_type.is_array or base_type.is_buffer:
+ error(self.pos, "Missing argument name")
+ elif base_type.is_void:
+ error(self.pos, "Use spam() rather than spam(void) to declare a function with no arguments.")
+ else:
+ self.name = base_type.declaration_code("", for_display=1, pyrex=1)
+ base_type = py_object_type
+
+ if base_type.is_fused and env.fused_to_specific:
+ base_type = base_type.specialize(env.fused_to_specific)
+
+ self.type = base_type
+ return self, base_type
+
+
+class CPtrDeclaratorNode(CDeclaratorNode):
+ # base CDeclaratorNode
+
+ child_attrs = ["base"]
+
+ def analyse_templates(self):
+ return self.base.analyse_templates()
+
+ def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False):
+ if base_type.is_pyobject:
+ error(self.pos, "Pointer base type cannot be a Python object")
+ ptr_type = PyrexTypes.c_ptr_type(base_type)
+ return self.base.analyse(ptr_type, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd)
+
+
+class CReferenceDeclaratorNode(CDeclaratorNode):
+ # base CDeclaratorNode
+
+ child_attrs = ["base"]
+
+ def analyse_templates(self):
+ return self.base.analyse_templates()
+
+ def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False):
+ if base_type.is_pyobject:
+ error(self.pos, "Reference base type cannot be a Python object")
+ ref_type = PyrexTypes.c_ref_type(base_type)
+ return self.base.analyse(ref_type, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd)
+
+
+class CArrayDeclaratorNode(CDeclaratorNode):
+ # base CDeclaratorNode
+ # dimension ExprNode
+
+ child_attrs = ["base", "dimension"]
+
+ def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False):
+ if (base_type.is_cpp_class and base_type.is_template_type()) or base_type.is_cfunction:
+ from .ExprNodes import TupleNode
+ if isinstance(self.dimension, TupleNode):
+ args = self.dimension.args
+ else:
+ args = self.dimension,
+ values = [v.analyse_as_type(env) for v in args]
+ if None in values:
+ ix = values.index(None)
+ error(args[ix].pos, "Template parameter not a type")
+ base_type = error_type
+ else:
+ base_type = base_type.specialize_here(self.pos, values)
+ return self.base.analyse(base_type, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd)
+ if self.dimension:
+ self.dimension = self.dimension.analyse_const_expression(env)
+ if not self.dimension.type.is_int:
+ error(self.dimension.pos, "Array dimension not integer")
+ size = self.dimension.get_constant_c_result_code()
+ if size is not None:
+ try:
+ size = int(size)
+ except ValueError:
+ # runtime constant?
+ pass
+ else:
+ size = None
+ if not base_type.is_complete():
+ error(self.pos, "Array element type '%s' is incomplete" % base_type)
+ if base_type.is_pyobject:
+ error(self.pos, "Array element cannot be a Python object")
+ if base_type.is_cfunction:
+ error(self.pos, "Array element cannot be a function")
+ array_type = PyrexTypes.c_array_type(base_type, size)
+ return self.base.analyse(array_type, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd)
+
+
+class CFuncDeclaratorNode(CDeclaratorNode):
+ # base CDeclaratorNode
+ # args [CArgDeclNode]
+ # templates [TemplatePlaceholderType]
+ # has_varargs boolean
+ # exception_value ConstNode
+ # exception_check boolean True if PyErr_Occurred check needed
+ # nogil boolean Can be called without gil
+ # with_gil boolean Acquire gil around function body
+ # is_const_method boolean Whether this is a const method
+
+ child_attrs = ["base", "args", "exception_value"]
+
+ overridable = 0
+ optional_arg_count = 0
+ is_const_method = 0
+ templates = None
+
+ def analyse_templates(self):
+ if isinstance(self.base, CArrayDeclaratorNode):
+ from .ExprNodes import TupleNode, NameNode
+ template_node = self.base.dimension
+ if isinstance(template_node, TupleNode):
+ template_nodes = template_node.args
+ elif isinstance(template_node, NameNode):
+ template_nodes = [template_node]
+ else:
+ error(template_node.pos, "Template arguments must be a list of names")
+ return None
+ self.templates = []
+ for template in template_nodes:
+ if isinstance(template, NameNode):
+ self.templates.append(PyrexTypes.TemplatePlaceholderType(template.name))
+ else:
+ error(template.pos, "Template arguments must be a list of names")
+ self.base = self.base.base
+ return self.templates
+ else:
+ return None
+
+ def analyse(self, return_type, env, nonempty=0, directive_locals=None, visibility=None, in_pxd=False):
+ if directive_locals is None:
+ directive_locals = {}
+ if nonempty:
+ nonempty -= 1
+ func_type_args = []
+ for i, arg_node in enumerate(self.args):
+ name_declarator, type = arg_node.analyse(
+ env, nonempty=nonempty,
+ is_self_arg=(i == 0 and env.is_c_class_scope and 'staticmethod' not in env.directives))
+ name = name_declarator.name
+ if name in directive_locals:
+ type_node = directive_locals[name]
+ other_type = type_node.analyse_as_type(env)
+ if other_type is None:
+ error(type_node.pos, "Not a type")
+ elif (type is not PyrexTypes.py_object_type
+ and not type.same_as(other_type)):
+ error(self.base.pos, "Signature does not agree with previous declaration")
+ error(type_node.pos, "Previous declaration here")
+ else:
+ type = other_type
+ if name_declarator.cname:
+ error(self.pos, "Function argument cannot have C name specification")
+ if i == 0 and env.is_c_class_scope and type.is_unspecified:
+ # fix the type of self
+ type = env.parent_type
+ # Turn *[] argument into **
+ if type.is_array:
+ type = PyrexTypes.c_ptr_type(type.base_type)
+ # Catch attempted C-style func(void) decl
+ if type.is_void:
+ error(arg_node.pos, "Use spam() rather than spam(void) to declare a function with no arguments.")
+ func_type_args.append(
+ PyrexTypes.CFuncTypeArg(name, type, arg_node.pos))
+ if arg_node.default:
+ self.optional_arg_count += 1
+ elif self.optional_arg_count:
+ error(self.pos, "Non-default argument follows default argument")
+
+ exc_val = None
+ exc_check = 0
+ if self.exception_check == '+':
+ env.add_include_file('ios') # for std::ios_base::failure
+ env.add_include_file('new') # for std::bad_alloc
+ env.add_include_file('stdexcept')
+ env.add_include_file('typeinfo') # for std::bad_cast
+ if (return_type.is_pyobject
+ and (self.exception_value or self.exception_check)
+ and self.exception_check != '+'):
+ error(self.pos, "Exception clause not allowed for function returning Python object")
+ else:
+ if self.exception_value is None and self.exception_check and self.exception_check != '+':
+ # Use an explicit exception return value to speed up exception checks.
+ # Even if it is not declared, we can use the default exception value of the return type,
+ # unless the function is some kind of external function that we do not control.
+ if return_type.exception_value is not None and (visibility != 'extern' and not in_pxd):
+ # Extension types are more difficult because the signature must match the base type signature.
+ if not env.is_c_class_scope:
+ from .ExprNodes import ConstNode
+ self.exception_value = ConstNode(
+ self.pos, value=return_type.exception_value, type=return_type)
+ if self.exception_value:
+ self.exception_value = self.exception_value.analyse_const_expression(env)
+ if self.exception_check == '+':
+ exc_val_type = self.exception_value.type
+ if (not exc_val_type.is_error
+ and not exc_val_type.is_pyobject
+ and not (exc_val_type.is_cfunction
+ and not exc_val_type.return_type.is_pyobject
+ and not exc_val_type.args)
+ and not (exc_val_type == PyrexTypes.c_char_type
+ and self.exception_value.value == '*')):
+ error(self.exception_value.pos,
+ "Exception value must be a Python exception or cdef function with no arguments or *.")
+ exc_val = self.exception_value
+ else:
+ self.exception_value = self.exception_value.coerce_to(
+ return_type, env).analyse_const_expression(env)
+ exc_val = self.exception_value.get_constant_c_result_code()
+ if exc_val is None:
+ raise InternalError(
+ "get_constant_c_result_code not implemented for %s" %
+ self.exception_value.__class__.__name__)
+ if not return_type.assignable_from(self.exception_value.type):
+ error(self.exception_value.pos,
+ "Exception value incompatible with function return type")
+ exc_check = self.exception_check
+ if return_type.is_cfunction:
+ error(self.pos, "Function cannot return a function")
+ func_type = PyrexTypes.CFuncType(
+ return_type, func_type_args, self.has_varargs,
+ optional_arg_count=self.optional_arg_count,
+ exception_value=exc_val, exception_check=exc_check,
+ calling_convention=self.base.calling_convention,
+ nogil=self.nogil, with_gil=self.with_gil, is_overridable=self.overridable,
+ is_const_method=self.is_const_method,
+ templates=self.templates)
+
+ if self.optional_arg_count:
+ if func_type.is_fused:
+ # This is a bit of a hack... When we need to create specialized CFuncTypes
+ # on the fly because the cdef is defined in a pxd, we need to declare the specialized optional arg
+ # struct
+ def declare_opt_arg_struct(func_type, fused_cname):
+ self.declare_optional_arg_struct(func_type, env, fused_cname)
+
+ func_type.declare_opt_arg_struct = declare_opt_arg_struct
+ else:
+ self.declare_optional_arg_struct(func_type, env)
+
+ callspec = env.directives['callspec']
+ if callspec:
+ current = func_type.calling_convention
+ if current and current != callspec:
+ error(self.pos, "cannot have both '%s' and '%s' "
+ "calling conventions" % (current, callspec))
+ func_type.calling_convention = callspec
+ return self.base.analyse(func_type, env, visibility=visibility, in_pxd=in_pxd)
+
+ def declare_optional_arg_struct(self, func_type, env, fused_cname=None):
+ """
+ Declares the optional argument struct (the struct used to hold the
+ values for optional arguments). For fused cdef functions, this is
+ deferred as analyse_declarations is called only once (on the fused
+ cdef function).
+ """
+ scope = StructOrUnionScope()
+ arg_count_member = '%sn' % Naming.pyrex_prefix
+ scope.declare_var(arg_count_member, PyrexTypes.c_int_type, self.pos)
+
+ for arg in func_type.args[len(func_type.args) - self.optional_arg_count:]:
+ scope.declare_var(arg.name, arg.type, arg.pos, allow_pyobject=True, allow_memoryview=True)
+
+ struct_cname = env.mangle(Naming.opt_arg_prefix, self.base.name)
+
+ if fused_cname is not None:
+ struct_cname = PyrexTypes.get_fused_cname(fused_cname, struct_cname)
+
+ op_args_struct = env.global_scope().declare_struct_or_union(
+ name=struct_cname,
+ kind='struct',
+ scope=scope,
+ typedef_flag=0,
+ pos=self.pos,
+ cname=struct_cname)
+
+ op_args_struct.defined_in_pxd = 1
+ op_args_struct.used = 1
+
+ func_type.op_arg_struct = PyrexTypes.c_ptr_type(op_args_struct.type)
+
+
+class CConstDeclaratorNode(CDeclaratorNode):
+ # base CDeclaratorNode
+
+ child_attrs = ["base"]
+
+ def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False):
+ if base_type.is_pyobject:
+ error(self.pos,
+ "Const base type cannot be a Python object")
+ const = PyrexTypes.c_const_type(base_type)
+ return self.base.analyse(const, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd)
+
+
+class CArgDeclNode(Node):
+ # Item in a function declaration argument list.
+ #
+ # base_type CBaseTypeNode
+ # declarator CDeclaratorNode
+ # not_none boolean Tagged with 'not None'
+ # or_none boolean Tagged with 'or None'
+ # accept_none boolean Resolved boolean for not_none/or_none
+ # default ExprNode or None
+ # default_value PyObjectConst constant for default value
+ # annotation ExprNode or None Py3 function arg annotation
+ # is_self_arg boolean Is the "self" arg of an extension type method
+ # is_type_arg boolean Is the "class" arg of an extension type classmethod
+ # is_kw_only boolean Is a keyword-only argument
+ # is_dynamic boolean Non-literal arg stored inside CyFunction
+
+ child_attrs = ["base_type", "declarator", "default", "annotation"]
+ outer_attrs = ["default", "annotation"]
+
+ is_self_arg = 0
+ is_type_arg = 0
+ is_generic = 1
+ kw_only = 0
+ not_none = 0
+ or_none = 0
+ type = None
+ name_declarator = None
+ default_value = None
+ annotation = None
+ is_dynamic = 0
+
+ def analyse(self, env, nonempty=0, is_self_arg=False):
+ if is_self_arg:
+ self.base_type.is_self_arg = self.is_self_arg = True
+ if self.type is None:
+ # The parser may misinterpret names as types. We fix that here.
+ if isinstance(self.declarator, CNameDeclaratorNode) and self.declarator.name == '':
+ if nonempty:
+ if self.base_type.is_basic_c_type:
+ # char, short, long called "int"
+ type = self.base_type.analyse(env, could_be_name=True)
+ arg_name = type.empty_declaration_code()
+ else:
+ arg_name = self.base_type.name
+ self.declarator.name = EncodedString(arg_name)
+ self.base_type.name = None
+ self.base_type.is_basic_c_type = False
+ could_be_name = True
+ else:
+ could_be_name = False
+ self.base_type.is_arg = True
+ base_type = self.base_type.analyse(env, could_be_name=could_be_name)
+ if hasattr(self.base_type, 'arg_name') and self.base_type.arg_name:
+ self.declarator.name = self.base_type.arg_name
+
+ # The parser is unable to resolve the ambiguity of [] as part of the
+ # type (e.g. in buffers) or empty declarator (as with arrays).
+ # This is only arises for empty multi-dimensional arrays.
+ if (base_type.is_array
+ and isinstance(self.base_type, TemplatedTypeNode)
+ and isinstance(self.declarator, CArrayDeclaratorNode)):
+ declarator = self.declarator
+ while isinstance(declarator.base, CArrayDeclaratorNode):
+ declarator = declarator.base
+ declarator.base = self.base_type.array_declarator
+ base_type = base_type.base_type
+
+ # inject type declaration from annotations
+ # this is called without 'env' by AdjustDefByDirectives transform before declaration analysis
+ if self.annotation and env and env.directives['annotation_typing'] and self.base_type.name is None:
+ arg_type = self.inject_type_from_annotations(env)
+ if arg_type is not None:
+ base_type = arg_type
+ return self.declarator.analyse(base_type, env, nonempty=nonempty)
+ else:
+ return self.name_declarator, self.type
+
+ def inject_type_from_annotations(self, env):
+ annotation = self.annotation
+ if not annotation:
+ return None
+ base_type, arg_type = analyse_type_annotation(annotation, env, assigned_value=self.default)
+ if base_type is not None:
+ self.base_type = base_type
+ return arg_type
+
+ def calculate_default_value_code(self, code):
+ if self.default_value is None:
+ if self.default:
+ if self.default.is_literal:
+ # will not output any code, just assign the result_code
+ self.default.generate_evaluation_code(code)
+ return self.type.cast_code(self.default.result())
+ self.default_value = code.get_argument_default_const(self.type)
+ return self.default_value
+
+ def annotate(self, code):
+ if self.default:
+ self.default.annotate(code)
+
+ def generate_assignment_code(self, code, target=None, overloaded_assignment=False):
+ default = self.default
+ if default is None or default.is_literal:
+ return
+ if target is None:
+ target = self.calculate_default_value_code(code)
+ default.generate_evaluation_code(code)
+ default.make_owned_reference(code)
+ result = default.result() if overloaded_assignment else default.result_as(self.type)
+ code.putln("%s = %s;" % (target, result))
+ if self.type.is_pyobject:
+ code.put_giveref(default.result())
+ default.generate_post_assignment_code(code)
+ default.free_temps(code)
+
+
+class CBaseTypeNode(Node):
+ # Abstract base class for C base type nodes.
+ #
+ # Processing during analyse_declarations phase:
+ #
+ # analyse
+ # Returns the type.
+
+ def analyse_as_type(self, env):
+ return self.analyse(env)
+
+
+class CAnalysedBaseTypeNode(Node):
+ # type type
+
+ child_attrs = []
+
+ def analyse(self, env, could_be_name=False):
+ return self.type
+
+
+class CSimpleBaseTypeNode(CBaseTypeNode):
+ # name string
+ # module_path [string] Qualifying name components
+ # is_basic_c_type boolean
+ # signed boolean
+ # longness integer
+ # complex boolean
+ # is_self_arg boolean Is self argument of C method
+ # ##is_type_arg boolean Is type argument of class method
+
+ child_attrs = []
+ arg_name = None # in case the argument name was interpreted as a type
+ module_path = []
+ is_basic_c_type = False
+ complex = False
+
+ def analyse(self, env, could_be_name=False):
+ # Return type descriptor.
+ #print "CSimpleBaseTypeNode.analyse: is_self_arg =", self.is_self_arg ###
+ type = None
+ if self.is_basic_c_type:
+ type = PyrexTypes.simple_c_type(self.signed, self.longness, self.name)
+ if not type:
+ error(self.pos, "Unrecognised type modifier combination")
+ elif self.name == "object" and not self.module_path:
+ type = py_object_type
+ elif self.name is None:
+ if self.is_self_arg and env.is_c_class_scope:
+ #print "CSimpleBaseTypeNode.analyse: defaulting to parent type" ###
+ type = env.parent_type
+ ## elif self.is_type_arg and env.is_c_class_scope:
+ ## type = Builtin.type_type
+ else:
+ type = py_object_type
+ else:
+ if self.module_path:
+ # Maybe it's a nested C++ class.
+ scope = env
+ for item in self.module_path:
+ entry = scope.lookup(item)
+ if entry is not None and entry.is_cpp_class:
+ scope = entry.type.scope
+ else:
+ scope = None
+ break
+
+ if scope is None:
+ # Maybe it's a cimport.
+ scope = env.find_imported_module(self.module_path, self.pos)
+ else:
+ scope = env
+
+ if scope:
+ if scope.is_c_class_scope:
+ scope = scope.global_scope()
+
+ type = scope.lookup_type(self.name)
+ if type is not None:
+ pass
+ elif could_be_name:
+ if self.is_self_arg and env.is_c_class_scope:
+ type = env.parent_type
+ ## elif self.is_type_arg and env.is_c_class_scope:
+ ## type = Builtin.type_type
+ else:
+ type = py_object_type
+ self.arg_name = EncodedString(self.name)
+ else:
+ if self.templates:
+ if not self.name in self.templates:
+ error(self.pos, "'%s' is not a type identifier" % self.name)
+ type = PyrexTypes.TemplatePlaceholderType(self.name)
+ else:
+ error(self.pos, "'%s' is not a type identifier" % self.name)
+ if type and type.is_fused and env.fused_to_specific:
+ type = type.specialize(env.fused_to_specific)
+ if self.complex:
+ if not type.is_numeric or type.is_complex:
+ error(self.pos, "can only complexify c numeric types")
+ type = PyrexTypes.CComplexType(type)
+ type.create_declaration_utility_code(env)
+ elif type is Builtin.complex_type:
+ # Special case: optimise builtin complex type into C's
+ # double complex. The parser cannot do this (as for the
+ # normal scalar types) as the user may have redeclared the
+ # 'complex' type. Testing for the exact type here works.
+ type = PyrexTypes.c_double_complex_type
+ type.create_declaration_utility_code(env)
+ self.complex = True
+ if type:
+ return type
+ else:
+ return PyrexTypes.error_type
+
+class MemoryViewSliceTypeNode(CBaseTypeNode):
+
+ name = 'memoryview'
+ child_attrs = ['base_type_node', 'axes']
+
+ def analyse(self, env, could_be_name=False):
+
+ base_type = self.base_type_node.analyse(env)
+ if base_type.is_error: return base_type
+
+ from . import MemoryView
+
+ try:
+ axes_specs = MemoryView.get_axes_specs(env, self.axes)
+ except CompileError as e:
+ error(e.position, e.message_only)
+ self.type = PyrexTypes.ErrorType()
+ return self.type
+
+ if not MemoryView.validate_axes(self.pos, axes_specs):
+ self.type = error_type
+ else:
+ self.type = PyrexTypes.MemoryViewSliceType(base_type, axes_specs)
+ self.type.validate_memslice_dtype(self.pos)
+ self.use_memview_utilities(env)
+
+ return self.type
+
+ def use_memview_utilities(self, env):
+ from . import MemoryView
+ env.use_utility_code(MemoryView.view_utility_code)
+
+
+class CNestedBaseTypeNode(CBaseTypeNode):
+ # For C++ classes that live inside other C++ classes.
+
+ # name string
+ # base_type CBaseTypeNode
+
+ child_attrs = ['base_type']
+
+ def analyse(self, env, could_be_name=None):
+ base_type = self.base_type.analyse(env)
+ if base_type is PyrexTypes.error_type:
+ return PyrexTypes.error_type
+ if not base_type.is_cpp_class:
+ error(self.pos, "'%s' is not a valid type scope" % base_type)
+ return PyrexTypes.error_type
+ type_entry = base_type.scope.lookup_here(self.name)
+ if not type_entry or not type_entry.is_type:
+ error(self.pos, "'%s.%s' is not a type identifier" % (base_type, self.name))
+ return PyrexTypes.error_type
+ return type_entry.type
+
+
+class TemplatedTypeNode(CBaseTypeNode):
+ # After parsing:
+ # positional_args [ExprNode] List of positional arguments
+ # keyword_args DictNode Keyword arguments
+ # base_type_node CBaseTypeNode
+
+ # After analysis:
+ # type PyrexTypes.BufferType or PyrexTypes.CppClassType ...containing the right options
+
+ child_attrs = ["base_type_node", "positional_args",
+ "keyword_args", "dtype_node"]
+
+ dtype_node = None
+
+ name = None
+
+ def analyse(self, env, could_be_name=False, base_type=None):
+ if base_type is None:
+ base_type = self.base_type_node.analyse(env)
+ if base_type.is_error: return base_type
+
+ if base_type.is_cpp_class and base_type.is_template_type():
+ # Templated class
+ if self.keyword_args and self.keyword_args.key_value_pairs:
+ error(self.pos, "c++ templates cannot take keyword arguments")
+ self.type = PyrexTypes.error_type
+ else:
+ template_types = []
+ for template_node in self.positional_args:
+ type = template_node.analyse_as_type(env)
+ if type is None:
+ error(template_node.pos, "unknown type in template argument")
+ type = error_type
+ template_types.append(type)
+ self.type = base_type.specialize_here(self.pos, template_types)
+
+ elif base_type.is_pyobject:
+ # Buffer
+ from . import Buffer
+
+ options = Buffer.analyse_buffer_options(
+ self.pos,
+ env,
+ self.positional_args,
+ self.keyword_args,
+ base_type.buffer_defaults)
+
+ if sys.version_info[0] < 3:
+ # Py 2.x enforces byte strings as keyword arguments ...
+ options = dict([(name.encode('ASCII'), value)
+ for name, value in options.items()])
+
+ self.type = PyrexTypes.BufferType(base_type, **options)
+ if has_np_pythran(env) and is_pythran_buffer(self.type):
+ self.type = PyrexTypes.PythranExpr(pythran_type(self.type), self.type)
+
+ else:
+ # Array
+ empty_declarator = CNameDeclaratorNode(self.pos, name="", cname=None)
+ if len(self.positional_args) > 1 or self.keyword_args.key_value_pairs:
+ error(self.pos, "invalid array declaration")
+ self.type = PyrexTypes.error_type
+ else:
+ # It would be nice to merge this class with CArrayDeclaratorNode,
+ # but arrays are part of the declaration, not the type...
+ if not self.positional_args:
+ dimension = None
+ else:
+ dimension = self.positional_args[0]
+ self.array_declarator = CArrayDeclaratorNode(
+ self.pos,
+ base=empty_declarator,
+ dimension=dimension)
+ self.type = self.array_declarator.analyse(base_type, env)[1]
+
+ if self.type.is_fused and env.fused_to_specific:
+ self.type = self.type.specialize(env.fused_to_specific)
+
+ return self.type
+
+
+class CComplexBaseTypeNode(CBaseTypeNode):
+ # base_type CBaseTypeNode
+ # declarator CDeclaratorNode
+
+ child_attrs = ["base_type", "declarator"]
+
+ def analyse(self, env, could_be_name=False):
+ base = self.base_type.analyse(env, could_be_name)
+ _, type = self.declarator.analyse(base, env)
+ return type
+
+
+class CTupleBaseTypeNode(CBaseTypeNode):
+ # components [CBaseTypeNode]
+
+ child_attrs = ["components"]
+
+ def analyse(self, env, could_be_name=False):
+ component_types = []
+ for c in self.components:
+ type = c.analyse(env)
+ if type.is_pyobject:
+ error(c.pos, "Tuple types can't (yet) contain Python objects.")
+ return error_type
+ component_types.append(type)
+ entry = env.declare_tuple_type(self.pos, component_types)
+ entry.used = True
+ return entry.type
+
+
+class FusedTypeNode(CBaseTypeNode):
+ """
+ Represents a fused type in a ctypedef statement:
+
+ ctypedef cython.fused_type(int, long, long long) integral
+
+ name str name of this fused type
+ types [CSimpleBaseTypeNode] is the list of types to be fused
+ """
+
+ child_attrs = []
+
+ def analyse_declarations(self, env):
+ type = self.analyse(env)
+ entry = env.declare_typedef(self.name, type, self.pos)
+
+ # Omit the typedef declaration that self.declarator would produce
+ entry.in_cinclude = True
+
+ def analyse(self, env, could_be_name=False):
+ types = []
+ for type_node in self.types:
+ type = type_node.analyse_as_type(env)
+
+ if not type:
+ error(type_node.pos, "Not a type")
+ continue
+
+ if type in types:
+ error(type_node.pos, "Type specified multiple times")
+ else:
+ types.append(type)
+
+ # if len(self.types) == 1:
+ # return types[0]
+
+ return PyrexTypes.FusedType(types, name=self.name)
+
+
+class CConstTypeNode(CBaseTypeNode):
+ # base_type CBaseTypeNode
+
+ child_attrs = ["base_type"]
+
+ def analyse(self, env, could_be_name=False):
+ base = self.base_type.analyse(env, could_be_name)
+ if base.is_pyobject:
+ error(self.pos,
+ "Const base type cannot be a Python object")
+ return PyrexTypes.c_const_type(base)
+
+
+class CVarDefNode(StatNode):
+ # C variable definition or forward/extern function declaration.
+ #
+ # visibility 'private' or 'public' or 'extern'
+ # base_type CBaseTypeNode
+ # declarators [CDeclaratorNode]
+ # in_pxd boolean
+ # api boolean
+ # overridable boolean whether it is a cpdef
+ # modifiers ['inline']
+
+ # decorators [cython.locals(...)] or None
+ # directive_locals { string : NameNode } locals defined by cython.locals(...)
+
+ child_attrs = ["base_type", "declarators"]
+
+ decorators = None
+ directive_locals = None
+
+ def analyse_declarations(self, env, dest_scope=None):
+ if self.directive_locals is None:
+ self.directive_locals = {}
+ if not dest_scope:
+ dest_scope = env
+ self.dest_scope = dest_scope
+
+ if self.declarators:
+ templates = self.declarators[0].analyse_templates()
+ else:
+ templates = None
+ if templates is not None:
+ if self.visibility != 'extern':
+ error(self.pos, "Only extern functions allowed")
+ if len(self.declarators) > 1:
+ error(self.declarators[1].pos, "Can't multiply declare template types")
+ env = TemplateScope('func_template', env)
+ env.directives = env.outer_scope.directives
+ for template_param in templates:
+ env.declare_type(template_param.name, template_param, self.pos)
+
+ base_type = self.base_type.analyse(env)
+
+ if base_type.is_fused and not self.in_pxd and (env.is_c_class_scope or
+ env.is_module_scope):
+ error(self.pos, "Fused types not allowed here")
+ return error_type
+
+ self.entry = None
+ visibility = self.visibility
+
+ for declarator in self.declarators:
+
+ if (len(self.declarators) > 1
+ and not isinstance(declarator, CNameDeclaratorNode)
+ and env.directives['warn.multiple_declarators']):
+ warning(
+ declarator.pos,
+ "Non-trivial type declarators in shared declaration (e.g. mix of pointers and values). "
+ "Each pointer declaration should be on its own line.", 1)
+
+ create_extern_wrapper = (self.overridable
+ and self.visibility == 'extern'
+ and env.is_module_scope)
+ if create_extern_wrapper:
+ declarator.overridable = False
+ if isinstance(declarator, CFuncDeclaratorNode):
+ name_declarator, type = declarator.analyse(
+ base_type, env, directive_locals=self.directive_locals, visibility=visibility, in_pxd=self.in_pxd)
+ else:
+ name_declarator, type = declarator.analyse(
+ base_type, env, visibility=visibility, in_pxd=self.in_pxd)
+ if not type.is_complete():
+ if not (self.visibility == 'extern' and type.is_array or type.is_memoryviewslice):
+ error(declarator.pos, "Variable type '%s' is incomplete" % type)
+ if self.visibility == 'extern' and type.is_pyobject:
+ error(declarator.pos, "Python object cannot be declared extern")
+ name = name_declarator.name
+ cname = name_declarator.cname
+ if name == '':
+ error(declarator.pos, "Missing name in declaration.")
+ return
+ if type.is_reference and self.visibility != 'extern':
+ error(declarator.pos, "C++ references cannot be declared; use a pointer instead")
+ if type.is_cfunction:
+ if 'staticmethod' in env.directives:
+ type.is_static_method = True
+ self.entry = dest_scope.declare_cfunction(
+ name, type, declarator.pos,
+ cname=cname, visibility=self.visibility, in_pxd=self.in_pxd,
+ api=self.api, modifiers=self.modifiers, overridable=self.overridable)
+ if self.entry is not None:
+ self.entry.directive_locals = copy.copy(self.directive_locals)
+ if create_extern_wrapper:
+ self.entry.type.create_to_py_utility_code(env)
+ self.entry.create_wrapper = True
+ else:
+ if self.overridable:
+ warning(self.pos, "cpdef variables will not be supported in Cython 3; "
+ "currently they are no different from cdef variables", 2)
+ if self.directive_locals:
+ error(self.pos, "Decorators can only be followed by functions")
+ self.entry = dest_scope.declare_var(
+ name, type, declarator.pos,
+ cname=cname, visibility=visibility, in_pxd=self.in_pxd,
+ api=self.api, is_cdef=1)
+ if Options.docstrings:
+ self.entry.doc = embed_position(self.pos, self.doc)
+
+
+class CStructOrUnionDefNode(StatNode):
+ # name string
+ # cname string or None
+ # kind "struct" or "union"
+ # typedef_flag boolean
+ # visibility "public" or "private"
+ # api boolean
+ # in_pxd boolean
+ # attributes [CVarDefNode] or None
+ # entry Entry
+ # packed boolean
+
+ child_attrs = ["attributes"]
+
+ def declare(self, env, scope=None):
+ self.entry = env.declare_struct_or_union(
+ self.name, self.kind, scope, self.typedef_flag, self.pos,
+ self.cname, visibility=self.visibility, api=self.api,
+ packed=self.packed)
+
+ def analyse_declarations(self, env):
+ scope = None
+ if self.attributes is not None:
+ scope = StructOrUnionScope(self.name)
+ self.declare(env, scope)
+ if self.attributes is not None:
+ if self.in_pxd and not env.in_cinclude:
+ self.entry.defined_in_pxd = 1
+ for attr in self.attributes:
+ attr.analyse_declarations(env, scope)
+ if self.visibility != 'extern':
+ for attr in scope.var_entries:
+ type = attr.type
+ while type.is_array:
+ type = type.base_type
+ if type == self.entry.type:
+ error(attr.pos, "Struct cannot contain itself as a member.")
+
+ def analyse_expressions(self, env):
+ return self
+
+ def generate_execution_code(self, code):
+ pass
+
+
+class CppClassNode(CStructOrUnionDefNode, BlockNode):
+
+ # name string
+ # cname string or None
+ # visibility "extern"
+ # in_pxd boolean
+ # attributes [CVarDefNode] or None
+ # entry Entry
+ # base_classes [CBaseTypeNode]
+ # templates [(string, bool)] or None
+ # decorators [DecoratorNode] or None
+
+ decorators = None
+
+ def declare(self, env):
+ if self.templates is None:
+ template_types = None
+ else:
+ template_types = [PyrexTypes.TemplatePlaceholderType(template_name, not required)
+ for template_name, required in self.templates]
+ num_optional_templates = sum(not required for _, required in self.templates)
+ if num_optional_templates and not all(required for _, required in self.templates[:-num_optional_templates]):
+ error(self.pos, "Required template parameters must precede optional template parameters.")
+ self.entry = env.declare_cpp_class(
+ self.name, None, self.pos, self.cname,
+ base_classes=[], visibility=self.visibility, templates=template_types)
+
+ def analyse_declarations(self, env):
+ if self.templates is None:
+ template_types = template_names = None
+ else:
+ template_names = [template_name for template_name, _ in self.templates]
+ template_types = [PyrexTypes.TemplatePlaceholderType(template_name, not required)
+ for template_name, required in self.templates]
+ scope = None
+ if self.attributes is not None:
+ scope = CppClassScope(self.name, env, templates=template_names)
+ def base_ok(base_class):
+ if base_class.is_cpp_class or base_class.is_struct:
+ return True
+ else:
+ error(self.pos, "Base class '%s' not a struct or class." % base_class)
+ base_class_types = filter(base_ok, [b.analyse(scope or env) for b in self.base_classes])
+ self.entry = env.declare_cpp_class(
+ self.name, scope, self.pos,
+ self.cname, base_class_types, visibility=self.visibility, templates=template_types)
+ if self.entry is None:
+ return
+ self.entry.is_cpp_class = 1
+ if scope is not None:
+ scope.type = self.entry.type
+ defined_funcs = []
+ def func_attributes(attributes):
+ for attr in attributes:
+ if isinstance(attr, CFuncDefNode):
+ yield attr
+ elif isinstance(attr, CompilerDirectivesNode):
+ for sub_attr in func_attributes(attr.body.stats):
+ yield sub_attr
+ if self.attributes is not None:
+ if self.in_pxd and not env.in_cinclude:
+ self.entry.defined_in_pxd = 1
+ for attr in self.attributes:
+ declare = getattr(attr, 'declare', None)
+ if declare:
+ attr.declare(scope)
+ attr.analyse_declarations(scope)
+ for func in func_attributes(self.attributes):
+ defined_funcs.append(func)
+ if self.templates is not None:
+ func.template_declaration = "template <typename %s>" % ", typename ".join(template_names)
+ self.body = StatListNode(self.pos, stats=defined_funcs)
+ self.scope = scope
+
+ def analyse_expressions(self, env):
+ self.body = self.body.analyse_expressions(self.entry.type.scope)
+ return self
+
+ def generate_function_definitions(self, env, code):
+ self.body.generate_function_definitions(self.entry.type.scope, code)
+
+ def generate_execution_code(self, code):
+ self.body.generate_execution_code(code)
+
+ def annotate(self, code):
+ self.body.annotate(code)
+
+
+class CEnumDefNode(StatNode):
+ # name string or None
+ # cname string or None
+ # items [CEnumDefItemNode]
+ # typedef_flag boolean
+ # visibility "public" or "private" or "extern"
+ # api boolean
+ # in_pxd boolean
+ # create_wrapper boolean
+ # entry Entry
+
+ child_attrs = ["items"]
+
+ def declare(self, env):
+ self.entry = env.declare_enum(
+ self.name, self.pos,
+ cname=self.cname, typedef_flag=self.typedef_flag,
+ visibility=self.visibility, api=self.api,
+ create_wrapper=self.create_wrapper)
+
+ def analyse_declarations(self, env):
+ if self.items is not None:
+ if self.in_pxd and not env.in_cinclude:
+ self.entry.defined_in_pxd = 1
+ for item in self.items:
+ item.analyse_declarations(env, self.entry)
+
+ def analyse_expressions(self, env):
+ return self
+
+ def generate_execution_code(self, code):
+ if self.visibility == 'public' or self.api:
+ code.mark_pos(self.pos)
+ temp = code.funcstate.allocate_temp(PyrexTypes.py_object_type, manage_ref=True)
+ for item in self.entry.enum_values:
+ code.putln("%s = PyInt_FromLong(%s); %s" % (
+ temp,
+ item.cname,
+ code.error_goto_if_null(temp, item.pos)))
+ code.put_gotref(temp)
+ code.putln('if (PyDict_SetItemString(%s, "%s", %s) < 0) %s' % (
+ Naming.moddict_cname,
+ item.name,
+ temp,
+ code.error_goto(item.pos)))
+ code.put_decref_clear(temp, PyrexTypes.py_object_type)
+ code.funcstate.release_temp(temp)
+
+
+class CEnumDefItemNode(StatNode):
+ # name string
+ # cname string or None
+ # value ExprNode or None
+
+ child_attrs = ["value"]
+
+ def analyse_declarations(self, env, enum_entry):
+ if self.value:
+ self.value = self.value.analyse_const_expression(env)
+ if not self.value.type.is_int:
+ self.value = self.value.coerce_to(PyrexTypes.c_int_type, env)
+ self.value = self.value.analyse_const_expression(env)
+ entry = env.declare_const(
+ self.name, enum_entry.type,
+ self.value, self.pos, cname=self.cname,
+ visibility=enum_entry.visibility, api=enum_entry.api,
+ create_wrapper=enum_entry.create_wrapper and enum_entry.name is None)
+ enum_entry.enum_values.append(entry)
+ if enum_entry.name:
+ enum_entry.type.values.append(entry.name)
+
+
+class CTypeDefNode(StatNode):
+ # base_type CBaseTypeNode
+ # declarator CDeclaratorNode
+ # visibility "public" or "private"
+ # api boolean
+ # in_pxd boolean
+
+ child_attrs = ["base_type", "declarator"]
+
+ def analyse_declarations(self, env):
+ base = self.base_type.analyse(env)
+ name_declarator, type = self.declarator.analyse(
+ base, env, visibility=self.visibility, in_pxd=self.in_pxd)
+ name = name_declarator.name
+ cname = name_declarator.cname
+
+ entry = env.declare_typedef(
+ name, type, self.pos,
+ cname=cname, visibility=self.visibility, api=self.api)
+
+ if type.is_fused:
+ entry.in_cinclude = True
+
+ if self.in_pxd and not env.in_cinclude:
+ entry.defined_in_pxd = 1
+
+ def analyse_expressions(self, env):
+ return self
+
+ def generate_execution_code(self, code):
+ pass
+
+
+class FuncDefNode(StatNode, BlockNode):
+ # Base class for function definition nodes.
+ #
+ # return_type PyrexType
+ # #filename string C name of filename string const
+ # entry Symtab.Entry
+ # needs_closure boolean Whether or not this function has inner functions/classes/yield
+ # needs_outer_scope boolean Whether or not this function requires outer scope
+ # pymethdef_required boolean Force Python method struct generation
+ # directive_locals { string : ExprNode } locals defined by cython.locals(...)
+ # directive_returns [ExprNode] type defined by cython.returns(...)
+ # star_arg PyArgDeclNode or None * argument
+ # starstar_arg PyArgDeclNode or None ** argument
+ #
+ # is_async_def boolean is a Coroutine function
+ #
+ # has_fused_arguments boolean
+ # Whether this cdef function has fused parameters. This is needed
+ # by AnalyseDeclarationsTransform, so it can replace CFuncDefNodes
+ # with fused argument types with a FusedCFuncDefNode
+
+ py_func = None
+ needs_closure = False
+ needs_outer_scope = False
+ pymethdef_required = False
+ is_generator = False
+ is_generator_body = False
+ is_async_def = False
+ modifiers = []
+ has_fused_arguments = False
+ star_arg = None
+ starstar_arg = None
+ is_cyfunction = False
+ code_object = None
+
+ def analyse_default_values(self, env):
+ default_seen = 0
+ for arg in self.args:
+ if arg.default:
+ default_seen = 1
+ if arg.is_generic:
+ arg.default = arg.default.analyse_types(env)
+ arg.default = arg.default.coerce_to(arg.type, env)
+ else:
+ error(arg.pos, "This argument cannot have a default value")
+ arg.default = None
+ elif arg.kw_only:
+ default_seen = 1
+ elif default_seen:
+ error(arg.pos, "Non-default argument following default argument")
+
+ def analyse_annotation(self, env, annotation):
+ # Annotations can not only contain valid Python expressions but arbitrary type references.
+ if annotation is None:
+ return None
+ if not env.directives['annotation_typing'] or annotation.analyse_as_type(env) is None:
+ annotation = annotation.analyse_types(env)
+ return annotation
+
+ def analyse_annotations(self, env):
+ for arg in self.args:
+ if arg.annotation:
+ arg.annotation = self.analyse_annotation(env, arg.annotation)
+
+ def align_argument_type(self, env, arg):
+ # @cython.locals()
+ directive_locals = self.directive_locals
+ orig_type = arg.type
+ if arg.name in directive_locals:
+ type_node = directive_locals[arg.name]
+ other_type = type_node.analyse_as_type(env)
+ elif isinstance(arg, CArgDeclNode) and arg.annotation and env.directives['annotation_typing']:
+ type_node = arg.annotation
+ other_type = arg.inject_type_from_annotations(env)
+ if other_type is None:
+ return arg
+ else:
+ return arg
+ if other_type is None:
+ error(type_node.pos, "Not a type")
+ elif orig_type is not py_object_type and not orig_type.same_as(other_type):
+ error(arg.base_type.pos, "Signature does not agree with previous declaration")
+ error(type_node.pos, "Previous declaration here")
+ else:
+ arg.type = other_type
+ return arg
+
+ def need_gil_acquisition(self, lenv):
+ return 0
+
+ def create_local_scope(self, env):
+ genv = env
+ while genv.is_py_class_scope or genv.is_c_class_scope:
+ genv = genv.outer_scope
+ if self.needs_closure:
+ lenv = ClosureScope(name=self.entry.name,
+ outer_scope=genv,
+ parent_scope=env,
+ scope_name=self.entry.cname)
+ else:
+ lenv = LocalScope(name=self.entry.name,
+ outer_scope=genv,
+ parent_scope=env)
+ lenv.return_type = self.return_type
+ type = self.entry.type
+ if type.is_cfunction:
+ lenv.nogil = type.nogil and not type.with_gil
+ self.local_scope = lenv
+ lenv.directives = env.directives
+ return lenv
+
+ def generate_function_body(self, env, code):
+ self.body.generate_execution_code(code)
+
+ def generate_function_definitions(self, env, code):
+ from . import Buffer
+ if self.return_type.is_memoryviewslice:
+ from . import MemoryView
+
+ lenv = self.local_scope
+ if lenv.is_closure_scope and not lenv.is_passthrough:
+ outer_scope_cname = "%s->%s" % (Naming.cur_scope_cname,
+ Naming.outer_scope_cname)
+ else:
+ outer_scope_cname = Naming.outer_scope_cname
+ lenv.mangle_closure_cnames(outer_scope_cname)
+ # Generate closure function definitions
+ self.body.generate_function_definitions(lenv, code)
+ # generate lambda function definitions
+ self.generate_lambda_definitions(lenv, code)
+
+ is_getbuffer_slot = (self.entry.name == "__getbuffer__" and
+ self.entry.scope.is_c_class_scope)
+ is_releasebuffer_slot = (self.entry.name == "__releasebuffer__" and
+ self.entry.scope.is_c_class_scope)
+ is_buffer_slot = is_getbuffer_slot or is_releasebuffer_slot
+ if is_buffer_slot:
+ if 'cython_unused' not in self.modifiers:
+ self.modifiers = self.modifiers + ['cython_unused']
+
+ preprocessor_guard = self.get_preprocessor_guard()
+
+ profile = code.globalstate.directives['profile']
+ linetrace = code.globalstate.directives['linetrace']
+ if profile or linetrace:
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("Profile", "Profile.c"))
+
+ # Generate C code for header and body of function
+ code.enter_cfunc_scope(lenv)
+ code.return_from_error_cleanup_label = code.new_label()
+ code.funcstate.gil_owned = not lenv.nogil
+
+ # ----- Top-level constants used by this function
+ code.mark_pos(self.pos)
+ self.generate_cached_builtins_decls(lenv, code)
+ # ----- Function header
+ code.putln("")
+
+ if preprocessor_guard:
+ code.putln(preprocessor_guard)
+
+ with_pymethdef = (self.needs_assignment_synthesis(env, code) or
+ self.pymethdef_required)
+ if self.py_func:
+ self.py_func.generate_function_header(
+ code, with_pymethdef=with_pymethdef, proto_only=True)
+ self.generate_function_header(code, with_pymethdef=with_pymethdef)
+ # ----- Local variable declarations
+ # Find function scope
+ cenv = env
+ while cenv.is_py_class_scope or cenv.is_c_class_scope:
+ cenv = cenv.outer_scope
+ if self.needs_closure:
+ code.put(lenv.scope_class.type.declaration_code(Naming.cur_scope_cname))
+ code.putln(";")
+ elif self.needs_outer_scope:
+ if lenv.is_passthrough:
+ code.put(lenv.scope_class.type.declaration_code(Naming.cur_scope_cname))
+ code.putln(";")
+ code.put(cenv.scope_class.type.declaration_code(Naming.outer_scope_cname))
+ code.putln(";")
+ self.generate_argument_declarations(lenv, code)
+
+ for entry in lenv.var_entries:
+ if not (entry.in_closure or entry.is_arg):
+ code.put_var_declaration(entry)
+
+ # Initialize the return variable __pyx_r
+ init = ""
+ if not self.return_type.is_void:
+ if self.return_type.is_pyobject:
+ init = " = NULL"
+ elif self.return_type.is_memoryviewslice:
+ init = ' = ' + MemoryView.memslice_entry_init
+
+ code.putln("%s%s;" % (
+ self.return_type.declaration_code(Naming.retval_cname),
+ init))
+
+ tempvardecl_code = code.insertion_point()
+ self.generate_keyword_list(code)
+
+ # ----- GIL acquisition
+ acquire_gil = self.acquire_gil
+
+ # See if we need to acquire the GIL for variable declarations, or for
+ # refnanny only
+
+ # Closures are not currently possible for cdef nogil functions,
+ # but check them anyway
+ have_object_args = self.needs_closure or self.needs_outer_scope
+ for arg in lenv.arg_entries:
+ if arg.type.is_pyobject:
+ have_object_args = True
+ break
+
+ used_buffer_entries = [entry for entry in lenv.buffer_entries if entry.used]
+
+ acquire_gil_for_var_decls_only = (
+ lenv.nogil and lenv.has_with_gil_block and
+ (have_object_args or used_buffer_entries))
+
+ acquire_gil_for_refnanny_only = (
+ lenv.nogil and lenv.has_with_gil_block and not
+ acquire_gil_for_var_decls_only)
+
+ use_refnanny = not lenv.nogil or lenv.has_with_gil_block
+
+ if acquire_gil or acquire_gil_for_var_decls_only:
+ code.put_ensure_gil()
+ code.funcstate.gil_owned = True
+ elif lenv.nogil and lenv.has_with_gil_block:
+ code.declare_gilstate()
+
+ if profile or linetrace:
+ if not self.is_generator:
+ # generators are traced when iterated, not at creation
+ tempvardecl_code.put_trace_declarations()
+ code_object = self.code_object.calculate_result_code(code) if self.code_object else None
+ code.put_trace_frame_init(code_object)
+
+ # ----- Special check for getbuffer
+ if is_getbuffer_slot:
+ self.getbuffer_check(code)
+
+ # ----- set up refnanny
+ if use_refnanny:
+ tempvardecl_code.put_declare_refcount_context()
+ code.put_setup_refcount_context(
+ self.entry.name, acquire_gil=acquire_gil_for_refnanny_only)
+
+ # ----- Automatic lead-ins for certain special functions
+ if is_getbuffer_slot:
+ self.getbuffer_init(code)
+ # ----- Create closure scope object
+ if self.needs_closure:
+ tp_slot = TypeSlots.ConstructorSlot("tp_new", '__new__')
+ slot_func_cname = TypeSlots.get_slot_function(lenv.scope_class.type.scope, tp_slot)
+ if not slot_func_cname:
+ slot_func_cname = '%s->tp_new' % lenv.scope_class.type.typeptr_cname
+ code.putln("%s = (%s)%s(%s, %s, NULL);" % (
+ Naming.cur_scope_cname,
+ lenv.scope_class.type.empty_declaration_code(),
+ slot_func_cname,
+ lenv.scope_class.type.typeptr_cname,
+ Naming.empty_tuple))
+ code.putln("if (unlikely(!%s)) {" % Naming.cur_scope_cname)
+ # Scope unconditionally DECREFed on return.
+ code.putln("%s = %s;" % (
+ Naming.cur_scope_cname,
+ lenv.scope_class.type.cast_code("Py_None")))
+ code.put_incref("Py_None", py_object_type)
+ code.putln(code.error_goto(self.pos))
+ code.putln("} else {")
+ code.put_gotref(Naming.cur_scope_cname)
+ code.putln("}")
+ # Note that it is unsafe to decref the scope at this point.
+ if self.needs_outer_scope:
+ if self.is_cyfunction:
+ code.putln("%s = (%s) __Pyx_CyFunction_GetClosure(%s);" % (
+ outer_scope_cname,
+ cenv.scope_class.type.empty_declaration_code(),
+ Naming.self_cname))
+ else:
+ code.putln("%s = (%s) %s;" % (
+ outer_scope_cname,
+ cenv.scope_class.type.empty_declaration_code(),
+ Naming.self_cname))
+ if lenv.is_passthrough:
+ code.putln("%s = %s;" % (Naming.cur_scope_cname, outer_scope_cname))
+ elif self.needs_closure:
+ # inner closures own a reference to their outer parent
+ code.put_incref(outer_scope_cname, cenv.scope_class.type)
+ code.put_giveref(outer_scope_cname)
+ # ----- Trace function call
+ if profile or linetrace:
+ # this looks a bit late, but if we don't get here due to a
+ # fatal error before hand, it's not really worth tracing
+ if not self.is_generator:
+ # generators are traced when iterated, not at creation
+ if self.is_wrapper:
+ trace_name = self.entry.name + " (wrapper)"
+ else:
+ trace_name = self.entry.name
+ code.put_trace_call(
+ trace_name, self.pos, nogil=not code.funcstate.gil_owned)
+ code.funcstate.can_trace = True
+ # ----- Fetch arguments
+ self.generate_argument_parsing_code(env, code)
+ # If an argument is assigned to in the body, we must
+ # incref it to properly keep track of refcounts.
+ is_cdef = isinstance(self, CFuncDefNode)
+ for entry in lenv.arg_entries:
+ if entry.type.is_pyobject:
+ if (acquire_gil or len(entry.cf_assignments) > 1) and not entry.in_closure:
+ code.put_var_incref(entry)
+
+ # Note: defaults are always incref-ed. For def functions, we
+ # we acquire arguments from object conversion, so we have
+ # new references. If we are a cdef function, we need to
+ # incref our arguments
+ elif is_cdef and entry.type.is_memoryviewslice and len(entry.cf_assignments) > 1:
+ code.put_incref_memoryviewslice(entry.cname, have_gil=code.funcstate.gil_owned)
+ for entry in lenv.var_entries:
+ if entry.is_arg and len(entry.cf_assignments) > 1 and not entry.in_closure:
+ if entry.xdecref_cleanup:
+ code.put_var_xincref(entry)
+ else:
+ code.put_var_incref(entry)
+
+ # ----- Initialise local buffer auxiliary variables
+ for entry in lenv.var_entries + lenv.arg_entries:
+ if entry.type.is_buffer and entry.buffer_aux.buflocal_nd_var.used:
+ Buffer.put_init_vars(entry, code)
+
+ # ----- Check and convert arguments
+ self.generate_argument_type_tests(code)
+ # ----- Acquire buffer arguments
+ for entry in lenv.arg_entries:
+ if entry.type.is_buffer:
+ Buffer.put_acquire_arg_buffer(entry, code, self.pos)
+
+ if acquire_gil_for_var_decls_only:
+ code.put_release_ensured_gil()
+ code.funcstate.gil_owned = False
+
+ # -------------------------
+ # ----- Function body -----
+ # -------------------------
+ self.generate_function_body(env, code)
+
+ code.mark_pos(self.pos, trace=False)
+ code.putln("")
+ code.putln("/* function exit code */")
+
+ # ----- Default return value
+ if not self.body.is_terminator:
+ if self.return_type.is_pyobject:
+ #if self.return_type.is_extension_type:
+ # lhs = "(PyObject *)%s" % Naming.retval_cname
+ #else:
+ lhs = Naming.retval_cname
+ code.put_init_to_py_none(lhs, self.return_type)
+ else:
+ val = self.return_type.default_value
+ if val:
+ code.putln("%s = %s;" % (Naming.retval_cname, val))
+ elif not self.return_type.is_void:
+ code.putln("__Pyx_pretend_to_initialize(&%s);" % Naming.retval_cname)
+ # ----- Error cleanup
+ if code.error_label in code.labels_used:
+ if not self.body.is_terminator:
+ code.put_goto(code.return_label)
+ code.put_label(code.error_label)
+ for cname, type in code.funcstate.all_managed_temps():
+ code.put_xdecref(cname, type, have_gil=not lenv.nogil)
+
+ # Clean up buffers -- this calls a Python function
+ # so need to save and restore error state
+ buffers_present = len(used_buffer_entries) > 0
+ #memslice_entries = [e for e in lenv.entries.values() if e.type.is_memoryviewslice]
+ if buffers_present:
+ code.globalstate.use_utility_code(restore_exception_utility_code)
+ code.putln("{ PyObject *__pyx_type, *__pyx_value, *__pyx_tb;")
+ code.putln("__Pyx_PyThreadState_declare")
+ code.putln("__Pyx_PyThreadState_assign")
+ code.putln("__Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb);")
+ for entry in used_buffer_entries:
+ Buffer.put_release_buffer_code(code, entry)
+ #code.putln("%s = 0;" % entry.cname)
+ code.putln("__Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);}")
+
+ if self.return_type.is_memoryviewslice:
+ MemoryView.put_init_entry(Naming.retval_cname, code)
+ err_val = Naming.retval_cname
+ else:
+ err_val = self.error_value()
+
+ exc_check = self.caller_will_check_exceptions()
+ if err_val is not None or exc_check:
+ # TODO: Fix exception tracing (though currently unused by cProfile).
+ # code.globalstate.use_utility_code(get_exception_tuple_utility_code)
+ # code.put_trace_exception()
+
+ if lenv.nogil and not lenv.has_with_gil_block:
+ code.putln("{")
+ code.put_ensure_gil()
+
+ code.put_add_traceback(self.entry.qualified_name)
+
+ if lenv.nogil and not lenv.has_with_gil_block:
+ code.put_release_ensured_gil()
+ code.putln("}")
+ else:
+ warning(self.entry.pos,
+ "Unraisable exception in function '%s'." %
+ self.entry.qualified_name, 0)
+ code.put_unraisable(self.entry.qualified_name, lenv.nogil)
+ default_retval = self.return_type.default_value
+ if err_val is None and default_retval:
+ err_val = default_retval
+ if err_val is not None:
+ if err_val != Naming.retval_cname:
+ code.putln("%s = %s;" % (Naming.retval_cname, err_val))
+ elif not self.return_type.is_void:
+ code.putln("__Pyx_pretend_to_initialize(&%s);" % Naming.retval_cname)
+
+ if is_getbuffer_slot:
+ self.getbuffer_error_cleanup(code)
+
+ # If we are using the non-error cleanup section we should
+ # jump past it if we have an error. The if-test below determine
+ # whether this section is used.
+ if buffers_present or is_getbuffer_slot or self.return_type.is_memoryviewslice:
+ code.put_goto(code.return_from_error_cleanup_label)
+
+ # ----- Non-error return cleanup
+ code.put_label(code.return_label)
+ for entry in used_buffer_entries:
+ Buffer.put_release_buffer_code(code, entry)
+ if is_getbuffer_slot:
+ self.getbuffer_normal_cleanup(code)
+
+ if self.return_type.is_memoryviewslice:
+ # See if our return value is uninitialized on non-error return
+ # from . import MemoryView
+ # MemoryView.err_if_nogil_initialized_check(self.pos, env)
+ cond = code.unlikely(self.return_type.error_condition(Naming.retval_cname))
+ code.putln(
+ 'if (%s) {' % cond)
+ if env.nogil:
+ code.put_ensure_gil()
+ code.putln(
+ 'PyErr_SetString(PyExc_TypeError, "Memoryview return value is not initialized");')
+ if env.nogil:
+ code.put_release_ensured_gil()
+ code.putln(
+ '}')
+
+ # ----- Return cleanup for both error and no-error return
+ code.put_label(code.return_from_error_cleanup_label)
+
+ for entry in lenv.var_entries:
+ if not entry.used or entry.in_closure:
+ continue
+
+ if entry.type.is_memoryviewslice:
+ code.put_xdecref_memoryviewslice(entry.cname, have_gil=not lenv.nogil)
+ elif entry.type.is_pyobject:
+ if not entry.is_arg or len(entry.cf_assignments) > 1:
+ if entry.xdecref_cleanup:
+ code.put_var_xdecref(entry)
+ else:
+ code.put_var_decref(entry)
+
+ # Decref any increfed args
+ for entry in lenv.arg_entries:
+ if entry.type.is_pyobject:
+ if (acquire_gil or len(entry.cf_assignments) > 1) and not entry.in_closure:
+ code.put_var_decref(entry)
+ elif (entry.type.is_memoryviewslice and
+ (not is_cdef or len(entry.cf_assignments) > 1)):
+ # decref slices of def functions and acquired slices from cdef
+ # functions, but not borrowed slices from cdef functions.
+ code.put_xdecref_memoryviewslice(entry.cname,
+ have_gil=not lenv.nogil)
+ if self.needs_closure:
+ code.put_decref(Naming.cur_scope_cname, lenv.scope_class.type)
+
+ # ----- Return
+ # This code is duplicated in ModuleNode.generate_module_init_func
+ if not lenv.nogil:
+ default_retval = self.return_type.default_value
+ err_val = self.error_value()
+ if err_val is None and default_retval:
+ err_val = default_retval # FIXME: why is err_val not used?
+ if self.return_type.is_pyobject:
+ code.put_xgiveref(self.return_type.as_pyobject(Naming.retval_cname))
+
+ if self.entry.is_special and self.entry.name == "__hash__":
+ # Returning -1 for __hash__ is supposed to signal an error
+ # We do as Python instances and coerce -1 into -2.
+ code.putln("if (unlikely(%s == -1) && !PyErr_Occurred()) %s = -2;" % (
+ Naming.retval_cname, Naming.retval_cname))
+
+ if profile or linetrace:
+ code.funcstate.can_trace = False
+ if not self.is_generator:
+ # generators are traced when iterated, not at creation
+ if self.return_type.is_pyobject:
+ code.put_trace_return(
+ Naming.retval_cname, nogil=not code.funcstate.gil_owned)
+ else:
+ code.put_trace_return(
+ "Py_None", nogil=not code.funcstate.gil_owned)
+
+ if not lenv.nogil:
+ # GIL holding function
+ code.put_finish_refcount_context()
+
+ if acquire_gil or (lenv.nogil and lenv.has_with_gil_block):
+ # release the GIL (note that with-gil blocks acquire it on exit in their EnsureGILNode)
+ code.put_release_ensured_gil()
+ code.funcstate.gil_owned = False
+
+ if not self.return_type.is_void:
+ code.putln("return %s;" % Naming.retval_cname)
+
+ code.putln("}")
+
+ if preprocessor_guard:
+ code.putln("#endif /*!(%s)*/" % preprocessor_guard)
+
+ # ----- Go back and insert temp variable declarations
+ tempvardecl_code.put_temp_declarations(code.funcstate)
+
+ # ----- Python version
+ code.exit_cfunc_scope()
+ if self.py_func:
+ self.py_func.generate_function_definitions(env, code)
+ self.generate_wrapper_functions(code)
+
+ def declare_argument(self, env, arg):
+ if arg.type.is_void:
+ error(arg.pos, "Invalid use of 'void'")
+ elif not arg.type.is_complete() and not (arg.type.is_array or arg.type.is_memoryviewslice):
+ error(arg.pos, "Argument type '%s' is incomplete" % arg.type)
+ entry = env.declare_arg(arg.name, arg.type, arg.pos)
+ if arg.annotation:
+ entry.annotation = arg.annotation
+ return entry
+
+ def generate_arg_type_test(self, arg, code):
+ # Generate type test for one argument.
+ if arg.type.typeobj_is_available():
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("ArgTypeTest", "FunctionArguments.c"))
+ typeptr_cname = arg.type.typeptr_cname
+ arg_code = "((PyObject *)%s)" % arg.entry.cname
+ code.putln(
+ 'if (unlikely(!__Pyx_ArgTypeTest(%s, %s, %d, "%s", %s))) %s' % (
+ arg_code,
+ typeptr_cname,
+ arg.accept_none,
+ arg.name,
+ arg.type.is_builtin_type and arg.type.require_exact,
+ code.error_goto(arg.pos)))
+ else:
+ error(arg.pos, "Cannot test type of extern C class without type object name specification")
+
+ def generate_arg_none_check(self, arg, code):
+ # Generate None check for one argument.
+ if arg.type.is_memoryviewslice:
+ cname = "%s.memview" % arg.entry.cname
+ else:
+ cname = arg.entry.cname
+
+ code.putln('if (unlikely(((PyObject *)%s) == Py_None)) {' % cname)
+ code.putln('''PyErr_Format(PyExc_TypeError, "Argument '%%.%ds' must not be None", "%s"); %s''' % (
+ max(200, len(arg.name)), arg.name,
+ code.error_goto(arg.pos)))
+ code.putln('}')
+
+ def generate_wrapper_functions(self, code):
+ pass
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ # Evaluate and store argument default values
+ for arg in self.args:
+ if not arg.is_dynamic:
+ arg.generate_assignment_code(code)
+
+ #
+ # Special code for the __getbuffer__ function
+ #
+ def _get_py_buffer_info(self):
+ py_buffer = self.local_scope.arg_entries[1]
+ try:
+ # Check builtin definition of struct Py_buffer
+ obj_type = py_buffer.type.base_type.scope.entries['obj'].type
+ except (AttributeError, KeyError):
+ # User code redeclared struct Py_buffer
+ obj_type = None
+ return py_buffer, obj_type
+
+ # Old Python 3 used to support write-locks on buffer-like objects by
+ # calling PyObject_GetBuffer() with a view==NULL parameter. This obscure
+ # feature is obsolete, it was almost never used (only one instance in
+ # `Modules/posixmodule.c` in Python 3.1) and it is now officially removed
+ # (see bpo-14203). We add an extra check here to prevent legacy code from
+ # from trying to use the feature and prevent segmentation faults.
+ def getbuffer_check(self, code):
+ py_buffer, _ = self._get_py_buffer_info()
+ view = py_buffer.cname
+ code.putln("if (%s == NULL) {" % view)
+ code.putln("PyErr_SetString(PyExc_BufferError, "
+ "\"PyObject_GetBuffer: view==NULL argument is obsolete\");")
+ code.putln("return -1;")
+ code.putln("}")
+
+ def getbuffer_init(self, code):
+ py_buffer, obj_type = self._get_py_buffer_info()
+ view = py_buffer.cname
+ if obj_type and obj_type.is_pyobject:
+ code.put_init_to_py_none("%s->obj" % view, obj_type)
+ code.put_giveref("%s->obj" % view) # Do not refnanny object within structs
+ else:
+ code.putln("%s->obj = NULL;" % view)
+
+ def getbuffer_error_cleanup(self, code):
+ py_buffer, obj_type = self._get_py_buffer_info()
+ view = py_buffer.cname
+ if obj_type and obj_type.is_pyobject:
+ code.putln("if (%s->obj != NULL) {" % view)
+ code.put_gotref("%s->obj" % view)
+ code.put_decref_clear("%s->obj" % view, obj_type)
+ code.putln("}")
+ else:
+ code.putln("Py_CLEAR(%s->obj);" % view)
+
+ def getbuffer_normal_cleanup(self, code):
+ py_buffer, obj_type = self._get_py_buffer_info()
+ view = py_buffer.cname
+ if obj_type and obj_type.is_pyobject:
+ code.putln("if (%s->obj == Py_None) {" % view)
+ code.put_gotref("%s->obj" % view)
+ code.put_decref_clear("%s->obj" % view, obj_type)
+ code.putln("}")
+
+ def get_preprocessor_guard(self):
+ if not self.entry.is_special:
+ return None
+ name = self.entry.name
+ slot = TypeSlots.method_name_to_slot.get(name)
+ if not slot:
+ return None
+ if name == '__long__' and not self.entry.scope.lookup_here('__int__'):
+ return None
+ if name in ("__getbuffer__", "__releasebuffer__") and self.entry.scope.is_c_class_scope:
+ return None
+ return slot.preprocessor_guard_code()
+
+
+class CFuncDefNode(FuncDefNode):
+ # C function definition.
+ #
+ # modifiers ['inline']
+ # visibility 'private' or 'public' or 'extern'
+ # base_type CBaseTypeNode
+ # declarator CDeclaratorNode
+ # cfunc_declarator the CFuncDeclarator of this function
+ # (this is also available through declarator or a
+ # base thereof)
+ # body StatListNode
+ # api boolean
+ # decorators [DecoratorNode] list of decorators
+ #
+ # with_gil boolean Acquire GIL around body
+ # type CFuncType
+ # py_func wrapper for calling from Python
+ # overridable whether or not this is a cpdef function
+ # inline_in_pxd whether this is an inline function in a pxd file
+ # template_declaration String or None Used for c++ class methods
+ # is_const_method whether this is a const method
+ # is_static_method whether this is a static method
+ # is_c_class_method whether this is a cclass method
+
+ child_attrs = ["base_type", "declarator", "body", "py_func_stat"]
+
+ inline_in_pxd = False
+ decorators = None
+ directive_locals = None
+ directive_returns = None
+ override = None
+ template_declaration = None
+ is_const_method = False
+ py_func_stat = None
+
+ def unqualified_name(self):
+ return self.entry.name
+
+ @property
+ def code_object(self):
+ # share the CodeObject with the cpdef wrapper (if available)
+ return self.py_func.code_object if self.py_func else None
+
+ def analyse_declarations(self, env):
+ self.is_c_class_method = env.is_c_class_scope
+ if self.directive_locals is None:
+ self.directive_locals = {}
+ self.directive_locals.update(env.directives.get('locals', {}))
+ if self.directive_returns is not None:
+ base_type = self.directive_returns.analyse_as_type(env)
+ if base_type is None:
+ error(self.directive_returns.pos, "Not a type")
+ base_type = PyrexTypes.error_type
+ else:
+ base_type = self.base_type.analyse(env)
+ self.is_static_method = 'staticmethod' in env.directives and not env.lookup_here('staticmethod')
+ # The 2 here is because we need both function and argument names.
+ if isinstance(self.declarator, CFuncDeclaratorNode):
+ name_declarator, type = self.declarator.analyse(
+ base_type, env, nonempty=2 * (self.body is not None),
+ directive_locals=self.directive_locals, visibility=self.visibility)
+ else:
+ name_declarator, type = self.declarator.analyse(
+ base_type, env, nonempty=2 * (self.body is not None), visibility=self.visibility)
+ if not type.is_cfunction:
+ error(self.pos, "Suite attached to non-function declaration")
+ # Remember the actual type according to the function header
+ # written here, because the type in the symbol table entry
+ # may be different if we're overriding a C method inherited
+ # from the base type of an extension type.
+ self.type = type
+ type.is_overridable = self.overridable
+ declarator = self.declarator
+ while not hasattr(declarator, 'args'):
+ declarator = declarator.base
+
+ self.cfunc_declarator = declarator
+ self.args = declarator.args
+
+ opt_arg_count = self.cfunc_declarator.optional_arg_count
+ if (self.visibility == 'public' or self.api) and opt_arg_count:
+ error(self.cfunc_declarator.pos,
+ "Function with optional arguments may not be declared public or api")
+
+ if type.exception_check == '+' and self.visibility != 'extern':
+ warning(self.cfunc_declarator.pos,
+ "Only extern functions can throw C++ exceptions.")
+
+ for formal_arg, type_arg in zip(self.args, type.args):
+ self.align_argument_type(env, type_arg)
+ formal_arg.type = type_arg.type
+ formal_arg.name = type_arg.name
+ formal_arg.cname = type_arg.cname
+
+ self._validate_type_visibility(type_arg.type, type_arg.pos, env)
+
+ if type_arg.type.is_fused:
+ self.has_fused_arguments = True
+
+ if type_arg.type.is_buffer and 'inline' in self.modifiers:
+ warning(formal_arg.pos, "Buffer unpacking not optimized away.", 1)
+
+ if type_arg.type.is_buffer or type_arg.type.is_pythran_expr:
+ if self.type.nogil:
+ error(formal_arg.pos,
+ "Buffer may not be acquired without the GIL. Consider using memoryview slices instead.")
+ elif 'inline' in self.modifiers:
+ warning(formal_arg.pos, "Buffer unpacking not optimized away.", 1)
+
+ self._validate_type_visibility(type.return_type, self.pos, env)
+
+ name = name_declarator.name
+ cname = name_declarator.cname
+
+ type.is_const_method = self.is_const_method
+ type.is_static_method = self.is_static_method
+ self.entry = env.declare_cfunction(
+ name, type, self.pos,
+ cname=cname, visibility=self.visibility, api=self.api,
+ defining=self.body is not None, modifiers=self.modifiers,
+ overridable=self.overridable)
+ self.entry.inline_func_in_pxd = self.inline_in_pxd
+ self.return_type = type.return_type
+ if self.return_type.is_array and self.visibility != 'extern':
+ error(self.pos, "Function cannot return an array")
+ if self.return_type.is_cpp_class:
+ self.return_type.check_nullary_constructor(self.pos, "used as a return value")
+
+ if self.overridable and not env.is_module_scope and not self.is_static_method:
+ if len(self.args) < 1 or not self.args[0].type.is_pyobject:
+ # An error will be produced in the cdef function
+ self.overridable = False
+
+ self.declare_cpdef_wrapper(env)
+ self.create_local_scope(env)
+
+ def declare_cpdef_wrapper(self, env):
+ if self.overridable:
+ if self.is_static_method:
+ # TODO(robertwb): Finish this up, perhaps via more function refactoring.
+ error(self.pos, "static cpdef methods not yet supported")
+ name = self.entry.name
+ py_func_body = self.call_self_node(is_module_scope=env.is_module_scope)
+ if self.is_static_method:
+ from .ExprNodes import NameNode
+ decorators = [DecoratorNode(self.pos, decorator=NameNode(self.pos, name='staticmethod'))]
+ decorators[0].decorator.analyse_types(env)
+ else:
+ decorators = []
+ self.py_func = DefNode(pos=self.pos,
+ name=self.entry.name,
+ args=self.args,
+ star_arg=None,
+ starstar_arg=None,
+ doc=self.doc,
+ body=py_func_body,
+ decorators=decorators,
+ is_wrapper=1)
+ self.py_func.is_module_scope = env.is_module_scope
+ self.py_func.analyse_declarations(env)
+ self.py_func.entry.is_overridable = True
+ self.py_func_stat = StatListNode(self.pos, stats=[self.py_func])
+ self.py_func.type = PyrexTypes.py_object_type
+ self.entry.as_variable = self.py_func.entry
+ self.entry.used = self.entry.as_variable.used = True
+ # Reset scope entry the above cfunction
+ env.entries[name] = self.entry
+ if (not self.entry.is_final_cmethod and
+ (not env.is_module_scope or Options.lookup_module_cpdef)):
+ self.override = OverrideCheckNode(self.pos, py_func=self.py_func)
+ self.body = StatListNode(self.pos, stats=[self.override, self.body])
+
+ def _validate_type_visibility(self, type, pos, env):
+ """
+ Ensure that types used in cdef functions are public or api, or
+ defined in a C header.
+ """
+ public_or_api = (self.visibility == 'public' or self.api)
+ entry = getattr(type, 'entry', None)
+ if public_or_api and entry and env.is_module_scope:
+ if not (entry.visibility in ('public', 'extern') or
+ entry.api or entry.in_cinclude):
+ error(pos, "Function declared public or api may not have private types")
+
+ def call_self_node(self, omit_optional_args=0, is_module_scope=0):
+ from . import ExprNodes
+ args = self.type.args
+ if omit_optional_args:
+ args = args[:len(args) - self.type.optional_arg_count]
+ arg_names = [arg.name for arg in args]
+ if is_module_scope:
+ cfunc = ExprNodes.NameNode(self.pos, name=self.entry.name)
+ call_arg_names = arg_names
+ skip_dispatch = Options.lookup_module_cpdef
+ elif self.type.is_static_method:
+ class_entry = self.entry.scope.parent_type.entry
+ class_node = ExprNodes.NameNode(self.pos, name=class_entry.name)
+ class_node.entry = class_entry
+ cfunc = ExprNodes.AttributeNode(self.pos, obj=class_node, attribute=self.entry.name)
+ # Calling static c(p)def methods on an instance disallowed.
+ # TODO(robertwb): Support by passing self to check for override?
+ skip_dispatch = True
+ else:
+ type_entry = self.type.args[0].type.entry
+ type_arg = ExprNodes.NameNode(self.pos, name=type_entry.name)
+ type_arg.entry = type_entry
+ cfunc = ExprNodes.AttributeNode(self.pos, obj=type_arg, attribute=self.entry.name)
+ skip_dispatch = not is_module_scope or Options.lookup_module_cpdef
+ c_call = ExprNodes.SimpleCallNode(
+ self.pos,
+ function=cfunc,
+ args=[ExprNodes.NameNode(self.pos, name=n) for n in arg_names],
+ wrapper_call=skip_dispatch)
+ return ReturnStatNode(pos=self.pos, return_type=PyrexTypes.py_object_type, value=c_call)
+
+ def declare_arguments(self, env):
+ for arg in self.type.args:
+ if not arg.name:
+ error(arg.pos, "Missing argument name")
+ self.declare_argument(env, arg)
+
+ def need_gil_acquisition(self, lenv):
+ return self.type.with_gil
+
+ def nogil_check(self, env):
+ type = self.type
+ with_gil = type.with_gil
+ if type.nogil and not with_gil:
+ if type.return_type.is_pyobject:
+ error(self.pos,
+ "Function with Python return type cannot be declared nogil")
+ for entry in self.local_scope.var_entries:
+ if entry.type.is_pyobject and not entry.in_with_gil_block:
+ error(self.pos, "Function declared nogil has Python locals or temporaries")
+
+ def analyse_expressions(self, env):
+ self.local_scope.directives = env.directives
+ if self.py_func_stat is not None:
+ # this will also analyse the default values and the function name assignment
+ self.py_func_stat = self.py_func_stat.analyse_expressions(env)
+ elif self.py_func is not None:
+ # this will also analyse the default values
+ self.py_func = self.py_func.analyse_expressions(env)
+ else:
+ self.analyse_default_values(env)
+ self.analyse_annotations(env)
+ self.acquire_gil = self.need_gil_acquisition(self.local_scope)
+ return self
+
+ def needs_assignment_synthesis(self, env, code=None):
+ return False
+
+ def generate_function_header(self, code, with_pymethdef, with_opt_args=1, with_dispatch=1, cname=None):
+ scope = self.local_scope
+ arg_decls = []
+ type = self.type
+ for arg in type.args[:len(type.args)-type.optional_arg_count]:
+ arg_decl = arg.declaration_code()
+ entry = scope.lookup(arg.name)
+ if not entry.cf_used:
+ arg_decl = 'CYTHON_UNUSED %s' % arg_decl
+ arg_decls.append(arg_decl)
+ if with_dispatch and self.overridable:
+ dispatch_arg = PyrexTypes.c_int_type.declaration_code(
+ Naming.skip_dispatch_cname)
+ if self.override:
+ arg_decls.append(dispatch_arg)
+ else:
+ arg_decls.append('CYTHON_UNUSED %s' % dispatch_arg)
+ if type.optional_arg_count and with_opt_args:
+ arg_decls.append(type.op_arg_struct.declaration_code(Naming.optional_args_cname))
+ if type.has_varargs:
+ arg_decls.append("...")
+ if not arg_decls:
+ arg_decls = ["void"]
+ if cname is None:
+ cname = self.entry.func_cname
+ entity = type.function_header_code(cname, ', '.join(arg_decls))
+ if self.entry.visibility == 'private' and '::' not in cname:
+ storage_class = "static "
+ else:
+ storage_class = ""
+ dll_linkage = None
+ modifiers = code.build_function_modifiers(self.entry.func_modifiers)
+
+ header = self.return_type.declaration_code(entity, dll_linkage=dll_linkage)
+ #print (storage_class, modifiers, header)
+ needs_proto = self.is_c_class_method
+ if self.template_declaration:
+ if needs_proto:
+ code.globalstate.parts['module_declarations'].putln(self.template_declaration)
+ code.putln(self.template_declaration)
+ if needs_proto:
+ code.globalstate.parts['module_declarations'].putln(
+ "%s%s%s; /* proto*/" % (storage_class, modifiers, header))
+ code.putln("%s%s%s {" % (storage_class, modifiers, header))
+
+ def generate_argument_declarations(self, env, code):
+ scope = self.local_scope
+ for arg in self.args:
+ if arg.default:
+ entry = scope.lookup(arg.name)
+ if self.override or entry.cf_used:
+ result = arg.calculate_default_value_code(code)
+ code.putln('%s = %s;' % (
+ arg.type.declaration_code(arg.cname), result))
+
+ def generate_keyword_list(self, code):
+ pass
+
+ def generate_argument_parsing_code(self, env, code):
+ i = 0
+ used = 0
+ scope = self.local_scope
+ if self.type.optional_arg_count:
+ code.putln('if (%s) {' % Naming.optional_args_cname)
+ for arg in self.args:
+ if arg.default:
+ entry = scope.lookup(arg.name)
+ if self.override or entry.cf_used:
+ code.putln('if (%s->%sn > %s) {' %
+ (Naming.optional_args_cname,
+ Naming.pyrex_prefix, i))
+ declarator = arg.declarator
+ while not hasattr(declarator, 'name'):
+ declarator = declarator.base
+ code.putln('%s = %s->%s;' %
+ (arg.cname, Naming.optional_args_cname,
+ self.type.opt_arg_cname(declarator.name)))
+ used += 1
+ i += 1
+ for _ in range(used):
+ code.putln('}')
+ code.putln('}')
+
+ # Move arguments into closure if required
+ def put_into_closure(entry):
+ if entry.in_closure and not arg.default:
+ code.putln('%s = %s;' % (entry.cname, entry.original_cname))
+ if entry.type.is_memoryviewslice:
+ code.put_incref_memoryviewslice(entry.cname, have_gil=True)
+ else:
+ code.put_var_incref(entry)
+ code.put_var_giveref(entry)
+ for arg in self.args:
+ put_into_closure(scope.lookup_here(arg.name))
+
+
+ def generate_argument_conversion_code(self, code):
+ pass
+
+ def generate_argument_type_tests(self, code):
+ # Generate type tests for args whose type in a parent
+ # class is a supertype of the declared type.
+ for arg in self.type.args:
+ if arg.needs_type_test:
+ self.generate_arg_type_test(arg, code)
+ elif arg.type.is_pyobject and not arg.accept_none:
+ self.generate_arg_none_check(arg, code)
+
+ def generate_execution_code(self, code):
+ if code.globalstate.directives['linetrace']:
+ code.mark_pos(self.pos)
+ code.putln("") # generate line tracing code
+ super(CFuncDefNode, self).generate_execution_code(code)
+ if self.py_func_stat:
+ self.py_func_stat.generate_execution_code(code)
+
+ def error_value(self):
+ if self.return_type.is_pyobject:
+ return "0"
+ else:
+ #return None
+ return self.entry.type.exception_value
+
+ def caller_will_check_exceptions(self):
+ return self.entry.type.exception_check
+
+ def generate_wrapper_functions(self, code):
+ # If the C signature of a function has changed, we need to generate
+ # wrappers to put in the slots here.
+ k = 0
+ entry = self.entry
+ func_type = entry.type
+ while entry.prev_entry is not None:
+ k += 1
+ entry = entry.prev_entry
+ entry.func_cname = "%s%swrap_%s" % (self.entry.func_cname, Naming.pyrex_prefix, k)
+ code.putln()
+ self.generate_function_header(
+ code, 0,
+ with_dispatch=entry.type.is_overridable,
+ with_opt_args=entry.type.optional_arg_count,
+ cname=entry.func_cname)
+ if not self.return_type.is_void:
+ code.put('return ')
+ args = self.type.args
+ arglist = [arg.cname for arg in args[:len(args)-self.type.optional_arg_count]]
+ if entry.type.is_overridable:
+ arglist.append(Naming.skip_dispatch_cname)
+ elif func_type.is_overridable:
+ arglist.append('0')
+ if entry.type.optional_arg_count:
+ arglist.append(Naming.optional_args_cname)
+ elif func_type.optional_arg_count:
+ arglist.append('NULL')
+ code.putln('%s(%s);' % (self.entry.func_cname, ', '.join(arglist)))
+ code.putln('}')
+
+
+class PyArgDeclNode(Node):
+ # Argument which must be a Python object (used
+ # for * and ** arguments).
+ #
+ # name string
+ # entry Symtab.Entry
+ # annotation ExprNode or None Py3 argument annotation
+ child_attrs = []
+ is_self_arg = False
+ is_type_arg = False
+
+ def generate_function_definitions(self, env, code):
+ self.entry.generate_function_definitions(env, code)
+
+
+class DecoratorNode(Node):
+ # A decorator
+ #
+ # decorator NameNode or CallNode or AttributeNode
+ child_attrs = ['decorator']
+
+
+class DefNode(FuncDefNode):
+ # A Python function definition.
+ #
+ # name string the Python name of the function
+ # lambda_name string the internal name of a lambda 'function'
+ # decorators [DecoratorNode] list of decorators
+ # args [CArgDeclNode] formal arguments
+ # doc EncodedString or None
+ # body StatListNode
+ # return_type_annotation
+ # ExprNode or None the Py3 return type annotation
+ #
+ # The following subnode is constructed internally
+ # when the def statement is inside a Python class definition.
+ #
+ # fused_py_func DefNode The original fused cpdef DefNode
+ # (in case this is a specialization)
+ # specialized_cpdefs [DefNode] list of specialized cpdef DefNodes
+ # py_cfunc_node PyCFunctionNode/InnerFunctionNode The PyCFunction to create and assign
+ #
+ # decorator_indirection IndirectionNode Used to remove __Pyx_Method_ClassMethod for fused functions
+
+ child_attrs = ["args", "star_arg", "starstar_arg", "body", "decorators", "return_type_annotation"]
+ outer_attrs = ["decorators", "return_type_annotation"]
+
+ is_staticmethod = False
+ is_classmethod = False
+
+ lambda_name = None
+ reqd_kw_flags_cname = "0"
+ is_wrapper = 0
+ no_assignment_synthesis = 0
+ decorators = None
+ return_type_annotation = None
+ entry = None
+ acquire_gil = 0
+ self_in_stararg = 0
+ py_cfunc_node = None
+ requires_classobj = False
+ defaults_struct = None # Dynamic kwrds structure name
+ doc = None
+
+ fused_py_func = False
+ specialized_cpdefs = None
+ py_wrapper = None
+ py_wrapper_required = True
+ func_cname = None
+
+ defaults_getter = None
+
+ def __init__(self, pos, **kwds):
+ FuncDefNode.__init__(self, pos, **kwds)
+ k = rk = r = 0
+ for arg in self.args:
+ if arg.kw_only:
+ k += 1
+ if not arg.default:
+ rk += 1
+ if not arg.default:
+ r += 1
+ self.num_kwonly_args = k
+ self.num_required_kw_args = rk
+ self.num_required_args = r
+
+ def as_cfunction(self, cfunc=None, scope=None, overridable=True, returns=None, except_val=None, modifiers=None,
+ nogil=False, with_gil=False):
+ if self.star_arg:
+ error(self.star_arg.pos, "cdef function cannot have star argument")
+ if self.starstar_arg:
+ error(self.starstar_arg.pos, "cdef function cannot have starstar argument")
+ exception_value, exception_check = except_val or (None, False)
+
+ if cfunc is None:
+ cfunc_args = []
+ for formal_arg in self.args:
+ name_declarator, type = formal_arg.analyse(scope, nonempty=1)
+ cfunc_args.append(PyrexTypes.CFuncTypeArg(name=name_declarator.name,
+ cname=None,
+ annotation=formal_arg.annotation,
+ type=py_object_type,
+ pos=formal_arg.pos))
+ cfunc_type = PyrexTypes.CFuncType(return_type=py_object_type,
+ args=cfunc_args,
+ has_varargs=False,
+ exception_value=None,
+ exception_check=exception_check,
+ nogil=nogil,
+ with_gil=with_gil,
+ is_overridable=overridable)
+ cfunc = CVarDefNode(self.pos, type=cfunc_type)
+ else:
+ if scope is None:
+ scope = cfunc.scope
+ cfunc_type = cfunc.type
+ if len(self.args) != len(cfunc_type.args) or cfunc_type.has_varargs:
+ error(self.pos, "wrong number of arguments")
+ error(cfunc.pos, "previous declaration here")
+ for i, (formal_arg, type_arg) in enumerate(zip(self.args, cfunc_type.args)):
+ name_declarator, type = formal_arg.analyse(scope, nonempty=1,
+ is_self_arg=(i == 0 and scope.is_c_class_scope))
+ if type is None or type is PyrexTypes.py_object_type:
+ formal_arg.type = type_arg.type
+ formal_arg.name_declarator = name_declarator
+
+ if exception_value is None and cfunc_type.exception_value is not None:
+ from .ExprNodes import ConstNode
+ exception_value = ConstNode(
+ self.pos, value=cfunc_type.exception_value, type=cfunc_type.return_type)
+ declarator = CFuncDeclaratorNode(self.pos,
+ base=CNameDeclaratorNode(self.pos, name=self.name, cname=None),
+ args=self.args,
+ has_varargs=False,
+ exception_check=cfunc_type.exception_check,
+ exception_value=exception_value,
+ with_gil=cfunc_type.with_gil,
+ nogil=cfunc_type.nogil)
+ return CFuncDefNode(self.pos,
+ modifiers=modifiers or [],
+ base_type=CAnalysedBaseTypeNode(self.pos, type=cfunc_type.return_type),
+ declarator=declarator,
+ body=self.body,
+ doc=self.doc,
+ overridable=cfunc_type.is_overridable,
+ type=cfunc_type,
+ with_gil=cfunc_type.with_gil,
+ nogil=cfunc_type.nogil,
+ visibility='private',
+ api=False,
+ directive_locals=getattr(cfunc, 'directive_locals', {}),
+ directive_returns=returns)
+
+ def is_cdef_func_compatible(self):
+ """Determines if the function's signature is compatible with a
+ cdef function. This can be used before calling
+ .as_cfunction() to see if that will be successful.
+ """
+ if self.needs_closure:
+ return False
+ if self.star_arg or self.starstar_arg:
+ return False
+ return True
+
+ def analyse_declarations(self, env):
+ if self.decorators:
+ for decorator in self.decorators:
+ func = decorator.decorator
+ if func.is_name:
+ self.is_classmethod |= func.name == 'classmethod'
+ self.is_staticmethod |= func.name == 'staticmethod'
+
+ if self.is_classmethod and env.lookup_here('classmethod'):
+ # classmethod() was overridden - not much we can do here ...
+ self.is_classmethod = False
+ if self.is_staticmethod and env.lookup_here('staticmethod'):
+ # staticmethod() was overridden - not much we can do here ...
+ self.is_staticmethod = False
+
+ if self.name == '__new__' and env.is_py_class_scope:
+ self.is_staticmethod = 1
+
+ self.analyse_argument_types(env)
+ if self.name == '<lambda>':
+ self.declare_lambda_function(env)
+ else:
+ self.declare_pyfunction(env)
+
+ self.analyse_signature(env)
+ self.return_type = self.entry.signature.return_type()
+ # if a signature annotation provides a more specific return object type, use it
+ if self.return_type is py_object_type and self.return_type_annotation:
+ if env.directives['annotation_typing'] and not self.entry.is_special:
+ _, return_type = analyse_type_annotation(self.return_type_annotation, env)
+ if return_type and return_type.is_pyobject:
+ self.return_type = return_type
+
+ self.create_local_scope(env)
+
+ self.py_wrapper = DefNodeWrapper(
+ self.pos,
+ target=self,
+ name=self.entry.name,
+ args=self.args,
+ star_arg=self.star_arg,
+ starstar_arg=self.starstar_arg,
+ return_type=self.return_type)
+ self.py_wrapper.analyse_declarations(env)
+
+ def analyse_argument_types(self, env):
+ self.directive_locals = env.directives.get('locals', {})
+ allow_none_for_extension_args = env.directives['allow_none_for_extension_args']
+
+ f2s = env.fused_to_specific
+ env.fused_to_specific = None
+
+ for arg in self.args:
+ if hasattr(arg, 'name'):
+ name_declarator = None
+ else:
+ base_type = arg.base_type.analyse(env)
+ # If we hare in pythran mode and we got a buffer supported by
+ # Pythran, we change this node to a fused type
+ if has_np_pythran(env) and base_type.is_pythran_expr:
+ base_type = PyrexTypes.FusedType([
+ base_type,
+ #PyrexTypes.PythranExpr(pythran_type(self.type, "numpy_texpr")),
+ base_type.org_buffer])
+ name_declarator, type = \
+ arg.declarator.analyse(base_type, env)
+ arg.name = name_declarator.name
+ arg.type = type
+
+ if type.is_fused:
+ self.has_fused_arguments = True
+
+ self.align_argument_type(env, arg)
+ if name_declarator and name_declarator.cname:
+ error(self.pos, "Python function argument cannot have C name specification")
+ arg.type = arg.type.as_argument_type()
+ arg.hdr_type = None
+ arg.needs_conversion = 0
+ arg.needs_type_test = 0
+ arg.is_generic = 1
+ if arg.type.is_pyobject or arg.type.is_buffer or arg.type.is_memoryviewslice:
+ if arg.or_none:
+ arg.accept_none = True
+ elif arg.not_none:
+ arg.accept_none = False
+ elif (arg.type.is_extension_type or arg.type.is_builtin_type
+ or arg.type.is_buffer or arg.type.is_memoryviewslice):
+ if arg.default and arg.default.constant_result is None:
+ # special case: def func(MyType obj = None)
+ arg.accept_none = True
+ else:
+ # default depends on compiler directive
+ arg.accept_none = allow_none_for_extension_args
+ else:
+ # probably just a plain 'object'
+ arg.accept_none = True
+ else:
+ arg.accept_none = True # won't be used, but must be there
+ if arg.not_none:
+ error(arg.pos, "Only Python type arguments can have 'not None'")
+ if arg.or_none:
+ error(arg.pos, "Only Python type arguments can have 'or None'")
+ env.fused_to_specific = f2s
+
+ if has_np_pythran(env):
+ self.np_args_idx = [i for i,a in enumerate(self.args) if a.type.is_numpy_buffer]
+ else:
+ self.np_args_idx = []
+
+ def analyse_signature(self, env):
+ if self.entry.is_special:
+ if self.decorators:
+ error(self.pos, "special functions of cdef classes cannot have decorators")
+ self.entry.trivial_signature = len(self.args) == 1 and not (self.star_arg or self.starstar_arg)
+ elif not env.directives['always_allow_keywords'] and not (self.star_arg or self.starstar_arg):
+ # Use the simpler calling signature for zero- and one-argument functions.
+ if self.entry.signature is TypeSlots.pyfunction_signature:
+ if len(self.args) == 0:
+ self.entry.signature = TypeSlots.pyfunction_noargs
+ elif len(self.args) == 1:
+ if self.args[0].default is None and not self.args[0].kw_only:
+ self.entry.signature = TypeSlots.pyfunction_onearg
+ elif self.entry.signature is TypeSlots.pymethod_signature:
+ if len(self.args) == 1:
+ self.entry.signature = TypeSlots.unaryfunc
+ elif len(self.args) == 2:
+ if self.args[1].default is None and not self.args[1].kw_only:
+ self.entry.signature = TypeSlots.ibinaryfunc
+
+ sig = self.entry.signature
+ nfixed = sig.num_fixed_args()
+ if (sig is TypeSlots.pymethod_signature and nfixed == 1
+ and len(self.args) == 0 and self.star_arg):
+ # this is the only case where a diverging number of
+ # arguments is not an error - when we have no explicit
+ # 'self' parameter as in method(*args)
+ sig = self.entry.signature = TypeSlots.pyfunction_signature # self is not 'really' used
+ self.self_in_stararg = 1
+ nfixed = 0
+
+ if self.is_staticmethod and env.is_c_class_scope:
+ nfixed = 0
+ self.self_in_stararg = True # FIXME: why for staticmethods?
+
+ self.entry.signature = sig = copy.copy(sig)
+ sig.fixed_arg_format = "*"
+ sig.is_staticmethod = True
+ sig.has_generic_args = True
+
+ if ((self.is_classmethod or self.is_staticmethod) and
+ self.has_fused_arguments and env.is_c_class_scope):
+ del self.decorator_indirection.stats[:]
+
+ for i in range(min(nfixed, len(self.args))):
+ arg = self.args[i]
+ arg.is_generic = 0
+ if sig.is_self_arg(i) and not self.is_staticmethod:
+ if self.is_classmethod:
+ arg.is_type_arg = 1
+ arg.hdr_type = arg.type = Builtin.type_type
+ else:
+ arg.is_self_arg = 1
+ arg.hdr_type = arg.type = env.parent_type
+ arg.needs_conversion = 0
+ else:
+ arg.hdr_type = sig.fixed_arg_type(i)
+ if not arg.type.same_as(arg.hdr_type):
+ if arg.hdr_type.is_pyobject and arg.type.is_pyobject:
+ arg.needs_type_test = 1
+ else:
+ arg.needs_conversion = 1
+ if arg.needs_conversion:
+ arg.hdr_cname = Naming.arg_prefix + arg.name
+ else:
+ arg.hdr_cname = Naming.var_prefix + arg.name
+
+ if nfixed > len(self.args):
+ self.bad_signature()
+ return
+ elif nfixed < len(self.args):
+ if not sig.has_generic_args:
+ self.bad_signature()
+ for arg in self.args:
+ if arg.is_generic and (arg.type.is_extension_type or arg.type.is_builtin_type):
+ arg.needs_type_test = 1
+
+ def bad_signature(self):
+ sig = self.entry.signature
+ expected_str = "%d" % sig.num_fixed_args()
+ if sig.has_generic_args:
+ expected_str += " or more"
+ name = self.name
+ if name.startswith("__") and name.endswith("__"):
+ desc = "Special method"
+ else:
+ desc = "Method"
+ error(self.pos, "%s %s has wrong number of arguments (%d declared, %s expected)" % (
+ desc, self.name, len(self.args), expected_str))
+
+ def declare_pyfunction(self, env):
+ #print "DefNode.declare_pyfunction:", self.name, "in", env ###
+ name = self.name
+ entry = env.lookup_here(name)
+ if entry:
+ if entry.is_final_cmethod and not env.parent_type.is_final_type:
+ error(self.pos, "Only final types can have final Python (def/cpdef) methods")
+ if entry.type.is_cfunction and not entry.is_builtin_cmethod and not self.is_wrapper:
+ warning(self.pos, "Overriding cdef method with def method.", 5)
+ entry = env.declare_pyfunction(name, self.pos, allow_redefine=not self.is_wrapper)
+ self.entry = entry
+ prefix = env.next_id(env.scope_prefix)
+ self.entry.pyfunc_cname = Naming.pyfunc_prefix + prefix + name
+ if Options.docstrings:
+ entry.doc = embed_position(self.pos, self.doc)
+ entry.doc_cname = Naming.funcdoc_prefix + prefix + name
+ if entry.is_special:
+ if entry.name in TypeSlots.invisible or not entry.doc or (
+ entry.name in '__getattr__' and env.directives['fast_getattr']):
+ entry.wrapperbase_cname = None
+ else:
+ entry.wrapperbase_cname = Naming.wrapperbase_prefix + prefix + name
+ else:
+ entry.doc = None
+
+ def declare_lambda_function(self, env):
+ entry = env.declare_lambda_function(self.lambda_name, self.pos)
+ entry.doc = None
+ self.entry = entry
+ self.entry.pyfunc_cname = entry.cname
+
+ def declare_arguments(self, env):
+ for arg in self.args:
+ if not arg.name:
+ error(arg.pos, "Missing argument name")
+ if arg.needs_conversion:
+ arg.entry = env.declare_var(arg.name, arg.type, arg.pos)
+ if arg.type.is_pyobject:
+ arg.entry.init = "0"
+ else:
+ arg.entry = self.declare_argument(env, arg)
+ arg.entry.is_arg = 1
+ arg.entry.used = 1
+ arg.entry.is_self_arg = arg.is_self_arg
+ self.declare_python_arg(env, self.star_arg)
+ self.declare_python_arg(env, self.starstar_arg)
+
+ def declare_python_arg(self, env, arg):
+ if arg:
+ if env.directives['infer_types'] != False:
+ type = PyrexTypes.unspecified_type
+ else:
+ type = py_object_type
+ entry = env.declare_var(arg.name, type, arg.pos)
+ entry.is_arg = 1
+ entry.used = 1
+ entry.init = "0"
+ entry.xdecref_cleanup = 1
+ arg.entry = entry
+
+ def analyse_expressions(self, env):
+ self.local_scope.directives = env.directives
+ self.analyse_default_values(env)
+ self.analyse_annotations(env)
+ if self.return_type_annotation:
+ self.return_type_annotation = self.analyse_annotation(env, self.return_type_annotation)
+
+ if not self.needs_assignment_synthesis(env) and self.decorators:
+ for decorator in self.decorators[::-1]:
+ decorator.decorator = decorator.decorator.analyse_expressions(env)
+
+ self.py_wrapper.prepare_argument_coercion(env)
+ return self
+
+ def needs_assignment_synthesis(self, env, code=None):
+ if self.is_staticmethod:
+ return True
+ if self.specialized_cpdefs or self.entry.is_fused_specialized:
+ return False
+ if self.no_assignment_synthesis:
+ return False
+ if self.entry.is_special:
+ return False
+ if self.entry.is_anonymous:
+ return True
+ if env.is_module_scope or env.is_c_class_scope:
+ if code is None:
+ return self.local_scope.directives['binding']
+ else:
+ return code.globalstate.directives['binding']
+ return env.is_py_class_scope or env.is_closure_scope
+
+ def error_value(self):
+ return self.entry.signature.error_value
+
+ def caller_will_check_exceptions(self):
+ return self.entry.signature.exception_check
+
+ def generate_function_definitions(self, env, code):
+ if self.defaults_getter:
+ # defaults getter must never live in class scopes, it's always a module function
+ self.defaults_getter.generate_function_definitions(env.global_scope(), code)
+
+ # Before closure cnames are mangled
+ if self.py_wrapper_required:
+ # func_cname might be modified by @cname
+ self.py_wrapper.func_cname = self.entry.func_cname
+ self.py_wrapper.generate_function_definitions(env, code)
+ FuncDefNode.generate_function_definitions(self, env, code)
+
+ def generate_function_header(self, code, with_pymethdef, proto_only=0):
+ if proto_only:
+ if self.py_wrapper_required:
+ self.py_wrapper.generate_function_header(
+ code, with_pymethdef, True)
+ return
+ arg_code_list = []
+ if self.entry.signature.has_dummy_arg:
+ self_arg = 'PyObject *%s' % Naming.self_cname
+ if not self.needs_outer_scope:
+ self_arg = 'CYTHON_UNUSED ' + self_arg
+ arg_code_list.append(self_arg)
+
+ def arg_decl_code(arg):
+ entry = arg.entry
+ if entry.in_closure:
+ cname = entry.original_cname
+ else:
+ cname = entry.cname
+ decl = entry.type.declaration_code(cname)
+ if not entry.cf_used:
+ decl = 'CYTHON_UNUSED ' + decl
+ return decl
+
+ for arg in self.args:
+ arg_code_list.append(arg_decl_code(arg))
+ if self.star_arg:
+ arg_code_list.append(arg_decl_code(self.star_arg))
+ if self.starstar_arg:
+ arg_code_list.append(arg_decl_code(self.starstar_arg))
+ if arg_code_list:
+ arg_code = ', '.join(arg_code_list)
+ else:
+ arg_code = 'void' # No arguments
+ dc = self.return_type.declaration_code(self.entry.pyfunc_cname)
+
+ decls_code = code.globalstate['decls']
+ preprocessor_guard = self.get_preprocessor_guard()
+ if preprocessor_guard:
+ decls_code.putln(preprocessor_guard)
+ decls_code.putln(
+ "static %s(%s); /* proto */" % (dc, arg_code))
+ if preprocessor_guard:
+ decls_code.putln("#endif")
+ code.putln("static %s(%s) {" % (dc, arg_code))
+
+ def generate_argument_declarations(self, env, code):
+ pass
+
+ def generate_keyword_list(self, code):
+ pass
+
+ def generate_argument_parsing_code(self, env, code):
+ # Move arguments into closure if required
+ def put_into_closure(entry):
+ if entry.in_closure:
+ code.putln('%s = %s;' % (entry.cname, entry.original_cname))
+ if entry.xdecref_cleanup:
+ # mostly applies to the starstar arg - this can sometimes be NULL
+ # so must be xincrefed instead
+ code.put_var_xincref(entry)
+ code.put_var_xgiveref(entry)
+ else:
+ code.put_var_incref(entry)
+ code.put_var_giveref(entry)
+ for arg in self.args:
+ put_into_closure(arg.entry)
+ for arg in self.star_arg, self.starstar_arg:
+ if arg:
+ put_into_closure(arg.entry)
+
+ def generate_argument_type_tests(self, code):
+ pass
+
+
+class DefNodeWrapper(FuncDefNode):
+ # DefNode python wrapper code generator
+
+ defnode = None
+ target = None # Target DefNode
+
+ def __init__(self, *args, **kwargs):
+ FuncDefNode.__init__(self, *args, **kwargs)
+ self.num_kwonly_args = self.target.num_kwonly_args
+ self.num_required_kw_args = self.target.num_required_kw_args
+ self.num_required_args = self.target.num_required_args
+ self.self_in_stararg = self.target.self_in_stararg
+ self.signature = None
+
+ def analyse_declarations(self, env):
+ target_entry = self.target.entry
+ name = self.name
+ prefix = env.next_id(env.scope_prefix)
+ target_entry.func_cname = Naming.pywrap_prefix + prefix + name
+ target_entry.pymethdef_cname = Naming.pymethdef_prefix + prefix + name
+
+ self.signature = target_entry.signature
+
+ self.np_args_idx = self.target.np_args_idx
+
+ def prepare_argument_coercion(self, env):
+ # This is only really required for Cython utility code at this time,
+ # everything else can be done during code generation. But we expand
+ # all utility code here, simply because we cannot easily distinguish
+ # different code types.
+ for arg in self.args:
+ if not arg.type.is_pyobject:
+ if not arg.type.create_from_py_utility_code(env):
+ pass # will fail later
+ elif arg.hdr_type and not arg.hdr_type.is_pyobject:
+ if not arg.hdr_type.create_to_py_utility_code(env):
+ pass # will fail later
+
+ if self.starstar_arg and not self.starstar_arg.entry.cf_used:
+ # we will set the kwargs argument to NULL instead of a new dict
+ # and must therefore correct the control flow state
+ entry = self.starstar_arg.entry
+ entry.xdecref_cleanup = 1
+ for ass in entry.cf_assignments:
+ if not ass.is_arg and ass.lhs.is_name:
+ ass.lhs.cf_maybe_null = True
+
+ def signature_has_nongeneric_args(self):
+ argcount = len(self.args)
+ if argcount == 0 or (
+ argcount == 1 and (self.args[0].is_self_arg or
+ self.args[0].is_type_arg)):
+ return 0
+ return 1
+
+ def signature_has_generic_args(self):
+ return self.signature.has_generic_args
+
+ def generate_function_body(self, code):
+ args = []
+ if self.signature.has_dummy_arg:
+ args.append(Naming.self_cname)
+ for arg in self.args:
+ if arg.hdr_type and not (arg.type.is_memoryviewslice or
+ arg.type.is_struct or
+ arg.type.is_complex):
+ args.append(arg.type.cast_code(arg.entry.cname))
+ else:
+ args.append(arg.entry.cname)
+ if self.star_arg:
+ args.append(self.star_arg.entry.cname)
+ if self.starstar_arg:
+ args.append(self.starstar_arg.entry.cname)
+ args = ', '.join(args)
+ if not self.return_type.is_void:
+ code.put('%s = ' % Naming.retval_cname)
+ code.putln('%s(%s);' % (
+ self.target.entry.pyfunc_cname, args))
+
+ def generate_function_definitions(self, env, code):
+ lenv = self.target.local_scope
+ # Generate C code for header and body of function
+ code.mark_pos(self.pos)
+ code.putln("")
+ code.putln("/* Python wrapper */")
+ preprocessor_guard = self.target.get_preprocessor_guard()
+ if preprocessor_guard:
+ code.putln(preprocessor_guard)
+
+ code.enter_cfunc_scope(lenv)
+ code.return_from_error_cleanup_label = code.new_label()
+
+ with_pymethdef = (self.target.needs_assignment_synthesis(env, code) or
+ self.target.pymethdef_required)
+ self.generate_function_header(code, with_pymethdef)
+ self.generate_argument_declarations(lenv, code)
+ tempvardecl_code = code.insertion_point()
+
+ if self.return_type.is_pyobject:
+ retval_init = ' = 0'
+ else:
+ retval_init = ''
+ if not self.return_type.is_void:
+ code.putln('%s%s;' % (
+ self.return_type.declaration_code(Naming.retval_cname),
+ retval_init))
+ code.put_declare_refcount_context()
+ code.put_setup_refcount_context('%s (wrapper)' % self.name)
+
+ self.generate_argument_parsing_code(lenv, code)
+ self.generate_argument_type_tests(code)
+ self.generate_function_body(code)
+
+ # ----- Go back and insert temp variable declarations
+ tempvardecl_code.put_temp_declarations(code.funcstate)
+
+ code.mark_pos(self.pos)
+ code.putln("")
+ code.putln("/* function exit code */")
+
+ # ----- Error cleanup
+ if code.error_label in code.labels_used:
+ code.put_goto(code.return_label)
+ code.put_label(code.error_label)
+ for cname, type in code.funcstate.all_managed_temps():
+ code.put_xdecref(cname, type)
+ err_val = self.error_value()
+ if err_val is not None:
+ code.putln("%s = %s;" % (Naming.retval_cname, err_val))
+
+ # ----- Non-error return cleanup
+ code.put_label(code.return_label)
+ for entry in lenv.var_entries:
+ if entry.is_arg and entry.type.is_pyobject:
+ code.put_var_decref(entry)
+
+ code.put_finish_refcount_context()
+ if not self.return_type.is_void:
+ code.putln("return %s;" % Naming.retval_cname)
+ code.putln('}')
+ code.exit_cfunc_scope()
+ if preprocessor_guard:
+ code.putln("#endif /*!(%s)*/" % preprocessor_guard)
+
+ def generate_function_header(self, code, with_pymethdef, proto_only=0):
+ arg_code_list = []
+ sig = self.signature
+
+ if sig.has_dummy_arg or self.self_in_stararg:
+ arg_code = "PyObject *%s" % Naming.self_cname
+ if not sig.has_dummy_arg:
+ arg_code = 'CYTHON_UNUSED ' + arg_code
+ arg_code_list.append(arg_code)
+
+ for arg in self.args:
+ if not arg.is_generic:
+ if arg.is_self_arg or arg.is_type_arg:
+ arg_code_list.append("PyObject *%s" % arg.hdr_cname)
+ else:
+ arg_code_list.append(
+ arg.hdr_type.declaration_code(arg.hdr_cname))
+ entry = self.target.entry
+ if not entry.is_special and sig.method_flags() == [TypeSlots.method_noargs]:
+ arg_code_list.append("CYTHON_UNUSED PyObject *unused")
+ if entry.scope.is_c_class_scope and entry.name == "__ipow__":
+ arg_code_list.append("CYTHON_UNUSED PyObject *unused")
+ if sig.has_generic_args:
+ arg_code_list.append(
+ "PyObject *%s, PyObject *%s" % (
+ Naming.args_cname, Naming.kwds_cname))
+ arg_code = ", ".join(arg_code_list)
+
+ # Prevent warning: unused function '__pyx_pw_5numpy_7ndarray_1__getbuffer__'
+ mf = ""
+ if (entry.name in ("__getbuffer__", "__releasebuffer__")
+ and entry.scope.is_c_class_scope):
+ mf = "CYTHON_UNUSED "
+ with_pymethdef = False
+
+ dc = self.return_type.declaration_code(entry.func_cname)
+ header = "static %s%s(%s)" % (mf, dc, arg_code)
+ code.putln("%s; /*proto*/" % header)
+
+ if proto_only:
+ if self.target.fused_py_func:
+ # If we are the specialized version of the cpdef, we still
+ # want the prototype for the "fused cpdef", in case we're
+ # checking to see if our method was overridden in Python
+ self.target.fused_py_func.generate_function_header(
+ code, with_pymethdef, proto_only=True)
+ return
+
+ if (Options.docstrings and entry.doc and
+ not self.target.fused_py_func and
+ not entry.scope.is_property_scope and
+ (not entry.is_special or entry.wrapperbase_cname)):
+ # h_code = code.globalstate['h_code']
+ docstr = entry.doc
+
+ if docstr.is_unicode:
+ docstr = docstr.as_utf8_string()
+
+ if not (entry.is_special and entry.name in ('__getbuffer__', '__releasebuffer__')):
+ code.putln('static char %s[] = %s;' % (
+ entry.doc_cname,
+ docstr.as_c_string_literal()))
+
+ if entry.is_special:
+ code.putln('#if CYTHON_UPDATE_DESCRIPTOR_DOC')
+ code.putln(
+ "struct wrapperbase %s;" % entry.wrapperbase_cname)
+ code.putln('#endif')
+
+ if with_pymethdef or self.target.fused_py_func:
+ code.put(
+ "static PyMethodDef %s = " % entry.pymethdef_cname)
+ code.put_pymethoddef(self.target.entry, ";", allow_skip=False)
+ code.putln("%s {" % header)
+
+ def generate_argument_declarations(self, env, code):
+ for arg in self.args:
+ if arg.is_generic:
+ if arg.needs_conversion:
+ code.putln("PyObject *%s = 0;" % arg.hdr_cname)
+ else:
+ code.put_var_declaration(arg.entry)
+ for entry in env.var_entries:
+ if entry.is_arg:
+ code.put_var_declaration(entry)
+
+ def generate_argument_parsing_code(self, env, code):
+ # Generate fast equivalent of PyArg_ParseTuple call for
+ # generic arguments, if any, including args/kwargs
+ old_error_label = code.new_error_label()
+ our_error_label = code.error_label
+ end_label = code.new_label("argument_unpacking_done")
+
+ has_kwonly_args = self.num_kwonly_args > 0
+ has_star_or_kw_args = self.star_arg is not None \
+ or self.starstar_arg is not None or has_kwonly_args
+
+ for arg in self.args:
+ if not arg.type.is_pyobject:
+ if not arg.type.create_from_py_utility_code(env):
+ pass # will fail later
+
+ if not self.signature_has_generic_args():
+ if has_star_or_kw_args:
+ error(self.pos, "This method cannot have * or keyword arguments")
+ self.generate_argument_conversion_code(code)
+
+ elif not self.signature_has_nongeneric_args():
+ # func(*args) or func(**kw) or func(*args, **kw)
+ self.generate_stararg_copy_code(code)
+
+ else:
+ self.generate_tuple_and_keyword_parsing_code(self.args, end_label, code)
+
+ code.error_label = old_error_label
+ if code.label_used(our_error_label):
+ if not code.label_used(end_label):
+ code.put_goto(end_label)
+ code.put_label(our_error_label)
+ if has_star_or_kw_args:
+ self.generate_arg_decref(self.star_arg, code)
+ if self.starstar_arg:
+ if self.starstar_arg.entry.xdecref_cleanup:
+ code.put_var_xdecref_clear(self.starstar_arg.entry)
+ else:
+ code.put_var_decref_clear(self.starstar_arg.entry)
+ code.put_add_traceback(self.target.entry.qualified_name)
+ code.put_finish_refcount_context()
+ code.putln("return %s;" % self.error_value())
+ if code.label_used(end_label):
+ code.put_label(end_label)
+
+ def generate_arg_xdecref(self, arg, code):
+ if arg:
+ code.put_var_xdecref_clear(arg.entry)
+
+ def generate_arg_decref(self, arg, code):
+ if arg:
+ code.put_var_decref_clear(arg.entry)
+
+ def generate_stararg_copy_code(self, code):
+ if not self.star_arg:
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("RaiseArgTupleInvalid", "FunctionArguments.c"))
+ code.putln("if (unlikely(PyTuple_GET_SIZE(%s) > 0)) {" %
+ Naming.args_cname)
+ code.put('__Pyx_RaiseArgtupleInvalid("%s", 1, 0, 0, PyTuple_GET_SIZE(%s)); return %s;' % (
+ self.name, Naming.args_cname, self.error_value()))
+ code.putln("}")
+
+ if self.starstar_arg:
+ if self.star_arg or not self.starstar_arg.entry.cf_used:
+ kwarg_check = "unlikely(%s)" % Naming.kwds_cname
+ else:
+ kwarg_check = "%s" % Naming.kwds_cname
+ else:
+ kwarg_check = "unlikely(%s) && unlikely(PyDict_Size(%s) > 0)" % (
+ Naming.kwds_cname, Naming.kwds_cname)
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("KeywordStringCheck", "FunctionArguments.c"))
+ code.putln(
+ "if (%s && unlikely(!__Pyx_CheckKeywordStrings(%s, \"%s\", %d))) return %s;" % (
+ kwarg_check, Naming.kwds_cname, self.name,
+ bool(self.starstar_arg), self.error_value()))
+
+ if self.starstar_arg and self.starstar_arg.entry.cf_used:
+ if all(ref.node.allow_null for ref in self.starstar_arg.entry.cf_references):
+ code.putln("if (%s) {" % kwarg_check)
+ code.putln("%s = PyDict_Copy(%s); if (unlikely(!%s)) return %s;" % (
+ self.starstar_arg.entry.cname,
+ Naming.kwds_cname,
+ self.starstar_arg.entry.cname,
+ self.error_value()))
+ code.put_gotref(self.starstar_arg.entry.cname)
+ code.putln("} else {")
+ code.putln("%s = NULL;" % (self.starstar_arg.entry.cname,))
+ code.putln("}")
+ self.starstar_arg.entry.xdecref_cleanup = 1
+ else:
+ code.put("%s = (%s) ? PyDict_Copy(%s) : PyDict_New(); " % (
+ self.starstar_arg.entry.cname,
+ Naming.kwds_cname,
+ Naming.kwds_cname))
+ code.putln("if (unlikely(!%s)) return %s;" % (
+ self.starstar_arg.entry.cname, self.error_value()))
+ self.starstar_arg.entry.xdecref_cleanup = 0
+ code.put_gotref(self.starstar_arg.entry.cname)
+
+ if self.self_in_stararg and not self.target.is_staticmethod:
+ # need to create a new tuple with 'self' inserted as first item
+ code.put("%s = PyTuple_New(PyTuple_GET_SIZE(%s)+1); if (unlikely(!%s)) " % (
+ self.star_arg.entry.cname,
+ Naming.args_cname,
+ self.star_arg.entry.cname))
+ if self.starstar_arg and self.starstar_arg.entry.cf_used:
+ code.putln("{")
+ code.put_xdecref_clear(self.starstar_arg.entry.cname, py_object_type)
+ code.putln("return %s;" % self.error_value())
+ code.putln("}")
+ else:
+ code.putln("return %s;" % self.error_value())
+ code.put_gotref(self.star_arg.entry.cname)
+ code.put_incref(Naming.self_cname, py_object_type)
+ code.put_giveref(Naming.self_cname)
+ code.putln("PyTuple_SET_ITEM(%s, 0, %s);" % (
+ self.star_arg.entry.cname, Naming.self_cname))
+ temp = code.funcstate.allocate_temp(PyrexTypes.c_py_ssize_t_type, manage_ref=False)
+ code.putln("for (%s=0; %s < PyTuple_GET_SIZE(%s); %s++) {" % (
+ temp, temp, Naming.args_cname, temp))
+ code.putln("PyObject* item = PyTuple_GET_ITEM(%s, %s);" % (
+ Naming.args_cname, temp))
+ code.put_incref("item", py_object_type)
+ code.put_giveref("item")
+ code.putln("PyTuple_SET_ITEM(%s, %s+1, item);" % (
+ self.star_arg.entry.cname, temp))
+ code.putln("}")
+ code.funcstate.release_temp(temp)
+ self.star_arg.entry.xdecref_cleanup = 0
+ elif self.star_arg:
+ code.put_incref(Naming.args_cname, py_object_type)
+ code.putln("%s = %s;" % (
+ self.star_arg.entry.cname,
+ Naming.args_cname))
+ self.star_arg.entry.xdecref_cleanup = 0
+
+ def generate_tuple_and_keyword_parsing_code(self, args, success_label, code):
+ argtuple_error_label = code.new_label("argtuple_error")
+
+ positional_args = []
+ required_kw_only_args = []
+ optional_kw_only_args = []
+ for arg in args:
+ if arg.is_generic:
+ if arg.default:
+ if not arg.is_self_arg and not arg.is_type_arg:
+ if arg.kw_only:
+ optional_kw_only_args.append(arg)
+ else:
+ positional_args.append(arg)
+ elif arg.kw_only:
+ required_kw_only_args.append(arg)
+ elif not arg.is_self_arg and not arg.is_type_arg:
+ positional_args.append(arg)
+
+ # sort required kw-only args before optional ones to avoid special
+ # cases in the unpacking code
+ kw_only_args = required_kw_only_args + optional_kw_only_args
+
+ min_positional_args = self.num_required_args - self.num_required_kw_args
+ if len(args) > 0 and (args[0].is_self_arg or args[0].is_type_arg):
+ min_positional_args -= 1
+ max_positional_args = len(positional_args)
+ has_fixed_positional_count = not self.star_arg and \
+ min_positional_args == max_positional_args
+ has_kw_only_args = bool(kw_only_args)
+
+ if self.starstar_arg or self.star_arg:
+ self.generate_stararg_init_code(max_positional_args, code)
+
+ code.putln('{')
+ all_args = tuple(positional_args) + tuple(kw_only_args)
+ code.putln("static PyObject **%s[] = {%s,0};" % (
+ Naming.pykwdlist_cname,
+ ','.join(['&%s' % code.intern_identifier(arg.name)
+ for arg in all_args])))
+
+ # Before being converted and assigned to the target variables,
+ # borrowed references to all unpacked argument values are
+ # collected into a local PyObject* array called "values",
+ # regardless if they were taken from default arguments,
+ # positional arguments or keyword arguments. Note that
+ # C-typed default arguments are handled at conversion time,
+ # so their array value is NULL in the end if no argument
+ # was passed for them.
+ self.generate_argument_values_setup_code(all_args, code)
+
+ # --- optimised code when we receive keyword arguments
+ code.putln("if (%s(%s)) {" % (
+ (self.num_required_kw_args > 0) and "likely" or "unlikely",
+ Naming.kwds_cname))
+ self.generate_keyword_unpacking_code(
+ min_positional_args, max_positional_args,
+ has_fixed_positional_count, has_kw_only_args,
+ all_args, argtuple_error_label, code)
+
+ # --- optimised code when we do not receive any keyword arguments
+ if (self.num_required_kw_args and min_positional_args > 0) or min_positional_args == max_positional_args:
+ # Python raises arg tuple related errors first, so we must
+ # check the length here
+ if min_positional_args == max_positional_args and not self.star_arg:
+ compare = '!='
+ else:
+ compare = '<'
+ code.putln('} else if (PyTuple_GET_SIZE(%s) %s %d) {' % (
+ Naming.args_cname, compare, min_positional_args))
+ code.put_goto(argtuple_error_label)
+
+ if self.num_required_kw_args:
+ # pure error case: keywords required but not passed
+ if max_positional_args > min_positional_args and not self.star_arg:
+ code.putln('} else if (PyTuple_GET_SIZE(%s) > %d) {' % (
+ Naming.args_cname, max_positional_args))
+ code.put_goto(argtuple_error_label)
+ code.putln('} else {')
+ for i, arg in enumerate(kw_only_args):
+ if not arg.default:
+ pystring_cname = code.intern_identifier(arg.name)
+ # required keyword-only argument missing
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("RaiseKeywordRequired", "FunctionArguments.c"))
+ code.put('__Pyx_RaiseKeywordRequired("%s", %s); ' % (
+ self.name,
+ pystring_cname))
+ code.putln(code.error_goto(self.pos))
+ break
+
+ else:
+ # optimised tuple unpacking code
+ code.putln('} else {')
+ if min_positional_args == max_positional_args:
+ # parse the exact number of positional arguments from
+ # the args tuple
+ for i, arg in enumerate(positional_args):
+ code.putln("values[%d] = PyTuple_GET_ITEM(%s, %d);" % (i, Naming.args_cname, i))
+ else:
+ # parse the positional arguments from the variable length
+ # args tuple and reject illegal argument tuple sizes
+ code.putln('switch (PyTuple_GET_SIZE(%s)) {' % Naming.args_cname)
+ if self.star_arg:
+ code.putln('default:')
+ reversed_args = list(enumerate(positional_args))[::-1]
+ for i, arg in reversed_args:
+ if i >= min_positional_args-1:
+ if i != reversed_args[0][0]:
+ code.putln('CYTHON_FALLTHROUGH;')
+ code.put('case %2d: ' % (i+1))
+ code.putln("values[%d] = PyTuple_GET_ITEM(%s, %d);" % (i, Naming.args_cname, i))
+ if min_positional_args == 0:
+ code.putln('CYTHON_FALLTHROUGH;')
+ code.put('case 0: ')
+ code.putln('break;')
+ if self.star_arg:
+ if min_positional_args:
+ for i in range(min_positional_args-1, -1, -1):
+ code.putln('case %2d:' % i)
+ code.put_goto(argtuple_error_label)
+ else:
+ code.put('default: ')
+ code.put_goto(argtuple_error_label)
+ code.putln('}')
+
+ code.putln('}') # end of the conditional unpacking blocks
+
+ # Convert arg values to their final type and assign them.
+ # Also inject non-Python default arguments, which do cannot
+ # live in the values[] array.
+ for i, arg in enumerate(all_args):
+ self.generate_arg_assignment(arg, "values[%d]" % i, code)
+
+ code.putln('}') # end of the whole argument unpacking block
+
+ if code.label_used(argtuple_error_label):
+ code.put_goto(success_label)
+ code.put_label(argtuple_error_label)
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("RaiseArgTupleInvalid", "FunctionArguments.c"))
+ code.put('__Pyx_RaiseArgtupleInvalid("%s", %d, %d, %d, PyTuple_GET_SIZE(%s)); ' % (
+ self.name, has_fixed_positional_count,
+ min_positional_args, max_positional_args,
+ Naming.args_cname))
+ code.putln(code.error_goto(self.pos))
+
+ def generate_arg_assignment(self, arg, item, code):
+ if arg.type.is_pyobject:
+ # Python default arguments were already stored in 'item' at the very beginning
+ if arg.is_generic:
+ item = PyrexTypes.typecast(arg.type, PyrexTypes.py_object_type, item)
+ entry = arg.entry
+ code.putln("%s = %s;" % (entry.cname, item))
+ else:
+ if arg.type.from_py_function:
+ if arg.default:
+ # C-typed default arguments must be handled here
+ code.putln('if (%s) {' % item)
+ code.putln(arg.type.from_py_call_code(
+ item, arg.entry.cname, arg.pos, code))
+ if arg.default:
+ code.putln('} else {')
+ code.putln("%s = %s;" % (
+ arg.entry.cname,
+ arg.calculate_default_value_code(code)))
+ if arg.type.is_memoryviewslice:
+ code.put_incref_memoryviewslice(arg.entry.cname,
+ have_gil=True)
+ code.putln('}')
+ else:
+ error(arg.pos, "Cannot convert Python object argument to type '%s'" % arg.type)
+
+ def generate_stararg_init_code(self, max_positional_args, code):
+ if self.starstar_arg:
+ self.starstar_arg.entry.xdecref_cleanup = 0
+ code.putln('%s = PyDict_New(); if (unlikely(!%s)) return %s;' % (
+ self.starstar_arg.entry.cname,
+ self.starstar_arg.entry.cname,
+ self.error_value()))
+ code.put_gotref(self.starstar_arg.entry.cname)
+ if self.star_arg:
+ self.star_arg.entry.xdecref_cleanup = 0
+ code.putln('if (PyTuple_GET_SIZE(%s) > %d) {' % (
+ Naming.args_cname,
+ max_positional_args))
+ code.putln('%s = PyTuple_GetSlice(%s, %d, PyTuple_GET_SIZE(%s));' % (
+ self.star_arg.entry.cname, Naming.args_cname,
+ max_positional_args, Naming.args_cname))
+ code.putln("if (unlikely(!%s)) {" % self.star_arg.entry.cname)
+ if self.starstar_arg:
+ code.put_decref_clear(self.starstar_arg.entry.cname, py_object_type)
+ code.put_finish_refcount_context()
+ code.putln('return %s;' % self.error_value())
+ code.putln('}')
+ code.put_gotref(self.star_arg.entry.cname)
+ code.putln('} else {')
+ code.put("%s = %s; " % (self.star_arg.entry.cname, Naming.empty_tuple))
+ code.put_incref(Naming.empty_tuple, py_object_type)
+ code.putln('}')
+
+ def generate_argument_values_setup_code(self, args, code):
+ max_args = len(args)
+ # the 'values' array collects borrowed references to arguments
+ # before doing any type coercion etc.
+ code.putln("PyObject* values[%d] = {%s};" % (
+ max_args, ','.join('0'*max_args)))
+
+ if self.target.defaults_struct:
+ code.putln('%s *%s = __Pyx_CyFunction_Defaults(%s, %s);' % (
+ self.target.defaults_struct, Naming.dynamic_args_cname,
+ self.target.defaults_struct, Naming.self_cname))
+
+ # assign borrowed Python default values to the values array,
+ # so that they can be overwritten by received arguments below
+ for i, arg in enumerate(args):
+ if arg.default and arg.type.is_pyobject:
+ default_value = arg.calculate_default_value_code(code)
+ code.putln('values[%d] = %s;' % (i, arg.type.as_pyobject(default_value)))
+
+ def generate_keyword_unpacking_code(self, min_positional_args, max_positional_args,
+ has_fixed_positional_count, has_kw_only_args,
+ all_args, argtuple_error_label, code):
+ code.putln('Py_ssize_t kw_args;')
+ code.putln('const Py_ssize_t pos_args = PyTuple_GET_SIZE(%s);' % Naming.args_cname)
+ # copy the values from the args tuple and check that it's not too long
+ code.putln('switch (pos_args) {')
+ if self.star_arg:
+ code.putln('default:')
+ for i in range(max_positional_args-1, -1, -1):
+ code.put('case %2d: ' % (i+1))
+ code.putln("values[%d] = PyTuple_GET_ITEM(%s, %d);" % (
+ i, Naming.args_cname, i))
+ code.putln('CYTHON_FALLTHROUGH;')
+ code.putln('case 0: break;')
+ if not self.star_arg:
+ code.put('default: ') # more arguments than allowed
+ code.put_goto(argtuple_error_label)
+ code.putln('}')
+
+ # The code above is very often (but not always) the same as
+ # the optimised non-kwargs tuple unpacking code, so we keep
+ # the code block above at the very top, before the following
+ # 'external' PyDict_Size() call, to make it easy for the C
+ # compiler to merge the two separate tuple unpacking
+ # implementations into one when they turn out to be identical.
+
+ # If we received kwargs, fill up the positional/required
+ # arguments with values from the kw dict
+ code.putln('kw_args = PyDict_Size(%s);' % Naming.kwds_cname)
+ if self.num_required_args or max_positional_args > 0:
+ last_required_arg = -1
+ for i, arg in enumerate(all_args):
+ if not arg.default:
+ last_required_arg = i
+ if last_required_arg < max_positional_args:
+ last_required_arg = max_positional_args-1
+ if max_positional_args > 0:
+ code.putln('switch (pos_args) {')
+ for i, arg in enumerate(all_args[:last_required_arg+1]):
+ if max_positional_args > 0 and i <= max_positional_args:
+ if i != 0:
+ code.putln('CYTHON_FALLTHROUGH;')
+ if self.star_arg and i == max_positional_args:
+ code.putln('default:')
+ else:
+ code.putln('case %2d:' % i)
+ pystring_cname = code.intern_identifier(arg.name)
+ if arg.default:
+ if arg.kw_only:
+ # optional kw-only args are handled separately below
+ continue
+ code.putln('if (kw_args > 0) {')
+ # don't overwrite default argument
+ code.putln('PyObject* value = __Pyx_PyDict_GetItemStr(%s, %s);' % (
+ Naming.kwds_cname, pystring_cname))
+ code.putln('if (value) { values[%d] = value; kw_args--; }' % i)
+ code.putln('}')
+ else:
+ code.putln('if (likely((values[%d] = __Pyx_PyDict_GetItemStr(%s, %s)) != 0)) kw_args--;' % (
+ i, Naming.kwds_cname, pystring_cname))
+ if i < min_positional_args:
+ if i == 0:
+ # special case: we know arg 0 is missing
+ code.put('else ')
+ code.put_goto(argtuple_error_label)
+ else:
+ # print the correct number of values (args or
+ # kwargs) that were passed into positional
+ # arguments up to this point
+ code.putln('else {')
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("RaiseArgTupleInvalid", "FunctionArguments.c"))
+ code.put('__Pyx_RaiseArgtupleInvalid("%s", %d, %d, %d, %d); ' % (
+ self.name, has_fixed_positional_count,
+ min_positional_args, max_positional_args, i))
+ code.putln(code.error_goto(self.pos))
+ code.putln('}')
+ elif arg.kw_only:
+ code.putln('else {')
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("RaiseKeywordRequired", "FunctionArguments.c"))
+ code.put('__Pyx_RaiseKeywordRequired("%s", %s); ' % (
+ self.name, pystring_cname))
+ code.putln(code.error_goto(self.pos))
+ code.putln('}')
+ if max_positional_args > 0:
+ code.putln('}')
+
+ if has_kw_only_args:
+ # unpack optional keyword-only arguments separately because
+ # checking for interned strings in a dict is faster than iterating
+ self.generate_optional_kwonly_args_unpacking_code(all_args, code)
+
+ code.putln('if (unlikely(kw_args > 0)) {')
+ # non-positional/-required kw args left in dict: default args,
+ # kw-only args, **kwargs or error
+ #
+ # This is sort of a catch-all: except for checking required
+ # arguments, this will always do the right thing for unpacking
+ # keyword arguments, so that we can concentrate on optimising
+ # common cases above.
+ if max_positional_args == 0:
+ pos_arg_count = "0"
+ elif self.star_arg:
+ code.putln("const Py_ssize_t used_pos_args = (pos_args < %d) ? pos_args : %d;" % (
+ max_positional_args, max_positional_args))
+ pos_arg_count = "used_pos_args"
+ else:
+ pos_arg_count = "pos_args"
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("ParseKeywords", "FunctionArguments.c"))
+ code.putln('if (unlikely(__Pyx_ParseOptionalKeywords(%s, %s, %s, values, %s, "%s") < 0)) %s' % (
+ Naming.kwds_cname,
+ Naming.pykwdlist_cname,
+ self.starstar_arg and self.starstar_arg.entry.cname or '0',
+ pos_arg_count,
+ self.name,
+ code.error_goto(self.pos)))
+ code.putln('}')
+
+ def generate_optional_kwonly_args_unpacking_code(self, all_args, code):
+ optional_args = []
+ first_optional_arg = -1
+ for i, arg in enumerate(all_args):
+ if not arg.kw_only or not arg.default:
+ continue
+ if not optional_args:
+ first_optional_arg = i
+ optional_args.append(arg.name)
+ if optional_args:
+ if len(optional_args) > 1:
+ # if we receive more than the named kwargs, we either have **kwargs
+ # (in which case we must iterate anyway) or it's an error (which we
+ # also handle during iteration) => skip this part if there are more
+ code.putln('if (kw_args > 0 && %s(kw_args <= %d)) {' % (
+ not self.starstar_arg and 'likely' or '',
+ len(optional_args)))
+ code.putln('Py_ssize_t index;')
+ # not unrolling the loop here reduces the C code overhead
+ code.putln('for (index = %d; index < %d && kw_args > 0; index++) {' % (
+ first_optional_arg, first_optional_arg + len(optional_args)))
+ else:
+ code.putln('if (kw_args == 1) {')
+ code.putln('const Py_ssize_t index = %d;' % first_optional_arg)
+ code.putln('PyObject* value = __Pyx_PyDict_GetItemStr(%s, *%s[index]);' % (
+ Naming.kwds_cname, Naming.pykwdlist_cname))
+ code.putln('if (value) { values[index] = value; kw_args--; }')
+ if len(optional_args) > 1:
+ code.putln('}')
+ code.putln('}')
+
+ def generate_argument_conversion_code(self, code):
+ # Generate code to convert arguments from signature type to
+ # declared type, if needed. Also copies signature arguments
+ # into closure fields.
+ for arg in self.args:
+ if arg.needs_conversion:
+ self.generate_arg_conversion(arg, code)
+
+ def generate_arg_conversion(self, arg, code):
+ # Generate conversion code for one argument.
+ old_type = arg.hdr_type
+ new_type = arg.type
+ if old_type.is_pyobject:
+ if arg.default:
+ code.putln("if (%s) {" % arg.hdr_cname)
+ else:
+ code.putln("assert(%s); {" % arg.hdr_cname)
+ self.generate_arg_conversion_from_pyobject(arg, code)
+ code.putln("}")
+ elif new_type.is_pyobject:
+ self.generate_arg_conversion_to_pyobject(arg, code)
+ else:
+ if new_type.assignable_from(old_type):
+ code.putln("%s = %s;" % (arg.entry.cname, arg.hdr_cname))
+ else:
+ error(arg.pos, "Cannot convert 1 argument from '%s' to '%s'" % (old_type, new_type))
+
+ def generate_arg_conversion_from_pyobject(self, arg, code):
+ new_type = arg.type
+ # copied from CoerceFromPyTypeNode
+ if new_type.from_py_function:
+ code.putln(new_type.from_py_call_code(
+ arg.hdr_cname,
+ arg.entry.cname,
+ arg.pos,
+ code,
+ ))
+ else:
+ error(arg.pos, "Cannot convert Python object argument to type '%s'" % new_type)
+
+ def generate_arg_conversion_to_pyobject(self, arg, code):
+ old_type = arg.hdr_type
+ func = old_type.to_py_function
+ if func:
+ code.putln("%s = %s(%s); %s" % (
+ arg.entry.cname,
+ func,
+ arg.hdr_cname,
+ code.error_goto_if_null(arg.entry.cname, arg.pos)))
+ code.put_var_gotref(arg.entry)
+ else:
+ error(arg.pos, "Cannot convert argument of type '%s' to Python object" % old_type)
+
+ def generate_argument_type_tests(self, code):
+ # Generate type tests for args whose signature
+ # type is PyObject * and whose declared type is
+ # a subtype thereof.
+ for arg in self.args:
+ if arg.needs_type_test:
+ self.generate_arg_type_test(arg, code)
+ elif not arg.accept_none and (arg.type.is_pyobject or
+ arg.type.is_buffer or
+ arg.type.is_memoryviewslice):
+ self.generate_arg_none_check(arg, code)
+
+ def error_value(self):
+ return self.signature.error_value
+
+
+class GeneratorDefNode(DefNode):
+ # Generator function node that creates a new generator instance when called.
+ #
+ # gbody GeneratorBodyDefNode the function implementing the generator
+ #
+
+ is_generator = True
+ is_coroutine = False
+ is_iterable_coroutine = False
+ is_asyncgen = False
+ gen_type_name = 'Generator'
+ needs_closure = True
+
+ child_attrs = DefNode.child_attrs + ["gbody"]
+
+ def __init__(self, pos, **kwargs):
+ # XXX: don't actually needs a body
+ kwargs['body'] = StatListNode(pos, stats=[], is_terminator=True)
+ super(GeneratorDefNode, self).__init__(pos, **kwargs)
+
+ def analyse_declarations(self, env):
+ super(GeneratorDefNode, self).analyse_declarations(env)
+ self.gbody.local_scope = self.local_scope
+ self.gbody.analyse_declarations(env)
+
+ def generate_function_body(self, env, code):
+ body_cname = self.gbody.entry.func_cname
+ name = code.intern_identifier(self.name)
+ qualname = code.intern_identifier(self.qualname)
+ module_name = code.intern_identifier(self.module_name)
+
+ code.putln('{')
+ code.putln('__pyx_CoroutineObject *gen = __Pyx_%s_New('
+ '(__pyx_coroutine_body_t) %s, %s, (PyObject *) %s, %s, %s, %s); %s' % (
+ self.gen_type_name,
+ body_cname, self.code_object.calculate_result_code(code) if self.code_object else 'NULL',
+ Naming.cur_scope_cname, name, qualname, module_name,
+ code.error_goto_if_null('gen', self.pos)))
+ code.put_decref(Naming.cur_scope_cname, py_object_type)
+ if self.requires_classobj:
+ classobj_cname = 'gen->classobj'
+ code.putln('%s = __Pyx_CyFunction_GetClassObj(%s);' % (
+ classobj_cname, Naming.self_cname))
+ code.put_incref(classobj_cname, py_object_type)
+ code.put_giveref(classobj_cname)
+ code.put_finish_refcount_context()
+ code.putln('return (PyObject *) gen;')
+ code.putln('}')
+
+ def generate_function_definitions(self, env, code):
+ env.use_utility_code(UtilityCode.load_cached(self.gen_type_name, "Coroutine.c"))
+ self.gbody.generate_function_header(code, proto=True)
+ super(GeneratorDefNode, self).generate_function_definitions(env, code)
+ self.gbody.generate_function_definitions(env, code)
+
+
+class AsyncDefNode(GeneratorDefNode):
+ gen_type_name = 'Coroutine'
+ is_coroutine = True
+
+
+class IterableAsyncDefNode(AsyncDefNode):
+ gen_type_name = 'IterableCoroutine'
+ is_iterable_coroutine = True
+
+
+class AsyncGenNode(AsyncDefNode):
+ gen_type_name = 'AsyncGen'
+ is_asyncgen = True
+
+
+class GeneratorBodyDefNode(DefNode):
+ # Main code body of a generator implemented as a DefNode.
+ #
+
+ is_generator_body = True
+ is_inlined = False
+ is_async_gen_body = False
+ inlined_comprehension_type = None # container type for inlined comprehensions
+
+ def __init__(self, pos=None, name=None, body=None, is_async_gen_body=False):
+ super(GeneratorBodyDefNode, self).__init__(
+ pos=pos, body=body, name=name, is_async_gen_body=is_async_gen_body,
+ doc=None, args=[], star_arg=None, starstar_arg=None)
+
+ def declare_generator_body(self, env):
+ prefix = env.next_id(env.scope_prefix)
+ name = env.next_id('generator')
+ cname = Naming.genbody_prefix + prefix + name
+ entry = env.declare_var(None, py_object_type, self.pos,
+ cname=cname, visibility='private')
+ entry.func_cname = cname
+ entry.qualified_name = EncodedString(self.name)
+ # Work-around for https://github.com/cython/cython/issues/1699
+ # We don't currently determine whether the generator entry is used or not,
+ # so mark it as used to avoid false warnings.
+ entry.used = True
+ self.entry = entry
+
+ def analyse_declarations(self, env):
+ self.analyse_argument_types(env)
+ self.declare_generator_body(env)
+
+ def generate_function_header(self, code, proto=False):
+ header = "static PyObject *%s(PyObject *%s_obj, CYTHON_UNUSED PyThreadState *%s, PyObject *%s)" % (
+ self.entry.func_cname,
+ Naming.generator_cname,
+ Naming.local_tstate_cname,
+ Naming.sent_value_cname)
+ if proto:
+ code.putln('%s; /* proto */' % header)
+ else:
+ code.putln('%s /* generator body */\n{' % header)
+
+ def generate_function_definitions(self, env, code):
+ lenv = self.local_scope
+
+ # Generate closure function definitions
+ self.body.generate_function_definitions(lenv, code)
+
+ # Generate C code for header and body of function
+ code.enter_cfunc_scope(lenv)
+ code.return_from_error_cleanup_label = code.new_label()
+
+ # ----- Top-level constants used by this function
+ code.mark_pos(self.pos)
+ self.generate_cached_builtins_decls(lenv, code)
+ # ----- Function header
+ code.putln("")
+ self.generate_function_header(code)
+ code.putln("__pyx_CoroutineObject *%s = (__pyx_CoroutineObject *)%s_obj;" % (Naming.generator_cname, Naming.generator_cname))
+ closure_init_code = code.insertion_point()
+ # ----- Local variables
+ code.putln("PyObject *%s = NULL;" % Naming.retval_cname)
+ tempvardecl_code = code.insertion_point()
+ code.put_declare_refcount_context()
+ code.put_setup_refcount_context(self.entry.name or self.entry.qualified_name)
+ profile = code.globalstate.directives['profile']
+ linetrace = code.globalstate.directives['linetrace']
+ if profile or linetrace:
+ tempvardecl_code.put_trace_declarations()
+ code.funcstate.can_trace = True
+ code_object = self.code_object.calculate_result_code(code) if self.code_object else None
+ code.put_trace_frame_init(code_object)
+
+ # ----- Resume switch point.
+ code.funcstate.init_closure_temps(lenv.scope_class.type.scope)
+ resume_code = code.insertion_point()
+ first_run_label = code.new_label('first_run')
+ code.use_label(first_run_label)
+ code.put_label(first_run_label)
+ code.putln('%s' %
+ (code.error_goto_if_null(Naming.sent_value_cname, self.pos)))
+
+ # ----- prepare target container for inlined comprehension
+ if self.is_inlined and self.inlined_comprehension_type is not None:
+ target_type = self.inlined_comprehension_type
+ if target_type is Builtin.list_type:
+ comp_init = 'PyList_New(0)'
+ elif target_type is Builtin.set_type:
+ comp_init = 'PySet_New(NULL)'
+ elif target_type is Builtin.dict_type:
+ comp_init = 'PyDict_New()'
+ else:
+ raise InternalError(
+ "invalid type of inlined comprehension: %s" % target_type)
+ code.putln("%s = %s; %s" % (
+ Naming.retval_cname, comp_init,
+ code.error_goto_if_null(Naming.retval_cname, self.pos)))
+ code.put_gotref(Naming.retval_cname)
+
+ # ----- Function body
+ self.generate_function_body(env, code)
+ # ----- Closure initialization
+ if lenv.scope_class.type.scope.var_entries:
+ closure_init_code.putln('%s = %s;' % (
+ lenv.scope_class.type.declaration_code(Naming.cur_scope_cname),
+ lenv.scope_class.type.cast_code('%s->closure' %
+ Naming.generator_cname)))
+ # FIXME: this silences a potential "unused" warning => try to avoid unused closures in more cases
+ code.putln("CYTHON_MAYBE_UNUSED_VAR(%s);" % Naming.cur_scope_cname)
+
+ if profile or linetrace:
+ code.funcstate.can_trace = False
+
+ code.mark_pos(self.pos)
+ code.putln("")
+ code.putln("/* function exit code */")
+
+ # on normal generator termination, we do not take the exception propagation
+ # path: no traceback info is required and not creating it is much faster
+ if not self.is_inlined and not self.body.is_terminator:
+ if self.is_async_gen_body:
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("StopAsyncIteration", "Coroutine.c"))
+ code.putln('PyErr_SetNone(%s);' % (
+ '__Pyx_PyExc_StopAsyncIteration' if self.is_async_gen_body else 'PyExc_StopIteration'))
+ # ----- Error cleanup
+ if code.label_used(code.error_label):
+ if not self.body.is_terminator:
+ code.put_goto(code.return_label)
+ code.put_label(code.error_label)
+ if self.is_inlined and self.inlined_comprehension_type is not None:
+ code.put_xdecref_clear(Naming.retval_cname, py_object_type)
+ if Future.generator_stop in env.global_scope().context.future_directives:
+ # PEP 479: turn accidental StopIteration exceptions into a RuntimeError
+ code.globalstate.use_utility_code(UtilityCode.load_cached("pep479", "Coroutine.c"))
+ code.putln("__Pyx_Generator_Replace_StopIteration(%d);" % bool(self.is_async_gen_body))
+ for cname, type in code.funcstate.all_managed_temps():
+ code.put_xdecref(cname, type)
+ code.put_add_traceback(self.entry.qualified_name)
+
+ # ----- Non-error return cleanup
+ code.put_label(code.return_label)
+ if self.is_inlined:
+ code.put_xgiveref(Naming.retval_cname)
+ else:
+ code.put_xdecref_clear(Naming.retval_cname, py_object_type)
+ # For Py3.7, clearing is already done below.
+ code.putln("#if !CYTHON_USE_EXC_INFO_STACK")
+ code.putln("__Pyx_Coroutine_ResetAndClearException(%s);" % Naming.generator_cname)
+ code.putln("#endif")
+ code.putln('%s->resume_label = -1;' % Naming.generator_cname)
+ # clean up as early as possible to help breaking any reference cycles
+ code.putln('__Pyx_Coroutine_clear((PyObject*)%s);' % Naming.generator_cname)
+ if profile or linetrace:
+ code.put_trace_return(Naming.retval_cname,
+ nogil=not code.funcstate.gil_owned)
+ code.put_finish_refcount_context()
+ code.putln("return %s;" % Naming.retval_cname)
+ code.putln("}")
+
+ # ----- Go back and insert temp variable declarations
+ tempvardecl_code.put_temp_declarations(code.funcstate)
+ # ----- Generator resume code
+ if profile or linetrace:
+ resume_code.put_trace_call(self.entry.qualified_name, self.pos,
+ nogil=not code.funcstate.gil_owned)
+ resume_code.putln("switch (%s->resume_label) {" % (
+ Naming.generator_cname))
+
+ resume_code.putln("case 0: goto %s;" % first_run_label)
+
+ for i, label in code.yield_labels:
+ resume_code.putln("case %d: goto %s;" % (i, label))
+ resume_code.putln("default: /* CPython raises the right error here */")
+ if profile or linetrace:
+ resume_code.put_trace_return("Py_None",
+ nogil=not code.funcstate.gil_owned)
+ resume_code.put_finish_refcount_context()
+ resume_code.putln("return NULL;")
+ resume_code.putln("}")
+
+ code.exit_cfunc_scope()
+
+
+class OverrideCheckNode(StatNode):
+ # A Node for dispatching to the def method if it
+ # is overridden.
+ #
+ # py_func
+ #
+ # args
+ # func_temp
+ # body
+
+ child_attrs = ['body']
+
+ body = None
+
+ def analyse_expressions(self, env):
+ self.args = env.arg_entries
+ if self.py_func.is_module_scope:
+ first_arg = 0
+ else:
+ first_arg = 1
+ from . import ExprNodes
+ self.func_node = ExprNodes.RawCNameExprNode(self.pos, py_object_type)
+ call_node = ExprNodes.SimpleCallNode(
+ self.pos, function=self.func_node,
+ args=[ExprNodes.NameNode(self.pos, name=arg.name)
+ for arg in self.args[first_arg:]])
+ if env.return_type.is_void or env.return_type.is_returncode:
+ self.body = StatListNode(self.pos, stats=[
+ ExprStatNode(self.pos, expr=call_node),
+ ReturnStatNode(self.pos, value=None)])
+ else:
+ self.body = ReturnStatNode(self.pos, value=call_node)
+ self.body = self.body.analyse_expressions(env)
+ return self
+
+ def generate_execution_code(self, code):
+ interned_attr_cname = code.intern_identifier(self.py_func.entry.name)
+ # Check to see if we are an extension type
+ if self.py_func.is_module_scope:
+ self_arg = "((PyObject *)%s)" % Naming.module_cname
+ else:
+ self_arg = "((PyObject *)%s)" % self.args[0].cname
+ code.putln("/* Check if called by wrapper */")
+ code.putln("if (unlikely(%s)) ;" % Naming.skip_dispatch_cname)
+ code.putln("/* Check if overridden in Python */")
+ if self.py_func.is_module_scope:
+ code.putln("else {")
+ else:
+ code.putln("else if (unlikely((Py_TYPE(%s)->tp_dictoffset != 0)"
+ " || (Py_TYPE(%s)->tp_flags & (Py_TPFLAGS_IS_ABSTRACT | Py_TPFLAGS_HEAPTYPE)))) {" % (
+ self_arg, self_arg))
+
+ code.putln("#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_PYTYPE_LOOKUP && CYTHON_USE_TYPE_SLOTS")
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("PyDictVersioning", "ObjectHandling.c"))
+ # TODO: remove the object dict version check by 'inlining' the getattr implementation for methods.
+ # This would allow checking the dict versions around _PyType_Lookup() if it returns a descriptor,
+ # and would (tada!) make this check a pure type based thing instead of supporting only a single
+ # instance at a time.
+ code.putln("static PY_UINT64_T %s = __PYX_DICT_VERSION_INIT, %s = __PYX_DICT_VERSION_INIT;" % (
+ Naming.tp_dict_version_temp, Naming.obj_dict_version_temp))
+ code.putln("if (unlikely(!__Pyx_object_dict_version_matches(%s, %s, %s))) {" % (
+ self_arg, Naming.tp_dict_version_temp, Naming.obj_dict_version_temp))
+ code.putln("PY_UINT64_T %s = __Pyx_get_tp_dict_version(%s);" % (
+ Naming.type_dict_guard_temp, self_arg))
+ code.putln("#endif")
+
+ func_node_temp = code.funcstate.allocate_temp(py_object_type, manage_ref=True)
+ self.func_node.set_cname(func_node_temp)
+ # need to get attribute manually--scope would return cdef method
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("PyObjectGetAttrStr", "ObjectHandling.c"))
+ err = code.error_goto_if_null(func_node_temp, self.pos)
+ code.putln("%s = __Pyx_PyObject_GetAttrStr(%s, %s); %s" % (
+ func_node_temp, self_arg, interned_attr_cname, err))
+ code.put_gotref(func_node_temp)
+
+ is_builtin_function_or_method = "PyCFunction_Check(%s)" % func_node_temp
+ is_overridden = "(PyCFunction_GET_FUNCTION(%s) != (PyCFunction)(void*)%s)" % (
+ func_node_temp, self.py_func.entry.func_cname)
+ code.putln("if (!%s || %s) {" % (is_builtin_function_or_method, is_overridden))
+ self.body.generate_execution_code(code)
+ code.putln("}")
+
+ # NOTE: it's not 100% sure that we catch the exact versions here that were used for the lookup,
+ # but it is very unlikely that the versions change during lookup, and the type dict safe guard
+ # should increase the chance of detecting such a case.
+ code.putln("#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_PYTYPE_LOOKUP && CYTHON_USE_TYPE_SLOTS")
+ code.putln("%s = __Pyx_get_tp_dict_version(%s);" % (
+ Naming.tp_dict_version_temp, self_arg))
+ code.putln("%s = __Pyx_get_object_dict_version(%s);" % (
+ Naming.obj_dict_version_temp, self_arg))
+ # Safety check that the type dict didn't change during the lookup. Since CPython looks up the
+ # attribute (descriptor) first in the type dict and then in the instance dict or through the
+ # descriptor, the only really far-away lookup when we get here is one in the type dict. So we
+ # double check the type dict version before and afterwards to guard against later changes of
+ # the type dict during the lookup process.
+ code.putln("if (unlikely(%s != %s)) {" % (
+ Naming.type_dict_guard_temp, Naming.tp_dict_version_temp))
+ code.putln("%s = %s = __PYX_DICT_VERSION_INIT;" % (
+ Naming.tp_dict_version_temp, Naming.obj_dict_version_temp))
+ code.putln("}")
+ code.putln("#endif")
+
+ code.put_decref_clear(func_node_temp, PyrexTypes.py_object_type)
+ code.funcstate.release_temp(func_node_temp)
+
+ code.putln("#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_PYTYPE_LOOKUP && CYTHON_USE_TYPE_SLOTS")
+ code.putln("}")
+ code.putln("#endif")
+
+ code.putln("}")
+
+
+class ClassDefNode(StatNode, BlockNode):
+ pass
+
+
+class PyClassDefNode(ClassDefNode):
+ # A Python class definition.
+ #
+ # name EncodedString Name of the class
+ # doc string or None
+ # body StatNode Attribute definition code
+ # entry Symtab.Entry
+ # scope PyClassScope
+ # decorators [DecoratorNode] list of decorators or None
+ #
+ # The following subnodes are constructed internally:
+ #
+ # dict DictNode Class dictionary or Py3 namespace
+ # classobj ClassNode Class object
+ # target NameNode Variable to assign class object to
+
+ child_attrs = ["body", "dict", "metaclass", "mkw", "bases", "class_result",
+ "target", "class_cell", "decorators"]
+ decorators = None
+ class_result = None
+ is_py3_style_class = False # Python3 style class (kwargs)
+ metaclass = None
+ mkw = None
+
+ def __init__(self, pos, name, bases, doc, body, decorators=None,
+ keyword_args=None, force_py3_semantics=False):
+ StatNode.__init__(self, pos)
+ self.name = name
+ self.doc = doc
+ self.body = body
+ self.decorators = decorators
+ self.bases = bases
+ from . import ExprNodes
+ if self.doc and Options.docstrings:
+ doc = embed_position(self.pos, self.doc)
+ doc_node = ExprNodes.StringNode(pos, value=doc)
+ else:
+ doc_node = None
+
+ allow_py2_metaclass = not force_py3_semantics
+ if keyword_args:
+ allow_py2_metaclass = False
+ self.is_py3_style_class = True
+ if keyword_args.is_dict_literal:
+ if keyword_args.key_value_pairs:
+ for i, item in list(enumerate(keyword_args.key_value_pairs))[::-1]:
+ if item.key.value == 'metaclass':
+ if self.metaclass is not None:
+ error(item.pos, "keyword argument 'metaclass' passed multiple times")
+ # special case: we already know the metaclass,
+ # so we don't need to do the "build kwargs,
+ # find metaclass" dance at runtime
+ self.metaclass = item.value
+ del keyword_args.key_value_pairs[i]
+ self.mkw = keyword_args
+ else:
+ assert self.metaclass is not None
+ else:
+ # MergedDictNode
+ self.mkw = ExprNodes.ProxyNode(keyword_args)
+
+ if force_py3_semantics or self.bases or self.mkw or self.metaclass:
+ if self.metaclass is None:
+ if keyword_args and not keyword_args.is_dict_literal:
+ # **kwargs may contain 'metaclass' arg
+ mkdict = self.mkw
+ else:
+ mkdict = None
+ if (not mkdict and
+ self.bases.is_sequence_constructor and
+ not self.bases.args):
+ pass # no base classes => no inherited metaclass
+ else:
+ self.metaclass = ExprNodes.PyClassMetaclassNode(
+ pos, class_def_node=self)
+ needs_metaclass_calculation = False
+ else:
+ needs_metaclass_calculation = True
+
+ self.dict = ExprNodes.PyClassNamespaceNode(
+ pos, name=name, doc=doc_node, class_def_node=self)
+ self.classobj = ExprNodes.Py3ClassNode(
+ pos, name=name, class_def_node=self, doc=doc_node,
+ calculate_metaclass=needs_metaclass_calculation,
+ allow_py2_metaclass=allow_py2_metaclass)
+ else:
+ # no bases, no metaclass => old style class creation
+ self.dict = ExprNodes.DictNode(pos, key_value_pairs=[])
+ self.classobj = ExprNodes.ClassNode(
+ pos, name=name, class_def_node=self, doc=doc_node)
+
+ self.target = ExprNodes.NameNode(pos, name=name)
+ self.class_cell = ExprNodes.ClassCellInjectorNode(self.pos)
+
+ def as_cclass(self):
+ """
+ Return this node as if it were declared as an extension class
+ """
+ if self.is_py3_style_class:
+ error(self.classobj.pos, "Python3 style class could not be represented as C class")
+ return
+
+ from . import ExprNodes
+ return CClassDefNode(self.pos,
+ visibility='private',
+ module_name=None,
+ class_name=self.name,
+ bases=self.bases or ExprNodes.TupleNode(self.pos, args=[]),
+ decorators=self.decorators,
+ body=self.body,
+ in_pxd=False,
+ doc=self.doc)
+
+ def create_scope(self, env):
+ genv = env
+ while genv.is_py_class_scope or genv.is_c_class_scope:
+ genv = genv.outer_scope
+ cenv = self.scope = PyClassScope(name=self.name, outer_scope=genv)
+ return cenv
+
+ def analyse_declarations(self, env):
+ class_result = self.classobj
+ if self.decorators:
+ from .ExprNodes import SimpleCallNode
+ for decorator in self.decorators[::-1]:
+ class_result = SimpleCallNode(
+ decorator.pos,
+ function=decorator.decorator,
+ args=[class_result])
+ self.decorators = None
+ self.class_result = class_result
+ if self.bases:
+ self.bases.analyse_declarations(env)
+ if self.mkw:
+ self.mkw.analyse_declarations(env)
+ self.class_result.analyse_declarations(env)
+ self.target.analyse_target_declaration(env)
+ cenv = self.create_scope(env)
+ cenv.directives = env.directives
+ cenv.class_obj_cname = self.target.entry.cname
+ self.body.analyse_declarations(cenv)
+
+ def analyse_expressions(self, env):
+ if self.bases:
+ self.bases = self.bases.analyse_expressions(env)
+ if self.mkw:
+ self.mkw = self.mkw.analyse_expressions(env)
+ if self.metaclass:
+ self.metaclass = self.metaclass.analyse_expressions(env)
+ self.dict = self.dict.analyse_expressions(env)
+ self.class_result = self.class_result.analyse_expressions(env)
+ cenv = self.scope
+ self.body = self.body.analyse_expressions(cenv)
+ self.target.analyse_target_expression(env, self.classobj)
+ self.class_cell = self.class_cell.analyse_expressions(cenv)
+ return self
+
+ def generate_function_definitions(self, env, code):
+ self.generate_lambda_definitions(self.scope, code)
+ self.body.generate_function_definitions(self.scope, code)
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ code.pyclass_stack.append(self)
+ cenv = self.scope
+ if self.bases:
+ self.bases.generate_evaluation_code(code)
+ if self.mkw:
+ self.mkw.generate_evaluation_code(code)
+ if self.metaclass:
+ self.metaclass.generate_evaluation_code(code)
+ self.dict.generate_evaluation_code(code)
+ cenv.namespace_cname = cenv.class_obj_cname = self.dict.result()
+
+ class_cell = self.class_cell
+ if class_cell is not None and not class_cell.is_active:
+ class_cell = None
+
+ if class_cell is not None:
+ class_cell.generate_evaluation_code(code)
+ self.body.generate_execution_code(code)
+ self.class_result.generate_evaluation_code(code)
+ if class_cell is not None:
+ class_cell.generate_injection_code(
+ code, self.class_result.result())
+ if class_cell is not None:
+ class_cell.generate_disposal_code(code)
+ class_cell.free_temps(code)
+
+ cenv.namespace_cname = cenv.class_obj_cname = self.classobj.result()
+ self.target.generate_assignment_code(self.class_result, code)
+ self.dict.generate_disposal_code(code)
+ self.dict.free_temps(code)
+ if self.metaclass:
+ self.metaclass.generate_disposal_code(code)
+ self.metaclass.free_temps(code)
+ if self.mkw:
+ self.mkw.generate_disposal_code(code)
+ self.mkw.free_temps(code)
+ if self.bases:
+ self.bases.generate_disposal_code(code)
+ self.bases.free_temps(code)
+ code.pyclass_stack.pop()
+
+
+class CClassDefNode(ClassDefNode):
+ # An extension type definition.
+ #
+ # visibility 'private' or 'public' or 'extern'
+ # typedef_flag boolean
+ # api boolean
+ # module_name string or None For import of extern type objects
+ # class_name string Unqualified name of class
+ # as_name string or None Name to declare as in this scope
+ # bases TupleNode Base class(es)
+ # objstruct_name string or None Specified C name of object struct
+ # typeobj_name string or None Specified C name of type object
+ # check_size 'warn', 'error', 'ignore' What to do if tp_basicsize does not match
+ # in_pxd boolean Is in a .pxd file
+ # decorators [DecoratorNode] list of decorators or None
+ # doc string or None
+ # body StatNode or None
+ # entry Symtab.Entry
+ # base_type PyExtensionType or None
+ # buffer_defaults_node DictNode or None Declares defaults for a buffer
+ # buffer_defaults_pos
+
+ child_attrs = ["body"]
+ buffer_defaults_node = None
+ buffer_defaults_pos = None
+ typedef_flag = False
+ api = False
+ objstruct_name = None
+ typeobj_name = None
+ check_size = None
+ decorators = None
+ shadow = False
+
+ def buffer_defaults(self, env):
+ if not hasattr(self, '_buffer_defaults'):
+ from . import Buffer
+ if self.buffer_defaults_node:
+ self._buffer_defaults = Buffer.analyse_buffer_options(
+ self.buffer_defaults_pos,
+ env, [], self.buffer_defaults_node,
+ need_complete=False)
+ else:
+ self._buffer_defaults = None
+ return self._buffer_defaults
+
+ def declare(self, env):
+ if self.module_name and self.visibility != 'extern':
+ module_path = self.module_name.split(".")
+ home_scope = env.find_imported_module(module_path, self.pos)
+ if not home_scope:
+ return None
+ else:
+ home_scope = env
+
+ self.entry = home_scope.declare_c_class(
+ name=self.class_name,
+ pos=self.pos,
+ defining=0,
+ implementing=0,
+ module_name=self.module_name,
+ base_type=None,
+ objstruct_cname=self.objstruct_name,
+ typeobj_cname=self.typeobj_name,
+ visibility=self.visibility,
+ typedef_flag=self.typedef_flag,
+ check_size = self.check_size,
+ api=self.api,
+ buffer_defaults=self.buffer_defaults(env),
+ shadow=self.shadow)
+
+ def analyse_declarations(self, env):
+ #print "CClassDefNode.analyse_declarations:", self.class_name
+ #print "...visibility =", self.visibility
+ #print "...module_name =", self.module_name
+
+ if env.in_cinclude and not self.objstruct_name:
+ error(self.pos, "Object struct name specification required for C class defined in 'extern from' block")
+ if self.decorators:
+ error(self.pos, "Decorators not allowed on cdef classes (used on type '%s')" % self.class_name)
+ self.base_type = None
+ # Now that module imports are cached, we need to
+ # import the modules for extern classes.
+ if self.module_name:
+ self.module = None
+ for module in env.cimported_modules:
+ if module.name == self.module_name:
+ self.module = module
+ if self.module is None:
+ self.module = ModuleScope(self.module_name, None, env.context)
+ self.module.has_extern_class = 1
+ env.add_imported_module(self.module)
+
+ if self.bases.args:
+ base = self.bases.args[0]
+ base_type = base.analyse_as_type(env)
+ if base_type in (PyrexTypes.c_int_type, PyrexTypes.c_long_type, PyrexTypes.c_float_type):
+ # Use the Python rather than C variant of these types.
+ base_type = env.lookup(base_type.sign_and_name()).type
+ if base_type is None:
+ error(base.pos, "First base of '%s' is not an extension type" % self.class_name)
+ elif base_type == PyrexTypes.py_object_type:
+ base_class_scope = None
+ elif not base_type.is_extension_type and \
+ not (base_type.is_builtin_type and base_type.objstruct_cname):
+ error(base.pos, "'%s' is not an extension type" % base_type)
+ elif not base_type.is_complete():
+ error(base.pos, "Base class '%s' of type '%s' is incomplete" % (
+ base_type.name, self.class_name))
+ elif base_type.scope and base_type.scope.directives and \
+ base_type.is_final_type:
+ error(base.pos, "Base class '%s' of type '%s' is final" % (
+ base_type, self.class_name))
+ elif base_type.is_builtin_type and \
+ base_type.name in ('tuple', 'str', 'bytes'):
+ error(base.pos, "inheritance from PyVarObject types like '%s' is not currently supported"
+ % base_type.name)
+ else:
+ self.base_type = base_type
+ if env.directives.get('freelist', 0) > 0 and base_type != PyrexTypes.py_object_type:
+ warning(self.pos, "freelists cannot be used on subtypes, only the base class can manage them", 1)
+
+ has_body = self.body is not None
+ if has_body and self.base_type and not self.base_type.scope:
+ # To properly initialize inherited attributes, the base type must
+ # be analysed before this type.
+ self.base_type.defered_declarations.append(lambda : self.analyse_declarations(env))
+ return
+
+ if self.module_name and self.visibility != 'extern':
+ module_path = self.module_name.split(".")
+ home_scope = env.find_imported_module(module_path, self.pos)
+ if not home_scope:
+ return
+ else:
+ home_scope = env
+
+ if self.visibility == 'extern':
+ if (self.module_name == '__builtin__' and
+ self.class_name in Builtin.builtin_types and
+ env.qualified_name[:8] != 'cpython.'): # allow overloaded names for cimporting from cpython
+ warning(self.pos, "%s already a builtin Cython type" % self.class_name, 1)
+
+ self.entry = home_scope.declare_c_class(
+ name=self.class_name,
+ pos=self.pos,
+ defining=has_body and self.in_pxd,
+ implementing=has_body and not self.in_pxd,
+ module_name=self.module_name,
+ base_type=self.base_type,
+ objstruct_cname=self.objstruct_name,
+ typeobj_cname=self.typeobj_name,
+ check_size=self.check_size,
+ visibility=self.visibility,
+ typedef_flag=self.typedef_flag,
+ api=self.api,
+ buffer_defaults=self.buffer_defaults(env),
+ shadow=self.shadow)
+
+ if self.shadow:
+ home_scope.lookup(self.class_name).as_variable = self.entry
+ if home_scope is not env and self.visibility == 'extern':
+ env.add_imported_entry(self.class_name, self.entry, self.pos)
+ self.scope = scope = self.entry.type.scope
+ if scope is not None:
+ scope.directives = env.directives
+
+ if self.doc and Options.docstrings:
+ scope.doc = embed_position(self.pos, self.doc)
+
+ if has_body:
+ self.body.analyse_declarations(scope)
+ dict_entry = self.scope.lookup_here("__dict__")
+ if dict_entry and dict_entry.is_variable and (not scope.defined and not scope.implemented):
+ dict_entry.getter_cname = self.scope.mangle_internal("__dict__getter")
+ self.scope.declare_property("__dict__", dict_entry.doc, dict_entry.pos)
+ if self.in_pxd:
+ scope.defined = 1
+ else:
+ scope.implemented = 1
+
+ if len(self.bases.args) > 1:
+ if not has_body or self.in_pxd:
+ error(self.bases.args[1].pos, "Only declare first base in declaration.")
+ # At runtime, we check that the other bases are heap types
+ # and that a __dict__ is added if required.
+ for other_base in self.bases.args[1:]:
+ if other_base.analyse_as_type(env):
+ error(other_base.pos, "Only one extension type base class allowed.")
+ self.entry.type.early_init = 0
+ from . import ExprNodes
+ self.type_init_args = ExprNodes.TupleNode(
+ self.pos,
+ args=[ExprNodes.IdentifierStringNode(self.pos, value=self.class_name),
+ self.bases,
+ ExprNodes.DictNode(self.pos, key_value_pairs=[])])
+ elif self.base_type:
+ self.entry.type.early_init = self.base_type.is_external or self.base_type.early_init
+ self.type_init_args = None
+ else:
+ self.entry.type.early_init = 1
+ self.type_init_args = None
+
+ env.allocate_vtable_names(self.entry)
+
+ for thunk in self.entry.type.defered_declarations:
+ thunk()
+
+ def analyse_expressions(self, env):
+ if self.body:
+ scope = self.entry.type.scope
+ self.body = self.body.analyse_expressions(scope)
+ if self.type_init_args:
+ self.type_init_args.analyse_expressions(env)
+ return self
+
+ def generate_function_definitions(self, env, code):
+ if self.body:
+ self.generate_lambda_definitions(self.scope, code)
+ self.body.generate_function_definitions(self.scope, code)
+
+ def generate_execution_code(self, code):
+ # This is needed to generate evaluation code for
+ # default values of method arguments.
+ code.mark_pos(self.pos)
+ if self.body:
+ self.body.generate_execution_code(code)
+ if not self.entry.type.early_init:
+ if self.type_init_args:
+ self.type_init_args.generate_evaluation_code(code)
+ bases = "PyTuple_GET_ITEM(%s, 1)" % self.type_init_args.result()
+ first_base = "((PyTypeObject*)PyTuple_GET_ITEM(%s, 0))" % bases
+ # Let Python do the base types compatibility checking.
+ trial_type = code.funcstate.allocate_temp(PyrexTypes.py_object_type, True)
+ code.putln("%s = PyType_Type.tp_new(&PyType_Type, %s, NULL);" % (
+ trial_type, self.type_init_args.result()))
+ code.putln(code.error_goto_if_null(trial_type, self.pos))
+ code.put_gotref(trial_type)
+ code.putln("if (((PyTypeObject*) %s)->tp_base != %s) {" % (
+ trial_type, first_base))
+ code.putln("PyErr_Format(PyExc_TypeError, \"best base '%s' must be equal to first base '%s'\",")
+ code.putln(" ((PyTypeObject*) %s)->tp_base->tp_name, %s->tp_name);" % (
+ trial_type, first_base))
+ code.putln(code.error_goto(self.pos))
+ code.putln("}")
+ code.funcstate.release_temp(trial_type)
+ code.put_incref(bases, PyrexTypes.py_object_type)
+ code.put_giveref(bases)
+ code.putln("%s.tp_bases = %s;" % (self.entry.type.typeobj_cname, bases))
+ code.put_decref_clear(trial_type, PyrexTypes.py_object_type)
+ self.type_init_args.generate_disposal_code(code)
+ self.type_init_args.free_temps(code)
+
+ self.generate_type_ready_code(self.entry, code, True)
+
+ # Also called from ModuleNode for early init types.
+ @staticmethod
+ def generate_type_ready_code(entry, code, heap_type_bases=False):
+ # Generate a call to PyType_Ready for an extension
+ # type defined in this module.
+ type = entry.type
+ typeobj_cname = type.typeobj_cname
+ scope = type.scope
+ if not scope: # could be None if there was an error
+ return
+ if entry.visibility != 'extern':
+ for slot in TypeSlots.slot_table:
+ slot.generate_dynamic_init_code(scope, code)
+ if heap_type_bases:
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached('PyType_Ready', 'ExtensionTypes.c'))
+ readyfunc = "__Pyx_PyType_Ready"
+ else:
+ readyfunc = "PyType_Ready"
+ code.putln(
+ "if (%s(&%s) < 0) %s" % (
+ readyfunc,
+ typeobj_cname,
+ code.error_goto(entry.pos)))
+ # Don't inherit tp_print from builtin types, restoring the
+ # behavior of using tp_repr or tp_str instead.
+ # ("tp_print" was renamed to "tp_vectorcall_offset" in Py3.8b1)
+ code.putln("#if PY_VERSION_HEX < 0x030800B1")
+ code.putln("%s.tp_print = 0;" % typeobj_cname)
+ code.putln("#endif")
+
+ # Use specialised attribute lookup for types with generic lookup but no instance dict.
+ getattr_slot_func = TypeSlots.get_slot_code_by_name(scope, 'tp_getattro')
+ dictoffset_slot_func = TypeSlots.get_slot_code_by_name(scope, 'tp_dictoffset')
+ if getattr_slot_func == '0' and dictoffset_slot_func == '0':
+ if type.is_final_type:
+ py_cfunc = "__Pyx_PyObject_GenericGetAttrNoDict" # grepable
+ utility_func = "PyObject_GenericGetAttrNoDict"
+ else:
+ py_cfunc = "__Pyx_PyObject_GenericGetAttr"
+ utility_func = "PyObject_GenericGetAttr"
+ code.globalstate.use_utility_code(UtilityCode.load_cached(utility_func, "ObjectHandling.c"))
+
+ code.putln("if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) &&"
+ " likely(!%s.tp_dictoffset && %s.tp_getattro == PyObject_GenericGetAttr)) {" % (
+ typeobj_cname, typeobj_cname))
+ code.putln("%s.tp_getattro = %s;" % (
+ typeobj_cname, py_cfunc))
+ code.putln("}")
+
+ # Fix special method docstrings. This is a bit of a hack, but
+ # unless we let PyType_Ready create the slot wrappers we have
+ # a significant performance hit. (See trac #561.)
+ for func in entry.type.scope.pyfunc_entries:
+ is_buffer = func.name in ('__getbuffer__', '__releasebuffer__')
+ if (func.is_special and Options.docstrings and
+ func.wrapperbase_cname and not is_buffer):
+ slot = TypeSlots.method_name_to_slot.get(func.name)
+ preprocessor_guard = slot.preprocessor_guard_code() if slot else None
+ if preprocessor_guard:
+ code.putln(preprocessor_guard)
+ code.putln('#if CYTHON_UPDATE_DESCRIPTOR_DOC')
+ code.putln("{")
+ code.putln(
+ 'PyObject *wrapper = PyObject_GetAttrString((PyObject *)&%s, "%s"); %s' % (
+ typeobj_cname,
+ func.name,
+ code.error_goto_if_null('wrapper', entry.pos)))
+ code.putln(
+ "if (Py_TYPE(wrapper) == &PyWrapperDescr_Type) {")
+ code.putln(
+ "%s = *((PyWrapperDescrObject *)wrapper)->d_base;" % (
+ func.wrapperbase_cname))
+ code.putln(
+ "%s.doc = %s;" % (func.wrapperbase_cname, func.doc_cname))
+ code.putln(
+ "((PyWrapperDescrObject *)wrapper)->d_base = &%s;" % (
+ func.wrapperbase_cname))
+ code.putln("}")
+ code.putln("}")
+ code.putln('#endif')
+ if preprocessor_guard:
+ code.putln('#endif')
+ if type.vtable_cname:
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached('SetVTable', 'ImportExport.c'))
+ code.putln(
+ "if (__Pyx_SetVtable(%s.tp_dict, %s) < 0) %s" % (
+ typeobj_cname,
+ type.vtabptr_cname,
+ code.error_goto(entry.pos)))
+ if heap_type_bases:
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached('MergeVTables', 'ImportExport.c'))
+ code.putln("if (__Pyx_MergeVtables(&%s) < 0) %s" % (
+ typeobj_cname,
+ code.error_goto(entry.pos)))
+ if not type.scope.is_internal and not type.scope.directives.get('internal'):
+ # scope.is_internal is set for types defined by
+ # Cython (such as closures), the 'internal'
+ # directive is set by users
+ code.putln(
+ 'if (PyObject_SetAttr(%s, %s, (PyObject *)&%s) < 0) %s' % (
+ Naming.module_cname,
+ code.intern_identifier(scope.class_name),
+ typeobj_cname,
+ code.error_goto(entry.pos)))
+ weakref_entry = scope.lookup_here("__weakref__") if not scope.is_closure_class_scope else None
+ if weakref_entry:
+ if weakref_entry.type is py_object_type:
+ tp_weaklistoffset = "%s.tp_weaklistoffset" % typeobj_cname
+ if type.typedef_flag:
+ objstruct = type.objstruct_cname
+ else:
+ objstruct = "struct %s" % type.objstruct_cname
+ code.putln("if (%s == 0) %s = offsetof(%s, %s);" % (
+ tp_weaklistoffset,
+ tp_weaklistoffset,
+ objstruct,
+ weakref_entry.cname))
+ else:
+ error(weakref_entry.pos, "__weakref__ slot must be of type 'object'")
+ if scope.lookup_here("__reduce_cython__") if not scope.is_closure_class_scope else None:
+ # Unfortunately, we cannot reliably detect whether a
+ # superclass defined __reduce__ at compile time, so we must
+ # do so at runtime.
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached('SetupReduce', 'ExtensionTypes.c'))
+ code.putln('if (__Pyx_setup_reduce((PyObject*)&%s) < 0) %s' % (
+ typeobj_cname,
+ code.error_goto(entry.pos)))
+ # Generate code to initialise the typeptr of an extension
+ # type defined in this module to point to its type object.
+ if type.typeobj_cname:
+ code.putln(
+ "%s = &%s;" % (
+ type.typeptr_cname, type.typeobj_cname))
+
+ def annotate(self, code):
+ if self.type_init_args:
+ self.type_init_args.annotate(code)
+ if self.body:
+ self.body.annotate(code)
+
+
+class PropertyNode(StatNode):
+ # Definition of a property in an extension type.
+ #
+ # name string
+ # doc EncodedString or None Doc string
+ # entry Symtab.Entry
+ # body StatListNode
+
+ child_attrs = ["body"]
+
+ def analyse_declarations(self, env):
+ self.entry = env.declare_property(self.name, self.doc, self.pos)
+ self.entry.scope.directives = env.directives
+ self.body.analyse_declarations(self.entry.scope)
+
+ def analyse_expressions(self, env):
+ self.body = self.body.analyse_expressions(env)
+ return self
+
+ def generate_function_definitions(self, env, code):
+ self.body.generate_function_definitions(env, code)
+
+ def generate_execution_code(self, code):
+ pass
+
+ def annotate(self, code):
+ self.body.annotate(code)
+
+
+class GlobalNode(StatNode):
+ # Global variable declaration.
+ #
+ # names [string]
+
+ child_attrs = []
+
+ def analyse_declarations(self, env):
+ for name in self.names:
+ env.declare_global(name, self.pos)
+
+ def analyse_expressions(self, env):
+ return self
+
+ def generate_execution_code(self, code):
+ pass
+
+
+class NonlocalNode(StatNode):
+ # Nonlocal variable declaration via the 'nonlocal' keyword.
+ #
+ # names [string]
+
+ child_attrs = []
+
+ def analyse_declarations(self, env):
+ for name in self.names:
+ env.declare_nonlocal(name, self.pos)
+
+ def analyse_expressions(self, env):
+ return self
+
+ def generate_execution_code(self, code):
+ pass
+
+
+class ExprStatNode(StatNode):
+ # Expression used as a statement.
+ #
+ # expr ExprNode
+
+ child_attrs = ["expr"]
+
+ def analyse_declarations(self, env):
+ from . import ExprNodes
+ expr = self.expr
+ if isinstance(expr, ExprNodes.GeneralCallNode):
+ func = expr.function.as_cython_attribute()
+ if func == u'declare':
+ args, kwds = expr.explicit_args_kwds()
+ if len(args):
+ error(expr.pos, "Variable names must be specified.")
+ for var, type_node in kwds.key_value_pairs:
+ type = type_node.analyse_as_type(env)
+ if type is None:
+ error(type_node.pos, "Unknown type")
+ else:
+ env.declare_var(var.value, type, var.pos, is_cdef=True)
+ self.__class__ = PassStatNode
+ elif getattr(expr, 'annotation', None) is not None:
+ if expr.is_name:
+ # non-code variable annotation, e.g. "name: type"
+ expr.declare_from_annotation(env)
+ self.__class__ = PassStatNode
+ elif expr.is_attribute or expr.is_subscript:
+ # unused expression with annotation, e.g. "a[0]: type" or "a.xyz : type"
+ self.__class__ = PassStatNode
+
+ def analyse_expressions(self, env):
+ self.expr.result_is_used = False # hint that .result() may safely be left empty
+ self.expr = self.expr.analyse_expressions(env)
+ # Repeat in case of node replacement.
+ self.expr.result_is_used = False # hint that .result() may safely be left empty
+ return self
+
+ def nogil_check(self, env):
+ if self.expr.type.is_pyobject and self.expr.is_temp:
+ self.gil_error()
+
+ gil_message = "Discarding owned Python object"
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ self.expr.result_is_used = False # hint that .result() may safely be left empty
+ self.expr.generate_evaluation_code(code)
+ if not self.expr.is_temp and self.expr.result():
+ result = self.expr.result()
+ if not self.expr.type.is_void:
+ result = "(void)(%s)" % result
+ code.putln("%s;" % result)
+ self.expr.generate_disposal_code(code)
+ self.expr.free_temps(code)
+
+ def generate_function_definitions(self, env, code):
+ self.expr.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ self.expr.annotate(code)
+
+
+class AssignmentNode(StatNode):
+ # Abstract base class for assignment nodes.
+ #
+ # The analyse_expressions and generate_execution_code
+ # phases of assignments are split into two sub-phases
+ # each, to enable all the right hand sides of a
+ # parallel assignment to be evaluated before assigning
+ # to any of the left hand sides.
+
+ def analyse_expressions(self, env):
+ node = self.analyse_types(env)
+ if isinstance(node, AssignmentNode) and not isinstance(node, ParallelAssignmentNode):
+ if node.rhs.type.is_ptr and node.rhs.is_ephemeral():
+ error(self.pos, "Storing unsafe C derivative of temporary Python reference")
+ return node
+
+# def analyse_expressions(self, env):
+# self.analyse_expressions_1(env)
+# self.analyse_expressions_2(env)
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ self.generate_rhs_evaluation_code(code)
+ self.generate_assignment_code(code)
+
+
+class SingleAssignmentNode(AssignmentNode):
+ # The simplest case:
+ #
+ # a = b
+ #
+ # lhs ExprNode Left hand side
+ # rhs ExprNode Right hand side
+ # first bool Is this guaranteed the first assignment to lhs?
+ # is_overloaded_assignment bool Is this assignment done via an overloaded operator=
+ # exception_check
+ # exception_value
+
+ child_attrs = ["lhs", "rhs"]
+ first = False
+ is_overloaded_assignment = False
+ declaration_only = False
+
+ def analyse_declarations(self, env):
+ from . import ExprNodes
+
+ # handle declarations of the form x = cython.foo()
+ if isinstance(self.rhs, ExprNodes.CallNode):
+ func_name = self.rhs.function.as_cython_attribute()
+ if func_name:
+ args, kwds = self.rhs.explicit_args_kwds()
+ if func_name in ['declare', 'typedef']:
+ if len(args) > 2:
+ error(args[2].pos, "Invalid positional argument.")
+ return
+ if kwds is not None:
+ kwdict = kwds.compile_time_value(None)
+ if func_name == 'typedef' or 'visibility' not in kwdict:
+ error(kwds.pos, "Invalid keyword argument.")
+ return
+ visibility = kwdict['visibility']
+ else:
+ visibility = 'private'
+ type = args[0].analyse_as_type(env)
+ if type is None:
+ error(args[0].pos, "Unknown type")
+ return
+ lhs = self.lhs
+ if func_name == 'declare':
+ if isinstance(lhs, ExprNodes.NameNode):
+ vars = [(lhs.name, lhs.pos)]
+ elif isinstance(lhs, ExprNodes.TupleNode):
+ vars = [(var.name, var.pos) for var in lhs.args]
+ else:
+ error(lhs.pos, "Invalid declaration")
+ return
+ for var, pos in vars:
+ env.declare_var(var, type, pos, is_cdef=True, visibility=visibility)
+ if len(args) == 2:
+ # we have a value
+ self.rhs = args[1]
+ else:
+ self.declaration_only = True
+ else:
+ self.declaration_only = True
+ if not isinstance(lhs, ExprNodes.NameNode):
+ error(lhs.pos, "Invalid declaration.")
+ env.declare_typedef(lhs.name, type, self.pos, visibility='private')
+
+ elif func_name in ['struct', 'union']:
+ self.declaration_only = True
+ if len(args) > 0 or kwds is None:
+ error(self.rhs.pos, "Struct or union members must be given by name.")
+ return
+ members = []
+ for member, type_node in kwds.key_value_pairs:
+ type = type_node.analyse_as_type(env)
+ if type is None:
+ error(type_node.pos, "Unknown type")
+ else:
+ members.append((member.value, type, member.pos))
+ if len(members) < len(kwds.key_value_pairs):
+ return
+ if not isinstance(self.lhs, ExprNodes.NameNode):
+ error(self.lhs.pos, "Invalid declaration.")
+ name = self.lhs.name
+ scope = StructOrUnionScope(name)
+ env.declare_struct_or_union(name, func_name, scope, False, self.rhs.pos)
+ for member, type, pos in members:
+ scope.declare_var(member, type, pos)
+
+ elif func_name == 'fused_type':
+ # dtype = cython.fused_type(...)
+ self.declaration_only = True
+ if kwds:
+ error(self.rhs.function.pos,
+ "fused_type does not take keyword arguments")
+
+ fusednode = FusedTypeNode(self.rhs.pos,
+ name=self.lhs.name, types=args)
+ fusednode.analyse_declarations(env)
+
+ if self.declaration_only:
+ return
+ else:
+ self.lhs.analyse_target_declaration(env)
+
+ def analyse_types(self, env, use_temp=0):
+ from . import ExprNodes
+
+ self.rhs = self.rhs.analyse_types(env)
+
+ unrolled_assignment = self.unroll_rhs(env)
+ if unrolled_assignment:
+ return unrolled_assignment
+
+ self.lhs = self.lhs.analyse_target_types(env)
+ self.lhs.gil_assignment_check(env)
+ unrolled_assignment = self.unroll_lhs(env)
+ if unrolled_assignment:
+ return unrolled_assignment
+
+ if isinstance(self.lhs, ExprNodes.MemoryViewIndexNode):
+ self.lhs.analyse_broadcast_operation(self.rhs)
+ self.lhs = self.lhs.analyse_as_memview_scalar_assignment(self.rhs)
+ elif self.lhs.type.is_array:
+ if not isinstance(self.lhs, ExprNodes.SliceIndexNode):
+ # cannot assign to C array, only to its full slice
+ self.lhs = ExprNodes.SliceIndexNode(self.lhs.pos, base=self.lhs, start=None, stop=None)
+ self.lhs = self.lhs.analyse_target_types(env)
+
+ if self.lhs.type.is_cpp_class:
+ op = env.lookup_operator_for_types(self.pos, '=', [self.lhs.type, self.rhs.type])
+ if op:
+ rhs = self.rhs
+ self.is_overloaded_assignment = True
+ self.exception_check = op.type.exception_check
+ self.exception_value = op.type.exception_value
+ if self.exception_check == '+' and self.exception_value is None:
+ env.use_utility_code(UtilityCode.load_cached("CppExceptionConversion", "CppSupport.cpp"))
+ else:
+ rhs = self.rhs.coerce_to(self.lhs.type, env)
+ else:
+ rhs = self.rhs.coerce_to(self.lhs.type, env)
+
+ if use_temp or rhs.is_attribute or (
+ not rhs.is_name and not rhs.is_literal and
+ rhs.type.is_pyobject):
+ # things like (cdef) attribute access are not safe (traverses pointers)
+ rhs = rhs.coerce_to_temp(env)
+ elif rhs.type.is_pyobject:
+ rhs = rhs.coerce_to_simple(env)
+ self.rhs = rhs
+ return self
+
+ def unroll(self, node, target_size, env):
+ from . import ExprNodes, UtilNodes
+
+ base = node
+ start_node = stop_node = step_node = check_node = None
+
+ if node.type.is_ctuple:
+ slice_size = node.type.size
+
+ elif node.type.is_ptr or node.type.is_array:
+ while isinstance(node, ExprNodes.SliceIndexNode) and not (node.start or node.stop):
+ base = node = node.base
+ if isinstance(node, ExprNodes.SliceIndexNode):
+ base = node.base
+ start_node = node.start
+ if start_node:
+ start_node = start_node.coerce_to(PyrexTypes.c_py_ssize_t_type, env)
+ stop_node = node.stop
+ if stop_node:
+ stop_node = stop_node.coerce_to(PyrexTypes.c_py_ssize_t_type, env)
+ else:
+ if node.type.is_array and node.type.size:
+ stop_node = ExprNodes.IntNode(
+ self.pos, value=str(node.type.size),
+ constant_result=(node.type.size if isinstance(node.type.size, _py_int_types)
+ else ExprNodes.constant_value_not_set))
+ else:
+ error(self.pos, "C array iteration requires known end index")
+ return
+ step_node = None #node.step
+ if step_node:
+ step_node = step_node.coerce_to(PyrexTypes.c_py_ssize_t_type, env)
+
+ # TODO: Factor out SliceIndexNode.generate_slice_guard_code() for use here.
+ def get_const(node, none_value):
+ if node is None:
+ return none_value
+ elif node.has_constant_result():
+ return node.constant_result
+ else:
+ raise ValueError("Not a constant.")
+
+ try:
+ slice_size = (get_const(stop_node, None) - get_const(start_node, 0)) / get_const(step_node, 1)
+ except ValueError:
+ error(self.pos, "C array assignment currently requires known endpoints")
+ return
+
+ elif node.type.is_array:
+ slice_size = node.type.size
+ if not isinstance(slice_size, _py_int_types):
+ return # might still work when coercing to Python
+ else:
+ return
+
+ else:
+ return
+
+ if slice_size != target_size:
+ error(self.pos, "Assignment to/from slice of wrong length, expected %s, got %s" % (
+ slice_size, target_size))
+ return
+
+ items = []
+ base = UtilNodes.LetRefNode(base)
+ refs = [base]
+ if start_node and not start_node.is_literal:
+ start_node = UtilNodes.LetRefNode(start_node)
+ refs.append(start_node)
+ if stop_node and not stop_node.is_literal:
+ stop_node = UtilNodes.LetRefNode(stop_node)
+ refs.append(stop_node)
+ if step_node and not step_node.is_literal:
+ step_node = UtilNodes.LetRefNode(step_node)
+ refs.append(step_node)
+
+ for ix in range(target_size):
+ ix_node = ExprNodes.IntNode(self.pos, value=str(ix), constant_result=ix, type=PyrexTypes.c_py_ssize_t_type)
+ if step_node is not None:
+ if step_node.has_constant_result():
+ step_value = ix_node.constant_result * step_node.constant_result
+ ix_node = ExprNodes.IntNode(self.pos, value=str(step_value), constant_result=step_value)
+ else:
+ ix_node = ExprNodes.MulNode(self.pos, operator='*', operand1=step_node, operand2=ix_node)
+ if start_node is not None:
+ if start_node.has_constant_result() and ix_node.has_constant_result():
+ index_value = ix_node.constant_result + start_node.constant_result
+ ix_node = ExprNodes.IntNode(self.pos, value=str(index_value), constant_result=index_value)
+ else:
+ ix_node = ExprNodes.AddNode(
+ self.pos, operator='+', operand1=start_node, operand2=ix_node)
+ items.append(ExprNodes.IndexNode(self.pos, base=base, index=ix_node.analyse_types(env)))
+ return check_node, refs, items
+
+ def unroll_assignments(self, refs, check_node, lhs_list, rhs_list, env):
+ from . import UtilNodes
+ assignments = []
+ for lhs, rhs in zip(lhs_list, rhs_list):
+ assignments.append(SingleAssignmentNode(self.pos, lhs=lhs, rhs=rhs, first=self.first))
+ node = ParallelAssignmentNode(pos=self.pos, stats=assignments).analyse_expressions(env)
+ if check_node:
+ node = StatListNode(pos=self.pos, stats=[check_node, node])
+ for ref in refs[::-1]:
+ node = UtilNodes.LetNode(ref, node)
+ return node
+
+ def unroll_rhs(self, env):
+ from . import ExprNodes
+ if not isinstance(self.lhs, ExprNodes.TupleNode):
+ return
+ if any(arg.is_starred for arg in self.lhs.args):
+ return
+
+ unrolled = self.unroll(self.rhs, len(self.lhs.args), env)
+ if not unrolled:
+ return
+ check_node, refs, rhs = unrolled
+ return self.unroll_assignments(refs, check_node, self.lhs.args, rhs, env)
+
+ def unroll_lhs(self, env):
+ if self.lhs.type.is_ctuple:
+ # Handled directly.
+ return
+ from . import ExprNodes
+ if not isinstance(self.rhs, ExprNodes.TupleNode):
+ return
+
+ unrolled = self.unroll(self.lhs, len(self.rhs.args), env)
+ if not unrolled:
+ return
+ check_node, refs, lhs = unrolled
+ return self.unroll_assignments(refs, check_node, lhs, self.rhs.args, env)
+
+ def generate_rhs_evaluation_code(self, code):
+ self.rhs.generate_evaluation_code(code)
+
+ def generate_assignment_code(self, code, overloaded_assignment=False):
+ if self.is_overloaded_assignment:
+ self.lhs.generate_assignment_code(
+ self.rhs,
+ code,
+ overloaded_assignment=self.is_overloaded_assignment,
+ exception_check=self.exception_check,
+ exception_value=self.exception_value)
+ else:
+ self.lhs.generate_assignment_code(self.rhs, code)
+
+ def generate_function_definitions(self, env, code):
+ self.rhs.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ self.lhs.annotate(code)
+ self.rhs.annotate(code)
+
+
+class CascadedAssignmentNode(AssignmentNode):
+ # An assignment with multiple left hand sides:
+ #
+ # a = b = c
+ #
+ # lhs_list [ExprNode] Left hand sides
+ # rhs ExprNode Right hand sides
+ #
+ # Used internally:
+ #
+ # coerced_values [ExprNode] RHS coerced to all distinct LHS types
+ # cloned_values [ExprNode] cloned RHS value for each LHS
+ # assignment_overloads [Bool] If each assignment uses a C++ operator=
+
+ child_attrs = ["lhs_list", "rhs", "coerced_values", "cloned_values"]
+ cloned_values = None
+ coerced_values = None
+ assignment_overloads = None
+
+ def analyse_declarations(self, env):
+ for lhs in self.lhs_list:
+ lhs.analyse_target_declaration(env)
+
+ def analyse_types(self, env, use_temp=0):
+ from .ExprNodes import CloneNode, ProxyNode
+
+ # collect distinct types used on the LHS
+ lhs_types = set()
+ for i, lhs in enumerate(self.lhs_list):
+ lhs = self.lhs_list[i] = lhs.analyse_target_types(env)
+ lhs.gil_assignment_check(env)
+ lhs_types.add(lhs.type)
+
+ rhs = self.rhs.analyse_types(env)
+ # common special case: only one type needed on the LHS => coerce only once
+ if len(lhs_types) == 1:
+ # Avoid coercion for overloaded assignment operators.
+ if next(iter(lhs_types)).is_cpp_class:
+ op = env.lookup_operator('=', [lhs, self.rhs])
+ if not op:
+ rhs = rhs.coerce_to(lhs_types.pop(), env)
+ else:
+ rhs = rhs.coerce_to(lhs_types.pop(), env)
+
+ if not rhs.is_name and not rhs.is_literal and (
+ use_temp or rhs.is_attribute or rhs.type.is_pyobject):
+ rhs = rhs.coerce_to_temp(env)
+ else:
+ rhs = rhs.coerce_to_simple(env)
+ self.rhs = ProxyNode(rhs) if rhs.is_temp else rhs
+
+ # clone RHS and coerce it to all distinct LHS types
+ self.coerced_values = []
+ coerced_values = {}
+ self.assignment_overloads = []
+ for lhs in self.lhs_list:
+ overloaded = lhs.type.is_cpp_class and env.lookup_operator('=', [lhs, self.rhs])
+ self.assignment_overloads.append(overloaded)
+ if lhs.type not in coerced_values and lhs.type != rhs.type:
+ rhs = CloneNode(self.rhs)
+ if not overloaded:
+ rhs = rhs.coerce_to(lhs.type, env)
+ self.coerced_values.append(rhs)
+ coerced_values[lhs.type] = rhs
+
+ # clone coerced values for all LHS assignments
+ self.cloned_values = []
+ for lhs in self.lhs_list:
+ rhs = coerced_values.get(lhs.type, self.rhs)
+ self.cloned_values.append(CloneNode(rhs))
+ return self
+
+ def generate_rhs_evaluation_code(self, code):
+ self.rhs.generate_evaluation_code(code)
+
+ def generate_assignment_code(self, code, overloaded_assignment=False):
+ # prepare all coercions
+ for rhs in self.coerced_values:
+ rhs.generate_evaluation_code(code)
+ # assign clones to LHS
+ for lhs, rhs, overload in zip(self.lhs_list, self.cloned_values, self.assignment_overloads):
+ rhs.generate_evaluation_code(code)
+ lhs.generate_assignment_code(rhs, code, overloaded_assignment=overload)
+ # dispose of coerced values and original RHS
+ for rhs_value in self.coerced_values:
+ rhs_value.generate_disposal_code(code)
+ rhs_value.free_temps(code)
+ self.rhs.generate_disposal_code(code)
+ self.rhs.free_temps(code)
+
+ def generate_function_definitions(self, env, code):
+ self.rhs.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ for rhs in self.coerced_values:
+ rhs.annotate(code)
+ for lhs, rhs in zip(self.lhs_list, self.cloned_values):
+ lhs.annotate(code)
+ rhs.annotate(code)
+ self.rhs.annotate(code)
+
+
+class ParallelAssignmentNode(AssignmentNode):
+ # A combined packing/unpacking assignment:
+ #
+ # a, b, c = d, e, f
+ #
+ # This has been rearranged by the parser into
+ #
+ # a = d ; b = e ; c = f
+ #
+ # but we must evaluate all the right hand sides
+ # before assigning to any of the left hand sides.
+ #
+ # stats [AssignmentNode] The constituent assignments
+
+ child_attrs = ["stats"]
+
+ def analyse_declarations(self, env):
+ for stat in self.stats:
+ stat.analyse_declarations(env)
+
+ def analyse_expressions(self, env):
+ self.stats = [stat.analyse_types(env, use_temp=1)
+ for stat in self.stats]
+ return self
+
+# def analyse_expressions(self, env):
+# for stat in self.stats:
+# stat.analyse_expressions_1(env, use_temp=1)
+# for stat in self.stats:
+# stat.analyse_expressions_2(env)
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ for stat in self.stats:
+ stat.generate_rhs_evaluation_code(code)
+ for stat in self.stats:
+ stat.generate_assignment_code(code)
+
+ def generate_function_definitions(self, env, code):
+ for stat in self.stats:
+ stat.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ for stat in self.stats:
+ stat.annotate(code)
+
+
+class InPlaceAssignmentNode(AssignmentNode):
+ # An in place arithmetic operand:
+ #
+ # a += b
+ # a -= b
+ # ...
+ #
+ # lhs ExprNode Left hand side
+ # rhs ExprNode Right hand side
+ # operator char one of "+-*/%^&|"
+ #
+ # This code is a bit tricky because in order to obey Python
+ # semantics the sub-expressions (e.g. indices) of the lhs must
+ # not be evaluated twice. So we must re-use the values calculated
+ # in evaluation phase for the assignment phase as well.
+ # Fortunately, the type of the lhs node is fairly constrained
+ # (it must be a NameNode, AttributeNode, or IndexNode).
+
+ child_attrs = ["lhs", "rhs"]
+
+ def analyse_declarations(self, env):
+ self.lhs.analyse_target_declaration(env)
+
+ def analyse_types(self, env):
+ self.rhs = self.rhs.analyse_types(env)
+ self.lhs = self.lhs.analyse_target_types(env)
+
+ # When assigning to a fully indexed buffer or memoryview, coerce the rhs
+ if self.lhs.is_memview_index or self.lhs.is_buffer_access:
+ self.rhs = self.rhs.coerce_to(self.lhs.type, env)
+ elif self.lhs.type.is_string and self.operator in '+-':
+ # use pointer arithmetic for char* LHS instead of string concat
+ self.rhs = self.rhs.coerce_to(PyrexTypes.c_py_ssize_t_type, env)
+ return self
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ lhs, rhs = self.lhs, self.rhs
+ rhs.generate_evaluation_code(code)
+ lhs.generate_subexpr_evaluation_code(code)
+ c_op = self.operator
+ if c_op == "//":
+ c_op = "/"
+ elif c_op == "**":
+ error(self.pos, "No C inplace power operator")
+ if lhs.is_buffer_access or lhs.is_memview_index:
+ if lhs.type.is_pyobject:
+ error(self.pos, "In-place operators not allowed on object buffers in this release.")
+ if c_op in ('/', '%') and lhs.type.is_int and not code.globalstate.directives['cdivision']:
+ error(self.pos, "In-place non-c divide operators not allowed on int buffers.")
+ lhs.generate_buffer_setitem_code(rhs, code, c_op)
+ elif lhs.is_memview_slice:
+ error(self.pos, "Inplace operators not supported on memoryview slices")
+ else:
+ # C++
+ # TODO: make sure overload is declared
+ code.putln("%s %s= %s;" % (lhs.result(), c_op, rhs.result()))
+ lhs.generate_subexpr_disposal_code(code)
+ lhs.free_subexpr_temps(code)
+ rhs.generate_disposal_code(code)
+ rhs.free_temps(code)
+
+ def annotate(self, code):
+ self.lhs.annotate(code)
+ self.rhs.annotate(code)
+
+ def create_binop_node(self):
+ from . import ExprNodes
+ return ExprNodes.binop_node(self.pos, self.operator, self.lhs, self.rhs)
+
+
+class PrintStatNode(StatNode):
+ # print statement
+ #
+ # arg_tuple TupleNode
+ # stream ExprNode or None (stdout)
+ # append_newline boolean
+
+ child_attrs = ["arg_tuple", "stream"]
+
+ def analyse_expressions(self, env):
+ if self.stream:
+ stream = self.stream.analyse_expressions(env)
+ self.stream = stream.coerce_to_pyobject(env)
+ arg_tuple = self.arg_tuple.analyse_expressions(env)
+ self.arg_tuple = arg_tuple.coerce_to_pyobject(env)
+ env.use_utility_code(printing_utility_code)
+ if len(self.arg_tuple.args) == 1 and self.append_newline:
+ env.use_utility_code(printing_one_utility_code)
+ return self
+
+ nogil_check = Node.gil_error
+ gil_message = "Python print statement"
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ if self.stream:
+ self.stream.generate_evaluation_code(code)
+ stream_result = self.stream.py_result()
+ else:
+ stream_result = '0'
+ if len(self.arg_tuple.args) == 1 and self.append_newline:
+ arg = self.arg_tuple.args[0]
+ arg.generate_evaluation_code(code)
+
+ code.putln(
+ "if (__Pyx_PrintOne(%s, %s) < 0) %s" % (
+ stream_result,
+ arg.py_result(),
+ code.error_goto(self.pos)))
+ arg.generate_disposal_code(code)
+ arg.free_temps(code)
+ else:
+ self.arg_tuple.generate_evaluation_code(code)
+ code.putln(
+ "if (__Pyx_Print(%s, %s, %d) < 0) %s" % (
+ stream_result,
+ self.arg_tuple.py_result(),
+ self.append_newline,
+ code.error_goto(self.pos)))
+ self.arg_tuple.generate_disposal_code(code)
+ self.arg_tuple.free_temps(code)
+
+ if self.stream:
+ self.stream.generate_disposal_code(code)
+ self.stream.free_temps(code)
+
+ def generate_function_definitions(self, env, code):
+ if self.stream:
+ self.stream.generate_function_definitions(env, code)
+ self.arg_tuple.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ if self.stream:
+ self.stream.annotate(code)
+ self.arg_tuple.annotate(code)
+
+
+class ExecStatNode(StatNode):
+ # exec statement
+ #
+ # args [ExprNode]
+
+ child_attrs = ["args"]
+
+ def analyse_expressions(self, env):
+ for i, arg in enumerate(self.args):
+ arg = arg.analyse_expressions(env)
+ arg = arg.coerce_to_pyobject(env)
+ self.args[i] = arg
+ env.use_utility_code(Builtin.pyexec_utility_code)
+ return self
+
+ nogil_check = Node.gil_error
+ gil_message = "Python exec statement"
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ args = []
+ for arg in self.args:
+ arg.generate_evaluation_code(code)
+ args.append(arg.py_result())
+ args = tuple(args + ['0', '0'][:3-len(args)])
+ temp_result = code.funcstate.allocate_temp(PyrexTypes.py_object_type, manage_ref=True)
+ code.putln("%s = __Pyx_PyExec3(%s, %s, %s);" % ((temp_result,) + args))
+ for arg in self.args:
+ arg.generate_disposal_code(code)
+ arg.free_temps(code)
+ code.putln(
+ code.error_goto_if_null(temp_result, self.pos))
+ code.put_gotref(temp_result)
+ code.put_decref_clear(temp_result, py_object_type)
+ code.funcstate.release_temp(temp_result)
+
+ def annotate(self, code):
+ for arg in self.args:
+ arg.annotate(code)
+
+
+class DelStatNode(StatNode):
+ # del statement
+ #
+ # args [ExprNode]
+
+ child_attrs = ["args"]
+ ignore_nonexisting = False
+
+ def analyse_declarations(self, env):
+ for arg in self.args:
+ arg.analyse_target_declaration(env)
+
+ def analyse_expressions(self, env):
+ for i, arg in enumerate(self.args):
+ arg = self.args[i] = arg.analyse_target_expression(env, None)
+ if arg.type.is_pyobject or (arg.is_name and arg.type.is_memoryviewslice):
+ if arg.is_name and arg.entry.is_cglobal:
+ error(arg.pos, "Deletion of global C variable")
+ elif arg.type.is_ptr and arg.type.base_type.is_cpp_class:
+ self.cpp_check(env)
+ elif arg.type.is_cpp_class:
+ error(arg.pos, "Deletion of non-heap C++ object")
+ elif arg.is_subscript and arg.base.type is Builtin.bytearray_type:
+ pass # del ba[i]
+ else:
+ error(arg.pos, "Deletion of non-Python, non-C++ object")
+ #arg.release_target_temp(env)
+ return self
+
+ def nogil_check(self, env):
+ for arg in self.args:
+ if arg.type.is_pyobject:
+ self.gil_error()
+
+ gil_message = "Deleting Python object"
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ for arg in self.args:
+ if (arg.type.is_pyobject or
+ arg.type.is_memoryviewslice or
+ arg.is_subscript and arg.base.type is Builtin.bytearray_type):
+ arg.generate_deletion_code(
+ code, ignore_nonexisting=self.ignore_nonexisting)
+ elif arg.type.is_ptr and arg.type.base_type.is_cpp_class:
+ arg.generate_evaluation_code(code)
+ code.putln("delete %s;" % arg.result())
+ arg.generate_disposal_code(code)
+ arg.free_temps(code)
+ # else error reported earlier
+
+ def annotate(self, code):
+ for arg in self.args:
+ arg.annotate(code)
+
+
+class PassStatNode(StatNode):
+ # pass statement
+
+ child_attrs = []
+
+ def analyse_expressions(self, env):
+ return self
+
+ def generate_execution_code(self, code):
+ pass
+
+
+class IndirectionNode(StatListNode):
+ """
+ This adds an indirection so that the node can be shared and a subtree can
+ be removed at any time by clearing self.stats.
+ """
+
+ def __init__(self, stats):
+ super(IndirectionNode, self).__init__(stats[0].pos, stats=stats)
+
+
+class BreakStatNode(StatNode):
+
+ child_attrs = []
+ is_terminator = True
+
+ def analyse_expressions(self, env):
+ return self
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ if not code.break_label:
+ error(self.pos, "break statement not inside loop")
+ else:
+ code.put_goto(code.break_label)
+
+
+class ContinueStatNode(StatNode):
+
+ child_attrs = []
+ is_terminator = True
+
+ def analyse_expressions(self, env):
+ return self
+
+ def generate_execution_code(self, code):
+ if not code.continue_label:
+ error(self.pos, "continue statement not inside loop")
+ return
+ code.mark_pos(self.pos)
+ code.put_goto(code.continue_label)
+
+
+class ReturnStatNode(StatNode):
+ # return statement
+ #
+ # value ExprNode or None
+ # return_type PyrexType
+ # in_generator return inside of generator => raise StopIteration
+ # in_async_gen return inside of async generator
+
+ child_attrs = ["value"]
+ is_terminator = True
+ in_generator = False
+ in_async_gen = False
+
+ # Whether we are in a parallel section
+ in_parallel = False
+
+ def analyse_expressions(self, env):
+ return_type = env.return_type
+ self.return_type = return_type
+ if not return_type:
+ error(self.pos, "Return not inside a function body")
+ return self
+ if self.value:
+ if self.in_async_gen:
+ error(self.pos, "Return with value in async generator")
+ self.value = self.value.analyse_types(env)
+ if return_type.is_void or return_type.is_returncode:
+ error(self.value.pos, "Return with value in void function")
+ else:
+ self.value = self.value.coerce_to(env.return_type, env)
+ else:
+ if (not return_type.is_void
+ and not return_type.is_pyobject
+ and not return_type.is_returncode):
+ error(self.pos, "Return value required")
+ return self
+
+ def nogil_check(self, env):
+ if self.return_type.is_pyobject:
+ self.gil_error()
+
+ gil_message = "Returning Python object"
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ if not self.return_type:
+ # error reported earlier
+ return
+
+ value = self.value
+ if self.return_type.is_pyobject:
+ code.put_xdecref(Naming.retval_cname, self.return_type)
+ if value and value.is_none:
+ # Use specialised default handling for "return None".
+ value = None
+
+ if value:
+ value.generate_evaluation_code(code)
+ if self.return_type.is_memoryviewslice:
+ from . import MemoryView
+ MemoryView.put_acquire_memoryviewslice(
+ lhs_cname=Naming.retval_cname,
+ lhs_type=self.return_type,
+ lhs_pos=value.pos,
+ rhs=value,
+ code=code,
+ have_gil=self.in_nogil_context)
+ value.generate_post_assignment_code(code)
+ elif self.in_generator:
+ # return value == raise StopIteration(value), but uncatchable
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("ReturnWithStopIteration", "Coroutine.c"))
+ code.putln("%s = NULL; __Pyx_ReturnWithStopIteration(%s);" % (
+ Naming.retval_cname,
+ value.py_result()))
+ value.generate_disposal_code(code)
+ else:
+ value.make_owned_reference(code)
+ code.putln("%s = %s;" % (
+ Naming.retval_cname,
+ value.result_as(self.return_type)))
+ value.generate_post_assignment_code(code)
+ value.free_temps(code)
+ else:
+ if self.return_type.is_pyobject:
+ if self.in_generator:
+ if self.in_async_gen:
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("StopAsyncIteration", "Coroutine.c"))
+ code.put("PyErr_SetNone(__Pyx_PyExc_StopAsyncIteration); ")
+ code.putln("%s = NULL;" % Naming.retval_cname)
+ else:
+ code.put_init_to_py_none(Naming.retval_cname, self.return_type)
+ elif self.return_type.is_returncode:
+ self.put_return(code, self.return_type.default_value)
+
+ for cname, type in code.funcstate.temps_holding_reference():
+ code.put_decref_clear(cname, type)
+
+ code.put_goto(code.return_label)
+
+ def put_return(self, code, value):
+ if self.in_parallel:
+ code.putln_openmp("#pragma omp critical(__pyx_returning)")
+ code.putln("%s = %s;" % (Naming.retval_cname, value))
+
+ def generate_function_definitions(self, env, code):
+ if self.value is not None:
+ self.value.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ if self.value:
+ self.value.annotate(code)
+
+
+class RaiseStatNode(StatNode):
+ # raise statement
+ #
+ # exc_type ExprNode or None
+ # exc_value ExprNode or None
+ # exc_tb ExprNode or None
+ # cause ExprNode or None
+
+ child_attrs = ["exc_type", "exc_value", "exc_tb", "cause"]
+ is_terminator = True
+
+ def analyse_expressions(self, env):
+ if self.exc_type:
+ exc_type = self.exc_type.analyse_types(env)
+ self.exc_type = exc_type.coerce_to_pyobject(env)
+ if self.exc_value:
+ exc_value = self.exc_value.analyse_types(env)
+ self.exc_value = exc_value.coerce_to_pyobject(env)
+ if self.exc_tb:
+ exc_tb = self.exc_tb.analyse_types(env)
+ self.exc_tb = exc_tb.coerce_to_pyobject(env)
+ if self.cause:
+ cause = self.cause.analyse_types(env)
+ self.cause = cause.coerce_to_pyobject(env)
+ # special cases for builtin exceptions
+ self.builtin_exc_name = None
+ if self.exc_type and not self.exc_value and not self.exc_tb:
+ exc = self.exc_type
+ from . import ExprNodes
+ if (isinstance(exc, ExprNodes.SimpleCallNode) and
+ not (exc.args or (exc.arg_tuple is not None and exc.arg_tuple.args))):
+ exc = exc.function # extract the exception type
+ if exc.is_name and exc.entry.is_builtin:
+ self.builtin_exc_name = exc.name
+ if self.builtin_exc_name == 'MemoryError':
+ self.exc_type = None # has a separate implementation
+ return self
+
+ nogil_check = Node.gil_error
+ gil_message = "Raising exception"
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ if self.builtin_exc_name == 'MemoryError':
+ code.putln('PyErr_NoMemory(); %s' % code.error_goto(self.pos))
+ return
+
+ if self.exc_type:
+ self.exc_type.generate_evaluation_code(code)
+ type_code = self.exc_type.py_result()
+ if self.exc_type.is_name:
+ code.globalstate.use_entry_utility_code(self.exc_type.entry)
+ else:
+ type_code = "0"
+ if self.exc_value:
+ self.exc_value.generate_evaluation_code(code)
+ value_code = self.exc_value.py_result()
+ else:
+ value_code = "0"
+ if self.exc_tb:
+ self.exc_tb.generate_evaluation_code(code)
+ tb_code = self.exc_tb.py_result()
+ else:
+ tb_code = "0"
+ if self.cause:
+ self.cause.generate_evaluation_code(code)
+ cause_code = self.cause.py_result()
+ else:
+ cause_code = "0"
+ code.globalstate.use_utility_code(raise_utility_code)
+ code.putln(
+ "__Pyx_Raise(%s, %s, %s, %s);" % (
+ type_code,
+ value_code,
+ tb_code,
+ cause_code))
+ for obj in (self.exc_type, self.exc_value, self.exc_tb, self.cause):
+ if obj:
+ obj.generate_disposal_code(code)
+ obj.free_temps(code)
+ code.putln(
+ code.error_goto(self.pos))
+
+ def generate_function_definitions(self, env, code):
+ if self.exc_type is not None:
+ self.exc_type.generate_function_definitions(env, code)
+ if self.exc_value is not None:
+ self.exc_value.generate_function_definitions(env, code)
+ if self.exc_tb is not None:
+ self.exc_tb.generate_function_definitions(env, code)
+ if self.cause is not None:
+ self.cause.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ if self.exc_type:
+ self.exc_type.annotate(code)
+ if self.exc_value:
+ self.exc_value.annotate(code)
+ if self.exc_tb:
+ self.exc_tb.annotate(code)
+ if self.cause:
+ self.cause.annotate(code)
+
+
+class ReraiseStatNode(StatNode):
+
+ child_attrs = []
+ is_terminator = True
+
+ def analyse_expressions(self, env):
+ return self
+
+ nogil_check = Node.gil_error
+ gil_message = "Raising exception"
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ vars = code.funcstate.exc_vars
+ if vars:
+ code.globalstate.use_utility_code(restore_exception_utility_code)
+ code.put_giveref(vars[0])
+ code.put_giveref(vars[1])
+ # fresh exceptions may not have a traceback yet (-> finally!)
+ code.put_xgiveref(vars[2])
+ code.putln("__Pyx_ErrRestoreWithState(%s, %s, %s);" % tuple(vars))
+ for varname in vars:
+ code.put("%s = 0; " % varname)
+ code.putln()
+ code.putln(code.error_goto(self.pos))
+ else:
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("ReRaiseException", "Exceptions.c"))
+ code.putln("__Pyx_ReraiseException(); %s" % code.error_goto(self.pos))
+
+class AssertStatNode(StatNode):
+ # assert statement
+ #
+ # cond ExprNode
+ # value ExprNode or None
+
+ child_attrs = ["cond", "value"]
+
+ def analyse_expressions(self, env):
+ self.cond = self.cond.analyse_boolean_expression(env)
+ if self.value:
+ value = self.value.analyse_types(env)
+ if value.type is Builtin.tuple_type or not value.type.is_builtin_type:
+ # prevent tuple values from being interpreted as argument value tuples
+ from .ExprNodes import TupleNode
+ value = TupleNode(value.pos, args=[value], slow=True)
+ self.value = value.analyse_types(env, skip_children=True).coerce_to_pyobject(env)
+ else:
+ self.value = value.coerce_to_pyobject(env)
+ return self
+
+ nogil_check = Node.gil_error
+ gil_message = "Raising exception"
+
+ def generate_execution_code(self, code):
+ code.putln("#ifndef CYTHON_WITHOUT_ASSERTIONS")
+ code.putln("if (unlikely(!Py_OptimizeFlag)) {")
+ code.mark_pos(self.pos)
+ self.cond.generate_evaluation_code(code)
+ code.putln(
+ "if (unlikely(!%s)) {" % self.cond.result())
+ if self.value:
+ self.value.generate_evaluation_code(code)
+ code.putln(
+ "PyErr_SetObject(PyExc_AssertionError, %s);" % self.value.py_result())
+ self.value.generate_disposal_code(code)
+ self.value.free_temps(code)
+ else:
+ code.putln(
+ "PyErr_SetNone(PyExc_AssertionError);")
+ code.putln(
+ code.error_goto(self.pos))
+ code.putln(
+ "}")
+ self.cond.generate_disposal_code(code)
+ self.cond.free_temps(code)
+ code.putln(
+ "}")
+ code.putln("#endif")
+
+ def generate_function_definitions(self, env, code):
+ self.cond.generate_function_definitions(env, code)
+ if self.value is not None:
+ self.value.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ self.cond.annotate(code)
+ if self.value:
+ self.value.annotate(code)
+
+
+class IfStatNode(StatNode):
+ # if statement
+ #
+ # if_clauses [IfClauseNode]
+ # else_clause StatNode or None
+
+ child_attrs = ["if_clauses", "else_clause"]
+
+ def analyse_declarations(self, env):
+ for if_clause in self.if_clauses:
+ if_clause.analyse_declarations(env)
+ if self.else_clause:
+ self.else_clause.analyse_declarations(env)
+
+ def analyse_expressions(self, env):
+ self.if_clauses = [if_clause.analyse_expressions(env) for if_clause in self.if_clauses]
+ if self.else_clause:
+ self.else_clause = self.else_clause.analyse_expressions(env)
+ return self
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ end_label = code.new_label()
+ last = len(self.if_clauses)
+ if self.else_clause:
+ # If the 'else' clause is 'unlikely', then set the preceding 'if' clause to 'likely' to reflect that.
+ self._set_branch_hint(self.if_clauses[-1], self.else_clause, inverse=True)
+ else:
+ last -= 1 # avoid redundant goto at end of last if-clause
+ for i, if_clause in enumerate(self.if_clauses):
+ self._set_branch_hint(if_clause, if_clause.body)
+ if_clause.generate_execution_code(code, end_label, is_last=i == last)
+ if self.else_clause:
+ code.mark_pos(self.else_clause.pos)
+ code.putln("/*else*/ {")
+ self.else_clause.generate_execution_code(code)
+ code.putln("}")
+ code.put_label(end_label)
+
+ def _set_branch_hint(self, clause, statements_node, inverse=False):
+ if not statements_node.is_terminator:
+ return
+ if not isinstance(statements_node, StatListNode) or not statements_node.stats:
+ return
+ # Anything that unconditionally raises exceptions should be considered unlikely.
+ if isinstance(statements_node.stats[-1], (RaiseStatNode, ReraiseStatNode)):
+ if len(statements_node.stats) > 1:
+ # Allow simple statements before the 'raise', but no conditions, loops, etc.
+ non_branch_nodes = (ExprStatNode, AssignmentNode, DelStatNode, GlobalNode, NonlocalNode)
+ for node in statements_node.stats[:-1]:
+ if not isinstance(node, non_branch_nodes):
+ return
+ clause.branch_hint = 'likely' if inverse else 'unlikely'
+
+ def generate_function_definitions(self, env, code):
+ for clause in self.if_clauses:
+ clause.generate_function_definitions(env, code)
+ if self.else_clause is not None:
+ self.else_clause.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ for if_clause in self.if_clauses:
+ if_clause.annotate(code)
+ if self.else_clause:
+ self.else_clause.annotate(code)
+
+
+class IfClauseNode(Node):
+ # if or elif clause in an if statement
+ #
+ # condition ExprNode
+ # body StatNode
+
+ child_attrs = ["condition", "body"]
+ branch_hint = None
+
+ def analyse_declarations(self, env):
+ self.body.analyse_declarations(env)
+
+ def analyse_expressions(self, env):
+ self.condition = self.condition.analyse_temp_boolean_expression(env)
+ self.body = self.body.analyse_expressions(env)
+ return self
+
+ def generate_execution_code(self, code, end_label, is_last):
+ self.condition.generate_evaluation_code(code)
+ code.mark_pos(self.pos)
+ condition = self.condition.result()
+ if self.branch_hint:
+ condition = '%s(%s)' % (self.branch_hint, condition)
+ code.putln("if (%s) {" % condition)
+ self.condition.generate_disposal_code(code)
+ self.condition.free_temps(code)
+ self.body.generate_execution_code(code)
+ code.mark_pos(self.pos, trace=False)
+ if not (is_last or self.body.is_terminator):
+ code.put_goto(end_label)
+ code.putln("}")
+
+ def generate_function_definitions(self, env, code):
+ self.condition.generate_function_definitions(env, code)
+ self.body.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ self.condition.annotate(code)
+ self.body.annotate(code)
+
+
+class SwitchCaseNode(StatNode):
+ # Generated in the optimization of an if-elif-else node
+ #
+ # conditions [ExprNode]
+ # body StatNode
+
+ child_attrs = ['conditions', 'body']
+
+ def generate_condition_evaluation_code(self, code):
+ for cond in self.conditions:
+ cond.generate_evaluation_code(code)
+
+ def generate_execution_code(self, code):
+ num_conditions = len(self.conditions)
+ line_tracing_enabled = code.globalstate.directives['linetrace']
+ for i, cond in enumerate(self.conditions, 1):
+ code.putln("case %s:" % cond.result())
+ code.mark_pos(cond.pos) # Tracing code must appear *after* the 'case' statement.
+ if line_tracing_enabled and i < num_conditions:
+ # Allow fall-through after the line tracing code.
+ code.putln('CYTHON_FALLTHROUGH;')
+ self.body.generate_execution_code(code)
+ code.mark_pos(self.pos, trace=False)
+ code.putln("break;")
+
+ def generate_function_definitions(self, env, code):
+ for cond in self.conditions:
+ cond.generate_function_definitions(env, code)
+ self.body.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ for cond in self.conditions:
+ cond.annotate(code)
+ self.body.annotate(code)
+
+
+class SwitchStatNode(StatNode):
+ # Generated in the optimization of an if-elif-else node
+ #
+ # test ExprNode
+ # cases [SwitchCaseNode]
+ # else_clause StatNode or None
+
+ child_attrs = ['test', 'cases', 'else_clause']
+
+ def generate_execution_code(self, code):
+ self.test.generate_evaluation_code(code)
+ # Make sure all conditions are evaluated before going into the switch() statement.
+ # This is required in order to prevent any execution code from leaking into the space between the cases.
+ for case in self.cases:
+ case.generate_condition_evaluation_code(code)
+ code.mark_pos(self.pos)
+ code.putln("switch (%s) {" % self.test.result())
+ for case in self.cases:
+ case.generate_execution_code(code)
+ if self.else_clause is not None:
+ code.putln("default:")
+ self.else_clause.generate_execution_code(code)
+ code.putln("break;")
+ else:
+ # Always generate a default clause to prevent C compiler warnings
+ # about unmatched enum values (it was not the user who decided to
+ # generate the switch statement, so shouldn't be bothered).
+ code.putln("default: break;")
+ code.putln("}")
+ self.test.generate_disposal_code(code)
+ self.test.free_temps(code)
+
+ def generate_function_definitions(self, env, code):
+ self.test.generate_function_definitions(env, code)
+ for case in self.cases:
+ case.generate_function_definitions(env, code)
+ if self.else_clause is not None:
+ self.else_clause.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ self.test.annotate(code)
+ for case in self.cases:
+ case.annotate(code)
+ if self.else_clause is not None:
+ self.else_clause.annotate(code)
+
+
+class LoopNode(object):
+ pass
+
+
+class WhileStatNode(LoopNode, StatNode):
+ # while statement
+ #
+ # condition ExprNode
+ # body StatNode
+ # else_clause StatNode
+
+ child_attrs = ["condition", "body", "else_clause"]
+
+ def analyse_declarations(self, env):
+ self.body.analyse_declarations(env)
+ if self.else_clause:
+ self.else_clause.analyse_declarations(env)
+
+ def analyse_expressions(self, env):
+ if self.condition:
+ self.condition = self.condition.analyse_temp_boolean_expression(env)
+ self.body = self.body.analyse_expressions(env)
+ if self.else_clause:
+ self.else_clause = self.else_clause.analyse_expressions(env)
+ return self
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ old_loop_labels = code.new_loop_labels()
+ code.putln(
+ "while (1) {")
+ if self.condition:
+ self.condition.generate_evaluation_code(code)
+ self.condition.generate_disposal_code(code)
+ code.putln(
+ "if (!%s) break;" % self.condition.result())
+ self.condition.free_temps(code)
+ self.body.generate_execution_code(code)
+ code.put_label(code.continue_label)
+ code.putln("}")
+ break_label = code.break_label
+ code.set_loop_labels(old_loop_labels)
+ if self.else_clause:
+ code.mark_pos(self.else_clause.pos)
+ code.putln("/*else*/ {")
+ self.else_clause.generate_execution_code(code)
+ code.putln("}")
+ code.put_label(break_label)
+
+ def generate_function_definitions(self, env, code):
+ if self.condition:
+ self.condition.generate_function_definitions(env, code)
+ self.body.generate_function_definitions(env, code)
+ if self.else_clause is not None:
+ self.else_clause.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ if self.condition:
+ self.condition.annotate(code)
+ self.body.annotate(code)
+ if self.else_clause:
+ self.else_clause.annotate(code)
+
+
+class DictIterationNextNode(Node):
+ # Helper node for calling PyDict_Next() inside of a WhileStatNode
+ # and checking the dictionary size for changes. Created in
+ # Optimize.py.
+ child_attrs = ['dict_obj', 'expected_size', 'pos_index_var',
+ 'coerced_key_var', 'coerced_value_var', 'coerced_tuple_var',
+ 'key_target', 'value_target', 'tuple_target', 'is_dict_flag']
+
+ coerced_key_var = key_ref = None
+ coerced_value_var = value_ref = None
+ coerced_tuple_var = tuple_ref = None
+
+ def __init__(self, dict_obj, expected_size, pos_index_var,
+ key_target, value_target, tuple_target, is_dict_flag):
+ Node.__init__(
+ self, dict_obj.pos,
+ dict_obj=dict_obj,
+ expected_size=expected_size,
+ pos_index_var=pos_index_var,
+ key_target=key_target,
+ value_target=value_target,
+ tuple_target=tuple_target,
+ is_dict_flag=is_dict_flag,
+ is_temp=True,
+ type=PyrexTypes.c_bint_type)
+
+ def analyse_expressions(self, env):
+ from . import ExprNodes
+ self.dict_obj = self.dict_obj.analyse_types(env)
+ self.expected_size = self.expected_size.analyse_types(env)
+ if self.pos_index_var:
+ self.pos_index_var = self.pos_index_var.analyse_types(env)
+ if self.key_target:
+ self.key_target = self.key_target.analyse_target_types(env)
+ self.key_ref = ExprNodes.TempNode(self.key_target.pos, PyrexTypes.py_object_type)
+ self.coerced_key_var = self.key_ref.coerce_to(self.key_target.type, env)
+ if self.value_target:
+ self.value_target = self.value_target.analyse_target_types(env)
+ self.value_ref = ExprNodes.TempNode(self.value_target.pos, type=PyrexTypes.py_object_type)
+ self.coerced_value_var = self.value_ref.coerce_to(self.value_target.type, env)
+ if self.tuple_target:
+ self.tuple_target = self.tuple_target.analyse_target_types(env)
+ self.tuple_ref = ExprNodes.TempNode(self.tuple_target.pos, PyrexTypes.py_object_type)
+ self.coerced_tuple_var = self.tuple_ref.coerce_to(self.tuple_target.type, env)
+ self.is_dict_flag = self.is_dict_flag.analyse_types(env)
+ return self
+
+ def generate_function_definitions(self, env, code):
+ self.dict_obj.generate_function_definitions(env, code)
+
+ def generate_execution_code(self, code):
+ code.globalstate.use_utility_code(UtilityCode.load_cached("dict_iter", "Optimize.c"))
+ self.dict_obj.generate_evaluation_code(code)
+
+ assignments = []
+ temp_addresses = []
+ for var, result, target in [(self.key_ref, self.coerced_key_var, self.key_target),
+ (self.value_ref, self.coerced_value_var, self.value_target),
+ (self.tuple_ref, self.coerced_tuple_var, self.tuple_target)]:
+ if target is None:
+ addr = 'NULL'
+ else:
+ assignments.append((var, result, target))
+ var.allocate(code)
+ addr = '&%s' % var.result()
+ temp_addresses.append(addr)
+
+ result_temp = code.funcstate.allocate_temp(PyrexTypes.c_int_type, False)
+ code.putln("%s = __Pyx_dict_iter_next(%s, %s, &%s, %s, %s, %s, %s);" % (
+ result_temp,
+ self.dict_obj.py_result(),
+ self.expected_size.result(),
+ self.pos_index_var.result(),
+ temp_addresses[0],
+ temp_addresses[1],
+ temp_addresses[2],
+ self.is_dict_flag.result()
+ ))
+ code.putln("if (unlikely(%s == 0)) break;" % result_temp)
+ code.putln(code.error_goto_if("%s == -1" % result_temp, self.pos))
+ code.funcstate.release_temp(result_temp)
+
+ # evaluate all coercions before the assignments
+ for var, result, target in assignments:
+ code.put_gotref(var.result())
+ for var, result, target in assignments:
+ result.generate_evaluation_code(code)
+ for var, result, target in assignments:
+ target.generate_assignment_code(result, code)
+ var.release(code)
+
+
+class SetIterationNextNode(Node):
+ # Helper node for calling _PySet_NextEntry() inside of a WhileStatNode
+ # and checking the set size for changes. Created in Optimize.py.
+ child_attrs = ['set_obj', 'expected_size', 'pos_index_var',
+ 'coerced_value_var', 'value_target', 'is_set_flag']
+
+ coerced_value_var = value_ref = None
+
+ def __init__(self, set_obj, expected_size, pos_index_var, value_target, is_set_flag):
+ Node.__init__(
+ self, set_obj.pos,
+ set_obj=set_obj,
+ expected_size=expected_size,
+ pos_index_var=pos_index_var,
+ value_target=value_target,
+ is_set_flag=is_set_flag,
+ is_temp=True,
+ type=PyrexTypes.c_bint_type)
+
+ def analyse_expressions(self, env):
+ from . import ExprNodes
+ self.set_obj = self.set_obj.analyse_types(env)
+ self.expected_size = self.expected_size.analyse_types(env)
+ self.pos_index_var = self.pos_index_var.analyse_types(env)
+ self.value_target = self.value_target.analyse_target_types(env)
+ self.value_ref = ExprNodes.TempNode(self.value_target.pos, type=PyrexTypes.py_object_type)
+ self.coerced_value_var = self.value_ref.coerce_to(self.value_target.type, env)
+ self.is_set_flag = self.is_set_flag.analyse_types(env)
+ return self
+
+ def generate_function_definitions(self, env, code):
+ self.set_obj.generate_function_definitions(env, code)
+
+ def generate_execution_code(self, code):
+ code.globalstate.use_utility_code(UtilityCode.load_cached("set_iter", "Optimize.c"))
+ self.set_obj.generate_evaluation_code(code)
+
+ value_ref = self.value_ref
+ value_ref.allocate(code)
+
+ result_temp = code.funcstate.allocate_temp(PyrexTypes.c_int_type, False)
+ code.putln("%s = __Pyx_set_iter_next(%s, %s, &%s, &%s, %s);" % (
+ result_temp,
+ self.set_obj.py_result(),
+ self.expected_size.result(),
+ self.pos_index_var.result(),
+ value_ref.result(),
+ self.is_set_flag.result()
+ ))
+ code.putln("if (unlikely(%s == 0)) break;" % result_temp)
+ code.putln(code.error_goto_if("%s == -1" % result_temp, self.pos))
+ code.funcstate.release_temp(result_temp)
+
+ # evaluate all coercions before the assignments
+ code.put_gotref(value_ref.result())
+ self.coerced_value_var.generate_evaluation_code(code)
+ self.value_target.generate_assignment_code(self.coerced_value_var, code)
+ value_ref.release(code)
+
+
+def ForStatNode(pos, **kw):
+ if 'iterator' in kw:
+ if kw['iterator'].is_async:
+ return AsyncForStatNode(pos, **kw)
+ else:
+ return ForInStatNode(pos, **kw)
+ else:
+ return ForFromStatNode(pos, **kw)
+
+
+class _ForInStatNode(LoopNode, StatNode):
+ # Base class of 'for-in' statements.
+ #
+ # target ExprNode
+ # iterator IteratorNode | AIterAwaitExprNode(AsyncIteratorNode)
+ # body StatNode
+ # else_clause StatNode
+ # item NextNode | AwaitExprNode(AsyncNextNode)
+ # is_async boolean true for 'async for' statements
+
+ child_attrs = ["target", "item", "iterator", "body", "else_clause"]
+ item = None
+ is_async = False
+
+ def _create_item_node(self):
+ raise NotImplementedError("must be implemented by subclasses")
+
+ def analyse_declarations(self, env):
+ self.target.analyse_target_declaration(env)
+ self.body.analyse_declarations(env)
+ if self.else_clause:
+ self.else_clause.analyse_declarations(env)
+ self._create_item_node()
+
+ def analyse_expressions(self, env):
+ self.target = self.target.analyse_target_types(env)
+ self.iterator = self.iterator.analyse_expressions(env)
+ self._create_item_node() # must rewrap self.item after analysis
+ self.item = self.item.analyse_expressions(env)
+ if (not self.is_async and
+ (self.iterator.type.is_ptr or self.iterator.type.is_array) and
+ self.target.type.assignable_from(self.iterator.type)):
+ # C array slice optimization.
+ pass
+ else:
+ self.item = self.item.coerce_to(self.target.type, env)
+ self.body = self.body.analyse_expressions(env)
+ if self.else_clause:
+ self.else_clause = self.else_clause.analyse_expressions(env)
+ return self
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ old_loop_labels = code.new_loop_labels()
+ self.iterator.generate_evaluation_code(code)
+ code.putln("for (;;) {")
+ self.item.generate_evaluation_code(code)
+ self.target.generate_assignment_code(self.item, code)
+ self.body.generate_execution_code(code)
+ code.mark_pos(self.pos)
+ code.put_label(code.continue_label)
+ code.putln("}")
+ break_label = code.break_label
+ code.set_loop_labels(old_loop_labels)
+
+ if self.else_clause:
+ # in nested loops, the 'else' block can contain a
+ # 'continue' statement for the outer loop, but we may need
+ # to generate cleanup code before taking that path, so we
+ # intercept it here
+ orig_continue_label = code.continue_label
+ code.continue_label = code.new_label('outer_continue')
+
+ code.putln("/*else*/ {")
+ self.else_clause.generate_execution_code(code)
+ code.putln("}")
+
+ if code.label_used(code.continue_label):
+ code.put_goto(break_label)
+ code.mark_pos(self.pos)
+ code.put_label(code.continue_label)
+ self.iterator.generate_disposal_code(code)
+ code.put_goto(orig_continue_label)
+ code.set_loop_labels(old_loop_labels)
+
+ code.mark_pos(self.pos)
+ if code.label_used(break_label):
+ code.put_label(break_label)
+ self.iterator.generate_disposal_code(code)
+ self.iterator.free_temps(code)
+
+ def generate_function_definitions(self, env, code):
+ self.target.generate_function_definitions(env, code)
+ self.iterator.generate_function_definitions(env, code)
+ self.body.generate_function_definitions(env, code)
+ if self.else_clause is not None:
+ self.else_clause.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ self.target.annotate(code)
+ self.iterator.annotate(code)
+ self.body.annotate(code)
+ if self.else_clause:
+ self.else_clause.annotate(code)
+ self.item.annotate(code)
+
+
+class ForInStatNode(_ForInStatNode):
+ # 'for' statement
+
+ is_async = False
+
+ def _create_item_node(self):
+ from .ExprNodes import NextNode
+ self.item = NextNode(self.iterator)
+
+
+class AsyncForStatNode(_ForInStatNode):
+ # 'async for' statement
+ #
+ # iterator AIterAwaitExprNode(AsyncIteratorNode)
+ # item AwaitIterNextExprNode(AsyncIteratorNode)
+
+ is_async = True
+
+ def __init__(self, pos, **kw):
+ assert 'item' not in kw
+ from . import ExprNodes
+ # AwaitExprNodes must appear before running MarkClosureVisitor
+ kw['item'] = ExprNodes.AwaitIterNextExprNode(kw['iterator'].pos, arg=None)
+ _ForInStatNode.__init__(self, pos, **kw)
+
+ def _create_item_node(self):
+ from . import ExprNodes
+ self.item.arg = ExprNodes.AsyncNextNode(self.iterator)
+
+
+class ForFromStatNode(LoopNode, StatNode):
+ # for name from expr rel name rel expr
+ #
+ # target NameNode
+ # bound1 ExprNode
+ # relation1 string
+ # relation2 string
+ # bound2 ExprNode
+ # step ExprNode or None
+ # body StatNode
+ # else_clause StatNode or None
+ #
+ # Used internally:
+ #
+ # from_range bool
+ # is_py_target bool
+ # loopvar_node ExprNode (usually a NameNode or temp node)
+ # py_loopvar_node PyTempNode or None
+ child_attrs = ["target", "bound1", "bound2", "step", "body", "else_clause"]
+
+ is_py_target = False
+ loopvar_node = None
+ py_loopvar_node = None
+ from_range = False
+
+ gil_message = "For-loop using object bounds or target"
+
+ def nogil_check(self, env):
+ for x in (self.target, self.bound1, self.bound2):
+ if x.type.is_pyobject:
+ self.gil_error()
+
+ def analyse_declarations(self, env):
+ self.target.analyse_target_declaration(env)
+ self.body.analyse_declarations(env)
+ if self.else_clause:
+ self.else_clause.analyse_declarations(env)
+
+ def analyse_expressions(self, env):
+ from . import ExprNodes
+ self.target = self.target.analyse_target_types(env)
+ self.bound1 = self.bound1.analyse_types(env)
+ self.bound2 = self.bound2.analyse_types(env)
+ if self.step is not None:
+ if isinstance(self.step, ExprNodes.UnaryMinusNode):
+ warning(self.step.pos, "Probable infinite loop in for-from-by statement. "
+ "Consider switching the directions of the relations.", 2)
+ self.step = self.step.analyse_types(env)
+
+ self.set_up_loop(env)
+ target_type = self.target.type
+ if not (target_type.is_pyobject or target_type.is_numeric):
+ error(self.target.pos, "for-from loop variable must be c numeric type or Python object")
+
+ self.body = self.body.analyse_expressions(env)
+ if self.else_clause:
+ self.else_clause = self.else_clause.analyse_expressions(env)
+ return self
+
+ def set_up_loop(self, env):
+ from . import ExprNodes
+
+ target_type = self.target.type
+ if target_type.is_numeric:
+ loop_type = target_type
+ else:
+ if target_type.is_enum:
+ warning(self.target.pos,
+ "Integer loops over enum values are fragile. Please cast to a safe integer type instead.")
+ loop_type = PyrexTypes.c_long_type if target_type.is_pyobject else PyrexTypes.c_int_type
+ if not self.bound1.type.is_pyobject:
+ loop_type = PyrexTypes.widest_numeric_type(loop_type, self.bound1.type)
+ if not self.bound2.type.is_pyobject:
+ loop_type = PyrexTypes.widest_numeric_type(loop_type, self.bound2.type)
+ if self.step is not None and not self.step.type.is_pyobject:
+ loop_type = PyrexTypes.widest_numeric_type(loop_type, self.step.type)
+ self.bound1 = self.bound1.coerce_to(loop_type, env)
+ self.bound2 = self.bound2.coerce_to(loop_type, env)
+ if not self.bound2.is_literal:
+ self.bound2 = self.bound2.coerce_to_temp(env)
+ if self.step is not None:
+ self.step = self.step.coerce_to(loop_type, env)
+ if not self.step.is_literal:
+ self.step = self.step.coerce_to_temp(env)
+
+ if target_type.is_numeric or target_type.is_enum:
+ self.is_py_target = False
+ if isinstance(self.target, ExprNodes.BufferIndexNode):
+ raise error(self.pos, "Buffer or memoryview slicing/indexing not allowed as for-loop target.")
+ self.loopvar_node = self.target
+ self.py_loopvar_node = None
+ else:
+ self.is_py_target = True
+ c_loopvar_node = ExprNodes.TempNode(self.pos, loop_type, env)
+ self.loopvar_node = c_loopvar_node
+ self.py_loopvar_node = ExprNodes.CloneNode(c_loopvar_node).coerce_to_pyobject(env)
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ old_loop_labels = code.new_loop_labels()
+ from_range = self.from_range
+ self.bound1.generate_evaluation_code(code)
+ self.bound2.generate_evaluation_code(code)
+ offset, incop = self.relation_table[self.relation1]
+ if self.step is not None:
+ self.step.generate_evaluation_code(code)
+ step = self.step.result()
+ incop = "%s=%s" % (incop[0], step) # e.g. '++' => '+= STEP'
+ else:
+ step = '1'
+
+ from . import ExprNodes
+ if isinstance(self.loopvar_node, ExprNodes.TempNode):
+ self.loopvar_node.allocate(code)
+ if isinstance(self.py_loopvar_node, ExprNodes.TempNode):
+ self.py_loopvar_node.allocate(code)
+
+ loopvar_type = PyrexTypes.c_long_type if self.target.type.is_enum else self.target.type
+
+ if from_range and not self.is_py_target:
+ loopvar_name = code.funcstate.allocate_temp(loopvar_type, False)
+ else:
+ loopvar_name = self.loopvar_node.result()
+ if loopvar_type.is_int and not loopvar_type.signed and self.relation2[0] == '>':
+ # Handle the case where the endpoint of an unsigned int iteration
+ # is within step of 0.
+ code.putln("for (%s = %s%s + %s; %s %s %s + %s; ) { %s%s;" % (
+ loopvar_name,
+ self.bound1.result(), offset, step,
+ loopvar_name, self.relation2, self.bound2.result(), step,
+ loopvar_name, incop))
+ else:
+ code.putln("for (%s = %s%s; %s %s %s; %s%s) {" % (
+ loopvar_name,
+ self.bound1.result(), offset,
+ loopvar_name, self.relation2, self.bound2.result(),
+ loopvar_name, incop))
+
+ coerced_loopvar_node = self.py_loopvar_node
+ if coerced_loopvar_node is None and from_range:
+ coerced_loopvar_node = ExprNodes.RawCNameExprNode(self.target.pos, loopvar_type, loopvar_name)
+ if coerced_loopvar_node is not None:
+ coerced_loopvar_node.generate_evaluation_code(code)
+ self.target.generate_assignment_code(coerced_loopvar_node, code)
+
+ self.body.generate_execution_code(code)
+ code.put_label(code.continue_label)
+
+ if not from_range and self.py_loopvar_node:
+ # This mess is to make for..from loops with python targets behave
+ # exactly like those with C targets with regards to re-assignment
+ # of the loop variable.
+ if self.target.entry.is_pyglobal:
+ # We know target is a NameNode, this is the only ugly case.
+ target_node = ExprNodes.PyTempNode(self.target.pos, None)
+ target_node.allocate(code)
+ interned_cname = code.intern_identifier(self.target.entry.name)
+ if self.target.entry.scope.is_module_scope:
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("GetModuleGlobalName", "ObjectHandling.c"))
+ lookup_func = '__Pyx_GetModuleGlobalName(%s, %s); %s'
+ else:
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("GetNameInClass", "ObjectHandling.c"))
+ lookup_func = '__Pyx_GetNameInClass(%s, {}, %s); %s'.format(
+ self.target.entry.scope.namespace_cname)
+ code.putln(lookup_func % (
+ target_node.result(),
+ interned_cname,
+ code.error_goto_if_null(target_node.result(), self.target.pos)))
+ code.put_gotref(target_node.result())
+ else:
+ target_node = self.target
+ from_py_node = ExprNodes.CoerceFromPyTypeNode(
+ self.loopvar_node.type, target_node, self.target.entry.scope)
+ from_py_node.temp_code = loopvar_name
+ from_py_node.generate_result_code(code)
+ if self.target.entry.is_pyglobal:
+ code.put_decref(target_node.result(), target_node.type)
+ target_node.release(code)
+
+ code.putln("}")
+
+ if not from_range and self.py_loopvar_node:
+ # This is potentially wasteful, but we don't want the semantics to
+ # depend on whether or not the loop is a python type.
+ self.py_loopvar_node.generate_evaluation_code(code)
+ self.target.generate_assignment_code(self.py_loopvar_node, code)
+ if from_range and not self.is_py_target:
+ code.funcstate.release_temp(loopvar_name)
+
+ break_label = code.break_label
+ code.set_loop_labels(old_loop_labels)
+ if self.else_clause:
+ code.putln("/*else*/ {")
+ self.else_clause.generate_execution_code(code)
+ code.putln("}")
+ code.put_label(break_label)
+ self.bound1.generate_disposal_code(code)
+ self.bound1.free_temps(code)
+ self.bound2.generate_disposal_code(code)
+ self.bound2.free_temps(code)
+ if isinstance(self.loopvar_node, ExprNodes.TempNode):
+ self.loopvar_node.release(code)
+ if isinstance(self.py_loopvar_node, ExprNodes.TempNode):
+ self.py_loopvar_node.release(code)
+ if self.step is not None:
+ self.step.generate_disposal_code(code)
+ self.step.free_temps(code)
+
+ relation_table = {
+ # {relop : (initial offset, increment op)}
+ '<=': ("", "++"),
+ '<' : ("+1", "++"),
+ '>=': ("", "--"),
+ '>' : ("-1", "--"),
+ }
+
+ def generate_function_definitions(self, env, code):
+ self.target.generate_function_definitions(env, code)
+ self.bound1.generate_function_definitions(env, code)
+ self.bound2.generate_function_definitions(env, code)
+ if self.step is not None:
+ self.step.generate_function_definitions(env, code)
+ self.body.generate_function_definitions(env, code)
+ if self.else_clause is not None:
+ self.else_clause.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ self.target.annotate(code)
+ self.bound1.annotate(code)
+ self.bound2.annotate(code)
+ if self.step:
+ self.step.annotate(code)
+ self.body.annotate(code)
+ if self.else_clause:
+ self.else_clause.annotate(code)
+
+
+class WithStatNode(StatNode):
+ """
+ Represents a Python with statement.
+
+ Implemented by the WithTransform as follows:
+
+ MGR = EXPR
+ EXIT = MGR.__exit__
+ VALUE = MGR.__enter__()
+ EXC = True
+ try:
+ try:
+ TARGET = VALUE # optional
+ BODY
+ except:
+ EXC = False
+ if not EXIT(*EXCINFO):
+ raise
+ finally:
+ if EXC:
+ EXIT(None, None, None)
+ MGR = EXIT = VALUE = None
+ """
+ # manager The with statement manager object
+ # target ExprNode the target lhs of the __enter__() call
+ # body StatNode
+ # enter_call ExprNode the call to the __enter__() method
+ # exit_var String the cname of the __exit__() method reference
+
+ child_attrs = ["manager", "enter_call", "target", "body"]
+
+ enter_call = None
+ target_temp = None
+
+ def analyse_declarations(self, env):
+ self.manager.analyse_declarations(env)
+ self.enter_call.analyse_declarations(env)
+ self.body.analyse_declarations(env)
+
+ def analyse_expressions(self, env):
+ self.manager = self.manager.analyse_types(env)
+ self.enter_call = self.enter_call.analyse_types(env)
+ if self.target:
+ # set up target_temp before descending into body (which uses it)
+ from .ExprNodes import TempNode
+ self.target_temp = TempNode(self.enter_call.pos, self.enter_call.type)
+ self.body = self.body.analyse_expressions(env)
+ return self
+
+ def generate_function_definitions(self, env, code):
+ self.manager.generate_function_definitions(env, code)
+ self.enter_call.generate_function_definitions(env, code)
+ self.body.generate_function_definitions(env, code)
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ code.putln("/*with:*/ {")
+ self.manager.generate_evaluation_code(code)
+ self.exit_var = code.funcstate.allocate_temp(py_object_type, manage_ref=False)
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("PyObjectLookupSpecial", "ObjectHandling.c"))
+ code.putln("%s = __Pyx_PyObject_LookupSpecial(%s, %s); %s" % (
+ self.exit_var,
+ self.manager.py_result(),
+ code.intern_identifier(EncodedString('__aexit__' if self.is_async else '__exit__')),
+ code.error_goto_if_null(self.exit_var, self.pos),
+ ))
+ code.put_gotref(self.exit_var)
+
+ # need to free exit_var in the face of exceptions during setup
+ old_error_label = code.new_error_label()
+ intermediate_error_label = code.error_label
+
+ self.enter_call.generate_evaluation_code(code)
+ if self.target:
+ # The temp result will be cleaned up by the WithTargetAssignmentStatNode
+ # after assigning its result to the target of the 'with' statement.
+ self.target_temp.allocate(code)
+ self.enter_call.make_owned_reference(code)
+ code.putln("%s = %s;" % (self.target_temp.result(), self.enter_call.result()))
+ self.enter_call.generate_post_assignment_code(code)
+ else:
+ self.enter_call.generate_disposal_code(code)
+ self.enter_call.free_temps(code)
+
+ self.manager.generate_disposal_code(code)
+ self.manager.free_temps(code)
+
+ code.error_label = old_error_label
+ self.body.generate_execution_code(code)
+
+ if code.label_used(intermediate_error_label):
+ step_over_label = code.new_label()
+ code.put_goto(step_over_label)
+ code.put_label(intermediate_error_label)
+ code.put_decref_clear(self.exit_var, py_object_type)
+ code.put_goto(old_error_label)
+ code.put_label(step_over_label)
+
+ code.funcstate.release_temp(self.exit_var)
+ code.putln('}')
+
+
+class WithTargetAssignmentStatNode(AssignmentNode):
+ # The target assignment of the 'with' statement value (return
+ # value of the __enter__() call).
+ #
+ # This is a special cased assignment that properly cleans up the RHS.
+ #
+ # lhs ExprNode the assignment target
+ # rhs ExprNode a (coerced) TempNode for the rhs (from WithStatNode)
+ # with_node WithStatNode the surrounding with-statement
+
+ child_attrs = ["rhs", "lhs"]
+ with_node = None
+ rhs = None
+
+ def analyse_declarations(self, env):
+ self.lhs.analyse_target_declaration(env)
+
+ def analyse_expressions(self, env):
+ self.lhs = self.lhs.analyse_target_types(env)
+ self.lhs.gil_assignment_check(env)
+ self.rhs = self.with_node.target_temp.coerce_to(self.lhs.type, env)
+ return self
+
+ def generate_execution_code(self, code):
+ self.rhs.generate_evaluation_code(code)
+ self.lhs.generate_assignment_code(self.rhs, code)
+ self.with_node.target_temp.release(code)
+
+ def annotate(self, code):
+ self.lhs.annotate(code)
+ self.rhs.annotate(code)
+
+
+class TryExceptStatNode(StatNode):
+ # try .. except statement
+ #
+ # body StatNode
+ # except_clauses [ExceptClauseNode]
+ # else_clause StatNode or None
+
+ child_attrs = ["body", "except_clauses", "else_clause"]
+ in_generator = False
+
+ def analyse_declarations(self, env):
+ self.body.analyse_declarations(env)
+ for except_clause in self.except_clauses:
+ except_clause.analyse_declarations(env)
+ if self.else_clause:
+ self.else_clause.analyse_declarations(env)
+
+ def analyse_expressions(self, env):
+ self.body = self.body.analyse_expressions(env)
+ default_clause_seen = 0
+ for i, except_clause in enumerate(self.except_clauses):
+ except_clause = self.except_clauses[i] = except_clause.analyse_expressions(env)
+ if default_clause_seen:
+ error(except_clause.pos, "default 'except:' must be last")
+ if not except_clause.pattern:
+ default_clause_seen = 1
+ self.has_default_clause = default_clause_seen
+ if self.else_clause:
+ self.else_clause = self.else_clause.analyse_expressions(env)
+ return self
+
+ nogil_check = Node.gil_error
+ gil_message = "Try-except statement"
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos) # before changing the error label, in case of tracing errors
+ code.putln("{")
+
+ old_return_label = code.return_label
+ old_break_label = code.break_label
+ old_continue_label = code.continue_label
+ old_error_label = code.new_error_label()
+ our_error_label = code.error_label
+ except_end_label = code.new_label('exception_handled')
+ except_error_label = code.new_label('except_error')
+ except_return_label = code.new_label('except_return')
+ try_return_label = code.new_label('try_return')
+ try_break_label = code.new_label('try_break') if old_break_label else None
+ try_continue_label = code.new_label('try_continue') if old_continue_label else None
+ try_end_label = code.new_label('try_end')
+
+ exc_save_vars = [code.funcstate.allocate_temp(py_object_type, False)
+ for _ in range(3)]
+ save_exc = code.insertion_point()
+ code.putln(
+ "/*try:*/ {")
+ code.return_label = try_return_label
+ code.break_label = try_break_label
+ code.continue_label = try_continue_label
+ self.body.generate_execution_code(code)
+ code.mark_pos(self.pos, trace=False)
+ code.putln(
+ "}")
+ temps_to_clean_up = code.funcstate.all_free_managed_temps()
+ can_raise = code.label_used(our_error_label)
+
+ if can_raise:
+ # inject code before the try block to save away the exception state
+ code.globalstate.use_utility_code(reset_exception_utility_code)
+ if not self.in_generator:
+ save_exc.putln("__Pyx_PyThreadState_declare")
+ save_exc.putln("__Pyx_PyThreadState_assign")
+ save_exc.putln("__Pyx_ExceptionSave(%s);" % (
+ ', '.join(['&%s' % var for var in exc_save_vars])))
+ for var in exc_save_vars:
+ save_exc.put_xgotref(var)
+
+ def restore_saved_exception():
+ for name in exc_save_vars:
+ code.put_xgiveref(name)
+ code.putln("__Pyx_ExceptionReset(%s);" %
+ ', '.join(exc_save_vars))
+ else:
+ # try block cannot raise exceptions, but we had to allocate the temps above,
+ # so just keep the C compiler from complaining about them being unused
+ mark_vars_used = ["(void)%s;" % var for var in exc_save_vars]
+ save_exc.putln("%s /* mark used */" % ' '.join(mark_vars_used))
+
+ def restore_saved_exception():
+ pass
+
+ code.error_label = except_error_label
+ code.return_label = except_return_label
+ normal_case_terminates = self.body.is_terminator
+ if self.else_clause:
+ code.mark_pos(self.else_clause.pos)
+ code.putln(
+ "/*else:*/ {")
+ self.else_clause.generate_execution_code(code)
+ code.putln(
+ "}")
+ if not normal_case_terminates:
+ normal_case_terminates = self.else_clause.is_terminator
+
+ if can_raise:
+ if not normal_case_terminates:
+ for var in exc_save_vars:
+ code.put_xdecref_clear(var, py_object_type)
+ code.put_goto(try_end_label)
+ code.put_label(our_error_label)
+ for temp_name, temp_type in temps_to_clean_up:
+ code.put_xdecref_clear(temp_name, temp_type)
+
+ outer_except = code.funcstate.current_except
+ # Currently points to self, but the ExceptClauseNode would also be ok. Change if needed.
+ code.funcstate.current_except = self
+ for except_clause in self.except_clauses:
+ except_clause.generate_handling_code(code, except_end_label)
+ code.funcstate.current_except = outer_except
+
+ if not self.has_default_clause:
+ code.put_goto(except_error_label)
+
+ for exit_label, old_label in [(except_error_label, old_error_label),
+ (try_break_label, old_break_label),
+ (try_continue_label, old_continue_label),
+ (try_return_label, old_return_label),
+ (except_return_label, old_return_label)]:
+ if code.label_used(exit_label):
+ if not normal_case_terminates and not code.label_used(try_end_label):
+ code.put_goto(try_end_label)
+ code.put_label(exit_label)
+ code.mark_pos(self.pos, trace=False)
+ if can_raise:
+ restore_saved_exception()
+ code.put_goto(old_label)
+
+ if code.label_used(except_end_label):
+ if not normal_case_terminates and not code.label_used(try_end_label):
+ code.put_goto(try_end_label)
+ code.put_label(except_end_label)
+ if can_raise:
+ restore_saved_exception()
+ if code.label_used(try_end_label):
+ code.put_label(try_end_label)
+ code.putln("}")
+
+ for cname in exc_save_vars:
+ code.funcstate.release_temp(cname)
+
+ code.return_label = old_return_label
+ code.break_label = old_break_label
+ code.continue_label = old_continue_label
+ code.error_label = old_error_label
+
+ def generate_function_definitions(self, env, code):
+ self.body.generate_function_definitions(env, code)
+ for except_clause in self.except_clauses:
+ except_clause.generate_function_definitions(env, code)
+ if self.else_clause is not None:
+ self.else_clause.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ self.body.annotate(code)
+ for except_node in self.except_clauses:
+ except_node.annotate(code)
+ if self.else_clause:
+ self.else_clause.annotate(code)
+
+
+class ExceptClauseNode(Node):
+ # Part of try ... except statement.
+ #
+ # pattern [ExprNode]
+ # target ExprNode or None
+ # body StatNode
+ # excinfo_target TupleNode(3*ResultRefNode) or None optional target for exception info (not owned here!)
+ # match_flag string result of exception match
+ # exc_value ExcValueNode used internally
+ # function_name string qualified name of enclosing function
+ # exc_vars (string * 3) local exception variables
+ # is_except_as bool Py3-style "except ... as xyz"
+
+ # excinfo_target is never set by the parser, but can be set by a transform
+ # in order to extract more extensive information about the exception as a
+ # sys.exc_info()-style tuple into a target variable
+
+ child_attrs = ["pattern", "target", "body", "exc_value"]
+
+ exc_value = None
+ excinfo_target = None
+ is_except_as = False
+
+ def analyse_declarations(self, env):
+ if self.target:
+ self.target.analyse_target_declaration(env)
+ self.body.analyse_declarations(env)
+
+ def analyse_expressions(self, env):
+ self.function_name = env.qualified_name
+ if self.pattern:
+ # normalise/unpack self.pattern into a list
+ for i, pattern in enumerate(self.pattern):
+ pattern = pattern.analyse_expressions(env)
+ self.pattern[i] = pattern.coerce_to_pyobject(env)
+
+ if self.target:
+ from . import ExprNodes
+ self.exc_value = ExprNodes.ExcValueNode(self.pos)
+ self.target = self.target.analyse_target_expression(env, self.exc_value)
+
+ self.body = self.body.analyse_expressions(env)
+ return self
+
+ def generate_handling_code(self, code, end_label):
+ code.mark_pos(self.pos)
+
+ if self.pattern:
+ has_non_literals = not all(
+ pattern.is_literal or pattern.is_simple() and not pattern.is_temp
+ for pattern in self.pattern)
+
+ if has_non_literals:
+ # For non-trivial exception check expressions, hide the live exception from C-API calls.
+ exc_vars = [code.funcstate.allocate_temp(py_object_type, manage_ref=True)
+ for _ in range(3)]
+ code.globalstate.use_utility_code(UtilityCode.load_cached("PyErrFetchRestore", "Exceptions.c"))
+ code.putln("__Pyx_ErrFetch(&%s, &%s, &%s);" % tuple(exc_vars))
+ code.globalstate.use_utility_code(UtilityCode.load_cached("FastTypeChecks", "ModuleSetupCode.c"))
+ exc_test_func = "__Pyx_PyErr_GivenExceptionMatches(%s, %%s)" % exc_vars[0]
+ else:
+ exc_vars = ()
+ code.globalstate.use_utility_code(UtilityCode.load_cached("PyErrExceptionMatches", "Exceptions.c"))
+ exc_test_func = "__Pyx_PyErr_ExceptionMatches(%s)"
+
+ exc_tests = []
+ for pattern in self.pattern:
+ pattern.generate_evaluation_code(code)
+ exc_tests.append(exc_test_func % pattern.py_result())
+
+ match_flag = code.funcstate.allocate_temp(PyrexTypes.c_int_type, manage_ref=False)
+ code.putln("%s = %s;" % (match_flag, ' || '.join(exc_tests)))
+ for pattern in self.pattern:
+ pattern.generate_disposal_code(code)
+ pattern.free_temps(code)
+
+ if has_non_literals:
+ code.putln("__Pyx_ErrRestore(%s, %s, %s);" % tuple(exc_vars))
+ code.putln(' '.join(["%s = 0;" % var for var in exc_vars]))
+ for temp in exc_vars:
+ code.funcstate.release_temp(temp)
+
+ code.putln(
+ "if (%s) {" %
+ match_flag)
+ code.funcstate.release_temp(match_flag)
+ else:
+ code.putln("/*except:*/ {")
+
+ if (not getattr(self.body, 'stats', True)
+ and self.excinfo_target is None
+ and self.target is None):
+ # most simple case: no exception variable, empty body (pass)
+ # => reset the exception state, done
+ code.globalstate.use_utility_code(UtilityCode.load_cached("PyErrFetchRestore", "Exceptions.c"))
+ code.putln("__Pyx_ErrRestore(0,0,0);")
+ code.put_goto(end_label)
+ code.putln("}")
+ return
+
+ exc_vars = [code.funcstate.allocate_temp(py_object_type, manage_ref=True)
+ for _ in range(3)]
+ code.put_add_traceback(self.function_name)
+ # We always have to fetch the exception value even if
+ # there is no target, because this also normalises the
+ # exception and stores it in the thread state.
+ code.globalstate.use_utility_code(get_exception_utility_code)
+ exc_args = "&%s, &%s, &%s" % tuple(exc_vars)
+ code.putln("if (__Pyx_GetException(%s) < 0) %s" % (
+ exc_args, code.error_goto(self.pos)))
+ for var in exc_vars:
+ code.put_gotref(var)
+ if self.target:
+ self.exc_value.set_var(exc_vars[1])
+ self.exc_value.generate_evaluation_code(code)
+ self.target.generate_assignment_code(self.exc_value, code)
+ if self.excinfo_target is not None:
+ for tempvar, node in zip(exc_vars, self.excinfo_target.args):
+ node.set_var(tempvar)
+
+ old_break_label, old_continue_label = code.break_label, code.continue_label
+ code.break_label = code.new_label('except_break')
+ code.continue_label = code.new_label('except_continue')
+
+ old_exc_vars = code.funcstate.exc_vars
+ code.funcstate.exc_vars = exc_vars
+ self.body.generate_execution_code(code)
+ code.funcstate.exc_vars = old_exc_vars
+
+ if not self.body.is_terminator:
+ for var in exc_vars:
+ # FIXME: XDECREF() is needed to allow re-raising (which clears the exc_vars),
+ # but I don't think it's the right solution.
+ code.put_xdecref_clear(var, py_object_type)
+ code.put_goto(end_label)
+
+ for new_label, old_label in [(code.break_label, old_break_label),
+ (code.continue_label, old_continue_label)]:
+ if code.label_used(new_label):
+ code.put_label(new_label)
+ for var in exc_vars:
+ code.put_decref_clear(var, py_object_type)
+ code.put_goto(old_label)
+ code.break_label = old_break_label
+ code.continue_label = old_continue_label
+
+ for temp in exc_vars:
+ code.funcstate.release_temp(temp)
+
+ code.putln(
+ "}")
+
+ def generate_function_definitions(self, env, code):
+ if self.target is not None:
+ self.target.generate_function_definitions(env, code)
+ self.body.generate_function_definitions(env, code)
+
+ def annotate(self, code):
+ if self.pattern:
+ for pattern in self.pattern:
+ pattern.annotate(code)
+ if self.target:
+ self.target.annotate(code)
+ self.body.annotate(code)
+
+
+class TryFinallyStatNode(StatNode):
+ # try ... finally statement
+ #
+ # body StatNode
+ # finally_clause StatNode
+ # finally_except_clause deep-copy of finally_clause for exception case
+ # in_generator inside of generator => must store away current exception also in return case
+ #
+ # Each of the continue, break, return and error gotos runs
+ # into its own deep-copy of the finally block code.
+ # In addition, if we're doing an error, we save the
+ # exception on entry to the finally block and restore
+ # it on exit.
+
+ child_attrs = ["body", "finally_clause", "finally_except_clause"]
+
+ preserve_exception = 1
+
+ # handle exception case, in addition to return/break/continue
+ handle_error_case = True
+ func_return_type = None
+ finally_except_clause = None
+
+ is_try_finally_in_nogil = False
+ in_generator = False
+
+ @staticmethod
+ def create_analysed(pos, env, body, finally_clause):
+ node = TryFinallyStatNode(pos, body=body, finally_clause=finally_clause)
+ return node
+
+ def analyse_declarations(self, env):
+ self.body.analyse_declarations(env)
+ self.finally_except_clause = copy.deepcopy(self.finally_clause)
+ self.finally_except_clause.analyse_declarations(env)
+ self.finally_clause.analyse_declarations(env)
+
+ def analyse_expressions(self, env):
+ self.body = self.body.analyse_expressions(env)
+ self.finally_clause = self.finally_clause.analyse_expressions(env)
+ self.finally_except_clause = self.finally_except_clause.analyse_expressions(env)
+ if env.return_type and not env.return_type.is_void:
+ self.func_return_type = env.return_type
+ return self
+
+ nogil_check = Node.gil_error
+ gil_message = "Try-finally statement"
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos) # before changing the error label, in case of tracing errors
+ code.putln("/*try:*/ {")
+
+ old_error_label = code.error_label
+ old_labels = code.all_new_labels()
+ new_labels = code.get_all_labels()
+ new_error_label = code.error_label
+ if not self.handle_error_case:
+ code.error_label = old_error_label
+ catch_label = code.new_label()
+
+ was_in_try_finally = code.funcstate.in_try_finally
+ code.funcstate.in_try_finally = 1
+
+ self.body.generate_execution_code(code)
+
+ code.funcstate.in_try_finally = was_in_try_finally
+ code.putln("}")
+
+ temps_to_clean_up = code.funcstate.all_free_managed_temps()
+ code.mark_pos(self.finally_clause.pos)
+ code.putln("/*finally:*/ {")
+
+ # Reset labels only after writing out a potential line trace call for correct nogil error handling.
+ code.set_all_labels(old_labels)
+
+ def fresh_finally_clause(_next=[self.finally_clause]):
+ # generate the original subtree once and always keep a fresh copy
+ node = _next[0]
+ node_copy = copy.deepcopy(node)
+ if node is self.finally_clause:
+ _next[0] = node_copy
+ else:
+ node = node_copy
+ return node
+
+ preserve_error = self.preserve_exception and code.label_used(new_error_label)
+ needs_success_cleanup = not self.finally_clause.is_terminator
+
+ if not self.body.is_terminator:
+ code.putln('/*normal exit:*/{')
+ fresh_finally_clause().generate_execution_code(code)
+ if not self.finally_clause.is_terminator:
+ code.put_goto(catch_label)
+ code.putln('}')
+
+ if preserve_error:
+ code.put_label(new_error_label)
+ code.putln('/*exception exit:*/{')
+ if not self.in_generator:
+ code.putln("__Pyx_PyThreadState_declare")
+ if self.is_try_finally_in_nogil:
+ code.declare_gilstate()
+ if needs_success_cleanup:
+ exc_lineno_cnames = tuple([
+ code.funcstate.allocate_temp(PyrexTypes.c_int_type, manage_ref=False)
+ for _ in range(2)])
+ exc_filename_cname = code.funcstate.allocate_temp(
+ PyrexTypes.CPtrType(PyrexTypes.c_const_type(PyrexTypes.c_char_type)),
+ manage_ref=False)
+ else:
+ exc_lineno_cnames = exc_filename_cname = None
+ exc_vars = tuple([
+ code.funcstate.allocate_temp(py_object_type, manage_ref=False)
+ for _ in range(6)])
+ self.put_error_catcher(
+ code, temps_to_clean_up, exc_vars, exc_lineno_cnames, exc_filename_cname)
+ finally_old_labels = code.all_new_labels()
+
+ code.putln('{')
+ old_exc_vars = code.funcstate.exc_vars
+ code.funcstate.exc_vars = exc_vars[:3]
+ self.finally_except_clause.generate_execution_code(code)
+ code.funcstate.exc_vars = old_exc_vars
+ code.putln('}')
+
+ if needs_success_cleanup:
+ self.put_error_uncatcher(code, exc_vars, exc_lineno_cnames, exc_filename_cname)
+ if exc_lineno_cnames:
+ for cname in exc_lineno_cnames:
+ code.funcstate.release_temp(cname)
+ if exc_filename_cname:
+ code.funcstate.release_temp(exc_filename_cname)
+ code.put_goto(old_error_label)
+
+ for new_label, old_label in zip(code.get_all_labels(), finally_old_labels):
+ if not code.label_used(new_label):
+ continue
+ code.put_label(new_label)
+ self.put_error_cleaner(code, exc_vars)
+ code.put_goto(old_label)
+
+ for cname in exc_vars:
+ code.funcstate.release_temp(cname)
+ code.putln('}')
+
+ code.set_all_labels(old_labels)
+ return_label = code.return_label
+ exc_vars = ()
+
+ for i, (new_label, old_label) in enumerate(zip(new_labels, old_labels)):
+ if not code.label_used(new_label):
+ continue
+ if new_label == new_error_label and preserve_error:
+ continue # handled above
+
+ code.putln('%s: {' % new_label)
+ ret_temp = None
+ if old_label == return_label:
+ # return actually raises an (uncatchable) exception in generators that we must preserve
+ if self.in_generator:
+ exc_vars = tuple([
+ code.funcstate.allocate_temp(py_object_type, manage_ref=False)
+ for _ in range(6)])
+ self.put_error_catcher(code, [], exc_vars)
+ if not self.finally_clause.is_terminator:
+ # store away return value for later reuse
+ if (self.func_return_type and
+ not self.is_try_finally_in_nogil and
+ not isinstance(self.finally_clause, GILExitNode)):
+ ret_temp = code.funcstate.allocate_temp(
+ self.func_return_type, manage_ref=False)
+ code.putln("%s = %s;" % (ret_temp, Naming.retval_cname))
+ if self.func_return_type.is_pyobject:
+ code.putln("%s = 0;" % Naming.retval_cname)
+
+ fresh_finally_clause().generate_execution_code(code)
+
+ if old_label == return_label:
+ if ret_temp:
+ code.putln("%s = %s;" % (Naming.retval_cname, ret_temp))
+ if self.func_return_type.is_pyobject:
+ code.putln("%s = 0;" % ret_temp)
+ code.funcstate.release_temp(ret_temp)
+ if self.in_generator:
+ self.put_error_uncatcher(code, exc_vars)
+ for cname in exc_vars:
+ code.funcstate.release_temp(cname)
+
+ if not self.finally_clause.is_terminator:
+ code.put_goto(old_label)
+ code.putln('}')
+
+ # End finally
+ code.put_label(catch_label)
+ code.putln(
+ "}")
+
+ def generate_function_definitions(self, env, code):
+ self.body.generate_function_definitions(env, code)
+ self.finally_clause.generate_function_definitions(env, code)
+ if self.finally_except_clause:
+ self.finally_except_clause.generate_function_definitions(env, code)
+
+ def put_error_catcher(self, code, temps_to_clean_up, exc_vars,
+ exc_lineno_cnames=None, exc_filename_cname=None):
+ code.globalstate.use_utility_code(restore_exception_utility_code)
+ code.globalstate.use_utility_code(get_exception_utility_code)
+ code.globalstate.use_utility_code(swap_exception_utility_code)
+
+ if self.is_try_finally_in_nogil:
+ code.put_ensure_gil(declare_gilstate=False)
+ code.putln("__Pyx_PyThreadState_assign")
+
+ code.putln(' '.join(["%s = 0;" % var for var in exc_vars]))
+ for temp_name, type in temps_to_clean_up:
+ code.put_xdecref_clear(temp_name, type)
+
+ # not using preprocessor here to avoid warnings about
+ # unused utility functions and/or temps
+ code.putln("if (PY_MAJOR_VERSION >= 3)"
+ " __Pyx_ExceptionSwap(&%s, &%s, &%s);" % exc_vars[3:])
+ code.putln("if ((PY_MAJOR_VERSION < 3) ||"
+ # if __Pyx_GetException() fails in Py3,
+ # store the newly raised exception instead
+ " unlikely(__Pyx_GetException(&%s, &%s, &%s) < 0)) "
+ "__Pyx_ErrFetch(&%s, &%s, &%s);" % (exc_vars[:3] * 2))
+ for var in exc_vars:
+ code.put_xgotref(var)
+ if exc_lineno_cnames:
+ code.putln("%s = %s; %s = %s; %s = %s;" % (
+ exc_lineno_cnames[0], Naming.lineno_cname,
+ exc_lineno_cnames[1], Naming.clineno_cname,
+ exc_filename_cname, Naming.filename_cname))
+
+ if self.is_try_finally_in_nogil:
+ code.put_release_ensured_gil()
+
+ def put_error_uncatcher(self, code, exc_vars, exc_lineno_cnames=None, exc_filename_cname=None):
+ code.globalstate.use_utility_code(restore_exception_utility_code)
+ code.globalstate.use_utility_code(reset_exception_utility_code)
+
+ if self.is_try_finally_in_nogil:
+ code.put_ensure_gil(declare_gilstate=False)
+
+ # not using preprocessor here to avoid warnings about
+ # unused utility functions and/or temps
+ code.putln("if (PY_MAJOR_VERSION >= 3) {")
+ for var in exc_vars[3:]:
+ code.put_xgiveref(var)
+ code.putln("__Pyx_ExceptionReset(%s, %s, %s);" % exc_vars[3:])
+ code.putln("}")
+ for var in exc_vars[:3]:
+ code.put_xgiveref(var)
+ code.putln("__Pyx_ErrRestore(%s, %s, %s);" % exc_vars[:3])
+
+ if self.is_try_finally_in_nogil:
+ code.put_release_ensured_gil()
+
+ code.putln(' '.join(["%s = 0;" % var for var in exc_vars]))
+ if exc_lineno_cnames:
+ code.putln("%s = %s; %s = %s; %s = %s;" % (
+ Naming.lineno_cname, exc_lineno_cnames[0],
+ Naming.clineno_cname, exc_lineno_cnames[1],
+ Naming.filename_cname, exc_filename_cname))
+
+ def put_error_cleaner(self, code, exc_vars):
+ code.globalstate.use_utility_code(reset_exception_utility_code)
+ if self.is_try_finally_in_nogil:
+ code.put_ensure_gil(declare_gilstate=False)
+
+ # not using preprocessor here to avoid warnings about
+ # unused utility functions and/or temps
+ code.putln("if (PY_MAJOR_VERSION >= 3) {")
+ for var in exc_vars[3:]:
+ code.put_xgiveref(var)
+ code.putln("__Pyx_ExceptionReset(%s, %s, %s);" % exc_vars[3:])
+ code.putln("}")
+ for var in exc_vars[:3]:
+ code.put_xdecref_clear(var, py_object_type)
+ if self.is_try_finally_in_nogil:
+ code.put_release_ensured_gil()
+ code.putln(' '.join(["%s = 0;"]*3) % exc_vars[3:])
+
+ def annotate(self, code):
+ self.body.annotate(code)
+ self.finally_clause.annotate(code)
+
+
+class NogilTryFinallyStatNode(TryFinallyStatNode):
+ """
+ A try/finally statement that may be used in nogil code sections.
+ """
+
+ preserve_exception = False
+ nogil_check = None
+
+
+class GILStatNode(NogilTryFinallyStatNode):
+ # 'with gil' or 'with nogil' statement
+ #
+ # state string 'gil' or 'nogil'
+
+ state_temp = None
+
+ def __init__(self, pos, state, body):
+ self.state = state
+ self.create_state_temp_if_needed(pos, state, body)
+ TryFinallyStatNode.__init__(
+ self, pos,
+ body=body,
+ finally_clause=GILExitNode(
+ pos, state=state, state_temp=self.state_temp))
+
+ def create_state_temp_if_needed(self, pos, state, body):
+ from .ParseTreeTransforms import YieldNodeCollector
+ collector = YieldNodeCollector()
+ collector.visitchildren(body)
+ if not collector.yields:
+ return
+
+ if state == 'gil':
+ temp_type = PyrexTypes.c_gilstate_type
+ else:
+ temp_type = PyrexTypes.c_threadstate_ptr_type
+ from . import ExprNodes
+ self.state_temp = ExprNodes.TempNode(pos, temp_type)
+
+ def analyse_declarations(self, env):
+ env._in_with_gil_block = (self.state == 'gil')
+ if self.state == 'gil':
+ env.has_with_gil_block = True
+
+ return super(GILStatNode, self).analyse_declarations(env)
+
+ def analyse_expressions(self, env):
+ env.use_utility_code(
+ UtilityCode.load_cached("ForceInitThreads", "ModuleSetupCode.c"))
+ was_nogil = env.nogil
+ env.nogil = self.state == 'nogil'
+ node = TryFinallyStatNode.analyse_expressions(self, env)
+ env.nogil = was_nogil
+ return node
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ code.begin_block()
+ if self.state_temp:
+ self.state_temp.allocate(code)
+ variable = self.state_temp.result()
+ else:
+ variable = None
+
+ old_gil_config = code.funcstate.gil_owned
+ if self.state == 'gil':
+ code.put_ensure_gil(variable=variable)
+ code.funcstate.gil_owned = True
+ else:
+ code.put_release_gil(variable=variable)
+ code.funcstate.gil_owned = False
+
+ TryFinallyStatNode.generate_execution_code(self, code)
+
+ if self.state_temp:
+ self.state_temp.release(code)
+
+ code.funcstate.gil_owned = old_gil_config
+ code.end_block()
+
+
+class GILExitNode(StatNode):
+ """
+ Used as the 'finally' block in a GILStatNode
+
+ state string 'gil' or 'nogil'
+ """
+
+ child_attrs = []
+ state_temp = None
+
+ def analyse_expressions(self, env):
+ return self
+
+ def generate_execution_code(self, code):
+ if self.state_temp:
+ variable = self.state_temp.result()
+ else:
+ variable = None
+
+ if self.state == 'gil':
+ code.put_release_ensured_gil(variable)
+ else:
+ code.put_acquire_gil(variable)
+
+
+class EnsureGILNode(GILExitNode):
+ """
+ Ensure the GIL in nogil functions for cleanup before returning.
+ """
+
+ def generate_execution_code(self, code):
+ code.put_ensure_gil(declare_gilstate=False)
+
+
+def cython_view_utility_code():
+ from . import MemoryView
+ return MemoryView.view_utility_code
+
+
+utility_code_for_cimports = {
+ # utility code (or inlining c) in a pxd (or pyx) file.
+ # TODO: Consider a generic user-level mechanism for importing
+ 'cpython.array' : lambda : UtilityCode.load_cached("ArrayAPI", "arrayarray.h"),
+ 'cpython.array.array' : lambda : UtilityCode.load_cached("ArrayAPI", "arrayarray.h"),
+ 'cython.view' : cython_view_utility_code,
+}
+
+utility_code_for_imports = {
+ # utility code used when special modules are imported.
+ # TODO: Consider a generic user-level mechanism for importing
+ 'asyncio': ("__Pyx_patch_asyncio", "PatchAsyncIO", "Coroutine.c"),
+ 'inspect': ("__Pyx_patch_inspect", "PatchInspect", "Coroutine.c"),
+}
+
+
+class CImportStatNode(StatNode):
+ # cimport statement
+ #
+ # module_name string Qualified name of module being imported
+ # as_name string or None Name specified in "as" clause, if any
+ # is_absolute bool True for absolute imports, False otherwise
+
+ child_attrs = []
+ is_absolute = False
+
+ def analyse_declarations(self, env):
+ if not env.is_module_scope:
+ error(self.pos, "cimport only allowed at module level")
+ return
+ module_scope = env.find_module(
+ self.module_name, self.pos, relative_level=0 if self.is_absolute else -1)
+ if "." in self.module_name:
+ names = [EncodedString(name) for name in self.module_name.split(".")]
+ top_name = names[0]
+ top_module_scope = env.context.find_submodule(top_name)
+ module_scope = top_module_scope
+ for name in names[1:]:
+ submodule_scope = module_scope.find_submodule(name)
+ module_scope.declare_module(name, submodule_scope, self.pos)
+ module_scope = submodule_scope
+ if self.as_name:
+ env.declare_module(self.as_name, module_scope, self.pos)
+ else:
+ env.add_imported_module(module_scope)
+ env.declare_module(top_name, top_module_scope, self.pos)
+ else:
+ name = self.as_name or self.module_name
+ env.declare_module(name, module_scope, self.pos)
+ if self.module_name in utility_code_for_cimports:
+ env.use_utility_code(utility_code_for_cimports[self.module_name]())
+
+ def analyse_expressions(self, env):
+ return self
+
+ def generate_execution_code(self, code):
+ pass
+
+
+class FromCImportStatNode(StatNode):
+ # from ... cimport statement
+ #
+ # module_name string Qualified name of module
+ # relative_level int or None Relative import: number of dots before module_name
+ # imported_names [(pos, name, as_name, kind)] Names to be imported
+
+ child_attrs = []
+ module_name = None
+ relative_level = None
+ imported_names = None
+
+ def analyse_declarations(self, env):
+ if not env.is_module_scope:
+ error(self.pos, "cimport only allowed at module level")
+ return
+ if self.relative_level and self.relative_level > env.qualified_name.count('.'):
+ error(self.pos, "relative cimport beyond main package is not allowed")
+ return
+ module_scope = env.find_module(self.module_name, self.pos, relative_level=self.relative_level, need_pxd=0)
+ module_name = module_scope.qualified_name
+ env.add_imported_module(module_scope)
+ for pos, name, as_name, kind in self.imported_names:
+ if name == "*":
+ for local_name, entry in list(module_scope.entries.items()):
+ env.add_imported_entry(local_name, entry, pos)
+ else:
+ entry = module_scope.lookup(name)
+ if entry:
+ if kind and not self.declaration_matches(entry, kind):
+ entry.redeclared(pos)
+ entry.used = 1
+ else:
+ if kind == 'struct' or kind == 'union':
+ entry = module_scope.declare_struct_or_union(
+ name, kind=kind, scope=None, typedef_flag=0, pos=pos)
+ elif kind == 'class':
+ entry = module_scope.declare_c_class(name, pos=pos, module_name=module_name)
+ else:
+ submodule_scope = env.context.find_module(
+ name, relative_to=module_scope, pos=self.pos, absolute_fallback=False)
+ if submodule_scope.parent_module is module_scope:
+ env.declare_module(as_name or name, submodule_scope, self.pos)
+ else:
+ error(pos, "Name '%s' not declared in module '%s'" % (name, module_name))
+
+ if entry:
+ local_name = as_name or name
+ env.add_imported_entry(local_name, entry, pos)
+
+ if module_name.startswith('cpython') or module_name.startswith('cython'): # enough for now
+ if module_name in utility_code_for_cimports:
+ env.use_utility_code(utility_code_for_cimports[module_name]())
+ for _, name, _, _ in self.imported_names:
+ fqname = '%s.%s' % (module_name, name)
+ if fqname in utility_code_for_cimports:
+ env.use_utility_code(utility_code_for_cimports[fqname]())
+
+ def declaration_matches(self, entry, kind):
+ if not entry.is_type:
+ return 0
+ type = entry.type
+ if kind == 'class':
+ if not type.is_extension_type:
+ return 0
+ else:
+ if not type.is_struct_or_union:
+ return 0
+ if kind != type.kind:
+ return 0
+ return 1
+
+ def analyse_expressions(self, env):
+ return self
+
+ def generate_execution_code(self, code):
+ pass
+
+
+class FromImportStatNode(StatNode):
+ # from ... import statement
+ #
+ # module ImportNode
+ # items [(string, NameNode)]
+ # interned_items [(string, NameNode, ExprNode)]
+ # item PyTempNode used internally
+ # import_star boolean used internally
+
+ child_attrs = ["module"]
+ import_star = 0
+
+ def analyse_declarations(self, env):
+ for name, target in self.items:
+ if name == "*":
+ if not env.is_module_scope:
+ error(self.pos, "import * only allowed at module level")
+ return
+ env.has_import_star = 1
+ self.import_star = 1
+ else:
+ target.analyse_target_declaration(env)
+
+ def analyse_expressions(self, env):
+ from . import ExprNodes
+ self.module = self.module.analyse_expressions(env)
+ self.item = ExprNodes.RawCNameExprNode(self.pos, py_object_type)
+ self.interned_items = []
+ for name, target in self.items:
+ if name == '*':
+ for _, entry in env.entries.items():
+ if not entry.is_type and entry.type.is_extension_type:
+ env.use_utility_code(UtilityCode.load_cached("ExtTypeTest", "ObjectHandling.c"))
+ break
+ else:
+ entry = env.lookup(target.name)
+ # check whether or not entry is already cimported
+ if (entry.is_type and entry.type.name == name
+ and hasattr(entry.type, 'module_name')):
+ if entry.type.module_name == self.module.module_name.value:
+ # cimported with absolute name
+ continue
+ try:
+ # cimported with relative name
+ module = env.find_module(self.module.module_name.value, pos=self.pos,
+ relative_level=self.module.level)
+ if entry.type.module_name == module.qualified_name:
+ continue
+ except AttributeError:
+ pass
+ target = target.analyse_target_expression(env, None) # FIXME?
+ if target.type is py_object_type:
+ coerced_item = None
+ else:
+ coerced_item = self.item.coerce_to(target.type, env)
+ self.interned_items.append((name, target, coerced_item))
+ return self
+
+ def generate_execution_code(self, code):
+ code.mark_pos(self.pos)
+ self.module.generate_evaluation_code(code)
+ if self.import_star:
+ code.putln(
+ 'if (%s(%s) < 0) %s;' % (
+ Naming.import_star,
+ self.module.py_result(),
+ code.error_goto(self.pos)))
+ item_temp = code.funcstate.allocate_temp(py_object_type, manage_ref=True)
+ self.item.set_cname(item_temp)
+ if self.interned_items:
+ code.globalstate.use_utility_code(
+ UtilityCode.load_cached("ImportFrom", "ImportExport.c"))
+ for name, target, coerced_item in self.interned_items:
+ code.putln(
+ '%s = __Pyx_ImportFrom(%s, %s); %s' % (
+ item_temp,
+ self.module.py_result(),
+ code.intern_identifier(name),
+ code.error_goto_if_null(item_temp, self.pos)))
+ code.put_gotref(item_temp)
+ if coerced_item is None:
+ target.generate_assignment_code(self.item, code)
+ else:
+ coerced_item.allocate_temp_result(code)
+ coerced_item.generate_result_code(code)
+ target.generate_assignment_code(coerced_item, code)
+ code.put_decref_clear(item_temp, py_object_type)
+ code.funcstate.release_temp(item_temp)
+ self.module.generate_disposal_code(code)
+ self.module.free_temps(code)
+
+
+class ParallelNode(Node):
+ """
+ Base class for cython.parallel constructs.
+ """
+
+ nogil_check = None
+
+
+class ParallelStatNode(StatNode, ParallelNode):
+ """
+ Base class for 'with cython.parallel.parallel():' and 'for i in prange():'.
+
+ assignments { Entry(var) : (var.pos, inplace_operator_or_None) }
+ assignments to variables in this parallel section
+
+ parent parent ParallelStatNode or None
+ is_parallel indicates whether this node is OpenMP parallel
+ (true for #pragma omp parallel for and
+ #pragma omp parallel)
+
+ is_parallel is true for:
+
+ #pragma omp parallel
+ #pragma omp parallel for
+
+ sections, but NOT for
+
+ #pragma omp for
+
+ We need this to determine the sharing attributes.
+
+ privatization_insertion_point a code insertion point used to make temps
+ private (esp. the "nsteps" temp)
+
+ args tuple the arguments passed to the parallel construct
+ kwargs DictNode the keyword arguments passed to the parallel
+ construct (replaced by its compile time value)
+ """
+
+ child_attrs = ['body', 'num_threads']
+
+ body = None
+
+ is_prange = False
+ is_nested_prange = False
+
+ error_label_used = False
+
+ num_threads = None
+ chunksize = None
+
+ parallel_exc = (
+ Naming.parallel_exc_type,
+ Naming.parallel_exc_value,
+ Naming.parallel_exc_tb,
+ )
+
+ parallel_pos_info = (
+ Naming.parallel_filename,
+ Naming.parallel_lineno,
+ Naming.parallel_clineno,
+ )
+
+ pos_info = (
+ Naming.filename_cname,
+ Naming.lineno_cname,
+ Naming.clineno_cname,
+ )
+
+ critical_section_counter = 0
+
+ def __init__(self, pos, **kwargs):
+ super(ParallelStatNode, self).__init__(pos, **kwargs)
+
+ # All assignments in this scope
+ self.assignments = kwargs.get('assignments') or {}
+
+ # All seen closure cnames and their temporary cnames
+ self.seen_closure_vars = set()
+
+ # Dict of variables that should be declared (first|last|)private or
+ # reduction { Entry: (op, lastprivate) }.
+ # If op is not None, it's a reduction.
+ self.privates = {}
+
+ # [NameNode]
+ self.assigned_nodes = []
+
+ def analyse_declarations(self, env):
+ self.body.analyse_declarations(env)
+
+ self.num_threads = None
+
+ if self.kwargs:
+ # Try to find num_threads and chunksize keyword arguments
+ pairs = []
+ seen = set()
+ for dictitem in self.kwargs.key_value_pairs:
+ if dictitem.key.value in seen:
+ error(self.pos, "Duplicate keyword argument found: %s" % dictitem.key.value)
+ seen.add(dictitem.key.value)
+ if dictitem.key.value == 'num_threads':
+ if not dictitem.value.is_none:
+ self.num_threads = dictitem.value
+ elif self.is_prange and dictitem.key.value == 'chunksize':
+ if not dictitem.value.is_none:
+ self.chunksize = dictitem.value
+ else:
+ pairs.append(dictitem)
+
+ self.kwargs.key_value_pairs = pairs
+
+ try:
+ self.kwargs = self.kwargs.compile_time_value(env)
+ except Exception as e:
+ error(self.kwargs.pos, "Only compile-time values may be "
+ "supplied as keyword arguments")
+ else:
+ self.kwargs = {}
+
+ for kw, val in self.kwargs.items():
+ if kw not in self.valid_keyword_arguments:
+ error(self.pos, "Invalid keyword argument: %s" % kw)
+ else:
+ setattr(self, kw, val)
+
+ def analyse_expressions(self, env):
+ if self.num_threads:
+ self.num_threads = self.num_threads.analyse_expressions(env)
+
+ if self.chunksize:
+ self.chunksize = self.chunksize.analyse_expressions(env)
+
+ self.body = self.body.analyse_expressions(env)
+ self.analyse_sharing_attributes(env)
+
+ if self.num_threads is not None:
+ if self.parent and self.parent.num_threads is not None and not self.parent.is_prange:
+ error(self.pos, "num_threads already declared in outer section")
+ elif self.parent and not self.parent.is_prange:
+ error(self.pos, "num_threads must be declared in the parent parallel section")
+ elif (self.num_threads.type.is_int and
+ self.num_threads.is_literal and
+ self.num_threads.compile_time_value(env) <= 0):
+ error(self.pos, "argument to num_threads must be greater than 0")
+
+ if not self.num_threads.is_simple() or self.num_threads.type.is_pyobject:
+ self.num_threads = self.num_threads.coerce_to(
+ PyrexTypes.c_int_type, env).coerce_to_temp(env)
+ return self
+
+ def analyse_sharing_attributes(self, env):
+ """
+ Analyse the privates for this block and set them in self.privates.
+ This should be called in a post-order fashion during the
+ analyse_expressions phase
+ """
+ for entry, (pos, op) in self.assignments.items():
+
+ if self.is_prange and not self.is_parallel:
+ # closely nested prange in a with parallel block, disallow
+ # assigning to privates in the with parallel block (we
+ # consider it too implicit and magicky for users)
+ if entry in self.parent.assignments:
+ error(pos, "Cannot assign to private of outer parallel block")
+ continue
+
+ if not self.is_prange and op:
+ # Again possible, but considered to magicky
+ error(pos, "Reductions not allowed for parallel blocks")
+ continue
+
+ # By default all variables should have the same values as if
+ # executed sequentially
+ lastprivate = True
+ self.propagate_var_privatization(entry, pos, op, lastprivate)
+
+ def propagate_var_privatization(self, entry, pos, op, lastprivate):
+ """
+ Propagate the sharing attributes of a variable. If the privatization is
+ determined by a parent scope, done propagate further.
+
+ If we are a prange, we propagate our sharing attributes outwards to
+ other pranges. If we are a prange in parallel block and the parallel
+ block does not determine the variable private, we propagate to the
+ parent of the parent. Recursion stops at parallel blocks, as they have
+ no concept of lastprivate or reduction.
+
+ So the following cases propagate:
+
+ sum is a reduction for all loops:
+
+ for i in prange(n):
+ for j in prange(n):
+ for k in prange(n):
+ sum += i * j * k
+
+ sum is a reduction for both loops, local_var is private to the
+ parallel with block:
+
+ for i in prange(n):
+ with parallel:
+ local_var = ... # private to the parallel
+ for j in prange(n):
+ sum += i * j
+
+ Nested with parallel blocks are disallowed, because they wouldn't
+ allow you to propagate lastprivates or reductions:
+
+ #pragma omp parallel for lastprivate(i)
+ for i in prange(n):
+
+ sum = 0
+
+ #pragma omp parallel private(j, sum)
+ with parallel:
+
+ #pragma omp parallel
+ with parallel:
+
+ #pragma omp for lastprivate(j) reduction(+:sum)
+ for j in prange(n):
+ sum += i
+
+ # sum and j are well-defined here
+
+ # sum and j are undefined here
+
+ # sum and j are undefined here
+ """
+ self.privates[entry] = (op, lastprivate)
+
+ if entry.type.is_memoryviewslice:
+ error(pos, "Memoryview slices can only be shared in parallel sections")
+ return
+
+ if self.is_prange:
+ if not self.is_parallel and entry not in self.parent.assignments:
+ # Parent is a parallel with block
+ parent = self.parent.parent
+ else:
+ parent = self.parent
+
+ # We don't need to propagate privates, only reductions and
+ # lastprivates
+ if parent and (op or lastprivate):
+ parent.propagate_var_privatization(entry, pos, op, lastprivate)
+
+ def _allocate_closure_temp(self, code, entry):
+ """
+ Helper function that allocate a temporary for a closure variable that
+ is assigned to.
+ """
+ if self.parent:
+ return self.parent._allocate_closure_temp(code, entry)
+
+ if entry.cname in self.seen_closure_vars:
+ return entry.cname
+
+ cname = code.funcstate.allocate_temp(entry.type, True)
+
+ # Add both the actual cname and the temp cname, as the actual cname
+ # will be replaced with the temp cname on the entry
+ self.seen_closure_vars.add(entry.cname)
+ self.seen_closure_vars.add(cname)
+
+ self.modified_entries.append((entry, entry.cname))
+ code.putln("%s = %s;" % (cname, entry.cname))
+ entry.cname = cname
+
+ def initialize_privates_to_nan(self, code, exclude=None):
+ first = True
+
+ for entry, (op, lastprivate) in sorted(self.privates.items()):
+ if not op and (not exclude or entry != exclude):
+ invalid_value = entry.type.invalid_value()
+
+ if invalid_value:
+ if first:
+ code.putln("/* Initialize private variables to "
+ "invalid values */")
+ first = False
+ code.putln("%s = %s;" % (entry.cname,
+ entry.type.cast_code(invalid_value)))
+
+ def evaluate_before_block(self, code, expr):
+ c = self.begin_of_parallel_control_block_point_after_decls
+ # we need to set the owner to ourselves temporarily, as
+ # allocate_temp may generate a comment in the middle of our pragma
+ # otherwise when DebugFlags.debug_temp_code_comments is in effect
+ owner = c.funcstate.owner
+ c.funcstate.owner = c
+ expr.generate_evaluation_code(c)
+ c.funcstate.owner = owner
+
+ return expr.result()
+
+ def put_num_threads(self, code):
+ """
+ Write self.num_threads if set as the num_threads OpenMP directive
+ """
+ if self.num_threads is not None:
+ code.put(" num_threads(%s)" % self.evaluate_before_block(code, self.num_threads))
+
+
+ def declare_closure_privates(self, code):
+ """
+ If a variable is in a scope object, we need to allocate a temp and
+ assign the value from the temp to the variable in the scope object
+ after the parallel section. This kind of copying should be done only
+ in the outermost parallel section.
+ """
+ self.modified_entries = []
+
+ for entry in sorted(self.assignments):
+ if entry.from_closure or entry.in_closure:
+ self._allocate_closure_temp(code, entry)
+
+ def release_closure_privates(self, code):
+ """
+ Release any temps used for variables in scope objects. As this is the
+ outermost parallel block, we don't need to delete the cnames from
+ self.seen_closure_vars.
+ """
+ for entry, original_cname in self.modified_entries:
+ code.putln("%s = %s;" % (original_cname, entry.cname))
+ code.funcstate.release_temp(entry.cname)
+ entry.cname = original_cname
+
+ def privatize_temps(self, code, exclude_temps=()):
+ """
+ Make any used temporaries private. Before the relevant code block
+ code.start_collecting_temps() should have been called.
+ """
+ c = self.privatization_insertion_point
+ self.privatization_insertion_point = None
+
+ if self.is_parallel:
+ self.temps = temps = code.funcstate.stop_collecting_temps()
+ privates, firstprivates = [], []
+ for temp, type in sorted(temps):
+ if type.is_pyobject or type.is_memoryviewslice:
+ firstprivates.append(temp)
+ else:
+ privates.append(temp)
+
+ if privates:
+ c.put(" private(%s)" % ", ".join(privates))
+ if firstprivates:
+ c.put(" firstprivate(%s)" % ", ".join(firstprivates))
+
+ if self.breaking_label_used:
+ shared_vars = [Naming.parallel_why]
+ if self.error_label_used:
+ shared_vars.extend(self.parallel_exc)
+ c.put(" private(%s, %s, %s)" % self.pos_info)
+
+ c.put(" shared(%s)" % ', '.join(shared_vars))
+
+ def cleanup_temps(self, code):
+ # Now clean up any memoryview slice and object temporaries
+ if self.is_parallel and not self.is_nested_prange:
+ code.putln("/* Clean up any temporaries */")
+ for temp, type in sorted(self.temps):
+ if type.is_memoryviewslice:
+ code.put_xdecref_memoryviewslice(temp, have_gil=False)
+ elif type.is_pyobject:
+ code.put_xdecref(temp, type)
+ code.putln("%s = NULL;" % temp)
+
+ def setup_parallel_control_flow_block(self, code):
+ """
+ Sets up a block that surrounds the parallel block to determine
+ how the parallel section was exited. Any kind of return is
+ trapped (break, continue, return, exceptions). This is the idea:
+
+ {
+ int why = 0;
+
+ #pragma omp parallel
+ {
+ return # -> goto new_return_label;
+ goto end_parallel;
+
+ new_return_label:
+ why = 3;
+ goto end_parallel;
+
+ end_parallel:;
+ #pragma omp flush(why) # we need to flush for every iteration
+ }
+
+ if (why == 3)
+ goto old_return_label;
+ }
+ """
+ self.old_loop_labels = code.new_loop_labels()
+ self.old_error_label = code.new_error_label()
+ self.old_return_label = code.return_label
+ code.return_label = code.new_label(name="return")
+
+ code.begin_block() # parallel control flow block
+ self.begin_of_parallel_control_block_point = code.insertion_point()
+ self.begin_of_parallel_control_block_point_after_decls = code.insertion_point()
+
+ self.undef_builtin_expect_apple_gcc_bug(code)
+
+ def begin_parallel_block(self, code):
+ """
+ Each OpenMP thread in a parallel section that contains a with gil block
+ must have the thread-state initialized. The call to
+ PyGILState_Release() then deallocates our threadstate. If we wouldn't
+ do this, each with gil block would allocate and deallocate one, thereby
+ losing exception information before it can be saved before leaving the
+ parallel section.
+ """
+ self.begin_of_parallel_block = code.insertion_point()
+
+ def end_parallel_block(self, code):
+ """
+ To ensure all OpenMP threads have thread states, we ensure the GIL
+ in each thread (which creates a thread state if it doesn't exist),
+ after which we release the GIL.
+ On exit, reacquire the GIL and release the thread state.
+
+ If compiled without OpenMP support (at the C level), then we still have
+ to acquire the GIL to decref any object temporaries.
+ """
+ begin_code = self.begin_of_parallel_block
+ self.begin_of_parallel_block = None
+
+ if self.error_label_used:
+ end_code = code
+
+ begin_code.putln("#ifdef _OPENMP")
+ begin_code.put_ensure_gil(declare_gilstate=True)
+ begin_code.putln("Py_BEGIN_ALLOW_THREADS")
+ begin_code.putln("#endif /* _OPENMP */")
+
+ end_code.putln("#ifdef _OPENMP")
+ end_code.putln("Py_END_ALLOW_THREADS")
+ end_code.putln("#else")
+ end_code.put_safe("{\n")
+ end_code.put_ensure_gil()
+ end_code.putln("#endif /* _OPENMP */")
+ self.cleanup_temps(end_code)
+ end_code.put_release_ensured_gil()
+ end_code.putln("#ifndef _OPENMP")
+ end_code.put_safe("}\n")
+ end_code.putln("#endif /* _OPENMP */")
+
+ def trap_parallel_exit(self, code, should_flush=False):
+ """
+ Trap any kind of return inside a parallel construct. 'should_flush'
+ indicates whether the variable should be flushed, which is needed by
+ prange to skip the loop. It also indicates whether we need to register
+ a continue (we need this for parallel blocks, but not for prange
+ loops, as it is a direct jump there).
+
+ It uses the same mechanism as try/finally:
+ 1 continue
+ 2 break
+ 3 return
+ 4 error
+ """
+ save_lastprivates_label = code.new_label()
+ dont_return_label = code.new_label()
+
+ self.any_label_used = False
+ self.breaking_label_used = False
+ self.error_label_used = False
+
+ self.parallel_private_temps = []
+
+ all_labels = code.get_all_labels()
+
+ # Figure this out before starting to generate any code
+ for label in all_labels:
+ if code.label_used(label):
+ self.breaking_label_used = (self.breaking_label_used or
+ label != code.continue_label)
+ self.any_label_used = True
+
+ if self.any_label_used:
+ code.put_goto(dont_return_label)
+
+ for i, label in enumerate(all_labels):
+ if not code.label_used(label):
+ continue
+
+ is_continue_label = label == code.continue_label
+
+ code.put_label(label)
+
+ if not (should_flush and is_continue_label):
+ if label == code.error_label:
+ self.error_label_used = True
+ self.fetch_parallel_exception(code)
+
+ code.putln("%s = %d;" % (Naming.parallel_why, i + 1))
+
+ if (self.breaking_label_used and self.is_prange and not
+ is_continue_label):
+ code.put_goto(save_lastprivates_label)
+ else:
+ code.put_goto(dont_return_label)
+
+ if self.any_label_used:
+ if self.is_prange and self.breaking_label_used:
+ # Don't rely on lastprivate, save our lastprivates
+ code.put_label(save_lastprivates_label)
+ self.save_parallel_vars(code)
+
+ code.put_label(dont_return_label)
+
+ if should_flush and self.breaking_label_used:
+ code.putln_openmp("#pragma omp flush(%s)" % Naming.parallel_why)
+
+ def save_parallel_vars(self, code):
+ """
+ The following shenanigans are instated when we break, return or
+ propagate errors from a prange. In this case we cannot rely on
+ lastprivate() to do its job, as no iterations may have executed yet
+ in the last thread, leaving the values undefined. It is most likely
+ that the breaking thread has well-defined values of the lastprivate
+ variables, so we keep those values.
+ """
+ section_name = "__pyx_parallel_lastprivates%d" % self.critical_section_counter
+ code.putln_openmp("#pragma omp critical(%s)" % section_name)
+ ParallelStatNode.critical_section_counter += 1
+
+ code.begin_block() # begin critical section
+
+ c = self.begin_of_parallel_control_block_point
+
+ temp_count = 0
+ for entry, (op, lastprivate) in sorted(self.privates.items()):
+ if not lastprivate or entry.type.is_pyobject:
+ continue
+
+ type_decl = entry.type.empty_declaration_code()
+ temp_cname = "__pyx_parallel_temp%d" % temp_count
+ private_cname = entry.cname
+
+ temp_count += 1
+
+ invalid_value = entry.type.invalid_value()
+ if invalid_value:
+ init = ' = ' + entry.type.cast_code(invalid_value)
+ else:
+ init = ''
+ # Declare the parallel private in the outer block
+ c.putln("%s %s%s;" % (type_decl, temp_cname, init))
+
+ # Initialize before escaping
+ code.putln("%s = %s;" % (temp_cname, private_cname))
+
+ self.parallel_private_temps.append((temp_cname, private_cname))
+
+ code.end_block() # end critical section
+
+ def fetch_parallel_exception(self, code):
+ """
+ As each OpenMP thread may raise an exception, we need to fetch that
+ exception from the threadstate and save it for after the parallel
+ section where it can be re-raised in the master thread.
+
+ Although it would seem that __pyx_filename, __pyx_lineno and
+ __pyx_clineno are only assigned to under exception conditions (i.e.,
+ when we have the GIL), and thus should be allowed to be shared without
+ any race condition, they are in fact subject to the same race
+ conditions that they were previously when they were global variables
+ and functions were allowed to release the GIL:
+
+ thread A thread B
+ acquire
+ set lineno
+ release
+ acquire
+ set lineno
+ release
+ acquire
+ fetch exception
+ release
+ skip the fetch
+
+ deallocate threadstate deallocate threadstate
+ """
+ code.begin_block()
+ code.put_ensure_gil(declare_gilstate=True)
+
+ code.putln_openmp("#pragma omp flush(%s)" % Naming.parallel_exc_type)
+ code.putln(
+ "if (!%s) {" % Naming.parallel_exc_type)
+
+ code.putln("__Pyx_ErrFetchWithState(&%s, &%s, &%s);" % self.parallel_exc)
+ pos_info = chain(*zip(self.parallel_pos_info, self.pos_info))
+ code.funcstate.uses_error_indicator = True
+ code.putln("%s = %s; %s = %s; %s = %s;" % tuple(pos_info))
+ code.put_gotref(Naming.parallel_exc_type)
+
+ code.putln(
+ "}")
+
+ code.put_release_ensured_gil()
+ code.end_block()
+
+ def restore_parallel_exception(self, code):
+ "Re-raise a parallel exception"
+ code.begin_block()
+ code.put_ensure_gil(declare_gilstate=True)
+
+ code.put_giveref(Naming.parallel_exc_type)
+ code.putln("__Pyx_ErrRestoreWithState(%s, %s, %s);" % self.parallel_exc)
+ pos_info = chain(*zip(self.pos_info, self.parallel_pos_info))
+ code.putln("%s = %s; %s = %s; %s = %s;" % tuple(pos_info))
+
+ code.put_release_ensured_gil()
+ code.end_block()
+
+ def restore_labels(self, code):
+ """
+ Restore all old labels. Call this before the 'else' clause to for
+ loops and always before ending the parallel control flow block.
+ """
+ code.set_all_labels(self.old_loop_labels + (self.old_return_label,
+ self.old_error_label))
+
+ def end_parallel_control_flow_block(
+ self, code, break_=False, continue_=False, return_=False):
+ """
+ This ends the parallel control flow block and based on how the parallel
+ section was exited, takes the corresponding action. The break_ and
+ continue_ parameters indicate whether these should be propagated
+ outwards:
+
+ for i in prange(...):
+ with cython.parallel.parallel():
+ continue
+
+ Here break should be trapped in the parallel block, and propagated to
+ the for loop.
+ """
+ c = self.begin_of_parallel_control_block_point
+ self.begin_of_parallel_control_block_point = None
+ self.begin_of_parallel_control_block_point_after_decls = None
+
+ if self.num_threads is not None:
+ # FIXME: is it the right place? should not normally produce code.
+ self.num_threads.generate_disposal_code(code)
+ self.num_threads.free_temps(code)
+
+ # Firstly, always prefer errors over returning, continue or break
+ if self.error_label_used:
+ c.putln("const char *%s = NULL; int %s = 0, %s = 0;" % self.parallel_pos_info)
+ c.putln("PyObject *%s = NULL, *%s = NULL, *%s = NULL;" % self.parallel_exc)
+
+ code.putln(
+ "if (%s) {" % Naming.parallel_exc_type)
+ code.putln("/* This may have been overridden by a continue, "
+ "break or return in another thread. Prefer the error. */")
+ code.putln("%s = 4;" % Naming.parallel_why)
+ code.putln(
+ "}")
+
+ if continue_:
+ any_label_used = self.any_label_used
+ else:
+ any_label_used = self.breaking_label_used
+
+ if any_label_used:
+ # __pyx_parallel_why is used, declare and initialize
+ c.putln("int %s;" % Naming.parallel_why)
+ c.putln("%s = 0;" % Naming.parallel_why)
+
+ code.putln(
+ "if (%s) {" % Naming.parallel_why)
+
+ for temp_cname, private_cname in self.parallel_private_temps:
+ code.putln("%s = %s;" % (private_cname, temp_cname))
+
+ code.putln("switch (%s) {" % Naming.parallel_why)
+ if continue_:
+ code.put(" case 1: ")
+ code.put_goto(code.continue_label)
+
+ if break_:
+ code.put(" case 2: ")
+ code.put_goto(code.break_label)
+
+ if return_:
+ code.put(" case 3: ")
+ code.put_goto(code.return_label)
+
+ if self.error_label_used:
+ code.globalstate.use_utility_code(restore_exception_utility_code)
+ code.putln(" case 4:")
+ self.restore_parallel_exception(code)
+ code.put_goto(code.error_label)
+
+ code.putln("}") # end switch
+ code.putln(
+ "}") # end if
+
+ code.end_block() # end parallel control flow block
+ self.redef_builtin_expect_apple_gcc_bug(code)
+
+ # FIXME: improve with version number for OS X Lion
+ buggy_platform_macro_condition = "(defined(__APPLE__) || defined(__OSX__))"
+ have_expect_condition = "(defined(__GNUC__) && " \
+ "(__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))"
+ redef_condition = "(%s && %s)" % (buggy_platform_macro_condition, have_expect_condition)
+
+ def undef_builtin_expect_apple_gcc_bug(self, code):
+ """
+ A bug on OS X Lion disallows __builtin_expect macros. This code avoids them
+ """
+ if not self.parent:
+ code.undef_builtin_expect(self.redef_condition)
+
+ def redef_builtin_expect_apple_gcc_bug(self, code):
+ if not self.parent:
+ code.redef_builtin_expect(self.redef_condition)
+
+
+class ParallelWithBlockNode(ParallelStatNode):
+ """
+ This node represents a 'with cython.parallel.parallel():' block
+ """
+
+ valid_keyword_arguments = ['num_threads']
+
+ num_threads = None
+
+ def analyse_declarations(self, env):
+ super(ParallelWithBlockNode, self).analyse_declarations(env)
+ if self.args:
+ error(self.pos, "cython.parallel.parallel() does not take "
+ "positional arguments")
+
+ def generate_execution_code(self, code):
+ self.declare_closure_privates(code)
+ self.setup_parallel_control_flow_block(code)
+
+ code.putln("#ifdef _OPENMP")
+ code.put("#pragma omp parallel ")
+
+ if self.privates:
+ privates = [e.cname for e in self.privates
+ if not e.type.is_pyobject]
+ code.put('private(%s)' % ', '.join(sorted(privates)))
+
+ self.privatization_insertion_point = code.insertion_point()
+ self.put_num_threads(code)
+ code.putln("")
+
+ code.putln("#endif /* _OPENMP */")
+
+ code.begin_block() # parallel block
+ self.begin_parallel_block(code)
+ self.initialize_privates_to_nan(code)
+ code.funcstate.start_collecting_temps()
+ self.body.generate_execution_code(code)
+ self.trap_parallel_exit(code)
+ self.privatize_temps(code)
+ self.end_parallel_block(code)
+ code.end_block() # end parallel block
+
+ continue_ = code.label_used(code.continue_label)
+ break_ = code.label_used(code.break_label)
+ return_ = code.label_used(code.return_label)
+
+ self.restore_labels(code)
+ self.end_parallel_control_flow_block(code, break_=break_,
+ continue_=continue_,
+ return_=return_)
+ self.release_closure_privates(code)
+
+
+class ParallelRangeNode(ParallelStatNode):
+ """
+ This node represents a 'for i in cython.parallel.prange():' construct.
+
+ target NameNode the target iteration variable
+ else_clause Node or None the else clause of this loop
+ """
+
+ child_attrs = ['body', 'target', 'else_clause', 'args', 'num_threads',
+ 'chunksize']
+
+ body = target = else_clause = args = None
+
+ start = stop = step = None
+
+ is_prange = True
+
+ nogil = None
+ schedule = None
+
+ valid_keyword_arguments = ['schedule', 'nogil', 'num_threads', 'chunksize']
+
+ def __init__(self, pos, **kwds):
+ super(ParallelRangeNode, self).__init__(pos, **kwds)
+ # Pretend to be a ForInStatNode for control flow analysis
+ self.iterator = PassStatNode(pos)
+
+ def analyse_declarations(self, env):
+ super(ParallelRangeNode, self).analyse_declarations(env)
+ self.target.analyse_target_declaration(env)
+ if self.else_clause is not None:
+ self.else_clause.analyse_declarations(env)
+
+ if not self.args or len(self.args) > 3:
+ error(self.pos, "Invalid number of positional arguments to prange")
+ return
+
+ if len(self.args) == 1:
+ self.stop, = self.args
+ elif len(self.args) == 2:
+ self.start, self.stop = self.args
+ else:
+ self.start, self.stop, self.step = self.args
+
+ if hasattr(self.schedule, 'decode'):
+ self.schedule = self.schedule.decode('ascii')
+
+ if self.schedule not in (None, 'static', 'dynamic', 'guided', 'runtime'):
+ error(self.pos, "Invalid schedule argument to prange: %s" % (self.schedule,))
+
+ def analyse_expressions(self, env):
+ was_nogil = env.nogil
+ if self.nogil:
+ env.nogil = True
+
+ if self.target is None:
+ error(self.pos, "prange() can only be used as part of a for loop")
+ return self
+
+ self.target = self.target.analyse_target_types(env)
+
+ if not self.target.type.is_numeric:
+ # Not a valid type, assume one for now anyway
+
+ if not self.target.type.is_pyobject:
+ # nogil_check will catch the is_pyobject case
+ error(self.target.pos,
+ "Must be of numeric type, not %s" % self.target.type)
+
+ self.index_type = PyrexTypes.c_py_ssize_t_type
+ else:
+ self.index_type = self.target.type
+
+ # Setup start, stop and step, allocating temps if needed
+ self.names = 'start', 'stop', 'step'
+ start_stop_step = self.start, self.stop, self.step
+
+ for node, name in zip(start_stop_step, self.names):
+ if node is not None:
+ node.analyse_types(env)
+ if not node.type.is_numeric:
+ error(node.pos, "%s argument must be numeric" % name)
+ continue
+
+ if not node.is_literal:
+ node = node.coerce_to_temp(env)
+ setattr(self, name, node)
+
+ # As we range from 0 to nsteps, computing the index along the
+ # way, we need a fitting type for 'i' and 'nsteps'
+ self.index_type = PyrexTypes.widest_numeric_type(
+ self.index_type, node.type)
+
+ if self.else_clause is not None:
+ self.else_clause = self.else_clause.analyse_expressions(env)
+
+ # Although not actually an assignment in this scope, it should be
+ # treated as such to ensure it is unpacked if a closure temp, and to
+ # ensure lastprivate behaviour and propagation. If the target index is
+ # not a NameNode, it won't have an entry, and an error was issued by
+ # ParallelRangeTransform
+ if hasattr(self.target, 'entry'):
+ self.assignments[self.target.entry] = self.target.pos, None
+
+ node = super(ParallelRangeNode, self).analyse_expressions(env)
+
+ if node.chunksize:
+ if not node.schedule:
+ error(node.chunksize.pos,
+ "Must provide schedule with chunksize")
+ elif node.schedule == 'runtime':
+ error(node.chunksize.pos,
+ "Chunksize not valid for the schedule runtime")
+ elif (node.chunksize.type.is_int and
+ node.chunksize.is_literal and
+ node.chunksize.compile_time_value(env) <= 0):
+ error(node.chunksize.pos, "Chunksize must not be negative")
+
+ node.chunksize = node.chunksize.coerce_to(
+ PyrexTypes.c_int_type, env).coerce_to_temp(env)
+
+ if node.nogil:
+ env.nogil = was_nogil
+
+ node.is_nested_prange = node.parent and node.parent.is_prange
+ if node.is_nested_prange:
+ parent = node
+ while parent.parent and parent.parent.is_prange:
+ parent = parent.parent
+
+ parent.assignments.update(node.assignments)
+ parent.privates.update(node.privates)
+ parent.assigned_nodes.extend(node.assigned_nodes)
+ return node
+
+ def nogil_check(self, env):
+ names = 'start', 'stop', 'step', 'target'
+ nodes = self.start, self.stop, self.step, self.target
+ for name, node in zip(names, nodes):
+ if node is not None and node.type.is_pyobject:
+ error(node.pos, "%s may not be a Python object "
+ "as we don't have the GIL" % name)
+
+ def generate_execution_code(self, code):
+ """
+ Generate code in the following steps
+
+ 1) copy any closure variables determined thread-private
+ into temporaries
+
+ 2) allocate temps for start, stop and step
+
+ 3) generate a loop that calculates the total number of steps,
+ which then computes the target iteration variable for every step:
+
+ for i in prange(start, stop, step):
+ ...
+
+ becomes
+
+ nsteps = (stop - start) / step;
+ i = start;
+
+ #pragma omp parallel for lastprivate(i)
+ for (temp = 0; temp < nsteps; temp++) {
+ i = start + step * temp;
+ ...
+ }
+
+ Note that accumulation of 'i' would have a data dependency
+ between iterations.
+
+ Also, you can't do this
+
+ for (i = start; i < stop; i += step)
+ ...
+
+ as the '<' operator should become '>' for descending loops.
+ 'for i from x < i < y:' does not suffer from this problem
+ as the relational operator is known at compile time!
+
+ 4) release our temps and write back any private closure variables
+ """
+ self.declare_closure_privates(code)
+
+ # This can only be a NameNode
+ target_index_cname = self.target.entry.cname
+
+ # This will be used as the dict to format our code strings, holding
+ # the start, stop , step, temps and target cnames
+ fmt_dict = {
+ 'target': target_index_cname,
+ 'target_type': self.target.type.empty_declaration_code()
+ }
+
+ # Setup start, stop and step, allocating temps if needed
+ start_stop_step = self.start, self.stop, self.step
+ defaults = '0', '0', '1'
+ for node, name, default in zip(start_stop_step, self.names, defaults):
+ if node is None:
+ result = default
+ elif node.is_literal:
+ result = node.get_constant_c_result_code()
+ else:
+ node.generate_evaluation_code(code)
+ result = node.result()
+
+ fmt_dict[name] = result
+
+ fmt_dict['i'] = code.funcstate.allocate_temp(self.index_type, False)
+ fmt_dict['nsteps'] = code.funcstate.allocate_temp(self.index_type, False)
+
+ # TODO: check if the step is 0 and if so, raise an exception in a
+ # 'with gil' block. For now, just abort
+ code.putln("if ((%(step)s == 0)) abort();" % fmt_dict)
+
+ self.setup_parallel_control_flow_block(code) # parallel control flow block
+
+ # Note: nsteps is private in an outer scope if present
+ code.putln("%(nsteps)s = (%(stop)s - %(start)s + %(step)s - %(step)s/abs(%(step)s)) / %(step)s;" % fmt_dict)
+
+ # The target iteration variable might not be initialized, do it only if
+ # we are executing at least 1 iteration, otherwise we should leave the
+ # target unaffected. The target iteration variable is firstprivate to
+ # shut up compiler warnings caused by lastprivate, as the compiler
+ # erroneously believes that nsteps may be <= 0, leaving the private
+ # target index uninitialized
+ code.putln("if (%(nsteps)s > 0)" % fmt_dict)
+ code.begin_block() # if block
+ self.generate_loop(code, fmt_dict)
+ code.end_block() # end if block
+
+ self.restore_labels(code)
+
+ if self.else_clause:
+ if self.breaking_label_used:
+ code.put("if (%s < 2)" % Naming.parallel_why)
+
+ code.begin_block() # else block
+ code.putln("/* else */")
+ self.else_clause.generate_execution_code(code)
+ code.end_block() # end else block
+
+ # ------ cleanup ------
+ self.end_parallel_control_flow_block(code) # end parallel control flow block
+
+ # And finally, release our privates and write back any closure
+ # variables
+ for temp in start_stop_step + (self.chunksize,):
+ if temp is not None:
+ temp.generate_disposal_code(code)
+ temp.free_temps(code)
+
+ code.funcstate.release_temp(fmt_dict['i'])
+ code.funcstate.release_temp(fmt_dict['nsteps'])
+
+ self.release_closure_privates(code)
+
+ def generate_loop(self, code, fmt_dict):
+ if self.is_nested_prange:
+ code.putln("#if 0")
+ else:
+ code.putln("#ifdef _OPENMP")
+
+ if not self.is_parallel:
+ code.put("#pragma omp for")
+ self.privatization_insertion_point = code.insertion_point()
+ reduction_codepoint = self.parent.privatization_insertion_point
+ else:
+ code.put("#pragma omp parallel")
+ self.privatization_insertion_point = code.insertion_point()
+ reduction_codepoint = self.privatization_insertion_point
+ code.putln("")
+ code.putln("#endif /* _OPENMP */")
+
+ code.begin_block() # pragma omp parallel begin block
+
+ # Initialize the GIL if needed for this thread
+ self.begin_parallel_block(code)
+
+ if self.is_nested_prange:
+ code.putln("#if 0")
+ else:
+ code.putln("#ifdef _OPENMP")
+ code.put("#pragma omp for")
+
+ for entry, (op, lastprivate) in sorted(self.privates.items()):
+ # Don't declare the index variable as a reduction
+ if op and op in "+*-&^|" and entry != self.target.entry:
+ if entry.type.is_pyobject:
+ error(self.pos, "Python objects cannot be reductions")
+ else:
+ #code.put(" reduction(%s:%s)" % (op, entry.cname))
+ # This is the only way reductions + nesting works in gcc4.5
+ reduction_codepoint.put(
+ " reduction(%s:%s)" % (op, entry.cname))
+ else:
+ if entry == self.target.entry:
+ code.put(" firstprivate(%s)" % entry.cname)
+ code.put(" lastprivate(%s)" % entry.cname)
+ continue
+
+ if not entry.type.is_pyobject:
+ if lastprivate:
+ private = 'lastprivate'
+ else:
+ private = 'private'
+
+ code.put(" %s(%s)" % (private, entry.cname))
+
+ if self.schedule:
+ if self.chunksize:
+ chunksize = ", %s" % self.evaluate_before_block(code, self.chunksize)
+ else:
+ chunksize = ""
+
+ code.put(" schedule(%s%s)" % (self.schedule, chunksize))
+
+ self.put_num_threads(reduction_codepoint)
+
+ code.putln("")
+ code.putln("#endif /* _OPENMP */")
+
+ code.put("for (%(i)s = 0; %(i)s < %(nsteps)s; %(i)s++)" % fmt_dict)
+ code.begin_block() # for loop block
+
+ guard_around_body_codepoint = code.insertion_point()
+
+ # Start if guard block around the body. This may be unnecessary, but
+ # at least it doesn't spoil indentation
+ code.begin_block()
+
+ code.putln("%(target)s = (%(target_type)s)(%(start)s + %(step)s * %(i)s);" % fmt_dict)
+ self.initialize_privates_to_nan(code, exclude=self.target.entry)
+
+ if self.is_parallel and not self.is_nested_prange:
+ # nested pranges are not omp'ified, temps go to outer loops
+ code.funcstate.start_collecting_temps()
+
+ self.body.generate_execution_code(code)
+ self.trap_parallel_exit(code, should_flush=True)
+ if self.is_parallel and not self.is_nested_prange:
+ # nested pranges are not omp'ified, temps go to outer loops
+ self.privatize_temps(code)
+
+ if self.breaking_label_used:
+ # Put a guard around the loop body in case return, break or
+ # exceptions might be used
+ guard_around_body_codepoint.putln("if (%s < 2)" % Naming.parallel_why)
+
+ code.end_block() # end guard around loop body
+ code.end_block() # end for loop block
+
+ if self.is_parallel:
+ # Release the GIL and deallocate the thread state
+ self.end_parallel_block(code)
+ code.end_block() # pragma omp parallel end block
+
+
+class CnameDecoratorNode(StatNode):
+ """
+ This node is for the cname decorator in CythonUtilityCode:
+
+ @cname('the_cname')
+ cdef func(...):
+ ...
+
+ In case of a cdef class the cname specifies the objstruct_cname.
+
+ node the node to which the cname decorator is applied
+ cname the cname the node should get
+ """
+
+ child_attrs = ['node']
+
+ def analyse_declarations(self, env):
+ self.node.analyse_declarations(env)
+
+ node = self.node
+ if isinstance(node, CompilerDirectivesNode):
+ node = node.body.stats[0]
+
+ self.is_function = isinstance(node, FuncDefNode)
+ is_struct_or_enum = isinstance(node, (CStructOrUnionDefNode, CEnumDefNode))
+ e = node.entry
+
+ if self.is_function:
+ e.cname = self.cname
+ e.func_cname = self.cname
+ e.used = True
+ if e.pyfunc_cname and '.' in e.pyfunc_cname:
+ e.pyfunc_cname = self.mangle(e.pyfunc_cname)
+ elif is_struct_or_enum:
+ e.cname = e.type.cname = self.cname
+ else:
+ scope = node.scope
+
+ e.cname = self.cname
+ e.type.objstruct_cname = self.cname + '_obj'
+ e.type.typeobj_cname = Naming.typeobj_prefix + self.cname
+ e.type.typeptr_cname = self.cname + '_type'
+ e.type.scope.namespace_cname = e.type.typeptr_cname
+
+ e.as_variable.cname = e.type.typeptr_cname
+
+ scope.scope_prefix = self.cname + "_"
+
+ for name, entry in scope.entries.items():
+ if entry.func_cname:
+ entry.func_cname = self.mangle(entry.cname)
+ if entry.pyfunc_cname:
+ entry.pyfunc_cname = self.mangle(entry.pyfunc_cname)
+
+ def mangle(self, cname):
+ if '.' in cname:
+ # remove __pyx_base from func_cname
+ cname = cname.split('.')[-1]
+ return '%s_%s' % (self.cname, cname)
+
+ def analyse_expressions(self, env):
+ self.node = self.node.analyse_expressions(env)
+ return self
+
+ def generate_function_definitions(self, env, code):
+ "Ensure a prototype for every @cname method in the right place"
+ if self.is_function and env.is_c_class_scope:
+ # method in cdef class, generate a prototype in the header
+ h_code = code.globalstate['utility_code_proto']
+
+ if isinstance(self.node, DefNode):
+ self.node.generate_function_header(
+ h_code, with_pymethdef=False, proto_only=True)
+ else:
+ from . import ModuleNode
+ entry = self.node.entry
+ cname = entry.cname
+ entry.cname = entry.func_cname
+
+ ModuleNode.generate_cfunction_declaration(
+ entry,
+ env.global_scope(),
+ h_code,
+ definition=True)
+
+ entry.cname = cname
+
+ self.node.generate_function_definitions(env, code)
+
+ def generate_execution_code(self, code):
+ self.node.generate_execution_code(code)
+
+
+#------------------------------------------------------------------------------------
+#
+# Runtime support code
+#
+#------------------------------------------------------------------------------------
+
+if Options.gcc_branch_hints:
+ branch_prediction_macros = """
+/* Test for GCC > 2.95 */
+#if defined(__GNUC__) \
+ && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95)))
+ #define likely(x) __builtin_expect(!!(x), 1)
+ #define unlikely(x) __builtin_expect(!!(x), 0)
+#else /* !__GNUC__ or GCC < 2.95 */
+ #define likely(x) (x)
+ #define unlikely(x) (x)
+#endif /* __GNUC__ */
+"""
+else:
+ branch_prediction_macros = """
+#define likely(x) (x)
+#define unlikely(x) (x)
+"""
+
+#------------------------------------------------------------------------------------
+
+printing_utility_code = UtilityCode.load_cached("Print", "Printing.c")
+printing_one_utility_code = UtilityCode.load_cached("PrintOne", "Printing.c")
+
+#------------------------------------------------------------------------------------
+
+# Exception raising code
+#
+# Exceptions are raised by __Pyx_Raise() and stored as plain
+# type/value/tb in PyThreadState->curexc_*. When being caught by an
+# 'except' statement, curexc_* is moved over to exc_* by
+# __Pyx_GetException()
+
+restore_exception_utility_code = UtilityCode.load_cached("PyErrFetchRestore", "Exceptions.c")
+raise_utility_code = UtilityCode.load_cached("RaiseException", "Exceptions.c")
+get_exception_utility_code = UtilityCode.load_cached("GetException", "Exceptions.c")
+swap_exception_utility_code = UtilityCode.load_cached("SwapException", "Exceptions.c")
+reset_exception_utility_code = UtilityCode.load_cached("SaveResetException", "Exceptions.c")
+traceback_utility_code = UtilityCode.load_cached("AddTraceback", "Exceptions.c")
+
+#------------------------------------------------------------------------------------
+
+get_exception_tuple_utility_code = UtilityCode(
+ proto="""
+static PyObject *__Pyx_GetExceptionTuple(PyThreadState *__pyx_tstate); /*proto*/
+""",
+ # I doubt that calling __Pyx_GetException() here is correct as it moves
+ # the exception from tstate->curexc_* to tstate->exc_*, which prevents
+ # exception handlers later on from receiving it.
+ # NOTE: "__pyx_tstate" may be used by __Pyx_GetException() macro
+ impl = """
+static PyObject *__Pyx_GetExceptionTuple(CYTHON_UNUSED PyThreadState *__pyx_tstate) {
+ PyObject *type = NULL, *value = NULL, *tb = NULL;
+ if (__Pyx_GetException(&type, &value, &tb) == 0) {
+ PyObject* exc_info = PyTuple_New(3);
+ if (exc_info) {
+ Py_INCREF(type);
+ Py_INCREF(value);
+ Py_INCREF(tb);
+ PyTuple_SET_ITEM(exc_info, 0, type);
+ PyTuple_SET_ITEM(exc_info, 1, value);
+ PyTuple_SET_ITEM(exc_info, 2, tb);
+ return exc_info;
+ }
+ }
+ return NULL;
+}
+""",
+ requires=[get_exception_utility_code])